N

N

Temporal Refinements for Guarded Recursive Types
(full version)
Guilhem Jaber, Colin Riba

» To cite this version:

Guilhem Jaber, Colin Riba. Temporal Refinements for Guarded Recursive Types (full version). 2021.
hal-02512655v5

HAL Id: hal-02512655
https://hal.science/hal-02512655v5

Preprint submitted on 14 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02512655v5
https://hal.archives-ouvertes.fr

Temporal Refinements for Guarded Recursive
Types

Guilhem Jaber! and Colin Riba?

Université de Nantes, LS2N CNRS, Inria, France guilhem. jaber@univ-nantes.fr
Univ Lyon, EnsL., UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France
colin.riba@ens-lyon.fr

Abstract. We propose a logic for temporal properties of higher-order
programs that handle infinite objects like streams or infinite trees, rep-
resented via coinductive types. Specifications of programs use safety and
liveness properties. Programs can then be proven to satisfy their specifi-
cation in a compositional way, our logic being based on a type system.
The logic is presented as a refinement type system over the guarded
A-calculus, a A-calculus with guarded recursive types. The refinements
are formulae of a modal p-calculus which embeds usual temporal modal
logics such as LTL and CTL. The semantics of our system is given within a
rich structure, the topos of trees, in which we build a realizability model
of the temporal refinement type system. We use in a crucial way the
connection with set-theoretic semantics to handle liveness properties.

Keywords: coinductive types, guarded recursive types, p-calculus, re-
finement types, topos of trees.

1 Introduction

Functional programming is by now well established to handle infinite data,
thanks to declarative definitions and equational reasoning on high-level abstrac-
tions, in particular when infinite objects are represented with coinductive types.
In such settings, programs in general do not terminate, but are expected to com-
pute a part of their output in finite time. For example, a program expected to
generate a stream should produce the next element in finite time: it is productive.

Our goal is to prove input-output temporal properties of higher-order pro-
grams that handle coinductive types. Logics like LTL, CTL or the modal u-
calculus are widely used to formulate, on infinite objects, safety and liveness
properties. Safety properties state that some “bad” event will not occur, while
liveness properties specify that “something good” will happen (see e.g. [9]). Typ-
ically, modalities like O (always) or & (eventually) are used to write properties
of streams or infinite trees and specifications of programs over such data.

We consider temporal refinement types {A | ¢}, where A is a standard type
of our programming language, and ¢ is a formula of the modal p-calculus. Using
refinement types [24], temporal connectives are not reflected in the programming

2 Guilhem Jaber and Colin Riba

language, and programs are formally independent from the shape of their tem-
poral specifications. One can thus give different refinement types to the same
program. For example, the following two types can be given to the same map
function on streams:

map: ({B | ¢} = {4 | ¢}) — {Str B | OC[hd]yp} — {Str A | O hd]p} (%)
map: ({B | ¥} = {A | ¢}) — {Str B | ¢Ohd]y} — {Str A | O[hd]p}

These types mean that given f : B — A s.t. f(b) satisfies ¢ if b satisfies 1,
the function (map f) takes a stream with infinitely many (resp. ultimately all)
elements satisfying 1 to one with infinitely many (resp. ultimately all) elements
satisfying ¢. For ¢ a formula over A, [hd]p is a formula over streams of A’s which
holds on a given stream if ¢ holds on its head element.

It is undecidable whether a given higher-order program satisfies a given input-
output temporal property written with formulae of the modal p-calculus [45].
Having a type system is a partial workaround to this obstacle, which moreover
enables to reason compositionally on programs, by decomposing a specification
to the various components of a program in order to prove its global specification.

Our system is built on top of the guarded A-calculus [20], a higher-order pro-
gramming language with guarded recursion [57]. Guarded recursion is a simple
device to control and reason about unfoldings of fixpoints. It can represent coin-
ductive types [55] and provides a syntactic compositional productivity check [5].

Safety properties (e.g. O[hd]y) can be correctly represented with guarded fix-
points, but not liveness properties (e.g. <[hd]e, ©O[hd]p, O<C[hd]e). Combining
liveness with guarded recursion is a challenging problem since guarded fixpoints
tend to have unique solutions. Existing approaches to handle temporal types in
presence of guarded recursion face similar difficulties. Functional reactive pro-
gramming (FRP) [23] provides a Curry-Howard correspondence for temporal
logics [3BU361T8] in which logical connectives are reflected as programming con-
structs. When combining FRP with guarded recursion [487], and in particular
to handle liveness properties [§], uniqueness of guarded fixpoints is tempered by
specific recursors for temporal types.

Our approach is different from []], as we wish as much as possible the logi-
cal level not to impact the program level. We propose a two level system, with
the lower or internal level, which interacts with guarded recursion and at which
only safety properties are correctly represented, and the higher or external one,
at which liveness properties are correctly handled, but without direct access to
guarded recursion. By restricting to the alternation-free modal p-calculus, in
which fixpoints can always be computed in w-steps, one can syntactically reason
on finite unfoldings of liveness properties, thus allowing for crossing down the
safety barrier. Soundness is proved by a realizability interpretation based on the
semantics of guarded recursion in the topos of trees [I3], which correctly repre-
sents the usual set-theoretic final coalgebras of polynomial coinductive types [55].

We provide example programs involving linear structures (colists, streams,
fair streams [I8I8]) and branching structures (resumptions a la [48]), for which
we prove liveness properties similar to (ED above. Our system also handles safety
properties on breadth-first (infinite) tree traversals a la [39] and [I0].

Temporal Refinements for Guarded Recursive Types 3

Cons® := Azx.)\s. fold((z,s)) : A — »Str® A — Str® A
hd® := As.mo(unfold s) :Strf A — A
tl® := As.mi(unfold s) :Str® A — »Strf A
map® := \f.fix(g).As. Cons® (f(hd® s)) (¢ ® (tl® s)) : (B— A) — Strf® B — Stre A

Fig. 1. Constructor, Destructors and Map on Guarded Streams.

Organization of the paper. We give an overview of our approach in §2
Then §3] presents the syntax of the guarded A-calculus. Our base temporal logic
(without liveness) is introduced in and is used to define our refinement type
system in Liveness properties are handled in The semantics is given in §7]
and §8| presents examples. Finally, we discuss related work in §9and future work
in Table (gathers the main refinement types we can give to example
functions, most of them defined in Table [3] Omitted material is available in the
Appendices.

2 Outline

Overview of the Guarded A-Calculus. Guarded recursion enforces produc-
tivity of programs using a type system equipped with a type modality », in
order to indicate that one has access to a value not right now but only “later”.
One can define guarded streams Str® A over a type A via the guarded recursive
definition Str® A = A x » Str® A. Streams that inhabit this type have their head
available now, but their tail only one step in the future. The type modality » is
reflected in programs with the next operation. One also has a fixpoint constructor
on terms fix(z).M for guarded recursive definitions. They are typed with

EFM:A Ex:wAFM: A
EFnext(M) : »A EFfix(x).M: A

This allows for the constructor and basic destructors on guarded streams to
be defined as in Fig. [l where fold(—) and unfold(—) are explicit operations
for folding and unfolding guarded recursive types. In the following, we use the
infix notation a ::# s for Cons® a s. Using the fact that the type modality »
is an applicative functor [54], we can distribute » over the arrow type. This is
represented in the programming language by the infix applicative operator &.
With it, one can define the usual map function on guarded streams as in Fig.

Compositional Safety Reasoning on Streams. Given a property ¢ on a
type A, we would like to consider a subtype of Str® A that selects those streams
whose elements all satisfy . To do so, we use a temporal modal formula O[hd]¢,
and consider the refinement type {Str® A | O[hd]p}. Suppose for now that we

4 Guilhem Jaber and Colin Riba

Typed Formulae Provability Refinement Types Subtyping Typing

Yhp:A A o {A] ¢} T<U EFM:T
(4] (where - ¢ : A, (where F @ : A, (T, U refinement types,

Table 1. Syntactic Classes and Judgments.

can give the following refinement types to the basic stream operations:

hd® : {Str A | O[hd]e} — {A | ¢}
tl® : {Str® A | Olhd]p} — » {Str® A | Ofhd]p}
Cons® : {A | o} — » {Str® A | Olhd]e} — {Str® A | O[hd]e}

By using the standard typing rules for A-abstraction and application, together
with the rules to type fix(z).M and ®, we can type the function map€ as

mapt : ({B | ¢} = {A | ¢}) — {Str® B | Ofhd]y} — {Str® A | Ofhd]i0}

A Manysorted Temporal Logic. Our logical language, taken with minor
adaptations from [33], is manysorted: for each type A we have formulae of type
A (notation - ¢ : A), where ¢ selects inhabitants of A.

We use atomic modalities ([m;], [fold], [next],...) in refinements to navigate
between types (see Fig. . For instance, a formula ¢ of type Ay, specifying
a property over the inhabitants of Ay, can be lifted to the formula [mp)p of type
Ag x Aj, which intuitively describes those inhabitants of Ag x A; whose first
component satisfy . Given a formula ¢ of type A, one can define its “head
lift” [hd]p of type Str® A, that enforces ¢ to be satisfied on the head of the
provided stream. Also, one can define a modality () such that given a formula
¥ 1 Str® A, the formula O : Str® A enforces 9 to be satisfied on the tail of
the provided stream. These modalities are obtained resp. as [hd]p := [fold][mo]¢
and Qg := [fold][m1][next]. We similarly have atomic modalities [ing], [in1] on
sum types. For instance, on the type of guarded colists defined as Colist® A :=
Fix(X). 14+ A x » X, we can express the fact that a colist is empty (resp. non-
empty) with the formula [nil] := [fold][ing] T (resp. [—nil] := [fold][iny]T).

We also provide a deduction system H4 ¢ on temporal modal formulae.
This deduction system is used to define a subtyping relation T" < U between
refinement types, with {4 | ¢} < {A |4} when F4 ¢ = 1. The subtyping
relation thus incorporates logical reasoning in the type system.

In addition, we have greatest fixpoints formulae vay (so that formulae can
have free typed propositional variables), equipped with Kozen’s reasoning prin-
ciples [47]. In particular, we can form an always modality as Op := va. ¢ AQa,
with Og : Str® A if ¢ : Str® A. The formula Oy holds on a stream s = (s; | 7 > 0),
iff ¢ holds on every substream (s; | i« > n) for n > 0. If we rather start with
¥ : A, one first need to lift it to [hd]t : Str® A. Then O[hd]y) means that all the
elements of the stream satisfies ¢, since all its suffixes satisfy [hd]i.

Table || summarizes the different judgments used in this paper.

Temporal Refinements for Guarded Recursive Types 5

Beyond Safety. In order to handle liveness properties, we also need to have
least fixpoints formulae paw. For example, this would give the eventually modal-
ity Cp = pa. oV Qa. With Kozen-style rules, one could then give the following
two types to the guarded stream constructor:

Cons® : {A | o} —> »Strt A — {Str® A | Olhdp}
Cons® : A — » {Str® A | O[hd]p} — {Str® A | Olhd]e}

But consider a finite base type B with two distinguished elements a, b, and sup-
pose that we have access to a modality [b] on B so that terms inhabiting {B | [b]}
must be equal to b. Using the above types for Cons®, we could type the stream
with constant value a, defined as fix(s).a ::# s, with the type {Str®B | <[hd][b]}
that is supposed to enforce the existence of an occurrence of b in the stream. Sim-
ilarly, on colists we would have fix(s).a ::8 s of type {CoList® B | ¢[nil]}, while
O[nil] expresses that a colist will eventually contain a nil, and is thus finite.
Hence, liveness properties may interact quite badly with guarded recursion. Let
us look at this in a semantic model of guarded recursion.

Internal Semantics in the Topos of Trees. The types of the guarded A-
calculus can be interpreted as sequences of sets (X (n)),~0 where X (n) represents
the values available “at time n”. In order to interpret guarded recursion, one also
needs to have access to functions rX : X(n + 1) — X (n), which tell how values
“at n+1” can be restricted (actually most often truncated) to values “at n”. This
means that the objects used to represent types are in fact presheaves over the
poset (N\ {0}, <). The category S of such presheaves is the topos of trees [13].
For instance, the type Str® B of guarded streams over a finite base type B is
interpreted in S as (B™), >0 , with restriction maps taking (bg,...,b,—_1,b,) to
(bg,-..,bp_1). We write [A] for the interpretation of a type A in S.

