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Introduction

The notion of shuffle and stuffle algebras is widely used in several fields of mathematics. Indeed, they participate in the study of Rota-Baxter algebras with the notion of mixable shuffle algebras [START_REF] Guo | Baxter Algebras and Shuffle Products[END_REF][START_REF] Ebrahimi-Fard | Mixable shuffles, quasi-shuffles and Hopf algebras[END_REF][START_REF] Jian | Quantum quasi-shuffle algebras II[END_REF], in the study of Yang-Baxter algebras [START_REF] Jian | Quantum Quasi-Shuffle Algebras[END_REF], in the study of quasi-symmetric functions and words algebras [START_REF] Gessel | Multipartite p-partitions and inner products of skew Schur functions[END_REF][START_REF] Malvenuto | Produits et coproduits des fonctions quasi-symétriques et de l'algèbre des descentes[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF][START_REF] Duchamp | Noncommutative symmetric functions VI: Free quasi-symmetric functions and related Internat[END_REF][START_REF] Duchamp | Noncommutative symmetric functions VII: Free quasi-symmetric functions revisited[END_REF][START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF][START_REF] Vargas | Hopf algebra of permutation pattern functions[END_REF][START_REF] Mammez | A propos de l'algèbre de Hopf des mots tassés WMat[END_REF], in the study of multiple zeta values [START_REF] Zagier | Values of zeta functions and their applications[END_REF][START_REF] Hoffman | The algebra of multiple harmonic series[END_REF][START_REF]Quasi-shuffle products[END_REF][START_REF] Hoffman | Relations of multiple zeta values and their algebraic expression[END_REF][START_REF] Hoffman | Quasi-shuffle products revisited[END_REF][START_REF]Quasi-shuffle algebras and applications[END_REF][START_REF] Singer | On Bradley's q-MZVs and a generalized Euler decomposition formula[END_REF][START_REF] Ebrahimi-Fard | The Hopf Algebra of q-Multiple Polylogarithms with Non-positive Arguments[END_REF][START_REF] Ebrahimi-Fard | Duality and q-multiple zeta values[END_REF] . . . The classical stuffle product comes from the product of classical multiple zeta values and is defined by the relation au✷bv = a(u✷bv) + b(au✷v) + (a ⋄ b) (u✷v) where a and b are letters, u and v are words and ⋄ is an associative and commutative product which is equal to 0 in the case of the classical shuffle product. Thus, the shuffle part of the relation is symmetric and does not depend on letters of any words in the product. In his work, Singer focuses on q-shuffle products coming from q-analogues of multiples zeta values. This case enables the existance of some letters p and y satisfying a relation in the form of yu✷pv = pv✷yu = y(u✷pv) for any words u and v. This new q-shuffle relation is not symmetric and depends on the beginning of each word in the product. This leads to focus on new generalisations of shuffle and stuffle products [START_REF] Singer | q-Analogues of multiple zeta values and their application in renormalization[END_REF][START_REF] Ebrahimi-Fard | Duality and q-multiple zeta values[END_REF][START_REF] Ebrahimi-Fard | The Hopf Algebra of q-Multiple Polylogarithms with Non-positive Arguments[END_REF].

In this article, we present a new generalisation of shuffle and stuffle algebras, we study their algebraic structures and compare them to the classical case. The article is organised as follows.

• In Section 1, we recall the classical notion of shuffle and stuffle product thanks to the multiple zeta values as well as the calculation by Singer of q-shuffle associated to the Schlesinger-Zudilin model and the Bradley-Zhao model.

• In Section 2, we define a generalisation of the classical shuffle product and the classical stuffle product called weak shuffle products and weak stuffle products and prove a characterisation of weak shuffle products. We detail the case of an alphabet of cardinality 2 or 3.

• In Section 3, we focus on algebraic structures respected by the classical shuffle product and we determine if the weak shuffle products respect them too. Thus we prove that weak shuffle products are dendriform but there are obstacles to the quadri-algebra structure.

• In Section 4, we express some relations satistied by weak stuffle products and we express the q-shuffle products given by Singer in terms of weak stuffle product. Besides, in the case of an infinite, countable and totally ordered alphabet {x 1 , . . . , x n , . . . }, we prove that, if the contracting part in the weak stuffle products is expressed as f 3 (x i ⊗ x j ) ∈ K * x i+j , then the shuffle part is the null product or the classical shuffle product. We give some informations more about weak stuffle products in the case of an alphabet of cardinality 2 or 3.

• In Section 5, we prove that a weak stuffle product is compatible with the deconcatenation coproduct if and only if the underlying weak shuffle product is the classical shuffle product and the contracting part is associative and commutative.

• Computation programs used to prove Lemma 18 are detailed in Section 6.
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Reminders 1.Classical shuffle and stuffle algebras

We recall here the definition of the stuffle product in the context of the multiple zeta values. Then, it leads to the following algebraic definition and following theorem [START_REF] Hoffman | The algebra of multiple harmonic series[END_REF].

Theorem 2. Let X = {x 1 , . . . , x n , . . . } be a countable alphabet. Let K X be the algebra of words on the alphabet X. We define the product ⋆, called the stuffle product, by:

u ⋆ 1 =1 ⋆ u = 1, u ⋆ 0 =0 ⋆ u = 0, x i u ⋆ x j v =x i (u ⋆ x j v) + x j (x i u ⋆ v) + x i+j (u ⋆ v)
for any letters x i and x j and any words u and v.

Then

x i ux k ⋆ x j vx l =x i (ux k ⋆ x j vx l ) + x j (x i ux k ⋆ vx l ) + x i+j (ux k ⋆ vx l ) =(x i u ⋆ x j vx l )x k + (x i ux k ⋆ x j v)x l + (x i u ⋆ x j v)x k+l
and (K X , ⋆) is an associative and commutative algebra.

It is possible to define another algebra:

Theorem 3. Let X = {x 1 , . . . , x n , . . . } be a countable alphabet. Let K X be the algebra of words on the alphabet X. We define the product ¡, called the shuffle product, by:

u ¡ 1 =1 ¡ u = 1, u ¡ 0 =0 ¡ u = 0, x i u ¡ x j v =x i (u ¡ x j v) + x j (x i u ¡ v)
for any letters x i and x j and any words u and v. Then

x i ux k ¡ x j vx l =x i (ux k ¡ x j vx l ) + x j (x i ux k ¡ vx l ) =(x i u ¡ x j vx l )x k + (x i ux k ¡ x j v)x l and (K X , ¡) is an associative and commutative algebra. Theorem 4. Let X = {x 1 , . . . , x n , . . . } be a countable alphabet. The algebras (K X , ⋆) and (K X , ¡) are isomorphic.

Proof. This theorem was proved by Hoffman [START_REF]Quasi-shuffle products[END_REF]Theorem 2.5] by describing an explicit isomorphism exp. Another construction of exp leading to the proof of this theorem is given in [START_REF] Mammez | A propos de l'algèbre de Hopf des mots tassés WMat[END_REF]Proposition 41].

q-shuffle products for the Schlesinger-Zudilin model and the Bradley-Zhao model.

Let q be real number such that 0 < q < 1. A q-analogue of a positive integer m is defined by

[m] q = 1 -q m 1 -q = 1 + q + • • • + q m-1 .
The Schlesinger-Zudilin model [START_REF] Schlesinger | Some remarks on q-deformed multiple polylogarithms[END_REF][START_REF] Zudilin | Algebraic relations for multiple zeta values[END_REF] is defined as the following q-sum:

ζ SZ q (k 1 , . . . , k n ) =(1 -q) -(k 1 +•••+kn) (m 1 ,...,ms)∈N m 1 >•••>ms>0 q m 1 k 1 +•••+mnkn [m 1 ] k 1 q . . . [m n ] kn q = (m 1 ,...,ms)∈N m 1 >•••>ms>0 q m 1 k 1 +•••+mnkn (1 -q m 1 ) k 1 . . . (1 -q mn ) kn for any (k 1 , . . . , k n ) ∈ (N * ) n .
The Bradley-Zhao model [START_REF] Bradley | Multiple q-zeta values[END_REF][START_REF] Zhao | Multiple q-zeta functions and multiple q-polylogarithms[END_REF] is defined as the following q-sum:

ζ BZ q (k 1 , . . . , k n ) =(1 -q) -(k 1 +•••+kn) (m 1 ,...,ms)∈N m 1 >•••>ms>0 q m 1 (k 1 -1)+•••+mn(kn-1) [m 1 ] k 1 q . . . [m n ] kn q = (m 1 ,...,ms)∈N m 1 >•••>ms>0 q m 1 (k 1 -1)+•••+mn(kn-1) (1 -q m 1 ) k 1 . . . (1 -q mn ) kn for any (k 1 , . . . , k n ) ∈ N n with k 1 ≥ 2.
From those two models, Singer defined two q-shuffle products corresponding to the algebraic version of the Schlesinger-Zudilin model and the Bradley-Zhao model and proved the following two theorems in [START_REF] Singer | On q-analogues of multiple zeta values[END_REF][START_REF] Singer | On Bradley's q-MZVs and a generalized Euler decomposition formula[END_REF][START_REF] Singer | q-Analogues of multiple zeta values and their application in renormalization[END_REF]: Theorem 5 (Singer). Let X = {y, p} be an alphabet. The q-shuffle product associated to the Schlesinger-Zudilin model is given by: for any words u and v,

1. 1 ¡ SZ u = u ¡ SZ 1 = u, 2. yu ¡ SZ v = v ¡ SZ yu = y(u ¡ SZ v), 3. pu ¡ SZ pv = p(u ¡ SZ pv) + p(pu ¡ SZ v) + p(u ¡ SZ v).
Besides, it is an associative and commutative product.

Theorem 6 (Singer). Let X = {y, p, p} be an alphabet. The q-shuffle product associated to the Bradley-Zhao model is given by: for any words u and v,

1. 1 ¡ BZ u = u ¡ BZ 1 = u, 2. yu ¡ BZ v = v ¡ BZ yu = y(u ¡ BZ v), 3. au ¡ BZ bv = a(u ¡ BZ bv) + b(au ¡ BZ v) + [a, b]a(u ¡ BZ v) where a, b ∈ {p, p}, [p, p] = -[p, p] = 1 and [p, p] = [p, p] = 0.
Besides, it is an associative and commutative product.

Definition and characterisation of weak shuffle products

The aim of this section is to define a generalisation of the classical shuffle product, the classical stuffle product, and the two q-shuffle products given by the Schlesinger-Zudilin model and the Bradley-Zhao model. We give and prove a characterisation of weak shuffle products too. Then we explicit the case of an alphabet of cardinality 2 or 3.

Characterisation

Definition 7. An alphabet is a non-empty finite or countable set X. Definition 8. Let X be an alphabet. We denote by X * the set of words on the alphabet X and by K X the tensor algebra generated by X ( i.e. the algebra of words on X). The space K X is graded by the length of words. Definition 9. Let X be an alphabet. A weak stuffle product on K X is an associative and commutative product ✷ such that for any (a, b) ∈ (X) 2 and any

(u, v) ∈ (X * ) 2 u✷1 =1✷u = u, u✷0 =0✷u = 0, au✷bv =f 1 (a ⊗ b)a(u✷bv) + f 2 (a ⊗ b)b(au✷v) + f 3 (a ⊗ b)(u✷v)
where 1. f 1 and f 2 are linear maps from K.X ⊗ K.X to K,

2. f 3 = kg is a linear map from K.X ⊗ K.X to K.X such that k(a ⊗ b) ∈ K and g(a ⊗ b) ∈ X for any (a, b) ∈ X 2 , 3. If f 3 ≡ 0 then the product ✷ is called a weak shuffle product.
Examples. Let X = {x 1 , . . . , x n , . . . } be an infinite alphabet.

1. The classical shuffle product on K X is a weak stuffle product where

f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2
, and f 3 ≡ 0.

2. The classical stuffle product on K X is a weak stuffle product where

f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2 , and f 3 (x i ⊗ x j ) = x i+j for any (i, j) ∈ (N * ) 2 .
3. The stuffle product on K X given by Hoffman and Ihara in [START_REF] Hoffman | Quasi-shuffle products revisited[END_REF] is a weak stuffle product where

f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2 , and f 3 (x i ⊗ x j ) = -x i+j for any (i, j) ∈ (N * ) 2 .
Theorem 10. Let ✷ be a product on K X . The map ✷ is a weak shuffle product if and only if, for any distinct letters a, b, and c in X:

1. f 1 (a ⊗ b) = f 2 (b ⊗ a).

(a) either

f 1 (a ⊗ a) = f 2 (a ⊗ a) = α with α ∈ {0, 1} and i. f 1 (a ⊗ b)f 1 (b ⊗ a)[f 1 (a ⊗ a) -1] = 0, ii. f 1 (a ⊗ a)f 1 (a ⊗ b)[f 1 (a ⊗ b) -1] = 0, iii. f 1 (a ⊗ a)f 1 (b ⊗ a)[f 1 (b ⊗ a) -1] = 0. (b) or f 1 (a ⊗ a) = α, f 2 (a ⊗ a) = 1 -α with α ∈ R and i. f 1 (a ⊗ b) = 1, ii. f 1 (b ⊗ a) = 0. 3. f 1 (a ⊗ b)f 1 (b ⊗ c)[f 1 (a ⊗ c) -1] = 0. 4. f 3 ≡ 0.
Remark. It is sometimes usefull to use in calculations the following statement induced by the item 2b of the Theorem 10:

"If f 1 (a ⊗ b) = 0 or f 1 (b ⊗ a) = 0 then f 1 (a ⊗ a) = f 2 (a ⊗ a) = α with α ∈ {0, 1}."
Proof. Let us prove first the direct implication. Let us assume ✷ is a weak shuffle product. Let a, b, and c be three distinct letters. Then, by direct calculations,

(A) a✷b = b✷a gives relation f 1 (a ⊗ b) = f 2 (b ⊗ a). (B) a✷aa = aa✷a gives f 1 (a ⊗ a) = f 2 (a ⊗ a) or f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a). (C) a✷ab = ab✷a gives, if f 1 (a ⊗ b) = 0 or f 1 (b ⊗ a) = 0, that f 1 (a ⊗ a) = f 2 (a ⊗ a). Thus, if f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a) and f 1 (a ⊗ a) = 1 2 then f 1 (a ⊗ b) = 0 and f 1 (b ⊗ a) = 0. The relation a✷ab = ab✷a implies f 1 (a ⊗ b) = 1. (D) (a✷a)✷b = a✷(a✷b) = (a✷b)✷a with f 1 (a ⊗ a) = f 2 (a ⊗ a) give (a) f 1 (a ⊗ b)f 1 (b ⊗ a)[f 1 (a ⊗ a) -1] = 0, (b) f 1 (a ⊗ a)f 1 (a ⊗ b)[f 1 (a ⊗ b) -1] = 0, (c) f 1 (a ⊗ a)f 1 (b ⊗ a)[f 1 (b ⊗ a) -1] = 0. (E) (a✷b)✷c = a✷(b✷c) gives f 1 (a ⊗ b)f 1 (b ⊗ c)[f 1 (a ⊗ c) -1] = 0. (F) (a✷a)✷ab = a✷(a✷ab) implies that if f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a) = 1 2 then f 1 (a ⊗ b) = 1 and f 1 (b ⊗ a) = 0. (G) (a✷a)✷aa = a✷(a✷aa) and (a✷a)✷aaa = a✷(a✷aaa) implies that if f 1 (a ⊗ a) = f 2 (a ⊗ a) = α then α ∈ {0, 1, 1 2 }.
(H) Cases ba✷a = a✷ba, aa✷b = b✷aa, ab✷c = c✷ab and (a✷a)✷a = a✷(a✷a) do not give any further relations.

As a consequence, in the theorem 10,

• the item 1 is proved by the item (A),

• the item 2a is proved by the items (B), (D), (F) and (G),

• the item 2b is proved by the items (B), (C) and (F),

• the item 3 is proved by the item (E),

• the item 4 is satisfied by the definition of a weak shuffle product.

Conversly, if ✷ satisfies all relations given in Theorem 10 then for any couple (u, v) and any triple (w 1 , w 2 , w 3 ) of words such that length(u) + length(v) ≤ 3 and length(w 1 ) + length(w 2 ) + length(w 3 ) ≤ 3 one has: u✷v = v✷u and (w 1 ✷w 2 )✷w 3 = w 1 ✷(w 2 ✷w 3 ).

We assume now there exists an integer n ≥ 3 such that u✷v = v✷u and (w 1 ✷w 2 )✷w 3 = w 1 ✷(w 2 ✷w 3 ) for any words u, v, w 1 , w 2 with length(u) + length(v) ≤ n and length(w 1 ) + length(w 2 ) + length(w 3 ) ≤ n.

Let now u and v be two words such that length(u) + length(v) = n + 1. Then there exist two letters a and b and two words w 1 and w 2 (not necessarily non-empty) such that u = aw 1 and v = bw 2 . Then, by induction, we get: )(w 4 ✷w 3 ) = v✷u.

case a = b. u✷v =f 1 (a ⊗ b)a(w 1 ✷bw 2 ) + f 1 (b ⊗ a)b(aw 1 ✷w 2 ) =f 1 (a ⊗ b)a(bw 2 ✷w 1 ) + f 1 (b ⊗ a)b(w 2 ✷aw 1 ) = v✷u. case a = b and f 1 (a ⊗ a) = f 2 (a ⊗ a). u✷v =f 1 (a ⊗ a)a(w 1 ✷aw 2 ) + f 1 (a ⊗ a)a(aw 1 ✷w 2 ) =f 1 (a ⊗ a)a(aw 2 ✷w 1 ) + f 1 (a ⊗ a)a(w 2 ✷aw 1 ) = v✷u.
As a consequence, ✷ is a commutative product. Let now w 1 , w 2 and w 3 be three words such that length(w 1 )+length(w 2 )+length(w 3 ) = n+1. Then there exist three letters a, b and c and three words w 4 , w 5 and w 6 (not necessarily nonempty) such that w 1 = aw 4 , w 2 = bw 5 and w 3 = cw 6 . Then, by induction, we get: case a, b and c distinct.

(w 1 ✷w 2 )✷w 3 =f 1 (a ⊗ b)f 1 (a ⊗ c)a[(w 4 ✷bw 5 )✷cw 6 ] + f 1 (a ⊗ b)f 1 (c ⊗ a)c[a(w 4 ✷bw 5 )✷w 6 ] +f 1 (b ⊗ a)f 1 (b ⊗ c)b[(aw 4 ✷w 5 )✷cw 6 ] + f 1 (b ⊗ a)f 1 (c ⊗ b)c[b(aw 4 ✷w 5 )✷w 6 ]
and (w

w 1 ✷(w 2 ✷w 3 ) =f 1 (b ⊗ c)f 1 (a ⊗ b)a[w 4 ✷b(w 5 ✷cw 6 )] + f 1 (b ⊗ c)f 1 (b ⊗ a)b[aw 4 ✷(w 5 ✷cw 6 )] +f 1 (c ⊗ b)f 1 (a ⊗ c)a[w 4 ✷c(bw 5 ✷w 6 )] + f 1 (c ⊗ b)f 1 (c ⊗ a)c[aw 4 ✷(bw 5 ✷w 6 )].
1 ✷w 2 )✷w 3 =f 1 (a ⊗ a)f 1 (a ⊗ c)a[(w 4 ✷aw 5 )✷cw 6 ] + f 1 (a ⊗ a)f 1 (c ⊗ a)c[a(w 4 ✷aw 5 )✷w 6 ] +f 2 (a ⊗ a)f 1 (a ⊗ c)a[(aw 4 ✷w 5 )✷cw 6 ] + f 2 (a ⊗ a)f 1 (c ⊗ a)c[a(aw 4 ✷w 5 )✷w 6 ]
and 

w 1 ✷(w 2 ✷w 3 ) =f 1 (a ⊗ c)f 1 (a ⊗ a)a[w 4 ✷a(w 5 ✷cw 6 )] + f 1 (a ⊗ c)f 2 (a ⊗ a)a[aw 4 ✷(w 5 ✷cw 6 )] +f 1 (c ⊗ a)f 1 (a ⊗ c)a[w 4 ✷c(aw 5 ✷w 6 )] + f 1 (c ⊗ a) 2 c
1. If f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1} then (a) f 1 (a ⊗ b)f 1 (b ⊗ a)[f 1 (a ⊗ a) -1] = 0, (b) f 1 (a ⊗ a)f 1 (a ⊗ b)[f 1 (a ⊗ b) -1] = 0, (c) f 1 (a ⊗ a)f 1 (b ⊗ a)[f 1 (b ⊗ a) -1] = 0. 2. If f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a) then f 1 (a ⊗ c) = 1 and f 1 (c ⊗ a) = 0.
Thus, (w 1 ✷w 2 )✷w 3 = w 1 ✷(w 2 ✷w 3 ).

case a = b = c and f 1 (a ⊗ a) = f 2 (a ⊗ a). (w 1 ✷w 2 )✷w 3 =f 1 (a ⊗ a) 2 a[(w 4 ✷aw 5 )✷aw 6 ] + f 1 (a ⊗ a) 2 a[a(w 4 ✷aw 5 )✷w 6 ] +f 1 (a ⊗ a) 2 a[(aw 4 ✷w 5 )✷aw 6 ] + f 1 (a ⊗ a) 2 a[a(aw 4 ✷w 5 )✷w 6 ]
and

w 1 ✷(w 2 ✷w 3 ) =f 1 (a ⊗ a) 2 a[w 4 ✷a(w 5 ✷aw 6 )] + f 1 (a ⊗ a) 2 a[aw 4 ✷(w 5 ✷aw 6 )] +f 1 (a ⊗ a) 2 a[w 4 ✷a(aw 5 ✷w 6 )] + f 1 (a ⊗ a) 2 a[aw 4 ✷(aw 5 ✷w 6 )].
Thus, (w 1 ✷w 2 )✷w 3 = w 1 ✷(w 2 ✷w 3 ). ) w 7 ✷(w 8 ✷w 9 ) = w 1 ✷(w 2 ✷w 3 ).

Corollary 11. Let K be a field of characteristic 0, let X be a countable alphabet and let ✷ be a weak shuffle product on K X .

There exists at most one letter

a such that f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a).
2. If there exists a letter a such that f 1 (a ⊗ a) = 1f 2 (a ⊗ a) then, for any word u and v, the calculation of u✷v does not depend on the value of f 1 (a ⊗ a)

3. If f 1 (a ⊗ b) = f 1 (b ⊗ a) = 1 then f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = 1, f 1 (a ⊗ c) = f 1 (b ⊗ c) ∈ {0, 1} and f 1 (c ⊗ a) = f 1 (c ⊗ b) ∈ {0, 1} for any c ∈ X \ {a, b}.
Proof.

1. If there are two letters a and b such that 

a = b, f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a) and f 1 (b ⊗ b) = 1 -f 2 (b ⊗ b) then 1 = f 1 (a ⊗ b) = 0 and 0 = f 1 (b ⊗ a) = 1. Contradiction. 2. Let a such that f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a).
′ , v ′ ) such that u✷v = w(au ′ ✷av ′ ). 3. If f 1 (a⊗b) = f 1 (b⊗a) = 1 then, the fact that f 1 (a⊗a) = f 2 (a⊗a) = f 1 (b⊗b) = f 2 (b⊗b) = 1 comes directly from relations 2 given in Theorem 10. To prove f 1 (a ⊗ c) = f 1 (b ⊗ c) ∈ {0, 1} and f 1 (c ⊗ a) = f 1 (c ⊗ b) ∈ {0, 1} for any c ∈ X \ {a, b}, we use the relation f 1 (x ⊗ y)f 1 (y ⊗ z)[f 1 (x ⊗ z) -1] = 0 for any x, y, z ∈ X.
Proposition 12. Let K be a field of characteristic 0, X be a countable alphabet and ✷ a weak shuffle product on K X . We denote by T the set T = {a ∈ X, f 1 (a ⊗ a) ∈ K \ {0, 1}}. We assume T = ∅; so T is a singleton {a}. Let ✷ ′ be the weak shuffle product defined by

• f ′ 1 (u ⊗ v) = f 1 (u ⊗ u) for any u ⊗ v ∈ X ⊗ X \ {a ⊗ a}, • f ′ 1 (a ⊗ a) = 1 and f ′ 2 (a ⊗ a) = 1.
Then, there exists an algebra isomorphism between (K X , ✷) and (K X , ✷ ′ ).