The Necessity of an External Semantics. The topos of trees cannot cor-
rectly handle liveness properties. For instance, the formula <[hd][b] cannot de-
scribe in S the set of streams that contain at least one occurrence of b. Indeed,
the interpretation of ¢[hd][b] in S is a sequence (C'(n))n~0 with C(n) C B™. But
any element of B® can be extended to a stream which contains an occurrence
of b. Hence C(n) should be equal to B", and the interpretation of <[hd][b] is
the whole [Str® B]. More generally, guarded fixpoints have unique solutions in
the topos of trees [I3], and Op = pa. ¢ V Oy gets the same interpretation as
va. oV Qa.

We thus have a formal system with least and greatest fixpoints, that has a
semantics inside the topos of trees, but which does not correctly handle least
fixpoints. On the other hand, it was shown by [55] that the interpretation of
guarded polynomial (i.e. first-order) recursive types in S induces final coalgebras
for the corresponding polynomial functors on the category Set of usual sets and
functions. This applies e.g. to streams and colists. Hence, it makes sense to think
of interpreting least fixpoint formulae over such types externally, in Set.

6 Guilhem Jaber and Colin Riba

Internal External
r [mA] := AT'[A]
T ox]p] = 1 A, [box]yp :
Lo s T Set i [[box]e] := A{lel} (¢: A, [box]p : MA)
_/
A {lolt = I'le] (if ¢ is safe)

[] subobject of [A] {l¢[} subset of I'[A]

Fig. 2. Internal and External Semantics

The Constant Type Modality. Figure [2represents adjoint functors I' : S —
Set and A : Set — S. To correctly handle least fixpoints pap : A, we would like
to see them as subsets of I'[A] in Set rather than subobjects of [A] in S. On
the other hand, the internal semantics in S is still necessary to handle definitions
by guarded recursion. We navigate between the internal semantics in S and the
external semantics in Set via the adjunction A -4 I'. This adjunction induces a
comonad AI on S, which is represented in the guarded A-calculus of [20] by the
constant type modality . This gives coinductive versions of guarded recursive
types, e.g. Str A := BStr® A for streams and Colist A := B ColList® A for colists,
which allow for productive but not causal programs [20, Ex. 1.10.(3)].

Each formula gets two interpretations: [¢] in S and {|¢|} in Set. The external
semantics {|p|} handles least fixpoints in the standard set-theoretic way, thus the
two interpretations differ in general. But we do have {|¢|} = I'[¢] when ¢ is safe
(Def. , that is, when ¢ describes a safety property. We have a modality [box]p
which lifts ¢ : A to BA. By defining [[box|¢] := A{|¢[}, we correctly handle
the least fixpoints which are guarded by a [box] modality. When ¢ is safe, we
can navigate between {lA | [box]p} and B{A | ¢}, thus making available the
comonad structure of B on [box]p. Note that [box] is unrelated to O.

Approximating Least Fixpoints. For proving liveness properties on func-
tions defined by guarded recursion, one needs to navigate between e.g. [box]< e
and <, while Op is in general unsafe. The fixpoint G = pa.p V Qa is
alternation-free (see e.g. [I7, §4.1]). This implies that &y can be seen as the
supremum of the ()™ for m € N, where each ()™ is safe when ¢ is safe. More
generally, we can approximate alternation-free pap by their finite unfoldings
©™(L), @ la Kleene. We extend the logic with finite iterations uFap, where k is
an iteration variable, and where pF o is seen as pF(L). Let OF g := pFa. oV Qa.
If ¢ is safe then so is OF . For safe ¢, 1, we have the following refinement typings
for the guarded recursive map® and its coinductive lift map:

mapé : ({B | ¢} — {A | ¢}) = {Strf B | OFlhd]y} — {Str¥ A | OF[hd]p}
map : ({B | ¥} = {4] ¢}) — {StrB | [box]C[hd]ip} — {Str A | [box]<[hd]e}

3 The Pure Calculus

Our system lies on top of the guarded A-calculus of [20]. We briefly review it
here. We consider values and terms from the grammar given in Fig. [3| (left). In

Temporal Refinements for Guarded Recursive Types 7

(Az.M)N ~» M[N/z]

von= M,N:= v | 2 FE 2= e

| Ax.M | MN | | EM , mi({Mo, Mi)) ~ M;

| (Mo, M) | mo(M) | mo(E) casein;(M) of (z.No|z.N1) ~ N;[M/x]

| 0 | (M) | m(E) unfo|d(f(?|d(M)) ~ M .

| ino(M) | case M of | caseE of fix(z). M ~ M [next(fix(z).M) /]

| i (M) (x.Molz.My) (x.Molz. M) ”eXt(é”) v ”eXt](\;V) ~ 'EX*(MN)

| fold(M) | unfold(M) | unfold(E) unbox(%(M” Mo

| boxe(M) | unbox(M) | unbox(E) prevy(next(M)) ~

| next(M) | prev, (M) | prevy(E) prev, (M) ~ prevy(Mo) (o # [])
| MeN | EoM .
| fix(z).M | v@F M N

E[M] ~ E[N]

Fig. 3. Syntax and Operational Semantics of the Pure Calculus.

both box, (M) and prev, (M), o is a delayed substitution of the form o = [z1 —
My, ..., x — Mg] and such that box, (M) and prev, (M) bind z1,...,z) in M.
We use the following conventions of [20]: box(M) and prev(M) (without indicated
substitution) stand resp. for box; (M) and prev;(M) i.e. bind no variable of M.
Moreover, box, (M) stands for boxX(z, sz, ... z.se) (M) Where xq,..., 2y, is a list
of all free variables of M, and similarly for prev,(M). We consider the weak
call-by-name reduction of [20], recalled in Fig. [3| (right).
Pure types (notation A, B,etc.) are the closed types over the grammar

A= 1|A+A|AxA|A—A|»A| X |Fix(X).A| WA

where, (1) in the case Fix(X).A, each occurrence of X in A must be guarded by a
>, and (2) in the case of A, the type A is closed (i.e. has no free type variable).
Guarded recursive types are built with the fixpoint constructor Fix(X).A, which
allows for X to appear in A both at positive and negative positions, but only
under a ». In this paper we shall only consider positive types.

Ezample 3.1. We can code a finite base type B = {bj,...,b,} as a sum of
unit types . ;1 = 1+ (--- + 1), where the ith component of the sum is
intended to represent the element b; of B. At the term level, the elements of B
are represented as compositions of injections inj, (in;,(...inj,())). For instance,
Booleans are represented by Bool := 1 + 1, with tt := ing(()) and ff := in1((}).

Ezample 3.2. Besides streams (Str® A), colists (CoList® A), conatural numbers
(CoNat®) and infinite binary trees (Tree® A), we consider a type Res® A of re-
sumptions (parametrized by I, 0) adapted from [48], and a higher-order recursive
type Rou® A, used in Martin Hofmann’s breadth-first tree traversal (see e.g. [10]):

Tree® A :=Fix(X). Ax (X x »X) CoNat® := Fix(X). 1+ » X
Res® A :=Fix(X). A+ (I = (0x»X)) Rou®A:=Fix(X).14+((»X = »A) — A)

Some typing rules of the pure calculus are given in Fig. 4l where a pure type A is
constant if each occurrence of » in A is guarded by a B modality. The omitted
rules are the standard ones for simple types with finite sums and products (§A]).

8 Guilhem Jaber and Colin Riba

EF M : A[Fix(X).A/X] EF M :Fix(X).A EFM:»(B—A) EFN:»B
EFfold(M) : Fix(X).A & F unfold(M) : A[Fix(X).A/X] EFM®N:»A
EFM:A x1: A, xk Ak EM A EF M;: A; with A; constant for 1 <i <k
EFnext(M) : »A EFprevi, sy, aponry (M) 1 A
1A, gt Ak EM A EF M;: A; with A; constant for 1 <i¢ <k EF-M:ERA
EFboX(zy sy ..o ary) (M) - A E F unbox(M) : A

Fig. 4. Typing Rules of the Pure Calculus (excerpt).

Ezample 3.3. Figure [1] defines some operations on guarded streams. On other
types of Ex. we have e.g. the constructors of colists Nil® := fold(ing()) :
ColList® A and Cons® := Ax.A\xs.fold(iny(z,zs)) : A — » ColList® A — ColList® A.
Infinite binary trees Tree® A have operations sonf : Tree® A — » Tree® A for d €
{€,7}, Node® : A — » Tree® A — » Tree® A — Tree® A and label® : Tree® A — A.

Ezxample 3.4. Coinductive types are guarded recursive types under a H. For
instance Str A := BMStr® A, ColList A := M Colist® A, CoNat := M CoNat® and
Res A := M Res® A, with A, I, 0 constant. Basic operations on guarded types lift
to coinductive ones. For instance

Cons := Az.\s.box, (Cons® z next(unbox s)) : A — Str A — Str A
hd := As.hd® (unbox s) :StrA— A
tl := As.box, (prev, (t1® (unbox s))) :StrA — StrA

These definitions follow a general pattern to lift a function over a guarded re-
cursive type into one over its coinductive version, by performing an n-expansion
with some box and unbox inserted in the right places. For example, one can define
the map function on coinductive streams as:

map := Af.As.box,(map? f (unbox s)) : (B —+ A) — StrB — StrA

4 A Temporal Modal Logic

We present here a logic of (modal) temporal specifications. We focus on syntactic
aspects. The semantics is discussed in §7] For the moment the logic has only one
form of fixpoints (vay). It is extended with least fixpoints (pay) in

Manysorted Modal Temporal Formulae. The main ingredient of this pa-
per is the logical language we use to annotate pure types when forming re-
finement types. This language, that we took with minor adaptations from [33],
is manysorted: for each pure type A we have formulae ¢ of type A (notation
F ¢ : A). The formulation rules of formulae are given in Fig.

Ezample 4.1. Given a finite base type B = {by,...,b,} as in Ex. with ele-
ment b; represented by inj, (in;,(...inj())), the formula [in;,][in;,] ... [in;,]T rep-
resents the singleton subset {by} of B. On Bool, we have the formulae [tt] :=
[ing]T and [ff] := [iny] T representing resp. tt and ff.

Temporal Refinements for Guarded Recursive Types 9

(a: A) e X Yhe: A
Yha: A YEL1:A YET:A Ya:BFp: A
Yhep: A YEy: A Yhe: A YEy: A Yhep: A YEy A
YrhEe=9: A YAy A YEeVy: A
YEp: A Yhe: A YrF¢y:B YXFp:A

X+ [71'1}90 : Ao X Aq P [Inl}@ Ao+ Aq Y+ [ev(w)]ap :B— A

Y F o AlFix(X).A/X] Yhp: A Fo: A
X I [fold]¢ : Fix(X).A 2+ [nextlp : »A F [box]p : MA

Ya:AFyp: A

a Pos ¢ .
St vap A (a guarded in ¢)

(v-F)

Fig. 5. Formation Rules of Formulae (where A, B are pure types).

Ezample 4.2. (a) The formula [hd][a] = (O[hd][b] means that if the head of a
stream is a, then its second element (the head of its tail) should be b.

(b) On colists, we let [hd]p := [fold][in1][mo] and O := [fold][in1][m1][next]e.

(¢) On (guarded) infinite binary trees over A, we also have a modality [Ibl]y :=
[fold][mo]¢ : Tree® A (provided ¢ : A). Moreover, we have modalities O, and
O, defined on formulae ¢ : Tree® A as Ogp := [fold][m][mo][next]y and
Orgp = [fold][m1][m1][next]e. Intuitively, [Ibl]¢ should hold on a tree ¢ over
A iff the root label of ¢ satisfies ¢, and Qe (resp. Or¢) should hold on ¢
iff ¢ holds on the left (resp. right) immediate subtree of ¢.

Formulae have fixpoints vag. The rules of Fig. [5|thus allow for the formation
of formulae with free typed propositional variables (ranged over by «, f,...),
and involve contexts X' of the form oy : Aq,...,q, : A,. In the formation of a
fixpoint, the side condition “a guarded in ¢” asks that each occurrence of « is
beneath a [next] modality. Because we are ultimately interested in the external
set-theoretic semantics of formulae, we assume a usual positivity condition of «
in . It is defined with relations a Pos ¢ and « Neg ¢ (see App. . We just
mention here that [ev(—)](—) is contravariant in its first argument. Note that
[box]e can only be formed for closed .

Ezample 4.3. (a) The modality O makes it possible to express a range of safety
properties. For instance, assuming o, : Str® A, the formula O(¢ = O ¢)
is intended to hold on a stream s = (s; | ¢ > 0) iff, for all n € N, if (s; | i > n)
satisfies 1, then (s; | i > n + 1) satisfies .