Proof. Thanks to Corollary 11, we know that the weak shuffle ✷ does not depend on the value of f 1 (a ⊗ a). We define ψ : (K X , ✷) → (K X , ✷ ′ ) by:

ψ(w) =      w if w / ∈ aX * , 1 n! w if w = a . . . a n times w 1 with w 1 / ∈ aX * . Since f 1 (a ⊗ b) = 1 and f 1 (b ⊗ a) = 0 for any b ∈ X \ {a},
the linear map ψ is an algebra morphism. It is trivially an isomorphism. Proposition 13. Let K be a field of characteristic 0, let X be an alphabet of cardinality 2 or 3 and let ✷ be a weak shuffle product on K X . Let ✷ ′ be the weak shuffle product defined by

• f ′ 1 (a⊗b) = 1 and f ′ 1 (b⊗a) = 0 for any (a⊗b) ∈ X ⊗X such that a = b and f 1 (a⊗b) / ∈ {0, 1}. • f ′ 1 (a ⊗ b) = f 1 (a ⊗ b) for any (a ⊗ b) ∈ X ⊗ X such that a = b and f 1 (a ⊗ b) ∈ {0, 1}. • f ′ i (a ⊗ a) = f i (a ⊗ a)
for any a ∈ X and any i ∈ {1, 2}.

Then, there exists an algebra isomorphism between (K X , ✷) and (K X , ✷ ′ ).

Proof. If X = {a, b} then there is an one-parameter family of weak shuffle products ✷ such that

f 1 (a ⊗ b) / ∈ {0, 1}. They are defined by f 1 (a ⊗ b) = k ∈ K \ {0, 1} and f 1 (b ⊗ a) = f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = 0. We define ✷ ′ by changing k in 1. The map ϕ defined by ϕ(w) =      1 k n w if w = a . . . a n times w ′ with w ′ ∈ bX * , w else,
is an algebra isomorphism between (K X , ✷) and (K X , ✷ ′ ) Let us now consider the case X = {a, b, c}. Without loss of generality we assume

f 1 (a ⊗ b) = k ∈ K \ {0, 1}.
The charactarisation of weak shuffle products given in Theorem 10 leads to the following relations:

• f 1 (b ⊗ a) = f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = 0, • f 1 (a ⊗ c)f 1 (c ⊗ a) = 0, • f 1 (b ⊗ c)f 1 (c ⊗ b) = 0, • f 1 (a ⊗ c)f 1 (c ⊗ b) = 0, • f 1 (b ⊗ c)f 1 (c ⊗ a) = 0, • f 1 (u ⊗ v)f 1 (v ⊗ w)[f 1 (u ⊗ w) -1] = 0 where {u, v, w} = X.
Thus, the weak shuffle product ✷ is one of the following:

1. f 1 (a ⊗ c) = f 1 (b ⊗ c) = f 1 (c ⊗ a) = f 1 (c ⊗ b) = 0 and f 1 (c ⊗ c) = f 2 (c ⊗ c) ∈ {0, 1}. 2. f 1 (a ⊗ c) = 1, f 1 (b ⊗ c) = p ∈ K * and f 1 (c ⊗ a) = f 1 (c ⊗ b) = f 1 (c ⊗ c) = f 2 (c ⊗ c) = 0, 3. f 1 (a ⊗ c) = 1, f 1 (b ⊗ c) = 1, f 1 (c ⊗ a) = f 1 (c ⊗ b) = 0 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 1, 4. f 1 (a ⊗ c) = f 1 (b ⊗ c) = 0, f 1 (c ⊗ a) = p ∈ K * , f 1 (c ⊗ b) = 1 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 0, 5. f 1 (a ⊗ c) = f 1 (b ⊗ c) = 0, f 1 (c ⊗ a) = 1, f 1 (c ⊗ b) = 1 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 1, 6. f 1 (a ⊗ c) = f 1 (b ⊗ c) = 0, f 1 (c ⊗ a) = 1, f 1 (c ⊗ b) = 1 and f 1 (c ⊗ c) = 1 -f 2 (c ⊗ c), 7. f 1 (a ⊗ c) = f 1 (b ⊗ c) = f 1 (c ⊗ a) = 0, f 1 (c ⊗ b) = p ∈ K * and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 0, 8. f 1 (a ⊗ c) = f 1 (b ⊗ c) = f 1 (c ⊗ a) = 0, f 1 (c ⊗ b) = 1 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 1, 9. f 1 (a ⊗ c) = p ∈ K * , f 1 (b ⊗ c) = f 1 (c ⊗ a) = f 1 (c ⊗ b) = 0 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 0, 10. f 1 (a ⊗ c) = 1, f 1 (b ⊗ c) = f 1 (c ⊗ a) = f 1 (c ⊗ b) = 0 and f 1 (c ⊗ c) = f 2 (c ⊗ c) = 1, We define ✷ ′ by f ′ 1 (a ⊗ b) = 1 and f ′ 1 (u ⊗ v) = f 1 (u ⊗ v) if u ⊗ v = a ⊗ b.
Let ϕ 1 and ϕ 2 be the maps defined by: for any word w,

ϕ 1 (w) =      1 k n w if w = a . . . a n times w ′ with w ′ ∈ bX * , w else,
and and (q 1 , . . . , q s+1 ) ∈ N s+1 , w else.

ϕ 2 (w) =            1 k n 1 +•••+ns w if w = c . . . c
From case 1 to case 3 and from case 9 to case 10 the map ϕ 1 is an algebra isomorphism between (K X , ✷) and (K X , ✷ ′ ). From case 4 to case 8 the map ϕ 2 is an algebra isomorphism between (K X , ✷) and (K X , ✷ ′ ).

If maps f ′ 1 and f ′ 2 do not take their values in {0, 1} we apply the previous process once again to ✷ ′ . And then, we find a weak shuffle product

✷ ′′ such that f 1 ′′ (u ⊗ v), f 2 ′′ (u ⊗ v) ∈ {0, 1} for any (u ⊗ v) ∈ X ⊗ X.
Conjecture 14. Proposition 13 is still true for any countable alphabet.

Remark. If X is an alphabet such that {a, b, c, d} ⊂ X and f 1 (a⊗b) / ∈ {0, 1} then relations 1. f 1 (a ⊗ x)f 1 (x ⊗ a) = 0, 2. f 1 (b ⊗ x)f 1 (x ⊗ b) = 0, 3. f 1 (a ⊗ x)f 1 (x ⊗ b) = 0, 4. f 1 (b ⊗ x)f 1 (x ⊗ a) = 0,
are still satisfied for any letter x ∈ X. However, if x, y ∈ X \ {a, b}, even if they satisfy relations given in Theorem 10, it is hard to anticipate the part of x facing y.

Weak shuffle products on K {a, b}

Let X = {a, b} be an alphabet of cardinality 2. By using the characterisation given in Theorem 10, there are 10 families of weak shuffle products defined on K X . Let C be the 6-tuple

C = f 1 (a ⊗ b), f 1 (b ⊗ a), f 1 (a ⊗ a), f 2 (a ⊗ a), f 1 (b ⊗ b), f 2 (b ⊗ b) . If k ∈ K * and α ∈ K then C is one of the following 6-tuples C 1 =(0, 0, 0, 0, 0, 0), C 2 =(k, 0, 0, 0, 0, 0), C 3 =(1, 0, 1, 1, 0, 0), C 4 =(1, 0, 0, 0, 1, 1), C 5 =(0, 0, 1, 1, 0, 0), C 6 =(0, 0, 1, 1, 1, 1), C 7 =(1, 0, α, 1 -α, 0, 0), C 8 =(1, 0, α, 1 -α, 1, 1), C 9 =(1, 0, 1, 1, 1, 1), C 10 =(1, 1, 1, 1, 1, 1).
For any n ∈ 1, 10 , we denote by ✷ n the weak shuffle product associated to C n . The concatenation of two words u and v is denoted by uv. The empty word is denoted by 1.

Case n = 2. Thanks to Proposition 13, for any k ∈ K * the weak shuffle product defined by C 2 is isomorphic to the case (1, 0, 0, 0, 0, 0). Let u and v be two non-empty words. Then

u✷ 2 v =          k n uv if (u = a . . . a n times and v = bw with w ∈ X * ) k n vu if (v = a .
. . a and u = bw with w ∈ X * ), 0 else.

Cases n = 3 and n = 7. Thanks to Proposition 12 the weak shuffle products defines by C 3 and C 7 are isomorphic. Let u and v be two non-empty words. Then Case n = 5. Let u and v be two non-empty words. Then Case n = 6. Let u and v be two non-empty words. Then Case n = 4. First, it is natural to ask whether or not this case is isomorphic to the case with n = 3? In fact, not. A counter-example is given by the elements u of degree 2 such that u 2 = 0. Indeed, 1. with the case n = 4, if u = λaa + µbb + σab + τ ba then

u✷ 3 v =                            uv if (u = a . . . a and v = bw with w ∈ X * ) vu if (v = a . .
7 v =                          uv if (u = a . . . a and v = bw with w ∈ X * ) vu if (v = a
u✷ 5 v =                            k + l -1 k a . .
u✷ 6 v =                                                            k + l -1 k a . .
u 2 =6µ 2 bbbb + 2τ 2 baba + 2λµaabb + 2λτ aaba + 6µσabbb +2µτ (babb + bbab + bbba) + 2στ (abab + abba).
So u 2 = 0 ⇐⇒ µ = τ = 0 and u ∈ K {a, b} * , length(u) = 2 and u 2 = 0 = Span(aa, ab).

2. with the case n = 3, if u = λaa + µbb + σab + τ ba then u 2 =6λ 2 aaaa + 2λµaabb + 6λσaaab + 2λτ aaba.

So u 2 = 0 ⇐⇒ λ = 0 and u ∈ K {a, b} * , length(u) = 2 and u 2 = 0 = Span(bb, ab, ba).

Let u and v be two non-empty words. Then

1. If u = a . . . a m times u ′ and u ′ , v ∈ bX * ∪ {1} then u✷ 4 v = v✷ 4 u = a . . . a m times (u ′ ✷ 4 v). 2. If u = b . . . b m 1 times u ′ , v = b . . . b m 2 times v ′ and u ′ , v ′ ∈ aX * ∪ {1} then u✷ 4 v = m 2 -1 k=0 m 1 + k -1 k b . . . b m 1 +k times (u ′ ✷ 4 b . . . b m 2 -k times w ′ ) + m 1 -1 k=0 m 2 + k -1 k b . . . b m 2 +k times ( b . . . b m 1 -k times u ′ ✷ 4 v ′ ) =v✷ 4 u 3. If u, v ∈ aX * then u✷ 4 v = v✷ 4 u = 0.
Cases n = 8 and n = 9. We recall that the case n = 8 does not depend on α ∈ K. Thanks to Proposition 12 the weak shuffle products defined by C 8 and C 9 are isomorphic. Let u and v be two non-empty words. Then

1. If u = a . . . a m times u ′ and u ′ , v ∈ bX * ∪ {1} then u✷ 9 v = v✷ 9 u = a . . . a m times (u ′ ✷ 9 v) = u✷ 8 v = v✷ 8 u. 2. If u = b . . . b m 1 times u ′ , v = b . . . b m 2 times v ′ and u ′ , v ′ ∈ aX * ∪ {1} then u✷ 9 v = m 2 -1 k=0 m 1 + k -1 k b . . . b m 1 +k times (u ′ ✷ 9 b . . . b m 2 -k times w ′ ) + m 1 -1 k=0 m 2 + k -1 k b . . . b m 2 +k times ( b . . . b m 1 -k times u ′ ✷ 9 v ′ ) =v✷ 9 u = u✷ 8 v = v✷ 8 u. 3. If u = a . . . a k times u ′ , v = a . . . a l times v ′ and u ′ , v ′ ∈ bX * ∪ {1} then u✷ 9 v = v✷ 9 u = k + l k a . . . a k+l times (u ′ ✷ 9 v ′ ),
and u✷

8 v = v✷ 8 u = a . . . a k+l times (u ′ ✷ 8 v ′ ).
From the previous calculations, we have the following consequence: 

m 1 times u ′ , v = b . . . b m 2 times v ′ and u ′ , v ′ ∈ aX * ∪ {1} does not depend on the values of f 1 (a ⊗ a) nor f 2 (a ⊗ a).
We give the value of u✷

4 v(= u✷ 8 v = u✷ 9 v) for some example couple (u, v) ∈ (bX * ) 2 .
For some examples of pairs (x, p) ∈ X × N * , to lighten the notation, we write x p instead of x . . . x p times .

Let (m, s, p, r) be a quadruple of positive integers. Then:

b m a s ✷ 4 b p a r = p-1 k=0 m + k -1 k b m+k a s b p-k a r + m-1 k=0 p + k -1 k b p+k a r b m-k a s .
Let (m, s, p, r, t) be a quintuple of positive integers such that m ≥ 2. Then:

b m a s ✷ 4 b p a r b t = p-1 k=0 m + k -1 k b m+k a s b p-k a r b t + t k=0 m + k -1 k b p a r b m+k a s b t-k + f +g=m f ∈N * g∈N * t k=0 f + p -1 f g + k -1 k b p+f a r b g+k a s b t-k .
Proposition 16. Let ✷ 9 be the weak shuffle product defined by C 9 . Let p be a positive integer and n ∈ {1, 2, 3}. We denote by K (n,p) the set

K (n,p) = u = w∈X * length(w)=n λ w w, u p = 0 . Then, K (n,p) = {0}.
Proof. We equip X * with the lexicographic order. For any words v and w we denote by max(v✷w) the greatest word of length l = length(v) + length(w) which appears in v✷w for the lexicographic order.

If u = w∈X * length(w)=n λ w w then

u p = w∈X * length(w)=n λ p w (w✷ 9 . . . ✷ 9 w) + min(p,xn) l=2 (α 1 ,...,α l )|=p w 1 <•••<w l ∈X * ∀i length(w i )=n λ α 1 w 1 . . . λ α l w l (w 1 ✷ 9 . . . ✷ 9 w l ).
1. If n = 1 then the result is trivial. 

v 2 ) > max(v 3 ✷ 9 v 4 ) or max(v 1 ✷ 9 v 2 ) < max(v 3 ✷ 9 v 4 ) where v 1 < v 3 , v 2 > v 4 . If we consider v 1 = a, v 2 = bb, v 3 = ab and v 4 = b, then we get max(v 1 ✷ 9 v 2 ) = abb = max(v 3 ✷ 9 v 4 ).
By using computation programs realised with Maxima, (c.f. Section 6) we get: Lemma 18. Let n be a positive integer smaller than or equal to 7. Then K n,2 = {0}. Proposition 19. Let X be the alphabet {a, b} and S be the set defined by S = {C 1 . . . C 10 } equipped with the relation ≡ such that: for any A and B in S, A ≡ B if and only if there exists an homogenous isomorphism between (K X , ✷ A ) and (K X , ✷ B ) where ✷ A (respectively ✷ B ) is the shuffle product associated to A (respectively B). Let n be the number of isomorphic classes.

Then n ∈ {7, 8}.

C 45 =(1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1) 
,

C 46 =(1, 1, 0, 1, 0, 1, 1, 1, 1, 1, α, 1 -α), C 47 =(1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). 
Proposition 20. Let X be the alphabet {a, b, c} and S be the set defined by S = {C 1 . . . C 47 } equipped with the relation ≡ such that: for any A and B in S, A ≡ B if and only if there exists an homogenous isomorphism between (K X , ✷ A ) and (K X , ✷ B ) where ✷ A (respectively ✷ B ) is the shuffle product associated to A (respectively B). Let n be the number of isomorphic classes.

Then Let K 1 , K 2 and K 3 be the sets defined by: 

• K 1 = u = x∈X λ x x, u 2 = 0 , • K 2 = u = w∈X * length(w)=2 λ w w, u 2 = 0 , • K 3 = u = w∈X * length(w)=3 λ w w, u 2 =

Weak shuffle algebras, dendriform algebras, quadri-algebras

Dendriform algebras [START_REF] Loday | Dialgebras[END_REF] and quadri-algebras [START_REF] Aguiar | Quadri-algebras[END_REF] are algebraic structures which enables one to split the associativity. Actually, a dendriform algebra is an algebra A equipped with a left product ≺ and a right product ≻ making the couple (A, ≺ + ≻) into an associative algebra and satisfying compatibilities. A quadri-algebra is obtained by splitting each product of a dendriform algebra in two products and the four new products must respect compatibilities. So, a quadrialgebra leads to two dendriform structures and the sum of the four products gives an associative product.

Those two notions have been extensively studied. For instance, Loday and Ronco give the free dendriform algebra on one generator as an algebra over binary planar trees [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF]. Thanks to dendriform algebras, Foissy proves [9, proposition 31] that the decorated Hopf algebra of Loday and Ronco and the decorated Hopf algebra of planar rooted trees are isomorphic. Analogue theorems of the Cartier-Quillen-Milnor-Moore theorem have been proved: by Ronco [START_REF] Ronco | A Milnor-Moore theorem for dendriform Hopf algebras[END_REF] for dendriform algebras, by Chapoton [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF] for dendriform bialgebras and by Foissy [START_REF]Bidendriform bialgebras, trees and free quasi-symmetric functions[END_REF] for bidendriform bialgebras. The bidendriform case implies that FQSym is isomorphic to one decorated Hopf algebra of planar rooted trees. About quadri-algebras, Aguiar and Loday [START_REF] Aguiar | Quadri-algebras[END_REF] have determined a quadri-algebra structure on infinitesimal algebras and have focused on the free quadri-algebra on one generator. Vallette [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] has proved some conjectures given by Aguiar and Loday in [1, conjectures 4.2, 4.5 and 4.6]. Foissy has presented the free quadri-algebra on one generator as a sub-object of FQSym [START_REF]Free quadri-algebras and dual quadri-algebras[END_REF].

In this section, we recall the dendriform algebra structure and the quadri-algebra structure underlying the classical shuffle algebra. Then, we consider the case of weak shuffle algebras. We prove that they can be equipped with a dendriform structure yet only two weak shuffle products can be considered as coming from a quadri-algebra.

Dendriform algebras

Background Definition 21.

A dendriform algebra is a vector space D equipped with two ≺ products ≻ such that ∀x, y, z ∈ D,

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y ≻ z), (x ≻ y) ≺ z = x ≻ (y ≺ z), (x ≺ y) ≻ z + (x ≻ y) ≻ z = x ≻ (y ≻ z).
Theorem 22. Let X be a countable alphabet and ¡ be the classical shuffle product. We define ≺ and ≻ respectively by:

au ≺ bv = a(u ¡ bv), au ≻ bv = b(au ¡ v),
for any letters a and b and any words u and v. Then (K X , ≺, ≻) is a dendriform algebra and for any words u and v

u ¡ v = u ≺ v + u ≻ v. Theorem 23.
Let X be a countable alphabet and ¡ be the classical shuffle product. We define ∧ and ∨ respectively by:

ua ∧ vb = (u ¡ vb)a, ua ∨ vb = (ua ¡ v)b,
for any letters a and b and any words u and v. Then (K X , ∧, ∨) is a dendriform algebra and for any words u and v

u ¡ v = u ∧ v + u ∨ v.

Weak shuffle products

Theorem 24. Let X be a countable alphabet and ✷ be a weak shuffle product such that f 1 (a ⊗ a) ∈ {0, 1} for any letter a ∈ X. We define the products ≺ and ≻ respectively by:

au ≺ bv = f 1 (a ⊗ b)a(u✷bv), au ≻ bv = f 2 (a ⊗ b)b(au✷v),
for any letters a and b and any words u and v. Then (K X , ≺, ≻) is a dendriform algebra.

Proof. Let ✷ be a weak shuffle product and let a, b and c be three letters of X. Then: 

(a ≺ b) ≺ c =f 1 (a ⊗ b)f 1 (a ⊗ c)f 1 (b ⊗ c)abc + f 1 (a ⊗ b)f 1 (a ⊗ c)f 2 (b ⊗ c)acb, a ≺ (b✷c) =f 1 (a ⊗ b)f 1 (b ⊗ c)abc + f 1 (a ⊗ c)f 2 (b ⊗ c)acb, (a ≻ b) ≺ c =f 2 (a ⊗ b)f 1 (b ⊗ c)f 1 (a ⊗ c)bac + f 2 (a ⊗ b)f 1 (b ⊗ c)f 2 (a ⊗ c)bca, a ≻ (b ≺ c) =f 2 (a ⊗ b)f 1 (b ⊗ c)f 1 (a ⊗ c)bac + f 2 (a ⊗ b)f 1 (b ⊗ c)f 2 (a ⊗ c)bca, (a✷b) ≻ c =f 1 (a ⊗ b)f 2 (a ⊗ c)cab + f 2 (a ⊗ b)f 2 (b ⊗ c)cba, a ≻ (b ≻ c) =f 2 (b ⊗ c)f 2 (a ⊗ c)f 1 (a ⊗ b)cab + f 2 (b ⊗ c)f 2 (a ⊗ c)f 2 (a ⊗ b)cba.
≻ c = a ≻ (b ≻ c). If a = b = c with f 1 (a ⊗ a) = 1 -f 2 (a ⊗ a) then (a ≺ a) ≺ a = a ≺ (a✷a) and (a✷a) ≻ a = a ≻ (a ≻ a) if and only if f 1 (a ⊗ a) ∈ {0, 1} and then f 1 (a ⊗ a)f 2 (a ⊗ a) = 0.
We assume now there exists an integer n ≤ 3 such that, for any non-empty words u, v and w with length(u) + length

(v) + length(w) = n, relations (u ≺ v) ≺ w = u ≺ (v✷w), (u ≻ v) ≺ w = u ≻ (v ≺ w) and (u✷v) ≻ w = u ≻ (v ≻ w) are satisfied.
Let u, v and w be three non-empty words such that length(u)+length(v)+length(w) = n+1. There exist three letters a, b and c, not necessarily distinct and three words u 1 , v 1 and w 1 , not necessarily non-empty, such that u = au 1 , v = bv 1 and w = cw 1 . Then 1.

(u ≺ v) ≺ w =f 1 (a ⊗ b)f 1 (a ⊗ c)a (u 1 ✷bv 1 )✷cw 1 = f 1 (a ⊗ b)f 1 (a ⊗ c)a u 1 ✷(bv 1 ✷cw 1 ) =f 1 (a ⊗ b)f 1 (a ⊗ c)f 1 (b ⊗ c)a u 1 ✷b(v 1 ✷cw 1 ) + f 1 (a ⊗ b)f 1 (a ⊗ c)f 2 (b ⊗ c)a u 1 ✷c(bv 1 ✷w 1 ) , u ≺ (v✷w) =f 1 (b ⊗ c)f 1 (a ⊗ b)a u 1 ✷b(v 1 ✷cw 1 ) + f 2 (b ⊗ c)f 1 (a ⊗ c)f 1 (a ⊗ c)a u 1 ✷c(bv 1 ✷w 1 ) . 2. (u ≻ v) ≺ w =f 2 (a ⊗ b)f 1 (b ⊗ c)b (au 1 ✷v 1 )✷cw 1 , u ≻ (v ≺ w) =f 1 (b ⊗ c)f 2 (a ⊗ b)b au 1 ✷(v 1 ✷cw 1 ) . 3. (u✷v) ≻ w =f 1 (a ⊗ b)f 2 (a ⊗ c)c a(u 1 ✷bv 1 )✷cw 1 + f 2 (a ⊗ b)f 2 (b ⊗ c)c b(au 1 ✷v 1 )✷cw 1 , u ≻ (v ≻ w) =f 2 (b ⊗ c)f 2 (a ⊗ c)c au 1 ✷(bv 1 ✷w 1 ) = f 2 (b ⊗ c)f 2 (a ⊗ c)c (au 1 ✷bv 1 )✷w 1 =f 2 (b ⊗ c)f 2 (a ⊗ c)f 1 (a ⊗ b)c a(u 1 ✷bv 1 )✷w 1 + f 2 (b ⊗ c)f 2 (a ⊗ c)f 2 (a ⊗ b)c b(au 1 ✷v 1 )✷w 1 . Thus, (u ≺ v) ≺ w = u ≺ (v✷w), (u ≻ v) ≺ w = u ≻ (v ≺ w) and (u✷v) ≻ w = u ≻ (v ≻ w).
By considering the right hand side rather than the left hand side, we get the following definition and theorem. Definition 25. Let X be a countable alphabet. An end weak shuffle product on K X is an associative and commutative product ✷ E such that for any (a, b) ∈ (X) 2 and any

(u, v) ∈ (X * ) 2 then ua✷ E vb = f 1,E (a ⊗ b)(u✷ E vb)a + f 2,E (a ⊗ b)(ua✷ E v)b,
where f 1,E and f 2,E are linear maps from K.