(b) The modality O has its two CTL-like variants on Tree® A, namely YOy :=
va. o A (Oea A Ora) and Fdp :=va. ¢ A (Oea V Ora). Assuming ¢ : A,
vO[lbl]¢) is intended to hold on a tree t : Tree® A iff all node-labels of ¢ satisfy
¢, while 30[Ibl]¢) holds on ¢t iff ¢ holds on all nodes of some infinite path
from the root of t.

10 Guilhem Jaber and Colin Riba

Name Formulation [m;] [fold] [next] [in;] [ev(¢))] [box] [hd] O
Fy=¢
(RM) NN v vy v v v
Q) [AleAAlYy = [AlleAy) v v v vV v v v
(N) [A]T v v v vV
P) AL = L v v o (©) Vv v v (€)
(Cv) [AllpVYy) = [AlpVAYy v v v V v v v
(C) (Al =[Alp) =Dl =¢) v v (C) v v (©

Table 2. Modal Axioms and Rules. Types are omitted in - and (C) marks axioms
assumed for - but not for . Properties of the non-atomic [hd] and O are derived.

Modal Theories. Formulae are equipped with a modal deduction system which
enters the type system via a subtyping relation (§5)). For each pure type A, we
have an intuitionistic theory F4 (the general case) and a classical theory F4
(which is only assumed under B/[box]), summarized in Fig. [f|and Table[2] (where
we also give properties of the derived modalities [hd],). In any case, I—f‘c) @ is
only defined when F ¢ : A (and so when ¢ has no free propositional variable).

Fixpoints vay are equipped with their usual Kozen axioms [47]. The atomic
modalities [m;], [fold], [next], [in;] and [box] have deterministic branching (see
Fig. . We can get the axioms of the intuitionistic (normal) modal logic
IK [61] (see also e.g. [65U53]) for [r;], [fold] and [box] but not for [in;] nor for the
intuitionistic [next]. For [next], in the intuitionistic case this is due to semantic
issues with step indexing (discussed in §7)) which are absent from the classical
case. As for [in;], we have a logical theory allowing for a coding of finite base
types as finite sum types, which allows to derive, for a finite base type B:

= Vs (I A Aves)

Definition 4.4 (Modal Theories). For each pure type A, the intuitionistic
and classical modal theories -4 ¢ and F2 ¢ (where = o : A) are defined by
mutual induction:

— The theory F* is deduction for intuitionistic propositional logic augmented
with the check-marked (V') axzioms and rules of Table and the axioms and
rules of Fig. @ (for =4).

— The theory F2 is F4 augmented with the azioms (P) and (C=.) for [next] and
with the aziom (CL) (Fig. [6]).

For example, we have FS** 4 Oy = (4 A OO9) and FS* 4 (¢ A OOy) = O,

Temporal Refinements for Guarded Recursive Types 11

Feop=>¢ Fe:A
FE=A lev(@)le = lev(@)le FP7A (fev(vo)l Alev(ihr)]w) = [ev(to Vih)lp

He o

(CL) rma [boxl FAotAr ([ing]T V [ina] T) A —([ino] T A fina]T)

FA ((p=) =)= ¢

F 9 = oly/al
FAotAr ([ing] T) = (—fing]e < [ind]) FAvap = plvap/al FA Y = vap

Fig. 6. Modal Axioms and Rules.

H o= o=
TS|T] A<{A|T} {Alp}<{A|v} {BA] [box]p} < {MA| [box]t)}

{(rA ety =»{Ale} {B=Allev(®)le} ={B[v} = {A]| ¢}

Fig. 7. Subtyping Rules (excerpt).

5 A Temporally Refined Type System

Temporal refinement types (or types), notation T, U, V, etc., are defined by:
TU:=A|{A|e} |T+T|TXT|T—T|»T|BT

where F ¢ : A and, in the case of BT, the type T has no free type variable. So
types are built from (closed) pure types A and temporal refinements {A | ¢}.
They allow for all the type constructors of pure types.

As arefinement type {A | ¢} intuitively represents a subset of the inhabitants
of A, it is natural to equip our system with a notion of subtyping. In addition
to the usual rules for product, arrow and sum types, our subtyping relation is
made of two more ingredients. The first follows the principle that our refinement
type system is meant to prove properties of programs, and not to type more
programs, so that (say) a type of the form {A | ¢} — {B | ¢} is a subtype of
A — B. We formalize this with the notion of underlying pure type |T| of a type
T. The second ingredient is the modal theory F4 ¢ of The subtyping rules
concerning refinements are given in Fig. [7] where 7' = U enforces both T' < U
and U < T'. The full set of rules is given in Fig. [I7]in §C| Notice that subtyping
does not incorporate (un)folding of guarded recursive types.

Typing for refinement types is given by the rules of Fig. [8| together with the
rules of §3| extended to refinement types, where T is constant if |T| is constant.
Modalities [m;], [in;], [fold] and [ev(—)] (but not [next]) have introduction rules
extending those of the corresponding term formers.

12 Guilhem Jaber and Colin Riba

8 I AL : {A1 I Qﬁ} S =]\/[171 : Alfi
Er+ <Z\/[0,Z\/[1> : {Ao X A1 | [TFL]QD}

EFM: {Ao X A1 | [m}(,a}

(P1;-T) EFmi(M):{Ai]| ¢}

(P1-E)

E,x:{B|yY}EM:{A] ¢}
EFXz.M:{B— Al [ev(v)]p}

EFM:{B— A|[ev(¥)]p} EFN:{B| ¢}

(Ev-I) EFMN:{A] g}

(Ev-E)

(Fp-T) EF M : {A[Fix(X).A/X] | ¢} (FD-E) EF M : {Fix(X).A | [fold]p}
E Ffold(M) : {Fix(X).A | [fold]p} E Funfold(M) : {A[Fix(X).A/X] | ¢}

EEM:{Ao+ A1 | [ini]e} E,x:{Ai| o} FN;: U Ex:A_iFNi_;: U

INJ;-E
(ai-E) &+ case M of (x.No|z.N1) : U
for i € {0,1},
EFM:{A vV E,x: {A G EN:U 1:{A;
(V-E) {A] oV} z:{A] @i} (TN T) = EFM:{Ai| g}

EEM {A|Yv=¢} EFM:{A| ¢}
EEM:{A] ¢}

EFM:{A|Ll} EFN:|U|

(MP) EFN:U

(EXF)

(Sus) EFM:T T<U
’ EFM:U

Fig. 8. Typing Rules for Refined Modal Types.

Ezample 5.1. Since ¢ = ¥ = (p A1) and using two times the rule (MP), we
get the first derived rule below, from which we can deduce the second one:

EFM:{A|¢} EFM:{A]|} EFM:{A|p} EFN:{B|¥}
EFM:{A]| oAy} EF(M,N):{Ax B | [m]e A[m]y}
Example 5.2. We have the following derived rules:
ERM:{Strt A | Op} and EEM:{Strt A | o AOOp}
EFM:{Strt A| o AOOp} EFM:{Str® A| Op}
Ezample 5.3. We have Cons® : A — » {Str® A | o} — {Str® A | Oy} as well as
tlE: {Strt A | Op} — » {Strt A | p}.

Ezample 5.4 (“Always” (O) on Guarded Streams). The refined types of Cons®,
hd®, tI®8 and map® mentioned in §2| are easy to derive. We also have the type

{Str® A | Olhd]pg} — {Str® A | Ofhd]p1 } — {Str® A | O([hd]eo V [hd]e1)}

for the merge® function which takes two guarded streams and interleaves them:

merges : Strf A — StrfA — Strf A
:= fix(g).As0.As1. (hd® s0) ::8 next((hd® s1) 8 (g ® (tI® s0) ® (tI® 51)))

6 The Full System

The system presented so far has only one form of fixpoints in formulae (vay).
We now present our full system, which also handles least fixpoints (uap) and
thus liveness properties. A key role is played by polynomial guarded recursive
types, that we discuss first.

Temporal Refinements for Guarded Recursive Types 13

()E,a:AI—Lp:A Ya:AFp: A Ya:AFp: A
" YFpap: A YFutap: A YEvtap: A

Fig. 9. Extended Formation Rules of Formulae (with a Pos ¢ and a guarded in).

H plv/a] = ¢
F4 plpap/al = poyp F4 pap = ¢
FA O tlap & lftap/q] FA wap & L FALap & T
[t] < [u] [t] > [u]
FA utap = ptagp FA utap = poap FA vtap = vtap FAvap = viap

Fig. 10. Extended Modal Axioms and Rules (with A a pure type and 6 either y or v).

Strictly Positive and Polynomial Types. Strictly positive types (notation
Pt Q7T etc.) are given by

Pt u=A| X | Pt | Pt + Pt | Pt x Pt |Fix(X).Pt|B— P+

where A, B are (closed) constant pure types. Strictly positive types are a conve-
nient generalization of polynomial types. A guarded recursive type Fix(X).P(X)
is polynomial if P(X) is induced by

P(X):=A | »X | P(X)+P(X) | P(X)xP(X) | B— P(X)

where A, B are (closed) constant pure types. Note that if Fix(X).P(X) is poly-
nomial, X cannot occur on the left of an arrow (—) in P(X). We say that
Fix(X).P(X) (resp. PT) is finitary polynomial (resp. finitary strictly positive)
if B is a finite base type (see Ex. in the above grammars. The set-theoretic
counterpart of our polynomial recursive types are the exponent polynomial func-
tors of [34], which all have final Set-coalgebras (see e.g. [34, Cor. 4.6.3]).

Ezxample 6.1. For A a constant pure type, e.g. Str® A, CoList® A and Tree® A as
well as Str8(Str A), CoList®(Str A) and Res® A (with I, O constant) are polyno-
mial. More generally, polynomial types include all recursive types Fix(X).P(X)
where P(X) is of the form Y ; A; X (» X)Pi with A;, B; constant. The non-
strictly positive recursive type Rou® A of Ex. used in Hofmann’s breadth-first
traversal (see e.g. [10]), is not polynomial.

The Full Temporal Modal Logic. We assume given a first-order signature
of iteration terms (notation t,u,etc.), with iteration variables k, ¢, etc., and for
each iteration term t(ki,...,k;) with variables as shown, a given primitive
recursive function [t] : N™ — N. We assume a term 0 for 0 € N and a term k+1
for the successor function n € N—n+1 € N.

14 Guilhem Jaber and Colin Riba

The formulae of the full temporal modal logic extend those of Fig. [f| with least
fixpoints payw and with approzimated fizpoints pu*agp and v*ap where t is an
iteration term. The additional formation rule for formulae are given in Fig.[9] We
use 6 as a generic notation for p and v. Least fixpoints pag are equipped with
their usual Kozen axioms. In addition, iteration formulae v*ap(«) and pfap(a)
have axioms expressing that they are indeed iterations of ¢(«) from resp. T and
L. A fixpoint logic with iteration variables was already considered in [68].

Definition 6.2 (Full Modal Theories). The full intuitionistic and classical
modal theories (still denoted = and F2) are defined by extending Def. with
the azioms and rules of Fig.[10

Ezample 6.3. Least fixpoints allow us to define liveness properties. On streams
and colists, we have O¢ = pa. ¢ V Qa and ¢ U ¢ = pa. ¥ V (¢ A Qa).
On trees, we have the CTL-like 3C¢ = pa. ¢ V (Ora V Ora) and VO =
pa. oV (OQea A Ora). The formula 3O is intended to hold on a tree if there
is a finite path which leads to a subtree satisfying ¢, while YOy is intended to
hold if every infinite path crosses a subtree satisfying ¢.

Remark 6.4. On finitary trees (as in Ex. but with A;, B; finite base types),
we have all formulae of the modal p-calculus. For this fragment, satisfiability is
decidable (see e.g. [I7]), as well as the classical theory . by completeness of
Kozen’s axiomatization [73] (see [63] for completeness results on fragments of
the p-calculus).

The Safe and Smooth Fragments. We now discuss two related but dis-
tinct fragments of the temporal modal logic. Both fragments directly impact the
refinement type system by allowing for more typing rules.

The safe fragment plays a crucial role, because it reconciles the internal and
external semantics of our system (see . It gives subtyping rules for B (Fig. ,
which makes available the comonad structure of B on [box]p when ¢ is safe.

Definition 6.5 (Safe Formula). Say oy : Ay,...,ap : Ay b @ A is safe if

(i) the types A, ..., An, A are strictly positive, and
(ii) for each occurrence in ¢ of a modality [ev(y)], the formula 1 is closed, and
(i4i) each occurrence in ¢ of a least fixpoint (ua(—)) and of an implication (=)
is guarded by a [box].

Note that the safe restriction imposes no condition on approximated fixpoints
6*a. Recalling that the theory under a [box] is -2, the only propositional connec-
tives accessible to -4 in safe formulae are those on which -4 and -2 coincide.
The formula [—nil] = [fold][in1] T is safe. Moreover:

Ezample 6.6. Any formula without fixpoint nor [ev(—)] is equivalent in k. to a
safe one. It ¢ is safe, then so are [hd]gp, [Ibl]p, as well as Ay (for A € {O,vO,30})
and [box]Agp (for A € {0,330, VO}).

Temporal Refinements for Guarded Recursive Types 15

Definition 6.7 (Smooth Formula). A formula oy : Ay,...,0an : ApF @ A
is smooth if

(i) the types Ai,..., An, A are finitary strictly positive, and
(ii) for each occurrence in ¢ of a modality [ev()], the formula 1 is closed, and
(iii) ¢ is alternation-free: for 6,0" € {u,v}, (1) if 0Boto is a subformula of ¢,
and 0' 8111 is a subformula of ¥o s.t. Bo occurs free in 11, then 8 =6, (2)
if some oy occurs in two subformulae 0 Bg1py and 6’ B11 of p, then 8 =6,
and (3) if some «; occurs in a subformula 6’5 of ¢, then a; Pos 1.

Our notion of alternation freedom is adapted from [I7], in which propositional
(fixpoint) variables are always positive. Note that the smooth restriction imposes
no further conditions on approximated fixpoints 6*«. In the smooth fragment,
greatest and least fixpoints can be thought about resp. as

A () and /g™

meN meN

Iteration terms allow for formal reasoning about such unfoldings. Assuming [t] =
m € N, the formula v*ap(a) (resp. pfap(a)) can be read as ¢™(T) (resp.
©™(L)). This gives the rules (v-I) and (u-E) (Fig. [1]), which allow for reductions
to the safe case (see examples in .

Remark 6.8. Tt is well-known (see e.g. [I7, §4.1]) that on finitary trees (see
Rem. the alternation-free fragment is equivalent to Weak MSO (MSO with
second-order variables restricted to finite sets). In the case of streams StrB (for a
finite base type B), Weak MSO is in turn equivalent to the full modal p-calculus.
In particular, the alternation-free fragment contains all the flat fixpoints of [63]
and thus LTL on StrB and CTL on TreeB and on ResB with I, 0, B finite base
types. A typical property on Tree B which cannot be expressed with alternation-
free formulae is “there is an infinite path with infinitely many occurrences of b”
for a fixed b : B (see e.g. [I7], §2.2]).

Ezample 6.9. Any formula without fixpoint nor [ev(—)] is smooth. It ¢ is smooth,
then so are [hd]ep, [Iblj¢ and Ay for A € {O,v0O, 30, O, 3O, VO

The Full System. We extend the types of §5| with universal quantification over
iteration variables (Vk - T'). The type system of §5|is extended with the rules of

Fig.

Ezxample 6.10. The logical rules of Fig.[L0]|give the following derived typing rules
(where S Pos 7):

EF M : {BA | [box]y[utayp/p]}
EF M : {WA | [box]y[payw/B]}

EF M : {MA | [box]y[vay/B]}

(k1) EF M : {MA | [box|y[vtap/b]}

(v-E)

16 Guilhem Jaber and Colin Riba

¢ safe
{MA | [box]e} =W{A | ¢} Vk-»T =wVk-T

EFM:T EFM:T[o/k] EF M :T[k+1/k
(V_I)ﬁl—M:sz-T (v-CI) EFM:Vk-T
(1) EF M : {MA | box]y[v av/B]} (v-E) EFM:Vk-T

EFM:{RA | [box]y[vay/A]} EF M :T[t/k]

EF M : (WA | boxy[uoni/8]} .z {WA | bodylu‘any/B]} F N : U

(h-E) EF N[M/a]: U

Fig. 11. Extended (Sub)Typing Rules for Refinement Types (where k is not free in &
in (V-I) & (V-CI), £ is fresh in (v-I) & (p-E), 6atp and v are smooth, and § Pos).

7 Semantics

We present the main ingredients of the semantics of our type system. We take
as base the denotational semantics of guarded recursion in the topos of trees.

Denotational Semantics in the Topos of Trees. The topos of trees S pro-
vides a natural model of guarded recursion [I3]. Formally, S is the category
of presheaves over (N \ {0}, <). In words, the objects of S are indexed sets
X = (X(n)),o equipped with restriction maps r;\ : X(n+1) — X(n). Ex-
cluding 0 from the indexes is a customary notational convenience ([13]). The
morphisms from X to Y are families of functions f = (f, : X(n) = Y (n)),<0
which commute with restriction, that is f,,or;X = 7Y o f,,+1. As any presheaf cat-
egory, S has (pointwise) limits and colimits, and is Cartesian closed (see e.g. [62]
81.6]). We write I' : S — Set for the global section functor, which takes X to
S[1, X], the set of morphisms 1 — X in S, where 1 = ({®#}),>¢ is terminal in S.
A typed term £ F M : T is to be interpreted in S as a morphism

[M] = [IEN — 1171

where [I€]] = [|T1]] x -+ x [|Tn]] for € = @1 : T, ..., 2, : Tp. In particular, a
closed term M : T is to be interpreted as a global section [M] € I'[|T|]. The
x/+ / — fragment of the calculus is interpreted by the corresponding structure
in S. The » modality is interpreted by the functor » : S — S of [13]. This functor
shifts indexes by 1 and inserts a singleton set 1 at index 1. The term constructor
next is interpreted by the natural map with component next® : X — »X as in

X X
7'1 T
X X <=— X9 < XnéXn+1<

nextxl 1\L Tf(l Tf—ll Tfi

> X 17X < X <—— X<

Thn—1

Temporal Refinements for Guarded Recursive Types 17

{Ilmilel} = {z € I'[Ao x A1] | mi oz € {|pl}} {I[next]ep]} := {next o € '[>-A] | 2 € {|ol}}
{[fold]¢[} := {= € L[Fix(X).A] | unfold o € {jp[}} {|[boxlpl} :={z € T[MA] | z1(e) € {loo[}}
{fini]l} == {z € T'[Ao+ Ai] | Iy € T[AJ(z =inioy and y € {ol})}
{lev(@)lel = {z e T[B— A] | vy e T[Bl(y € ¥} = evol(z,y) €{el)}

Fig. 12. External Semantics (for closed formulae).

The guarded fixpoint combinator fix is interpreted by the morphism fixX
X»X — X of [13] Thm. 2.4].

The constant type modality B is interpreted as the comonad AI' : § — S,
where the left adjoint A : Set — S is the constant object functor, which takes
a set S to the constant family (S),>¢. In words, all components [MA](n) are
equal to I'[A], and the restriction maps of [MA] are identities. In particular, a
global section x € I'[MA] is a constant family (), describing a unique global
section T, 11(e) = z,(e) € I'[A]. We refer to [20] and §D| for the interpretation
of prev, box and unbox. Just note that the unit 7 : Idgey — I'A is an iso.

Together with an interpretation of guarded recursive types, this gives a deno-
tational semantics of the pure calculus of §3| See [I3J20] for details. We write fold :
[A[Fix(X).A/X]] — [Fix(X).A] and unfold : [Fix(X).A] — [A[Fix(X).A/X]] for
the two components of the iso [Fix(X).A] ~ [A[Fix(X).A/X]].

External Semantics. Mggelberg [55] has shown that for polynomial types
such as Str® B with B a constant type, the set of global sections I'[Str® B] is
equipped with the usual final coalgebra structure of streams over B in Set. To
each polynomial recursive type Fix(X).P(X), we associate a polynomial functor
Pset : Set — Set in the obvious way.

Theorem 7.1 ([565] (see also [20])). If Fix(X).P(X) is polynomial, then the
set I'[Fix(X).P(X)] carries a final Set-coalgebra structure for Pset.

We devise a Set interpretation {|¢|} € P(I'[A4]) of formulae ¢ : A. We
rely on the (complete) Boolean algebra structure of powersets for propositional
connectives and on Knaster-Tarski Fixpoint Theorem for fixpoints p and wv.
The interpretations of v*ap(a) and pfap(a) (for t closed) are defined to be
the interpretations resp. of @I!I(T) and @[*](1), where e.g. ¢°(T) := T and
©"T(T) = p(p™(T)). We give the cases of the atomic modalities in Fig.
(where for simplicity we assume formulae to be closed). It can be checked that,
when restricting to polynomial types, one gets the coalgebraic semantics of [33]
(with sums as in [34]) extended to fixpoints.

Internal Semantics of Formulae. We would like to have adequacy w.r.t. the
external semantics of formulae, namely that given M : {A | ¢}, the global section
[M] € I'[A] satisfies {|¢|} € P(I'[A]) in the sense that [M] € {|¢[}. But in
general we can only have adequacy w.r.t. an internal semantics [¢] € Sub([A])

18 Guilhem Jaber and Colin Riba

of formulae ¢ : A. We sketch it here. First, Sub(X) is the (complete) Heyting
algebra of subobjects of an object X of S. Explicitly, we have S = (S(n)), €
Sub(X) iff for all n > 0, S(n) € X(n) and rX (t) € S(n) whenever ¢t € S(n + 1).
For propositional connectives and fixpoints, the internal [—] is defined similarly
as the external {|—|}, but using (complete) Heyting algebras of subobjects rather
than (complete) Boolean algebras of subsets.

As for modalities, let [A] be of the form [m;], [in;], [next] or [fold], and assume
[A]e @ B whenever ¢ : A. Standard topos theoretic constructions give posets
morphisms [[A]] : Sub([A]) — Sub([B]) such that [[m;]], [[fold]] are maps
of Heyting algebras, [[in;]] preserves V, L and A, while [[next]] preserves A, T
and V. With [[A]e] = [[A]]([«]), all the axioms and rules of Table [2] are
validated for these modalities. To handle guarded recursion, it is crucial to have
[[next]e] := »([¢]), with [[next]e] true at time 1, independently from . As a
consequence, [next] and O do not validate axiom (P) (Table), and <[hd]y can
“lie” about the next time step. We let [[box]¢] := A({|¢[}).

The modality [ev(¢))] is a bit more complex. For ¢ : B and ¢ : A, the formula
[ev()]e is interpreted as a logical predicate in the sense of [32, §9.2 & Prop.
9.2.4]. The idea is that for a term M : {B — A | [ev(¢))]p}, the global section
evo ([M],z) € I'[A] should satisfy ¢ whenever x € I'[B] satisfies ¢». We refer
to D] for details.

Our semantics are both correct w.r.t. the full modal theories of Def. [6.21

Lemma 7.2. If -2 ¢ then {{p|} = {|T|}. If =4 ¢ then [¢] = [T].

The Safe Fragment. For « (positive and) guarded in ¢, the internal semantics
of fap is somewhat meaningless because S has unique guarded fixpoints [13]
§2.5]. In particular, the typing fix(s).Cons® a s : {Str® A | O[p]} for arbitrary
a:Aand ¢ : Str® A (extending is indeed verified by the S semantics [—].
This prevents us from adequacy w.r.t. the external semantics in general. But
this is possible for safe formulae since in this case we have:

Proposition 7.3. If ¢ : A is safe then {|¢|} = I'[¢].

Proposition gives the subtyping rule {lA | [box|¢} = B{A | ¢} (Fig. [LT),
which makes available the comonad structure of B on [box]p when ¢ is safe.
Recall that in safe formulae, implications can only occur under a [box] modality
and thus in closed subformulae. It is crucial for Prop. that infs and sups are
pointwise in the subobject lattices of S, so that conjunctions and disjunctions
are interpreted as with the usual classical Kripke semantics (see e.g. [52] §VI.7]).
This does not hold for implications!

The second key to Prop. is the following. For L a complete lattice, a
Scott cocontinuous function L — L is a Scott continuous function L°P — L°P,
i.e. which preserves codirected infs. For a safe « : A+ ¢ : A, the poset maps [¢] :
Sub([A]) — Sub([A]) and {|¢|} : P(I'[A]) — P(I'[A]) are Scott cocontinuous.
The greatest fixpoint vap(a) can thus be interpreted, both in Set and S, using
Kleene’s Fixpoint Theorem, as the infs of the interpretations of o™ (T) for m € N.
This leads to the expected coincidence of the two semantics for safe formulae.