X ⊗ K.X to K, u✷ E 0 = 0✷ E u = 0 and u✷ E 1 = 1✷ E u = u.
Theorem 26. Let X be a countable alphabet and let ✷ E be an end weak shuffle product such that f 1,E (a ⊗ a) ∈ {0, 1} for any letter a ∈ X. We define the products ∧ and ∨ by:

ua ∧ vb = f 1,E (a ⊗ b)(u✷ E vb)a, au ∨ bv = f 2,E (a ⊗ b)(ua✷ E v)b,
for any letters a and b and any words u and v. Then (K X , ∧, ∨) is a dendriform algebra.

Remark. Let α be a real number. Let ✷ be the weak shuffle product satisfying f 1 (a ⊗ a) = 1f 2 (a ⊗ a) = α for a unique letter a. Even if ✷ does not depend on the value of α, to express the algebra as a dendriform algebra the assumption α ∈ {0, 1} is necessary.

Quadri-algebras

Background Definition 27.

A quadri-algebra is Q is a vector space equipped with four products ց, ր, տ and ւ such that: for any x, y, z ∈ Q,

(x տ y) տ z = x տ (y • z), (x ր y) տ z = x ր (y ≺ z), (x ւ y) տ z = x ւ (y ∧ z), (x ց y) տ z = x ց (y տ z), (x ≺ y) ւ z = x ւ (y ∨ z), (x ≻ y) ւ z = x ց (y ւ z),
and

(x ∧ y) ր z = x ր (y ≻ z), (x ∨ y) ր z = x ց (y ր z), (x • y) ց z = x ց (y ց z).
where 

x ≺ y = x տ y + x ւ y, x ∧ y = x ր y + x տ y, x ≻ y = x ր y + x ց y, x ∨ y = x ց y + x ւ y,
and x • y = x տ y + x ւ y + x ր y + x ց y = x ≺ y + x ≻ y = x ∧ y + x ∨ y.

Weak shuffle algebras

Proposition 29. Let X be a countable alphabet of cardinality at least 2. Let ✷ be a weak shuffle product. There exists an end weak shuffle product ✷ E such that ✷ = ✷ E if, and only if, ✷ is the null product or the classical shuffle product.

Proof. It is sufficient to prove the proposition for an alphabet of cardinality 2 and assume images of functions f 1 , f 2 , f 1,E and f 2,E are subsets of {0, 1}. Let C be the 6-tuple

C = f 1 (a ⊗ b), f 1 (b ⊗ a), f 1 (a ⊗ a), f 2 (a ⊗ a), f 1 (b ⊗ b), f 2 (b ⊗ b) . Case C = (1, 0, 0, 0, 0, 0). If ✷ = ✷ E then a✷ E ba = (f 1,E (a ⊗ a) + f 2,E (a ⊗ a)f 1,E (a ⊗ b)) baa + f 2,E (a ⊗ a)f 1,E (b ⊗ a)aba =a✷ba = aba.
Thus f 2,E (a ⊗ a) = 1 and then a✷ E a = (f 1,E (a ⊗ a) + 1) aa = 0 and yet a✷a = 0. Contradiction.

Cases C = (1, 0, 1, 1, 0, 0) and C = (1, 0, 1, 0, 0, 0). We recall that these two cases are isomorphic.

If ✷ = ✷ E then a✷ E ba = (f 1,E (a ⊗ a) + f 2,E (a ⊗ a)f 1,E (a ⊗ b)) baa + f 2,E (a ⊗ a)f 1,E (b ⊗ a)aba = (f 1,E (a ⊗ a)f 1,E (a ⊗ b) + f 2,E (a ⊗ a)) baa + f 1,E (a ⊗ a)f 1,E (b ⊗ a)aba =ba✷ E a = a✷ba = aba. Thus f 1,E (a ⊗ a) = f 2,E (a ⊗ a) = f 1,E (b ⊗ a) = 1 and f 1,E (a ⊗ b) = -1. Contradiction.
Cases C = (1, 0, 1, 0, 1, 1) and C = (1, 0, 1, 1, 1, 1). The same calculations as in the previous case answer the question.

Case C = (1, 0, 0, 0, 1, 1). If ✷ = ✷ E then ba✷ E b =f 1,E (a ⊗ b) (f 1,E (b ⊗ b) + f 2,E (b ⊗ b)) bba + f 1,E (b ⊗ a)bab =ba✷b = bba + bab. Thus f 1,E (a ⊗ b) = f 1,E (b ⊗ a) = f 1,E (a ⊗ a) = f 2,E (a ⊗ a) = f 1,E (b ⊗ b) = f 2,E (b ⊗ b) = 1 with f 1,E (b ⊗ b) + f 2,E (b ⊗ b) = 1. Contradiction. Cases C = (0, 0, 1, 1, 0, 0). If ✷ = ✷ E then ab✷ E a =f 1,E (b ⊗ a) (f 1,E (a ⊗ a) + f 2,E (a ⊗ a)) aab + f 1,E (a ⊗ b)aba =ab✷a = aab. Thus f 1,E (a ⊗ b) = 0, f 1,E (b ⊗ a) = 1 and f 1,E (a ⊗ a) + f 2,E (a ⊗ a) = 1. Contradiction.
Cases C = (0, 0, 1, 1, 1, 1). The same calculations as in the previous case answer the question.

Corollary 30. The construction used in Theorem 28 does not lead to a quadri-algebra structure on a weak shuffle product ✷ except if ✷ is the null shuffle or the classical shuffle.

Relations on weak stuffle products

Proposition 31. Let X be a countable alphabet, let a, b and c be three distinct letters in X and ✷ a weak stuffle product. Then: 1. By using the maps f 1 and f 2 coming from ✷, we define the product ✷ ′ by: au✷

′ bv = f 1 (a ⊗ b)a(u✷ ′ bv) + f 2 (a ⊗ b)b(au✷ ′ v)
for any letters a and b and any words u and v. The product ✷

′ is a weak shuffle product.

2. The function f 3 is associative and commutative.

3. If f 3 (a ⊗ a) = 0 then f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1}. 4. If f 3 (a ⊗ b) = 0 then f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1} and f 1 (b ⊗ b) = f 2 (b ⊗ b) ∈ {0, 1}. 5. If f 3 (a ⊗ a) ∈ K * a then f 1 (b ⊗ a) ∈ {0, 1}. 6. If f 3 (a ⊗ a) ∈ K * b then (a) If f 3 (a ⊗ b) = 0 or f 3 (b ⊗ b) = 0 or there exists x ∈ X \ {a, b} such that f 3 (b ⊗ x) = 0 then f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = f 1 (a ⊗ b) = f 1 (b ⊗ a) ∈ {0, 1}. (b) If f 3 (a ⊗ b) = 0 and f 3 (b ⊗ b) = 0 then i. either f 1 (a⊗a) = f 2 (a⊗a) = f 1 (b⊗b) = f 2 (b⊗b) = f 1 (a⊗b) = f 1 (b⊗a) ∈ {0, 1}, ii. or f 1 (a⊗a) = f 2 (a⊗a) = f 1 (b⊗a) = 1, f 1 (b⊗b)+f 2 (b⊗b) = 1 and f 1 (a⊗b) = 0. (c) For any x ∈ X \ {a, b} then i. f 1 (a ⊗ x) = f 1 (b ⊗ x), ii. f 2 1 (x ⊗ a) = f 1 (x ⊗ b). 7. If f 3 (a ⊗ b) ∈ K * a then: (a) f 1 (b ⊗ a) = f 1 (a ⊗ a)f 1 (a ⊗ b) = f 1 (b ⊗ a)f 1 (b ⊗ b). (b) f 1 (a ⊗ b) = f 1 (b ⊗ b). (c) For any x ∈ X \ {a, b} such that f 3 (b ⊗ x) / ∈ K * x then i. f 1 (a ⊗ x) = f 1 (b ⊗ x), ii. f 1 (x ⊗ a) [1 -f 1 (x ⊗ b)] = 0. (d) For any x ∈ X \ {a, b} such that f 3 (b ⊗ x) ∈ K * x then i. f 1 (b ⊗ a) = f 1 (x ⊗ a)f 1 (x ⊗ b), ii. f 1 (b ⊗ x) = f 1 (a ⊗ b)f 1 (a ⊗ x), 8. If f 3 (a ⊗ b) ∈ K * c then: (a) f 1 (c ⊗ c) = f 2 (c ⊗ c) ∈ {0, 1}. (b) f 1 (b ⊗ a) = f 1 (c ⊗ a) = f 1 (a ⊗ a). (c) f 1 (a ⊗ b) = f 1 (c ⊗ b) = f 1 (b ⊗ b). (d) f 1 (a ⊗ c) = f 1 (a ⊗ a)f 1 (b ⊗ b) = f 1 (b ⊗ c) = f 1 (c ⊗ c).
Proof.

1. Let a and b be two letters and let u and v be two words. By using words of length length(u) + length(v) + 2 appearing in au✷bv , we get the statement. In the sequel, the use of the relations given in Theorem 10 is implied.

By using words of length 1 appearing in x✷y, x✷y, (x✷y)✷z and x✷(y✷z) for any letters

x, y, z, we prove that the function f 3 is associative and commutative.

3. We assume f 3 (a⊗a) = 0. Since a✷aa = aa✷a and (a✷a)✷aa = a✷(a✷aa

) then f 1 (a⊗a) = f 2 (a ⊗ a) ∈ {0, 1}.
4. We assume f 3 (a ⊗ b) = 0. Since a✷ab = ab✷a, b✷ba = ba✷b, (a✷b)✷a = (a✷a)✷b and (b✷a)✷b = (b✷b)✷a then

f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1} and f 1 (b ⊗ b) = f 2 (b ⊗ b) ∈ {0, 1}.
5. This item is proved by using (a✷a)✷b = (a✷b)✷a and a✷(a✷ba) = (a✷a)✷ba.

6. We assume

f 3 (a ⊗ a) ∈ K * b. (a) If f 3 (a ⊗ b) = 0 or f 3 (b ⊗ b) = 0, since f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1}, f 1 (b ⊗ b) = f 2 (b ⊗ b) ∈ {0, 1}, (a✷b)✷a = (a✷a)✷b and (a✷a)✷aa = a✷(a✷aa), then f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = f 1 (a ⊗ b) = f 1 (b ⊗ a) ∈ {0, 1}. (b) If f 3 (a ⊗ b) = 0 and f 3 (b ⊗ b) = 0, since f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1}, (a✷b)✷a 
= (a✷a)✷b and (a✷a)✷aa = a✷(a✷aa) then we prove the relations.

(c) This item is proved thanks to the relation (a✷b)✷a = (a✷a)✷b.

7. We assume f 3 (a ⊗ b) ∈ K * a.

(a) This item is proved by using

f 1 (a⊗a) = f 2 (a⊗a) ∈ {0, 1}, f 1 (b⊗b) = f 2 (b⊗b) ∈ {0, 1}, (a✷b) 
✷a = (a✷a)✷b and (b✷a)✷b = (b✷b)✷a.

(b) By using (b✷b)✷a = (b✷a)✷b and (a✷b)✷ba = a✷(b✷ba) we prove

f 1 (a ⊗ b) = f 1 (b ⊗ b).
(c) Those two subitems are proven by using (a✷b)✷x = (a✷x)✷b = (b✷x)✷a.

(d) Those two subitems are proven by using (a✷b)✷x = (a✷x)✷b = (b✷x)✷a.

8. We assume

f 3 (a ⊗ b) ∈ K * c. Then f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1} and f 1 (b ⊗ b) = f 2 (b ⊗ b) ∈ {0, 1}
. By using the relations (a✷b)✷c = (a✷c)✷b = (b✷c)✷a, (a✷b)✷b = (b✷b)✷a, (b✷a)✷a = (a✷a)✷b, (a✷b)✷aa = a✷(b✷aa) = b✷(a✷aa and (b✷a)✷bb = b✷(a✷bb) = a✷(b✷bb) we prove all subitems.

Examples.

1. The q-shuffle product associated to the Schlesinger-Zudilin model is the weak stuffle product where

f 1 (y ⊗ p) = f 1 (y ⊗ y) = f 1 (p ⊗ p) = f 2 (p ⊗ p) = 1, f 1 (p ⊗ y) = f 2 (y ⊗ y) = 0, f 3 (p ⊗ p) = p, f 3 (y ⊗ p) = f 3 (y ⊗ y) = 0.
2. The q-shuffle product associated to the Bradley-Zhao model is the weak stuffle product where

f 1 (y ⊗ p) = f 1 (y ⊗ p) = f 1 (p ⊗ p) = f 1 (p ⊗ p) = f 1 (p ⊗ p) = f 2 (p ⊗ p) = f 1 (p ⊗ p) = f 2 (p⊗p) = f 1 (y⊗y) = 1, f 1 (p⊗y) = f 1 (p⊗y) = f 2 (y⊗y) = 0, f 3 (p⊗p) = p, f 3 (p⊗p) = -p f 3 (y ⊗ p) = f 3 (y ⊗ y) = f 3 (y ⊗ p) = f 3 (p ⊗ p) = 0.
Corollary 32. Let X = {x 1 , . . . , x n . . . } be an infinite countable alphabet. We assume ✷ is a weak stuffle product such that f 3 (x i ⊗ x j ) ∈ K * x i+j for any positive integers i and j. Then, the underlying weak shuffle produit is either the null shuffle product or the classical stuffle product i.e. (f 1 ≡ 0 and f 2 ≡ 0) or (f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any letters a and b).

Proof. We use an inductive proof. First of all, since f 3 (x i ⊗ x i ) = 0 for any positive integer i, we have

f 1 (x i ⊗ x i ) = f 2 (x i ⊗ x i ). Besides, f 3 (x 1 ⊗ x 1 ) = x 2 = x 1 and f 3 (x 2 ⊗ x 2 ) = 0, so f 1 (x 1 ⊗ x 1 ) = f 2 (x 1 ⊗ x 1 ) = f 1 (x 2 ⊗ x 2 ) = f 2 (x 2 ⊗ x 2 ) = f 1 (x 1 ⊗ x 2 ) = f 1 (x 2 ⊗ x 1 ) ∈ {0, 1}.
We assume there exists n ∈ N * such that n ≥ 2 and

f 1 (x 1 ⊗ x 1 ) = f 1 (x 1 ⊗ x m ) for any m ∈ 1, n . Then, f 3 (x 1 ⊗ x n ) = x n+1 and f 1 (x 1 ⊗ x n+1 ) = f 1 (x 1 ⊗ x 1 )f 1 (x 1 ⊗ x n ) = f 1 (x 1 ⊗ x 1 ). Thus, f 1 (x 1 ⊗ x 1 ) = f 1 (x 1 ⊗ x n ) for any positive integer n.
We assume now there exists k ∈ N * such that f 1 (x 1 ⊗ x 1 ) = f 1 (x i ⊗ x j ) for any i ∈ 1, k and any positive integer j. For any i ∈ 1, k , we know

f 3 (x i ⊗ x k+1-i ) = x k+1 so, f 1 (x k+1 ⊗ x i ) = f 1 (x k+1-i ⊗ x i ) = f 1 (x 1 ⊗ x 1 ). Besides, we know f 1 (x k+1 ⊗ x k+1 ) = f 2 (x k+1 ⊗ x k+1 ) = f 1 (x 1 ⊗ x k+1 ) = f 1 (x 1 ⊗ x 1 ). Since f 3 (x k+1 ⊗ x 1 ) = x k+2 , we have f 1 (x k+1 ⊗ x k+2 ) = f 1 (x 1 ⊗ x k+2 ) = f 1 (x 1 ⊗ x 1
). We assume there exists a positive integer j such that f 1 (x k+1 ⊗ x k+1+p ) = f 1 (x 1 ⊗ x 1 ) for any p ∈ 1, j . As

f 3 (x k+1 ⊗ x j+1 ) = x k+j+2 then f 1 (x k+1 ⊗ x k+j+2 ) = f 1 (x k+1 ⊗ x k+1 )f 1 (x k+1 ⊗ x j+1 ) = f 1 (x 1 ⊗ x 1 ).
Finally, (f 1 ≡ 0 and f 2 ≡ 0) or (f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any letters a and b).

By using the commutativity and the associativity of k 3 we have: Lemma 33. Let X = {a, b} be an alphabet of cardinality 2 and let ✷ be a weak stuffle product. The map f 3 is one of the following: 8. The map f 3 is the null map.

1. There exists (λ, µ) ∈ (K * ) 2 such that f 3 (a ⊗ a) = λb, f 3 (a ⊗ b) = µa and f 3 (b ⊗ b) = µb. 2. There exists (λ, µ) ∈ (K * ) 2 such that f 3 (a ⊗ a) = λa, f 3 (a ⊗ b) = µa and f 3 (b ⊗ b) = µ 2 λ a. 3. There exists (λ, µ) ∈ (K * ) 2 such that f 3 (a ⊗ a) = λa, f 3 (a ⊗ b) = µa and f 3 (b ⊗ b) = µb.
By using Proposition 31 we have: Proposition 34. Let X = {a, b} be an alphabet of cardinality 2 and let ✷ be a weak stuffle product. In the previous lemma, if f 3 satisfies 1. Item 1 or item 2, then there are two cases:

• f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2 ,
• f 1 ≡ 0 and f 2 ≡ 0.

2. Item 3 or item 4, then there are four cases:

• f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2 , • f 1 ≡ 0 and f 2 ≡ 0, • f 1 (b ⊗ a) = f 1 (a ⊗ b) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = 0 and f 1 (a ⊗ a) = f 2 (a ⊗ a) = 1, • f 1 (a ⊗ b) = f 1 (b ⊗ b) = f 2 (b ⊗ b) = 1 and f 1 (b ⊗ a) = f 1 (a ⊗ a) = f 2 (a ⊗ a) = 0.
3. Item 5, then we have:

• f 1 (a ⊗ b) ∈ {0, 1}, • f 1 (b ⊗ a) ∈ {0, 1}, • f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1}, • f 1 (b ⊗ b) = f 2 (b ⊗ b) ∈ {0, 1}.
4. Item 6, then there are three cases:

• f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for any (a, b) ∈ X 2 , • f 1 ≡ 0 and f 2 ≡ 0, • f 1 (a ⊗ a) = f 2 (a ⊗ a) = f 1 (b ⊗ a) = 1, f 1 (a ⊗ b) = 0 and f 1 (b ⊗ b) + f 2 (b ⊗ b) = 1
5. Item 7, then we have:

• f 1 (b ⊗ a) ∈ {0, 1}, • f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1}.
6. Item 8, then we give the answer in Theorem 10. Lemma 35. Let X = {a, b, c} be an alphabet of cardinality 3 and let ✷ be a weak stuffle product. The map f 3 is one of the following:

1. There exists (λ, γ, µ)

∈ (K * ) 3 such that γµ = λ 2 , f 3 (a⊗ b) = λc, f 3 (a⊗ c) = λa, f 3 (b⊗ c) = λb, f 3 (a ⊗ a) = γb, f 3 (b ⊗ b) = µa and f 3 (c ⊗ c) = λc.
2. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = λµ γ a and f 3 (c ⊗ c) = γµ λ c.
3. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = µb and f 3 (c ⊗ c) = γµ λ c.
4. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = λµ γ c and f 3 (c ⊗ c) = γµ λ c.
5. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = γ 2 µ b, f 3 (b ⊗ b) = λµ γ c and f 3 (c ⊗ c) = γµ λ c.
6. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = λγ µ c, f 3 (b ⊗ b) = µ 2 γ a and f 3 (c ⊗ c) = γµ λ c.
7. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = λγ µ c, f 3 (b ⊗ b) = µb and f 3 (c ⊗ c) = γµ λ c.
8. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = µc, f 3 (a ⊗ a) = λγ µ c, f 3 (b ⊗ b) = λµ γ c and f 3 (c ⊗ c) = γµ λ c. 9. There exists (λ, γ) ∈ (K * ) 2 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = γc, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0. 10. There exists λ ∈ K * such that f 3 (a ⊗ b) = λb, f 3 (a ⊗ c) = λc, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0.
11. There exists (λ, γ)

∈ (K * ) 2 such that f 3 (a ⊗ b) = λb, f 3 (a ⊗ c) = λc, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = γb.
12. There exists (λ, γ)

∈ (K * ) 2 such that f 3 (a ⊗ b) = λb, f 3 (a ⊗ c) = λc, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = γc.
13. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λb, f 3 (a ⊗ c) = λc, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = γb and f 3 (c ⊗ c) = µc.
14. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γc, f 3 (b ⊗ b) = µc and f 3 (c ⊗ c) = 0.
15. There exists (λ, γ)

∈ (K * ) 2 such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γb, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0. 16. There exists λ ∈ K * such that f 3 (a ⊗ b) = λc, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = 0, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0.
17. There exists (λ, γ, µ, τ

) ∈ (K * ) 4 such that γµ = λ 2 , f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = µa and f 3 (c ⊗ c) = τ c.
18. There exists (λ, γ, τ )

∈ (K * ) 3 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = τ c.
19. There exists (λ, γ, τ )

∈ (K * ) 3 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γb, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = τ c. 20. There exists (λ, γ) ∈ (K * ) 2 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γc, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = 0. 21. There exists (λ, τ ) ∈ (K * ) 2 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = 0, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = τ c. 22. There exists (λ, γ, µ ∈ (K * ) 3 such that γµ = λ 2 , f 3 (a⊗b) = λa, f 3 (a⊗c) = 0, f 3 (b⊗c) = 0, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = µa and f 3 (c ⊗ c) = 0. 23. There exists (λ, γ, τ ) ∈ (K * ) 3 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γa, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = 0.
24. There exists (λ, γ)

∈ (K * ) 2 such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = γb, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = 0.

There exists

λ ∈ K * such that f 3 (a ⊗ b) = λa, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = 0, f 3 (b ⊗ b) = λb and f 3 (c ⊗ c) = 0.
26. There exists (λ, γ, µ)

∈ (K * ) 3 such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = γb and f 3 (c ⊗ c) = µc. 27. There exists (λ, γ) ∈ (K * ) 2 such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λc, f 3 (b ⊗ b) = γc and f 3 (c ⊗ c) = 0.
28. There exists (λ, γ)

∈ (K * ) 2 such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λc, f 3 (b ⊗ b) = γb and f 3 (c ⊗ c) = 0. 29. There exists (λ, γ) ∈ (K * ) 2 such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = γb and f 3 (c ⊗ c) = 0. 30. There exists λ ∈ K * such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λb, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0.

There exists

λ ∈ K * such that f 3 (a ⊗ b) = 0, f 3 (a ⊗ c) = 0, f 3 (b ⊗ c) = 0, f 3 (a ⊗ a) = λa, f 3 (b ⊗ b) = 0 and f 3 (c ⊗ c) = 0.
32. The map f 3 is the null map.

Proof. We use the fact that the map f 3 is associative and commutative, and then, we get the lemma by direct quite long calculations.

Proposition 36. Let X = {a, b, c} be an alphabet of cardinality 3 and let ✷ be a weak stuffle product. In the previous lemma, if f 3 satisfies one of the items 1, 2, 5, 6, 8, 14, 15 then either (f 1 ≡ 0 and

f 2 ≡ 0) or (f 1 (a ⊗ b) = 1 and f 2 (a ⊗ b) = 1 for (a, b) ∈ X 2 ).

Weak stuffle product and Hopf algebras

If ✷ is the classical shuffle product or the classical stuffle product then the algebra (K X , ✷) can be equipped with a compatible coalgebra structure, thanks to the deconcatenation coproduct, which makes it into a Hopf algebra. Are there other weak stuffle products compatible with the deconcatenation? We begin by recalling the Hopf algebra construction for stuffle algebras given in [START_REF]Quasi-shuffle products[END_REF][START_REF] Hoffman | Quasi-shuffle products revisited[END_REF][START_REF]Quasi-shuffle algebras and applications[END_REF]. We then turn to the case of weak stuffle algebras.

Theorem 37. Let X be a countable alphabet, let K X be the vector space generated by words on the alphabet X. We assume there exists at least one product ⋄ on K.X which is commutative and associative. We define the product ⋆ and the coproduct of deconcatenation ∆ by:

au ⋆ bv = a(u ⋆ bv) + b(au ⋆ v) + (a ⋄ b)(u ⋆ v)
w eak_s h u f f le_p r od u ct ( Rules , w1 , w2) :=b l o c k ( [ n1 , n2 , u1 , u2 , temp , r e s , i , j , v1a , v1b , v2a , v2b , P1 , P2 , g , d , L , r , s , c ] , / * --------I ----- * ------ * / i f ( n o t e q u a l ( c , f l o o r ( c ) ) or c<1) then p r i n t ( " e r r e u r " ) ,

n i t i a l i s a t i o n o f t h e v a l u e s o f t h e l e f t s i d e and t h e r i g h t s i d e -------- * / g : 0 , d : 0 , / * ------Computation o f t h e c a r d i n a l i t y o f t h e a l p h a b e t . -

/ * ------Computation o f t h e l e n g t h o f words w1 and w2 . ------ * /

n1 : l e n g t h (w1 ) , n2 : l e n g t h (w2 ) , / * --------We w i l l u se a r e c u r s i v e c a l l . -------- * / i f e q u a l ( n1 , 0 ) then ( / * ----Li mi t c a s e : w1 i s t h e empty word and w2 i s any word .