Temporal Refinements for Guarded Recursive Types 19

2l {A | @} iff zn(e) € [¢]*(n) @l Fix(X).A iff unfold o z I, A[Fix(X).A/X]
2l To+T1 iff 3i€{0,1}, 3y € T[|IT[], = in; oy and y I, T

by, To x Ty iff mopoxllk, Ty and w1 oz I, T1 z . 1
b, U =T iff VE<n, VyeI'[|U|], ylke U = evo(z,y)lky T

zllbpe T iff 3y € I'[|T]], « = nextoy and y lIF, T z k1 »T
z -, AT iff Vm >0, zn(e) Ik, T (where z € I'[|WT])

zllbn, VE-T iff x -, T[t/k] for all closed iteration terms t

Fig. 13. The Realizability Semantics.

The Smooth Fragment. The smooth restriction allows for continuity proper-
ties needed to compute fixpoints iteratively, following Kleene’s Fixpoint Theo-
rem. This implies the correctness of the typing rules (v-1) and (u-E) of Fig.

Lemma 7.4. Given a closed smooth vap(a) : A (resp. pap(a) : A), the func-
tion {|¢|} : P(I'[A]) — P(I'[A]) is Scott-cocontinuous (resp. Scott-continuous).

We have {lvap(@)} = Npen le™ (T} (resp. {lnap(@)y = Upen le™ (L)]})-

The Realizability Semantics. The correctness of the type system w.r.t. its
semantics in S is proved with a realizability relation.

Definition 7.5 (Realizability). Given a type T without free iteration variable,
a global section x € I'[|T|] and n > 0, we define the realizability relation x I, T
by induction on lexicographicaly ordered pairs (n,T) in Fig. .

Lemma 7.6. Given types T,U without free iteration variable, if x -, U and
U<ZT then x Ik, T.

Theorem 7.7 (Adequacy). Ift- M : T, where T has no free iteration variable,
then [M] Ik, T for all n > 0.

By Thm. [7.7, a program M : B — A induces a set-theoretic function I'[M] :
I'[B] — I'[A], x — [M]ox. When B and A are polynomial (e.g. streams Str® B,
Str® A with B, A constant), Mggelberg’s Thm. says that I'[M] is a function
on the usual final coalgebra for B, A in Set (e.g. the set of usual streams over
B and A). Moreover, if e.g. M : {StrB | [box]yp} — {StrA | [box]e}, then (modulo
I'A ~ Idget) given a stream x that satisfies ¢ (i.e. & € {|¢[}) the stream
I'[M](z) satisfies ¢ (i.e. P[M](x) € {|¢}). See §§ for examples.

8 Examples

We exemplified basic manipulations of our system over We give further
examples here. The functions used in our main examples are gathered in Table 3]
with the following conventions. We use the infix notation a ::& s for Cons® a s
and write [for the empty colist Nil®. Moreover, we use some syntactic sugar for
pattern matching, e.g. assuming s : CoList® A we write cases of ([|8 — N|z ::8
xs — M) for case(unfold s) of (y.N[()/y]ly.-M[mo(y)/x, m1(y)/xs]). Most of the

20 Guilhem Jaber and Colin Riba

append : Colist A — Colist A — CoList A sched : ResA — ResA — Res A

= AS.AL. = Ap.)\q.
box, (append® (unbox s) (unbox t)) box, (sched® (unbox p) (unbox ¢))
append® : Colist® A — CoList® A — CoList®* A sched® : Res® A — Res® A —» Res® A
:= fix(g).As.\t.case s of := fix(g).Ap.A\q. case p of
[— ¢ | Ret® a +— Ret® a
|z 8 xs — x:8 (g®xs® (nextt)) | Cont® k

let h = \i. let (o,t) = ki
in (0,9 ® (next q) ®t)

in Cont® h
diag := As.box, (diag?® (unbox s)) : Str(Str A) — Str A
diag® := diagaux® (Az.z) : Stré(Str A) — Stré A

diagaux® : (StrA — StrA) — Str8(StrA) — Strf A
:= fix(g).At.As. Cons® ((hd ot)(hd® s)) (g @® next(totl) ® (tl® s))

fb: CoNat — CoNat — Str Bool fb® : CoNat® — CoNat® — Stré Bool
:= Ae.Adm. box, (fb® (unbox ¢) (unbox m)) := fix(g).Ae.Am. case c of
| 28 +— ff 2 g ® (next m) ® next(S® (next m))
[S8n > tt:® g®n @ (next m)

extract : Rou®(ColList® A) — CoList® A unfold: Rou®! A — (» Rou® A —pA) — »A

:= fix(g).Ac. case c of = Ac. case c of
| Over® — Nil® | Over® +— Xk. k (next Over®)
| Contef s fg® | Cont®f +— Mk. next(fk)

bft® := At. extract (bftaux ¢ Over®) : Tree® A — ColList® A

bftaux : Tree® A — Rou®(CoList® A) — Rou®(ColList® A)
:= fix(g).At.Ac. Cont (Ak. (label® ¢) ::% unfold ¢ (ko (g ® (son§t))® o (g ® (sont))®))

Table 3. Code of the Examples.

functions of Table |3 are obtained from usual recursive definitions by inserting ®
and next at the right places. We often write ¢ || ¢ for [ev(¢)]¢. Table [4] recaps
our main examples of refinement typings, all of which (for A, B, 0, I constant, I
finite and ¢, ¥ safe and smooth) can be derived syntactically for the functions of
Table [3] We use intermediate typings requiring iteration terms whenever a < is
involved. Below, “I'[M] satisfies ¢” means I'[M] € {|¢|} (modulo I'A ~ Idget,
see @ We refer to §E| for details.

Ezample 8.1 (The Append Function on CoLists). Our system can derive that
I'[append] returns a non-empty colist if one of its argument is non-empty. Using
<O[nil] (which says that a colist is finite), we can derive that I'[append] returns a
finite colist if its arguments are both finite. This involves the intermediate typing

Vk-V{- ({CoList® A | OF[nil]} — {ColList® A | ©“[nil]} — {CoList® A | O**[nill})

In addition, if the first argument of I'[append] has an element which satisfies
©, then the result has an element which satisfies . The same holds if the first
argument is finite while the second one has an element which satisfies . ad

Temporal Refinements for Guarded Recursive Types 21

Map over coinductive streams (with A either O, &, &0 or OO)
map: ({B | ¢} = {A | ¢}) — {StrB | [box]A[hd]yp} — {Str A | [box]A[hd]e}
Diagonal of coinductive streams of streams (with A either O or ©0O)
diag : {Str(Str A) | [box]Alhd][box]O[hd]p} — {Str A | [box]Alhd]p}
A fair stream of Booleans (adapted from [I8]8])
fb : CoNat — CoNat — Str Bool
fb 0 1: {StrBool | [box|O<¢[hd][tt] A [box]O<[hd][ff]}

Append on guarded recursive colists
append® : {CoList® A | [-nil]} — CoList® A — {ColList® A | [—nil]}
append® : ColList® A — {ColList® A | [-nil]} — {CoList® A | [-nil]}
Append on coinductive colists
append : {ColList A | [box]C[hd]p} — CoList A — {ColList A | [box]<C[hd]p}
append : {ColList A | [box]<Cnil]} — {CoList A | [box]<[hd]} — {ColList A | [box]<[hd]p}
append : {CoList A | [box|<C[nil]} — {Colist A | [box]<nil]} — {CoList A | [box]<[nil] }

Breadth-first tree traversal
bfté : {Tree® C | VO[Ibl]9} — {ColList® C' | O[hd]d}
(a la [39] or with Hofmann’s algorithm (see e.g. [10]))

A scheduler of resumptions (adapted from [48])
sched : {Res A | [box]O[Ret]} — {Res A | [box]C[Ret]} — {Res A | [box]<O[Ret]}
sched : {Res A | [box]<[nowl]yp} — {Res A | [box]<O[now]yp} — {Res A | [box]<[now]e}
sched : {Res A | [box]OC[Ret]} — {Res A | [box]O<[Ret]} — {Res A | [box]O<[Ret]}
sched : {Res A | [box]O0<Cout]d} — {Res A | [box]O< out]d} — {Res A | [box]O< [out]d}
(where < is either V<O or 3¢, O is either VO or 30, and [out] is either [Aout] or [Vout])

Table 4. Some Refinement Typings (functions defined in Table (3.

Ezample 8.2 (The Map Function on Streams). The composite modalities O
and ¢O over streams are read resp. as “infinitely often” and “eventually always”.
Provided with a function f : I'[B] — I'[A] taking b € I'[B] satistying ¢ to
f(b) € I'[B] satistying ¢, the function I'[map] on set-theoretic streams returns
a stream which infinitely often (resp. eventually always) satisfies ¢ whenever its
stream argument infinitely often (resp. eventually always) satisfies 1. O

Ezample 8.3 (The Diagonal Function). Consider a stream of streams s. We have
s = (s; | i > 0) where each s; is itself a stream s; = (s;,; | j > 0). The diagonal
of s is then the stream (s;; | i > 0). Note that s;; = hd(tl’(hd(tl’(s))). Indeed,
tl’(s) is the stream of streams (s, | k >), so that hd(tl’(s)) is the stream s; and
tl’(hd(tl(s))) is the stream (s;; | k > 4). Taking its head thus gives s; ;. In the
diag function of Table|3] the auxiliary higher-order function diagaux® iterates the
coinductive tl over the head of the stream of streams s. We write o for function
composition, so that assuming s : Str®(Str A) and ¢ : Str A — Str A, we have (on
the coinductive type Str A), (hd® s) : Str A and

(hdot):StrA — A (hdot)(hd® s): A (totl):StrA — StrA

The expected refinement types for diag (Table [4]) say that if its argument is a
stream whose component streams all satisfy Oy, then I'[diag] returns a stream

22 Guilhem Jaber and Colin Riba

whose elements all satisfy ¢. Also, if the argument of I'[diag] is a stream such
that eventually all its component streams satisfy Oy, then it returns a stream
which eventually always satisfies ¢. See §E.4] for details. O

Ezample 8.4 (A Fair Stream of Booleans). The non-regular stream (fb 0 1),
adapted from [I88], is of the form ff - tt - ff - tt - ff ... ff - tt™ - ff - et L fF .. Tt
thus contains infinitely many tt’s and infinitely many ff’s. We indeed have (see
§E.5| for details) (fb 0 1) : {StrBool | [box]O<C[hd][tt] A [box]OC[hd][ff]}. O

Ezample 8.5 (Resumptions). The type of resumptions Res® A (see Ex. is
adapted from [48]. Its guarded constructors are

Ret® := \a. fold(ing a) : A — Res® A
Cont® := Ak. fold(iny k) : (I — (0 x » Res® A)) — Res® A

Ret®(a) represents a computation which returns the value a : A, while Cont®(f, k)
(with (f,k) : T — (0 x » Res® A)) represents a computation which on input
i : I outputs fi : 0 and continues with ki : » Res® A. Given p,q : Res® A, the
scheduler (sched® p q), adapted from [48], first evaluates p. If p returns, then
the whole computation returns, with the same value. Otherwise, p evaluates to
say Cont®(f, k). Then (sched® p q) produces a computation which on input i : I
outputs fi and continues with (sched® ¢ (ki)), thus switching arguments.