/ * --------We u se t h e c o m m u t a t i v i t y o f t h e weak s h u f f l e p r o d u c t t o a v o i d some sub-c a s e s . The word w i t h t h e s m a l l e s t l e n g t h i s on t h e l e f t . -------- * /

i f n1<=n2 then ( u1 : [ [ 1 ] , w1 ] , u2 : [ [ 1 ] , w2 

---- * / r e s : [ [ [ 1 ] , u2 [ 2 ] ] ] ) e l s e ( / * ----We compute t h e weak s h u f f l e p r o d u c t t h a n k s t o t h e r e l at i o n : au ( wsp ) bv=f 1 ( a\ o t b ) a ( u ( wsp ) vb )+ f 2 ( a\ o t b ) b ( ua ( wsp ) v

) h e r e u and v are words and a and b are l e t t e r s . ---- * / v1a : c r e a t e _ l i s t ( u1 [START_REF] Bradley | Multiple q-zeta values[END_REF] [ i ] , i , 2 , n1 ) , v1b : u1 [START_REF] Bradley | Multiple q-zeta values[END_REF] [ 1 ] , v2a : c r e a t e _ l i s t ( u2 [START_REF] Bradley | Multiple q-zeta values[END_REF] 

[ i ] , i , 2 , n2 ) , v2b : u2 [ 2 ] [ 1 ] , P1 : [ ] , P2 : [ ] ,
/ * ---We de te mi ne f_1 ( v1b \ o t v2b ) and f_2 ( v1b \ o t v2b ) . --- * / i f e q u a l ( v1b , v2b ) then ------- * 

/ * ------We r e w r i t e t h e r e s u l t f o r h a v i n g o n l y one o c c u r e n c e o f each d i s t i n c t words .

-------- * / L : c r e a t e _ l i s t ( r e s [ i ] [START_REF] Bradley | Multiple q-zeta values[END_REF] , i , 1 , l e n g t h ( r e s ) ) , L : u n iqu e (L ) , r e s : c r e a t e _ l i s t ( [ r a t s i m p ( sum ( i f e q u a l (L [ i ] , r e s [ j ] [START_REF] Bradley | Multiple q-zeta values[END_REF] ) then r e s [ j ] [START_REF] Aguiar | Quadri-algebras[END_REF] e l s e 0 , j , 1 , l e n g t h ( r e s ) ) ) , L [ i ] ] , i , 1 , l e n g t h (L ) ) , r e t u r n ( r e s ) ) ;

In the sequel, the functions aim at proving if the following statement is true or not for some low n. Let n be a positive integer and let w 1 , w 2 and w be three non-empty words of length n such that w 1 ≤ w 2 ≤ w and w 1 < w. Then max(w 1 ✷ 9 w 2 ) < max(w✷ 9 w)? It is trivial for n = 1. For n = 2, it comes from computations doing in the proof of 16. Thus, those cases are not treated.

The function words aims at building all words of length n with an alphabet of cardinality c. It takes as entries the integers n and c and returns a list where each element is a list coresponding to a word. In the result, words are ordered by the ascending order. words ( n , c ) :=b l o c k ( [ r e s , i , j ,U] , r e s : [ ] , i f n=1 then r e s : c r e a t e _ l i s t ( [ i ] , i , 1 , c ) , i f n>1 then ( U: words ( n-1, c ) , r e s : c r e a t e _ l i s t ( append (U[ i ] , [ j ] ) , j , 1 , c , i , 1 , l e n g t h (U) ) ) , r e t u r n ( s o r t ( r e s ) ) ) ;

The function spectrum_product aims at determining words appearing in the weak shuffle product of two words w1 and w2. It takes as entries a list Rules which gives the rules of computation for the weak shuffle product, an integer r which is the length of the list Rules, an integer c which is the cardinality of the alphabet, and two lists w1 and w2 which represent the two words to use for computations.

As exit, the function return a list ordered thanks to the ascending order where each element is a list representing a word appearing in the weak shuffle product of two words w1 and w2. spectrum_product ( Rules , r , c , w1 , w2) :=b l o c k ( [ n1 , n2 , u1 , u2 , temp , r e s , i , j , v1a , v1b , v2a , v2b , P1 , P2 , g , d ] ,

/ * --------I n i t i a l i s a t i o n o f t h e v a l u e s o f t h e l e f t s i d e and t h e r i g h t s

i d e -------- * / g : 0 , d : 0 , / * -------Computation o f t h e l e n g t h o f words w1 and w2 . ------- * / n1 : l e n g t h (w1 ) , n2 : l e n g t h (w2 ) , 

/ * --------We u se t h e c o m m u t a t i v i t y o f t h e weak s h u f f l e p r o d u c t t o a v o i d some sub-c a s e s . The word w i t h t h e s m a l l e s t l e n g t h i s on t h e l e f t . -------- * /

/ * ---r e s i s f i l l e d i n a l i s t o f two e l e m e n t s : t h e maximum i n P and t h e maximum i n W[K] ( spw )W[ k ] . --- * / r e s : append ( re s , [ [ l a s t ( s o r t (P ) ) , l a s t ( spe c tru m_ produ c t ( Rules , r , c ,W[ k ] ,W[ k ] ) ) ] ] ) ) ) , r e t u r n ( r e s ) ) ;

The function proof_statement determines if the statement given at the beginning of the section is proved for words of length n. As entries, it a list Rules corresponding to the weak shuffle and an integer coresponding to the length of words used. It returns a boolean. The boolean is true if the statement if satisfied and false if the statement is not satisfied. Since this function uses maximum_product, it depends on the weak shuffle product ✷ ------ * / P : maximum_product( Rules , r , c , n ,W, l , l ) , p : l e n g t h (P ) , i : 2 , / * ------Che c k i ng o f t h e s t a t e m e n t a t l e v e l i . ------ * / while ( e q u a l ( r e s , t r u e ) and i<p+1) do ( i f e q u a l (P [ i ] [START_REF] Aguiar | Quadri-algebras[END_REF] , P [ i ] [START_REF] Bradley | Multiple q-zeta values[END_REF] ) then ( r e s : f a l s e ) , i : i +1 )

Definition 1 ..

 1 Let s be an integer and let (k 1 , . . . , k s ) be an s-tuple in N ≥2 × N s-1 . The multiple zeta value associated to(k 1 , . . . , k s ) is ζ(k 1 , . . . , k s ) = (m 1 ,...,ms)∈N m 1 >•••>ms>0 1 m k 1 1 . . .m ks s On multiple zeta values, we consider the product of functions taking values in C. For instance, ζ(n)ζ(m) =ζ(m, n) + ζ(n, m) + ζ(m + n), ζ(n, p)ζ(m) =ζ(m, n, p) + ζ(n, m, p) + ζ(n, p, m) + ζ(n + m, p) + ζ(n, p + m).

case a = b and f 2 k times w 3 and w 2 = a . . . a l times w 4 .

 2324 (a ⊗ a) = 1f 1 (a ⊗ a). There exist two words w 3 and w 4 , not necessarily non-empty, not starting by a and two positive integers k and l such that w 1 = a . . . a First of all, by induction, satisfied by ✷ enjoin f 1 (a ⊗ c) = 1 and f 2 (c ⊗ a) = 0 for any letter c = a. So, u✷v = (a . . . a k times ✷ a . . . a l times )(w 3 ✷w 4 ) = (a . . . a l times ✷ a . . . a k times

However (w 4

 4 ✷bw 5 )✷cw 6 = w 4 ✷(bw 5 ✷cw 6 ) = f 1 (b ⊗ c)w 4 ✷b(w 5 ✷cw 6 ) + f 1 (c ⊗ b)w 4 ✷c(bw 5 ✷w 6 ), aw 4 ✷(bw 5 ✷w 6 ) = (aw 4 ✷bw 5 )✷w 6 = f 1 (a ⊗ b)a(w 4 ✷bw 5 )✷w 6 + f 1 (b ⊗ a)b(aw 4 ✷w 5 )✷w 6 , and f 1 satisfies f 1 (x ⊗ y)f 1 (y ⊗ z) (f 1 (x ⊗ z) -1) = 0 for any set {x, y, z} ∈ X. Thus, (w 1 ✷w 2 )✷w 3 = w 1 ✷(w 2 ✷w 3 ). case a = b and (a = c). By commutativity it is the same case as (a = c and b = a) or (b = c and a = b).

  case a = b = c and f 2 (a ⊗ a) = 1f 1 (a ⊗ a). There exist three words w 7 , w 8 and w 9 not necessarily non-empty, not starting by a and three positive integers k, l and m such that w 1 = a . . . a k times w 7 , w 2 = a . . . a l times w 8 and w 3 = a . . . a m times w 9 . Besides, relations satisfied by ✷ enjoin f 1 (a ⊗ c) = 1 and f 2 (c ⊗ a) = 0 for any letter c = a. So, (w 1 ✷w 2 )✷w 3 = (a . . . a

  If u and v are words in X * \ aX * , since f 1 (a ⊗ b) = 1 and f 1 (b ⊗ a) = 0 for any b = a, there does not exist any triple (w, u

  . a and u = bw with w ∈ X * ), k + l k a . . . a k+l times w if (u = a . . . a k times and v = a . . . a l times w with w ∈ bX * ∪ {1}) or (v = a . . . a k times and u = a . . . a l times w with w ∈ bX * ∪ {1}),

  . . . a and u = bw with w ∈ X * ), a . . . a k+l times w if (u = a . . . a k times and v = a . . . a l times w with w ∈ bX * ∪ {1}) or (v = a . . . a k times and u = a . . . a l times w with w ∈ bX * ∪ {1}), 0 else.

  . a k+l times w if (u = a . . . a k times and v = a . . . a l times w with w ∈ bX * ) or (v = a . . . a k times and u = a . . . a l times w with w ∈ bX * ), k + l k a . . . a k+l times if u = a . . . a k times and v = a . . . a l times , 0 else.

  . a k+l times w if (u = a . . . a k times and v = a . . . a l times w with w ∈ bX * ) or (v = a . . . a k times and u = a . . . a l times w with w ∈ bX * ), k + l k a . . . a k+l times if u = a . . . a k times and v = a . . . a l times , k + l -1 k b . . . b k+l times w if (u = b . . . b k times and v = b . . . b l times w with w ∈ aX * ) or (v = b . . . b k times and u = b . . . b l times w with w ∈ aX * ), k + l k b . . . b k+l times if u = b . . . b k times and v = b . . . b

Corollary 15 . 9 w

 159 Let v and w be two words. Then v✷ = 0. Remark. For cases n ∈ {4, 8, 9}, since f 1 (a ⊗ b) = 1 and f 1 (b ⊗ a) = 0, the calculation of u✷ n v where u = b . . . b

2 .. 3 . 1 .′ 1 , w ′ 2 ∈′ 1 Case w 1 ∈′ 1 ∈Case w 1 ′ 2 ∈• 9 w 2 )• 9 w 2 )) = w 1 w 2 ( 9 w 2 )) = w 2 w 1 9 abaa) = aa max(b✷ 9 baa)

 23112111129292292199 If n = 2 then aa p = (2p)! 2 p a . . . a 2p times , ab p = (p!) 2 a . . . a p times b . . . b p times , ba p = p! ba . . . ba Thus λ aa = λ bb = λ ba = λ ba = 0. 3. If n = 3 then w 1 =aaa p = (3p)! (3!) p a . . . a =aba p = (p!) 2 a . . . a p times ba . . . ba p times , w 4 =abb p = (2p)!p! 2 p a . . . a p times b . . . b 2p times , w 5 =baa p = p! baa . . . baa p times , w 6 =bbb p = (3p)! (3!) p b . . . b 3p times For bab p and bba p , there are several terms in the result. For bab p we will use w 7 = bab . . . bab p times and, for bba n we will use w 8 = b . . . b p times ba . . . ba p times . In fact, for the lexicographic order, we use the maximal term obtained in each product. For any i determine how build w i by doing the weak shuffle of p words of length 3. We get λ aaa = λ bbb = λ aba = λ baa = λ aab = λ abb = λ bab = λ bba = 0. Conjecture 17. Let ✷ 9 be the weak shuffle product defined by C 9 . For any positive integers p and n, we have K (n,p) = {0}. Remarks. By induction we can express max(u✷ 9 v) for any words u and v. Case w 1 and w 2 are in aX * . There exist α, β ∈ N * and w bX * ∪ {1} such that w 1 = a . . . a α times w and w 2 = a . . . a aX * and w 2 ∈ bX * . There exist α ∈ N * and w bX * ∪ {1} such that w 1 = a . . . a and w 2 are in bX * . There exist α, β ∈ N * , p, q ∈ N (they are not necessarily different from 0) and w ′ 1 , w bX * ∪ {1} such that w 1 = b . . . b If 0 < p and p = q then max(w 1 ✷ = max( w1 , w2 ) where w1 = b . . . b α+β-1 times a . . . a q times max(b a . . . a If p = 0 (respectively q = 0) then w 1 = b . . . b α times (respectively w 2 = b . . . b respectively max((w 1 ✷ = aabbaa, max(bba✷ 9 baa) = bbabaa, max(bbbaaabba✷ 9 bbaabbba) = bbbbaa max(baaabba✷ 9 bbba) = bbbbaabbbabaaabba.