Let I be a finite base type (so that Res® A is finitary polynomial). Let ¢ : A,
¥ :0 and ¢ : Res® A. We have the following formulae (where i : I):

[Ret] := [fold][ing] T [out;]9 := [fold][in1] ([1] | [m0]?)
[now]) := [fold][ing]e) Oip := [fold][in1] ([1] [— [m1][next]e)

The formula [Ret] (resp. [now]ty) holds on a resumption which immediately re-
turns (resp. with a value satisfying 1) and we have Ret® : A — {Res® A | [Ret]},
Ret® : {A | ¥} — {Res® A | [now]i}. Moreover, the typings

Cont® : {I — (0 x »Res? A) | [1] | [mo]9} — {Res® A | [out;]9}
Cont® : {I — (0 x »Rest A) | [i] |> [m1][next]p} — {Res®t A | Oip}

express that [out;]d : Res® A is satisfied by Cont®(f, k) if fi satisfies ¢J, and that
Qi : Res® A is satisfied by Cont®(f, k) if ki satisfies [next]e. Since I is a finite
base type, it is possible to quantify over its inhabitants. We thus obtain CTL-like

variants of O and ¢ (Ex. [£.3](b) and Ex. [6.3). Namely:

[Aout]d := Ajer[out;]V : Res® A O :=NerOip :Rest A
[Vout]d := Vjer[out;]d : Res® A @@ :=Viet Oi ¢ :Resfop
VOp ;= va. A ® « : Res® A VOp i= pa. oV © o : Res® A
J0p:=va. pA@ « : Res® A IO = pa. oV @ « : Rest A

Our system can prove that I'[sched] returns in finite time when so do its argu-
ments, either along some or along any sequence of inputs. We moreover have
expected OO properties for all possible (consistent) combinations of 3/V and
[Ret]/[Vout]/[Aout] (Table {4} with ¢ : A, 9 : 0 safe and smooth). See O

Temporal Refinements for Guarded Recursive Types 23

Ezample 8.6 (Breadth-First Traversal). The function bft® of Table [3| (where g®
stands for A\x.g ® x) implements Martin Hofmann’s algorithm for breadth-first
tree traversal. This algorithm involves the higher-order type Rou® A (see Ex.
with constructors Over® := fold(ing()) : Rou® A and

Cont® := Af.fold(in1 f) : ((» Rou® A — »A) — A) — Rou® A
We refer to [I0] for explanations. Consider a formula ¢ : A. We can lift ¢ to
[Rou]p := va. [fold][in1](([next]a | [next]y) |+ ¢) : Rou® A

We then easily derive the expected refinement type of bft® (Table where ¢ : C).
Assume that ¥ is safe. On the one hand it is not clear what the meaning of [Rou]d
is, because it is an unsafe formula over a non-polynomial type. On the other
hand, the type of bft® in Tab. [4] has its standard expected meaning (namely: if
all nodes of a tree satisfy ¥ then so do all elements of its traversal) because the
types Tree® C, Colist® C' are polynomial and the formulae VO[lbl]¢, O[hd]d are
safe. Hence, our system can prove standard statements via detours through non-
standard ones, which illustrates its compositionality. We have the same typing
for a usual breadth-first tree traversal with forests (a la [39]). See O

9 Related Work

Type systems based on guarded recursion have been designed to enforce prop-
erties of programs handling coinductive types, like causality [49], productiv-
ity [B55I2006I2827], or termination [67]. These properties are captured by the
type systems, meaning that all well-typed programs satisfy these properties.

In an initially different line of work, temporal logics have been used as type
systems for functional reactive programming (FRP), starting from LTL [35136] to
the intuitionistic modal p-calculus [I8]. These works follow the Curry-Howard
“proof-as-programs” paradigm, and reflect in the programming languages the
constructions of the temporal logic.

The FRP approach has been adapted to guarded recursion, e.g. for the ab-
sence of space leaks [48], or the absence of time leaks, with the Fitch-style system
of [7]. This more recently lead [8] to consider liveness properties with an FRP ap-
proach based on guarded recursion. In this system, the guarded A-calculus (pre-
sented in a Fitch-style type system) is extended with a delay modality (written
Q) together with a “until type” A Until B. Following the Curry-Howard corre-
spondence, A Until B is eliminated with a specific recursor, based on the usual
unfolding of Until in LTL, and distinct from the guarded fixpoint operator.

In these Curry-Howard approaches, temporal operators are wired into the
structure of types. This means that there is no separation between the program
and the proof that it satisfies a given temporal property. Different type formers
having different program constructs, different temporal specifications for the
same program may lead to different actual code.

We have chosen a different approach, based on refinement types, with which
the structure of formulae is not reflected in the structure of types. This allows

24 Guilhem Jaber and Colin Riba

for our examples to be mostly written in a usual guarded recursive fashion (see
Table. Of course, we indeed use the modality B at the type level as a separation
between safety and liveness properties. But different liveness properties (e.g. <,
<0, O0) are uniformly handled with the same B-type, which is moreover the
expected one in the guarded A-calculus [20].

Higher-order model checking (HOMC) [59/43] has been introduced to check
automatically that higher-order recursion schemes, a simple form of higher-order
programs with finite data-types, satisfy a u-calculus formula. Automatic verifi-
cation of higher-order programs with infinite data-types (integers) has been ex-
plored for safety [44], termination [50], and more generally w-regular [56] prop-
erties. In presence of infinite datatypes, semi-automatic extensions of HOMC
have recently been proposed [74]. In contrast with this paper, most HOMC ap-
proaches do not consider input-output behaviors on coalgebraic data. A notable
exception is [4526], but it does not handle higher-order functions (such as map),
nor polynomial types such as Str(Str A) (Ex. or non-positive types such as
Rou A (Ex. and imposes a strong linearity constraint on pattern matching.

Event-driven approaches consider effects generating streams of events [66],
which can be checked for temporal properties with algorithms based on (HO)MC
[30U31], or, in presence of infinite datatypes, with refinement type systems [46J58].
Our iteration terms can be seen as oracles, as required by [46] to handle liveness
properties, but we do not know if they allow for the non-regular specifications
of [58]. While such approaches can handle infinite data types with good levels of
automation, they do not have coinductive types nor branching time properties,
such as the temporal specification of sched on resumptions (Ex.

Along similar lines, branching was approached via non-determinism in [69],
which also handles universal and existential properties on traces. This frame-
work can handle CTL-like properties of the form 3/¥-0/<¢ (with our notation
of Ex. [8.5)), but not nested combinations of these (as e.g. 3OV for sched in
Ex. moreover does not handle coinductive types.

10 Conclusion and Future Work

We have presented a refinement type system for the guarded A-calculus, with re-
finements expressing temporal properties stated as (alternation-free) p-calculus
formulae. As we have seen, the system is general enough to prove precise behav-
ioral input/output properties of coinductively-typed programs. Our main con-
tribution is to handle liveness properties in presence of guarded recursive types.
As seen in §2] this comes with inherent difficulties. In general, once guarded
recursive functions are packed into coinductive ones using W, the logical reason-
ing is made in our system directly on top of programs, following their shape,
but requiring no further modification. We thus believe to have achieved some
separation between programs and proofs.

We provided several examples. While they demonstrate the flexibility of our
system, they also show that more abstraction would be welcomed when proving

Temporal Refinements for Guarded Recursive Types 25

liveness properties. In addition, our system lacks expressiveness to prove e.g.
liveness properties on breadth-first tree traversals.

We believe that our approach could be generalized to other programming
languages with inductive or coinductive types. The key requirement are: (1)
modalities in the temporal logic to navigate through the types of the languages,
(2) a semantics to indicate when a program satisfies a formula of the temporal
logic, which is sufficiently closed to the set-theoretic one for liveness proper-
ties to get their expected meaning, and (3) inference rules to reason over this
realizability semantics.

Extensions of the guarded A-calculus with dependent types have been ex-
plored [T4ITTI6I27]. Tt may be possible to extend our work to these systems. This
would require to work in a Fitch-style presentation of the M modality, as in [7J12],
since it is not known how to extend delayed substitutions to dependent types
while retaining decidability of type-checking [I5]. Also, it is appealing to inves-
tigate the generalization of our approach to sized types [1], in which guarded
recursive types are representable [72].

We plan to investigate type checking. For instance, in a decidable frag-
ment like the p-calculus on streams, one can check that a function of type
{Str® C' | ¢Olhd]¥} — {Str® B | ©0O[hd])} can be postcomposed with one of
type {Str® B | OC[hd]y} — {Str® A | OC[hd]p} (since OO[hd]y = OC|hd]y).
Hence, we expect that some automation is possible for fragments of our logic. In
presence of iteration terms, arithmetic extensions of the p-calculus [41/42] may
provide interesting backends. An other direction is the interaction with HOMC.
If (say) a stream over A is representable in a suitable format, one may use HOMC
to check whether it can be argument of a function expecting e.g. a stream of
type {Str® A | O<C[hd]p}. This might provide automation for fragments of the
guarded A-calculus. Besides, the combination of refinement types with automatic
techniques like predicate abstraction [62], abstract interpretation [37], or SMT
solvers [7II70] has been particularly successful. More recently, the combination
of refinement types inference with HOMC has been investigated [64].

We would like to explore temporal specification of general, effectful programs.
To do so, we wish to develop the treatment of the coinductive resumptions
monad [60], that provides a general framework to reason on effectful computa-
tions, as shown by interaction trees [75]. It would be interesting to study tem-
poral specifications we could give to effectful programs encoded in this setting.
To formalize reasoning on such examples, we would like to design an embedding
of our system in a proof assistant like CoQ.

Following [3], guarded recursion has been used to abstract the reasoning on
step-indexing [4] that has been used to design Kripke Logical Relations [2] for
typed higher-order effectful programming languages. Program logics for reason-
ing on such logical relations [2II22] uses this representation of step-indexing via
guarded recursion. It is also found in Iris [40], a framework for higher-order con-
current separation logic. It would be interesting to explore the incorporation of
temporal reasoning, especially liveness properties, in such logics.

26 Guilhem Jaber and Colin Riba
References
1. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types.

10.

11.

12.

13.

J. Funct. Program. 26, e2 (2016). https://doi.org/10.1017,/S0956796816000022,
Lttps://dot.org /10.1017 /509567968 16000022

. Ahmed, A.: Step-Indexed Syntactic Logical Relations for Recursive and Quanti-

fied Types. In: Proceedings of the 15th European Conference on Programming
Languages and Systems. pp. 69-83. ESOP’06, Springer-Verlag, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11693024_6, https://doi.org/10.1007/11693024_6

. Appel, A., Mellies, P.A., Richards, C., Vouillon, J.: A Very Modal Model

of a Modern, Major, General Type System. SIGPLAN Not. 42(1), 109-
122 (2007). lhttps://doi.org/10.1145/1190215.1190235, [https://doi.org/10.1145/
1190215.1190235

. Appel, A.W., McAllester, D.: An Indexed Model of Recursive Types for Founda-

tional Proof-Carrying Code. ACM Trans. Program. Lang. Syst. 23(5), 657683
(2001). [https://doi.org/10.1145/504709.504712, |https://doi.org/10.1145/504709.
504712

. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:

Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 197-208. ICFP ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2500365.2500597

. Bahr, P., Grathwohl, H.B., Mggelberg, R.E.: The Clocks Are Ticking: No More De-

lays! In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). pp. 1-12 (2017). https://doi.org/10.1109/LICS.2017.8005097

. Bahr, P., Graulund, C., Mggelberg, R.: Simply RaTT: A Fitch-Style Modal Calcu-

lus for Reactive Programming without Space Leaks. Proc. ACM Program. Lang.
3(ICFP), 109:1-109:27 (2019). |https://doi.org/10.1145/3341713

. Bahr, P., Graulund, C., Mggelberg, R.: Diamonds are not Forever: Liveness in Re-

active Programming with Guarded Recursion (2020), https://arxiv.org/abs/2003.
03170, To Appear in POPL’21

. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

28

Berger, U., Matthes, R., Setzer, A.: Martin Hofmann’s Case for Non-Strictly
Positive Data Types. In: Dybjer, P., Espirito Santo, J., Pinto, L. (eds.)
24th International Conference on Types for Proofs and Programs (TYPES
2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 130,
pp. 1:1-1:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019).
https://doi.org/10.4230/LIPIcs. TYPES.2018.1, |https://hal.archives-ouvertes.fr/
hal-02365814 [2] [T, (23] [103]

Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.:
Guarded cubical type theory. Journal of Automated Reasoning 63(2), 211-253
(2019). https://doi.org/10.1007/s10817-018-9471-7

Birkedal, L., Clouston, R., Mannaa, B., Mggelberg, R., Pitts, A.M.,
Spitters, B.: Modal dependent type theory and dependent right ad-
joints. Mathematical Structures in Computer Science 30(2), 118-138 (2020).
https://doi.org/10.1017/S0960129519000197

Birkedal, L., Mggelberg, R.E., Schwinghammer, J., Stgvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. Logical Methods

in Computer Science 8(4) (2012)

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1145/3341713
https://arxiv.org/abs/2003.03170
https://arxiv.org/abs/2003.03170
https://doi.org/10.4230/LIPIcs.TYPES.2018.1
https://hal.archives-ouvertes.fr/hal-02365814
https://hal.archives-ouvertes.fr/hal-02365814
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1017/S0960129519000197

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Temporal Refinements for Guarded Recursive Types 27

Bizjak, A., Grathwohl, H.B., Clouston, R., Mggelberg, R.E., Birkedal, L.: Guarded
Dependent Type Theory with Coinductive Types. In: Jacobs, B., Loding, C. (eds.)
Foundations of Software Science and Computation Structures. pp. 20-35. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016)