  Then (a ≻ b) ≺ c = a ≻ (b ≺ c). If the three letters are all distinct or only two of them are equal or a = b = c with f 1 (a ⊗ a) = f 2 (a ⊗ a) ∈ {0, 1} the relations given by Theorem 10 imply (a ≺ b) ≺ c = a ≺ (b✷c) and (a✷b)

Theorem 28 .

 28 Let X be a countable alphabet and let ¡ be the classical shuffle product. The products ց, ր, տ and ւ are defined as follow: auc տ bvd = a(u ¡ bvd)c, auc ւ bvd = a(uc ¡ bv)d, auc ր bvd = b(au ¡ vd)c, auc ց bvd = b(auc ¡ v)d for any letters a, b, c and d and any words u and v. Then (K X , ց, ր, տ, ւ) is a quadrialgebra. Proof. It is proved in [1, Section 1.8]. The main ingredient of the proof is the following statement: for any letters a, b, c and d and any words u and v we have auc ¡ bvd = a(uc ¡ bvd) + b(auc ¡ vd) = (au ¡ bvd)c + (auc ¡ bv)d.

4 .

 4 There exists (λ, µ)∈ (K * ) 2 such that f 3 (a ⊗ a) = 0, f 3 (a ⊗ b) = µa and f 3 (b ⊗ b) = λb. 5. There exists (λ, µ) ∈ (K * ) 2 such that f 3 (a ⊗ a) = λa, f 3 (a ⊗ b) = 0 and f 3 (b ⊗ b) = µb. 6. There exists λ ∈ K * such that f 3 (a ⊗ a) = λb, f 3 (a ⊗ b) = 0 and f 3 (b ⊗ b) = 0.7. There exists λ ∈ K * such that f 3 (a ⊗ a) = λa, f 3 (a ⊗ b) = 0 and f 3 (b ⊗ b) = 0.

  / r : l e n g t h ( Ru les ) , s : s o r t ( s o l v e ( c * ( c +1)=r ) ) , c : s u b s t ( s [ 2 ] , c ) , / * ------Message i f t h e v a r i a b l e Ru le s doe s not c o r r e s p o n d t o an a l p h a b e t .

  ( g : Ru les [ r +2 * (-c+v1b ) -1] , d : Ru les [ r +2 * (-c+v1b ) ] ) , i f ( v1b<v2b ) then ( g : Ru les [ ( v1b -1) * ( c-1)+v2b -1] , d : Ru les [ ( v2b -1) * ( c-1)+v1b ] ) , i f ( v1b>v2b ) then ( g : Ru les [ ( v1b -1) * ( c-1)+v2b ] , d : Ru les [ ( v2b -1) * ( c-1)+v1b -1] ) , / * --------R e c u r s i v e c a l l . -

  : [ ] ,/ * --------We w i l l u se a r e c u r s i v e c a l l . -------- * / i f e q u a l ( n1 , 0 ) then ( / * ---Li mi t c a s e : w1 i s t h e empty word and w2 i s any word . --- * / r e s : [ u2 ] ) e l s e (/ * ----We compute t h e weak s h u f f l e p r o d u c t t h a n k s t o t h e r e l at i o n : au ( wsp ) bv=f 1 ( a\ o t b ) a ( u ( wsp ) vb )+ f 2 ( a\ o t b ) b ( ua ( wsp ) v ) h e r e u andv are words and a and b are l e t t e r s . ---- * / v1a : d e l e t e n ( u1 , 1 ) , v1b : u1 [ 1 ] , v2a : d e l e t e n ( u2 , 1 ) , v2b : u2 [ 1 ] , P1 : [ ] , P2 : [ ] , ) , i f ( k>6 and k<l +1) then ( / * -----R e c u r s i v e c a l l . --------- * / r e s : maximum_product( Rules , r , c , n ,W, l , k -1) , / * ----Maximum word i n r e s . ---- * / P : [ l a s t ( s o r t ( r e s [ l e n g t h ( r e s ) ] ) ) ] , / * ---P i s f i l l e d i n maximum words i n W[ i ] ( wsp )W[ k ] f o r i : 1 t h r u k-1 do ( P : append (P , [ l a s t ( spe c tru m_ produ c t ( Rules , r , c ,W[ i ] ,W[ k ] ) ) ] ) ) ,

9 .p

 9 r oof _s tatem en t ( Rules , n ) :=b l o c k ( [ r e s , P , U, i , p , c , r , s ,W, l ] ,/ * -------Computation o f t h e c a r d i n a l i t y o f t h e a l p h a b e t . ------- */ r : l e n g t h ( Ru les ) , s : s o r t ( s o l v e ( c * ( c +1)=r ) ) , c : s u b s t ( s [ 2 ] , c ) , / * --------Message i f t h e v a r i a b l e Ru le s doe s not c o r r e s p o n d t o an a l p h a b e t . -------- * / i f ( n o t e q u a l ( c , f l o o r ( c ) ) or c<1) then p r i n t ( " e r r e u r " ) e l s e ( / * --------Computations . -------- * / r e s : tr u e , / * ------B u i l d i n g o f words o f l e n g t h n . ------ * / W: words ( n , c ) , l : l e n g t h (W) , / * ------B u i l d i n g max (w( wsp )w) and max (max (w_1( wsp )w_2) w i t h w_1<w and w_2<=w .

  [aw 4 ✷(aw 5 ✷w 6 )].

	However
	(w 4 ✷aw 5 )✷cw 6 = w 4 ✷(aw 5 ✷cw 6 ) = f 1 (a ⊗ c)w 4 ✷a(w 5 ✷cw 6 ) + f 1 (c ⊗ a)w 4 ✷c(aw 5 ✷w 6 ),
	aw 4 ✷(aw 5 ✷w 6 ) = (aw 4 ✷aw 5 )✷w 6 = f 1 (a ⊗ a)a(w 4 ✷aw 5 )✷w 6 + f 2 (a ⊗ a)a(aw 4 ✷w 5 )✷w 6 ,
	and f 1 satisfies

  2. For p = 2 Conjecture 17 is implied by the statement "Let n be a positive integer, let w 1 , w 2 and w be three non-empty words of length n such that w 1 ≤ w 2 ≤ w and w 1 < w.Then max(w 1 ✷ We attend a reasoning by induction but there are some obstructions. Indeed, it leads us to compare max(u 1 ✷ ) where u 1 ≤ u 3 , u 2 ≤ u 4 , length(u 1 ) = length(u 3 ), length(u 2 ) = length(u 4 ) and (u 1 , u 2 ) = (u 3 , u 4 ). Then, it leads us to determine if max(v 1 ✷
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9 w 2 ) < max(w✷ 9 w)." 9 u 2 ) and max(u 3 ✷ 9 u 4

  n ∈ 33, 39 . Proof. Thanks to Proposition 13, in any set, it is sufficient to consider that k = m = 1. Thanks to Proposition 12, we can prove that cases C 22 and C 23 are isomorphic, cases C 25 and C 26 are isomorphic, cases C 28 and C 29 are isomorphic, cases C 31 and C 38 are isomorphic, cases C 34 and C 39 are isomorphic, cases C 35 and C 40 are isomorphic, cases C 37 and C 41 are isomorphic and cases C 45 and C 46 are isomorphic.

  0 . By using K 1 and K 2 , we conclude that C 6 , C 7 and C 8 are in three different isomorphic classes, C 9 , C 10 and C 11 are in three different isomorphic classes, C 16 , C 17 , C 22 and C 24 are in four different isomorphic classes, C 18 , C 19 , C 25 and C 27 are in four different isomorphic classes, C 15 and C 21 are in two different isomorphic classes, C 31 , C 32 and C 33 are in three different isomorphic classes, C 34 , C 35 and C 36 are in three different isomorphic classes, C 42 and C 44 are in two different isomorphic classes. With K 3 , we prove that C 20 and C 28 are in two different isomorphic classes. Those sets do not enable us to conclude if there exists an isomorphism between C 9 and C 13 , between C 12 and C 14 , between C 34 and C 42 , between C 36 and C 44 , between C 43 and C 47 , between C 45 and C 47 .

and

for any letters a and b and any words u, v and w. Then (K X , ⋆, ∆) is a Hopf algebra.

Proof. This theorem is proven in [START_REF]Quasi-shuffle products[END_REF][START_REF] Hoffman | Quasi-shuffle products revisited[END_REF][START_REF]Quasi-shuffle algebras and applications[END_REF] by induction and using the filtration given by the length of words.

Theorem 38. Let X be a countable alphabet of cardinality n ∈ N ∪ {+∞} and let ✷ be a weak stuffle product on K X . We denote by ∆ the deconcatenation coproduct. If ∆ respects ✷ ( i.e. if ∆ is an algebra morphism) then the underlying weak shuffle product is the classical shuffle product.

Proof. Let ✷ be a weak stuffle product. We assume the deconcatenation respects ✷. Then, for any distinct letters a and b:

The reversal is a particular case of Theorem 37.

Computation programs

We give computation programs realised to compute the weak shuffle of two words or to prove Lemma 18. In the sequel we assume the alphabet X is the set of integers {1, . . . , c} and a word is a list [i 1 , . . . , i n ]. We first present a function which computes the weak shuffle product of two words. This function, called weak_shuffle_product, takes as entries a list Rules which coresponds to the values taken by f 1 and f 2 and two lists w1 and w2 which represent the two words to use for computations. We assume

As exit, the function return a list. Each element of the result is a list of two elements A and B: A is the number of times the word represented by B appears in the weak shuffle product of w1 and w2.

/ * -----We de te mi ne f_1 ( v1b \ o t v2b ) and f_2 ( v1b \ o t v2b ) . ----- * / i f e q u a l ( v1b , v2b ) then / * --------R e c u r s i v e c a l l . -------- * 

/ * ------Words are w r i t t e n once w i t h t h e a s c e n d i n g o r d e r . ------ * /

r e s : s o r t ( u n iqu e ( r e s ) ) , r e t u r n ( r e s ) ) ;

The function maximum_product takes as entries a list Rules corresponding to the weak shuffle product, an integer r which is the length of Rules, an integer c which is the cardinality of the alphabet, an integer n which is the length of words used, a list W which represents the list of words of length n, an integer l which is the length of W , an integer k which is the level of computation. The function returns a list of length k -5. The first one is a list of only one element which is max(W [6]✷ 9 W [START_REF] Ebrahimi-Fard | Mixable shuffles, quasi-shuffles and Hopf algebras[END_REF]). In the result, the element p with 2 ≤ p ≤ k -5 is a list of two elements A p and B p where A p = max(max(w 1 ✷ i t i s e nou th t o do an i n i t i a l i s a t i o n w i t h W [START_REF] Ebrahimi-Fard | Mixable shuffles, quasi-shuffles and Hopf algebras[END_REF] . -------------- * / i f k=6 then ( i n i t : l a s t ( spectrum_product ( Rules , r , c ,W [START_REF] Ebrahimi-Fard | Mixable shuffles, quasi-shuffles and Hopf algebras[END_REF] ,W [START_REF] Ebrahimi-Fard | Mixable shuffles, quasi-shuffles and Hopf algebras[END_REF] ) ) , r e s : [ [ i n i t ] ]

) , r e t u r n ( r e s ) ) ;