Bizjak, A., Mggelberg, R.E.: Denotational semantics for guarded dependent type
theory. Mathematical Structures in Computer Science 30(4), 342-378 (2020).
https://doi.org/10.1017/S0960129520000080

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press (2002)

Bradfield, J.C., Walukiewicz, I.: The mu-calculus and Model Checking. In: Clarke,
E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking,
pp. 871-919. Springer (2018) [6]

Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair Reactive Programming.
In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 361-372. POPL 14, ACM, New York, NY, USA
(2014

Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)
Clouston, R., Bizjak, A., Bugge Grathwohl, H., Birkedal, L.: The Guarded Lambda-
Calculus: Programming and Reasoning with Guarded Recursion for Coinductive

Types. Logical Methods in Computer Science 12(3) (2016) [2] [6} [1
B3l B8l B7 {5 {7 [125] (129

Dreyer, D., Ahmed, A., Birkedal, L.: Logical Step-Indexed Logical Rela-
tions. Logical Methods in Computer Science Volume 7, Issue 2 (2011).
https://doi.org/10.2168/LMCS-7(2:16)2011} https://lmcs.episciences.org/698
Dreyer, D., Neis, G., Rossberg, A., Birkedal, L.: A Relational Modal Logic for
Higher-order Stateful ADTs. In: Proceedings POPL’10. pp. 185-198. ACM (2010)
125

Elliott, C., Hudak, P.: Functional Reactive Animation. In: Proceedings of
the Second ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 263-273. ICFP’97, ACM, New York, NY, USA (1997).
https://doi.org/10.1145/258948.258973, http://doi.acm.org/10.1145/258948.
258973

Freeman, T., Pfenning, F.: Refinement Types for ML. In: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Im-
plementation. pp. 268-277. PLDI’91, Association for Computing Machinery, New
York, NY, USA (1991). https://doi.org/10.1145/113445.113468, https://doi.org/
10.1145/113445.113468

Frittella, S.: Monotone Modal Logics & Friends. Ph.D. thesis, Aix-Marseille Univ.
(2014)

Fujima, K., Tto, S., Kobayashi, N.: Practical Alternating Parity Tree Au-
tomata Model Checking of Higher-Order Recursion Schemes. In: APLAS
’13: Proceedings of the 11th Asian Symposium on Programming Lan-
guages and Systems - Volume 8301. pp. 17-32. Springer-Verlag, Berlin, Hei-
delberg (2013). https://doi.org/10.1007/978-3-319-03542-0_2, |https://doi.org/10.
1007/978-3-319-03542-0_2

Gratzer, D., Kavvos, G.A., Nuyts, A., Birkedal, L.: Multimodal dependent type
theory. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. pp. 492-506. LICS 20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3373718.3394736, https://
doi.org/10.1145/3373718.3394736

https://doi.org/10.1017/S0960129520000080
https://doi.org/10.2168/LMCS-7(2:16)2011
https://lmcs.episciences.org/698
https://doi.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736

28

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Guilhem Jaber and Colin Riba

Guatto, A.: A Generalized Modality for Recursion. In: Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 482-491. LICS
’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3209108.3209148
23

Hansen, H.H.: Monotonic Modal Logics. Master’s thesis, ILLC, Amsterdam (Oct
2003)

Hofmann, M., Chen, W.: Abstract interpretation from bilichi automata.
In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. pp. 51:1-51:10.
ACM (2014). https://doi.org/10.1145/2603088.2603127, |https://doi.org/10.1145/
2603088.2603127I 241

Hofmann, M., Ledent, J.: A cartesian-closed category for higher-order model check-
ing. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1-12. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/LICS.2017.8005120, https://doi.org/10.1109/
LICS.2017.8005120

Jacobs, B.: Categorical Logic and Type Theory. Studies in logic and the founda-
tions of mathematics, Elsevier (2001)

Jacobs, B.: Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study. ITA
35(1), 31-59 (2001)

Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press (2016)

Jeffrey, A.: LTL Types FRP: Linear-time Temporal Logic Propositions As Types,
Proofs As Functional Reactive Programs. In: Proceedings of the Sixth Workshop on
Programming Languages Meets Program Verification. pp. 49-60. PLPV’12, ACM,
New York, NY, USA (2012). https://doi.org/10.1145/2103776.2103783, http://doi.
acm.org/10.1145/2103776.2103783

Jeltsch, W.: An Abstract Categorical Semantics for Functional Reactive Program-
ming with Processes. In: Proceedings of the ACM SIGPLAN 2014 Workshop
on Programming Languages Meets Program Verification. pp. 47-58. PLPV’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2541568.2541573,
http://doi.acm.org/10.1145/2541568.2541573

Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying functional programs
using abstract interpreters. In: International Conference on Computer Aided Ver-
ification. pp. 470-485. Springer (2011)

Johnstone, P.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides, Clarendon Press (2002)

Jones, G., Gibbons, J.: Linear-time Breadth-first Tree Algorithms: An Exercise in
the Arithmetic of Folds and Zips. Technical report, University of Auckland (1993)
2 21 23

Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28 (2018)

Kobayashi, K., Nishikawa, T., Igarashi, A., Unno, H.: Temporal Verification of
Programs via First-Order Fixpoint Logic. In: Chang, B.E. (ed.) Static Analy-
sis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11822, pp. 413-436.

https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
https://doi.org/10.1145/2541568.2541573
http://doi.acm.org/10.1145/2541568.2541573

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Temporal Refinements for Guarded Recursive Types 29

Springer (2019). https://doi.org/10.1007/978-3-030-32304-2_20, https://doi.org/
10.1007/978-3-030-32304-2_20

Kobayashi, N., Fedyukovich, G., Gupta, A.: Fold/Unfold Transformations for
Fixpoint Logic. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 12079, pp. 195-214.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7_12, https://doi.org/
10.1007/978-3-030-45237-7_12

Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: 2009 24th Annual IEEE
Symposium on Logic In Computer Science. pp. 179-188. IEEE (2009)
Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR
for higher-order model checking. SIGPLAN Not. 46(6), 222-233 (2011).
https://doi.org/10.1145/1993316.1993525| https://doi.org/10.1145/1993316.
1993525

Kobayashi, N., Tabuchi, N., Unno, H.: Higher-Order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL ’10: Pro-
ceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. pp. 495-508. Association for Computing Ma-
chinery, New York, NY, USA (2010). https://doi.org/10.1145/1707801.1706355,
https://doi.org/10.1145/1707801.1706355

Koskinen, E., Terauchi, T.: Local Temporal Reasoning. In: Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). CSL-LICS’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2603088.2603138, https://
doi.org/10.1145/2603088.2603138

Kozen, D.: Results on the propositional p-calculus. Theoretical Computer Sci-
ence 27(3), 333 — 354 (1983), special Issue Ninth International Colloquium on
Automata, Languages and Programming (ICALP) Aarhus, Summer 1982
Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Proceedings of ICFP’13. pp. 221-232. ACM, New York, NY, USA
(013) B [} 23 23, 23,1, 2

Krishnaswami, N.R., Benton, N.: Ultrametric Semantics of Reactive Programs. In:
2011 IEEE 26th Annual Symposium on Logic in Computer Science. pp. 257-266
(2011). https://doi.org/10.1109/LICS.2011.38

Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic Termination
Verification for Higher-Order Functional Programs. In: Shao, Z. (ed.) Programming
Languages and Systems. pp. 392-411. ESOP’14, Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. CUP
(1986)

Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to
topos theory. Springer (1992)

Marin, S.: Modal proof theory through a focused telescope. Phd thesis, Université
Paris Saclay (Jan 2018), https://hal.archives-ouvertes.fr/tel-01951291
McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming 18(1) (2008). |https://doi.org/10.1017/S0956796807006326

https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1707801.1706355
https://doi.org/10.1145/1707801.1706355
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1109/LICS.2011.38
https://hal.archives-ouvertes.fr/tel-01951291
https://doi.org/10.1017/S0956796807006326

30

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Guilhem Jaber and Colin Riba

Mggelberg, R.E.: A type theory for productive coprogramming via guarded recur-
sion. In: Proceedings of CSL-LICS 2014. CSL-LICS ’14, ACM (2014)
(8, [

Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal Verifi-
cation of Higher-Order Functional Programs. In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. b7-68. POPL’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2837614.2837667, |https://doi.org/10.
1145/2837614.2837667

Nakano, H.: A Modality for Recursion. In: Proceedings of LICS’00. pp. 255-266.
IEEE Computer Society (2000)

Nanjo, Y., Unno, H., Koskinen, E., Terauchi, T.: A Fixpoint Logic and De-
pendent Effects for Temporal Property Verification. In: Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science. pp.
759-768. LICS’18, Association for Computing Machinery, New York, NY,
USA (2018). [https://doi.org/10.1145/3209108.3209204, https://doi.org/10.1145/
3209108.3209204

Ong, C.H.L.: On Model-Checking Trees Generated by Higher-Order Recursion
Schemes. In: Proceedings of LICS 2006. pp. 81-90. IEEE Computer Society (2006)
Pirég, M., Gibbons, J.: The coinductive resumption monad. Electronic Notes in
Theoretical Computer Science 308, 273-288 (2014)

Plotkin, G., Stirling, C.: A Framework for Intuitionistic Modal Logics: Extended
Abstract. In: Proceedings of the 1986 Conference on Theoretical Aspects of Rea-
soning About Knowledge. pp. 399-406. TARK ’86, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1986)

Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid Types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 159-169. PLDI’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1375581.1375602, https://doi.org/10.1145/
1375581.1375602

Santocanale, L., Venema, Y.: Completeness for flat modal fixpoint logics. Ann.
Pure Appl. Logic 162(1), 55-82 (2010)

Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model check-
ing with refinement type inference. In: Hermenegildo, M.V., Igarashi, A. (eds.)
Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM@QPOPL 2019, Cascais, Portugal, January 14-15,
2019. pp. 47-53. ACM (2019). https://doi.org/10.1145/3294032.3294081, https:
//doi.org/10.1145/3294032.3294081

Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Phd
thesis, University of Edinburgh (Jul 1994), https://www.era.lib.ed.ac.uk/handle/
1842/407

Skalka, C., Smith, S., Van horn, D.: Types and Trace Effects of
Higher Order Programs. J. Funct. Program. 18(2), 179-249 (Mar 2008).
https://doi.org/10.1017/S0956 796807006466 https://doi.org/10.1017/
S0956796807006466! 24

Spies, S., Krishnaswami, N., Dreyer, D.: Transfinite Step-Indexing
for Termination. Proc. ACM Program. Lang. 5(POPL) (Jan 2021).
https://doi.org/10.1145/3434294], [https: //doi.org/10.1145 /3434294

https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081
https://www.era.lib.ed.ac.uk/handle/1842/407
https://www.era.lib.ed.ac.uk/handle/1842/407
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1145/3434294
https://doi.org/10.1145/3434294

68.

69.

70.

71.

72.

73.

74.

75.

Temporal Refinements for Guarded Recursive Types 31

Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular
and Tree-Shaped Proofs in the p-Calculus. In: Gordon, A.D. (ed.) Founda-
tions of Software Science and Computational Structures, 6th International Con-
ference, FOSSACS 2003 Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2620, pp. 425—
440. Springer (2003). https://doi.org/10.1007/3-540-36576-1_27, https://doi.org/
10.1007/3-540-36576-1_27

Unno, H., Satake, Y., Terauchi, T.: Relatively complete refinement type system
for verification of higher-order non-deterministic programs. Proc. ACM Program.
Lang. 2(POPL), 12:1-12:29 (2018). https://doi.org/10.1145/3158100), https://doi.
org/10.1145 /3158100

Vazou, N.: Liquid Haskell: Haskell as a theorem prover. Ph.D. thesis, UC San Diego
(2016)

Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Re-
finement Types for Haskell. In: Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Programming. pp. 269-
282. ICFP’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2628136.2628161, https://doi.org/10.1145/
2628136.2628161

Veltri, N., van der Weide, N.: Guarded Recursion in Agda via Sized Types. In:
Geuvers, H. (ed.) 4th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 131, pp. 32:1-32:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2019). |https://doi.org/10.4230/LIPIcs.FSCD.2019.32,
http://drops.dagstuhl.de/opus/volltexte/2019/10539

Walukiewicz, I.: Completeness of Kozen’s Axiomatisation of the Propositional pu-
Calculus. Information and Computation 157(1-2), 142-182 (2000)

Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction
from Branching-Time Property Verification of Higher-Order Programs to
HFL Validity Checking. In: Proceedings of the 2019 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. pp. 22—
34. PEPM 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3294032.3294077, https://doi.org/10.1145/
3294032.3294077

Xia, L.Y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C., Zdancewic,
S.: Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc.
ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/3371119, |https:
//doi.org/10.1145/3371119

https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1145/3158100
https://doi.org/10.1145/3158100
https://doi.org/10.1145/3158100
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
http://drops.dagstuhl.de/opus/volltexte/2019/10539
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

32 Guilhem Jaber and Colin Riba

(z:A)eé& E,rx:BFM:A EFM:B—-A EFN:B EF My : Ao EF M : Ay
Erz: A EFXx.M:B— A EFMN: A EF():1 EF (Mo, My) : Ap X Ax
for i € {0,1},

EFM:A; EFM: Ao+ A E,x:AiFN;: B EFM: Ao x Ay E,x:pAFM: A
EFini(M): Ao + Ax &+ case M of (x.No|z.N1) : B Ermi(M): A; E+fix(x).M : A
£+ M : A[Fix(X).A/X] EF M : Fix(X).A EFM:»(B—A) EFN:»B

E Ffold(M) : Fix(X).A € F unfold(M) : A[Fix(X).A/X] EFM®N:»A
EFEM:A 1A, xg Ak EM A EF M;: A; with A; constant for 1 <i <k
EFnext(M):»A EEPrevi sy apary (M) 1 A
x1: A, AkEM A EF M;: A; with A; constant for 1 <i <k EFM:RA
£+ box[mlHJ\h,---,mkHMk](]M) A E F unbox(M) : A

Fig. 14. Typing Rules of the Pure Calculus (full version).

A Additional Material for (The Pure Calculus)

The typing rules for our pure calculus (i.e. the guarded A-calculus of [20]) are
given in Fig. [4]

B Additional Material for (A Temporal Modal Logic))

Figure [15| presents the definition of the variance predicates a Pos ¢ and a Neg ¢
for the full logical language (and . The intuitionistic propositional deduc-
tion rules are given in Fig.

Remark B.1. All modalities ([m;], [fold], [next], [in], [ev(¢)] and [box]) satisfy the
monotonicity rule (RM) and are thus monotone in the sense of [19], from which
we borrowed the terminology used in Table |2 (see also [29125]). Assuming the
rule (RM), we easily get the following:

(a) Axiom (N) implies the usual necessitation rule:

Fe
g
Proof. Indeed, one can derive
. -
FT=9p
(N) AT FIA]T = [Ale (RM)
(Al

(b) Axiom (C) implies the usual axiom (K):

(Al =¢) = ([Dle = [AlY)

Temporal Refinements for Guarded Recursive Types 33

a#p
a Pos « a Pos 8 a Pos T a Pos |

a Pos ¢ a Pos ¢ a Pos ¢ «a Pos 9 a Neg ¢ a Pos ¢

a Pos o VY a Pos o Ay aPosip = ¢
a Pos ¢ a Pos ¢ «a Pos ¢ a Pos ¢ a Neg1y o Pos e
a Pos [m]p a Pos [in]p a Pos [fold]p a Pos [next]p a Pos [ev(y)]e
a Pos ¢ a#p a Pos ¢ a#p a Pos ¢ a# B a Pos ¢ a#p
a Pos vB¢ a Pos pfe a Pos vt B a Pos putfBye
a# B

a Neg 8 a Neg T a Neg |

a Neg ¢ «a Neg 9 a Neg ¢ o Neg ¢ a Pos ¢ a Neg ¢

a Neg oV ¢ a Neg p ANy a Neg ¥ = ¢
a Neg ¢ a Neg ¢ a Neg ¢ a Neg ¢ a Posy o Negop
a Neg [mi]e a Neg [ini]¢ a Neg [fold]p a Neg [next]p a Neg [ev(y)]e

aNegyp a#p aNegyp a#p aNegyp a#p aNegyp a#p
a Neg vfp a Neg pfyp a Neg v* B¢ a Neg p* B¢

Fig. 15. Positive and Negative Occurrences for the Full Logical Language.

Proof. Indeed, one has

((p=P)Np) = ¢
Ao =) Ap) = [Aly
[Allp =) A [Alp = [Al

[Alle =) = ([Alp = [AlY)

(RM)

(¢) We have the monotonicity axioms

(Al AD) = [Dle A [AlY

[Ale VAl = [AlpV¥)
In our context, the normal intuitionistic modal logic IK of [61] is (RM) + (C) +
(N) + (P) + (Cy) + (C=), while the normal modal logic K is IK + (CL) (see
e.g. [16]).

C Additional Material for §5| (A Temporally Refined |
[Type Systeml)

The definition of the subtyping relation < for the full system (and is given
in Fig.

34 Guilhem Jaber and Colin Riba

FAoVe=¢ FAo=>9pAgp FAo=9pVy FA oAy =

FA oA =0 Ao = (¢ = 6)
FA VY =V FAQAY =P Agp FA = (¢ =0) FA QA =0
Hlo Hluoeo=sy Hoeo=sy Hy=6 H o=y
FA) FA o =0 FA L= FAOVp=0Vy

Fig. 16. Intuitionistic Propositional Deduction Rules.

T<U U<V T<U u<T
T<T T<V T < pU By < AT
To<Uy T1<U To<Uy T1<U Us<To Th <U

T0><T1§U0><U1 T0+T1§U0+U1 T0—>T1§U0—>U1

FA o=
T < |T| A<{A|Ty {Ale}<{A|Y}

(B¢} ={Al¢}={B = Allev(¥)lp}

> {A]| o} ={»A| [next]p} Vk-»T =w»Vk-T

o safe FA @ =
W{A |} =(MA|[bods} (WA [boxle} < (A [box]v}}

Fig. 17. Subtyping Rules (full version).

The underlying pure type |T| of a refinement type T is inductively defined as
follows:

|A] = A
{A]p}]=4
Vk - T|:=|T|

[T+ U|:=|T|+|U|

T x U|:=|T| x |U|

U —T|:=|Ul—|T|
[»T|:=»|T]
|WT|:= W7

D Additional Material for (Semantics))

This Appendix presents material that we omitted in for space reasons. We
follow roughly the same plan. Most proofs a deferred to App. [F] We often use 0
as a generic notation for p and v.

Temporal Refinements for Guarded Recursive Types 35

D.1 The Topos of Trees (Basic Structure)

Note D.1. Given an object X of S and 0 < k < n, we write tTk for the restriction
of t € X(n) into X (k), obtained by composing restriction functions rX for
i=Fk,...,n—1

Full definitions and proofs of the semantic require the explicit manipulation of
some of the structure of S. We refer to [13120] for details.

First, as in any presheaf category, limits and colimits are computed pointwise.
In particular binary sums and products are given by

(X +Y)(n)=X(n)+Y(n)
(X xY)(n)=X(n) xY(n)

Moreover, exponentials are induced by the Yoneda Lemma (see e.g. [52, §1.6]).
Explicitly, given S object X and Y, the exponent YX at n is the set of all
sequences (f¢),, of functions f, : X(¢) — Y (¢) which are compatible with
restriction (i.e._r}/ o fra1=feo rg().

The morphism fix* : X®¥ — X is defined as

fiscy ((fn)men) 7= (fn o0 f1)(e)

The morphism fix”* : X®¥ — X is natural in X. Given f:» X xY — X with
exponential transpose f!: Y — XX the morphism fix* o f! : ¥ — X is unique
such that fix® o ft = f o (next¥ o fix™ o f7,id*) ([13, Thm. 2.4]).

Since we do not require the explicit constructions, we refer to [I3] for the
interpretation of guarded recursive types Fix(X).A(X) and for the definition of

the isos
fold : [A(Fix(X).A(X))] — [Fix(X).A(X)]
unfold : [Fix(X).A(X)] — [A(Fix(X).A(X))]

‘We now have all the structure we need for the denotational semantics of the
B-free fragment of the pure calculus.

D.2 Global Sections and Constant Objects

As for any presheaf topos, the global section functor I' : S — Set is right adjoint
to the constant object functor A : Set — S (see e.g. [52, §1.6]):

r
— =
T
N~ N
A

S Set

We record the following easy well-known facts for later use.
Lemma D.2. Given a set S and given X, Y objects of S, we have in Set:
(1) the unit n: Idget = IT'A of AT is an iso,

36 Guilhem Jaber and Colin Riba

(2)

I()~TX xTY and I'l ~ 1
(3) I'(

I(

I(

X xY
X+Y)~IX+TY
F(X4%) ~ (TX)3
»X)~TIX (via I'(next))

(4)
(5)

where all the mentioned isos are natural in X and Y (when applicable).
Proof.

(1) The unit ns of A 4 I'" at S takes a € S to the constant map (n +— (e —
a)) € S[1, AS]. Its inverse is the function S[1, AS] — S taking a constant
map x € S[1, AS] to z(0)(e).

(2) Since I' is a right adjoint.

(3) Since for any z € S[1, X + Y] there is some i € {0,1} such that z(e)(n) is
of the form in;(z,,) for all n € N.

(4) Using the Cartesian closed structure of S and the adjunction A 4 I' we
have

o~ S[l x AS, X]
~ S[AS, X]
~ Set[S, I' X]

(5) We show that x € I'X — nextoxz € I'(®»X) is a bijection. We first show
surjectivity. Consider 2’ € S[1,»X]. Then for each n € N, we have z], (®) €
»X(n+1) = X(n) with 2], ,(e)T = 27, (e). This defines a map = € S[1, X|
as T, (e) := x, (e). Moreover, (nextg o zg)(e) = e = z((e) and

(nextp11 0 Zpi1)(®) = xppi(e)t = 35;1+2(‘)T = x;z+1(')

We now show injectivity. Let x,y € S[1, X| and assume nextox = nextoy :
1 —s »X. Then for all n we have z,1(8)T = yp11(e)t and thus z,(e) =

Yn(e). a
Following [20], for a (closed) pure type A, we have
[MA] := AT'[A]

In words, all components [MA](n) are equal to I'[A], and the restriction maps
of [MA] are identities. In particular, a global section x € I'[MA] is a constant
family (x,,)n>0 describing a unique global section 1 () = z,(e) € I'[A].

The term constructor unbox(—) is interpreted as the counit ¢ of the adjunc-
tion A A I': given EF M : BA, we let Junbox(M)] be the composite

1] 24 1ma) = Arga) == [4]

The term constructors box and prev rely on a strong semantic property of
constant types, namely that their interpretation lie (modulo isomorphism) in
the image of the constant object functor A.

Temporal Refinements for Guarded Recursive Types 37

Definition D.3 ([20, Def. 2.2]). An object X of S is constant if X ~ AS for
some set S.

Note that the restriction maps of constant objects are bijections. Similarly as
in [20, Def. 2.2], if z € X (n) with X constant, then we write z € X (k) for the
unique element of X (k) which is equal to £ modulo the bijective restriction maps
of X.

Lemma D.4 ([20, Lem. 2.6]). If A is a constant (pure) type, then [A] is a
constant object of S.

We now give the interpretations of box, (M) and prev, (M) (where o stands for
[1 — My, ...,z — Mg]). Assuming in both cases [M] to be defined, for n > 0
we let

[box, (M)I(n) : [€](n) — AT[A](n) = I'[4]
v o (moo ML (D) [M))

Tprev, (M)](n) : [€](n) — »[A](n) = [A](n+1)
v o= (M (M) - M)

where the mismatches between n and m and between n and n + 1 are legal since

[A1], ..., [Ax] are constant by Lem.

D.3 External and Internal Semantics: Global Definitions

We can now give the full Set and S interpretations of the logical language. In
both cases, for a: At ¢ : A(a), we let

e(T) =T (L) =1
" (T) = p(e™(T)) e (L) = o™ (L))

(Recall that §®aqp is only allowed when ¢ as at most « as free variable.)

Definition D.5 (External Semantics). Consider a formula oy : Aq,. .., ax :
A B o . A without free iteration variable. Assume given a valuation v taking
each propositional variable «; for i = 1,... k to a set v(a;) € P(I'[4;]). We
define {|<p|};4 € P(I'[A]) by induction on ¢ in Fig. .

As for the internal S semantics [—], we give a global definition, in a form
similar to Def. [D.5l

Definition D.6 (Internal Semantics). Consider a formula aq : Ay, ... o :
A F @ 1 A without free iteration variable. Assume given a valuation v taking
each propositional variable a; for i =1,...,k to a subobject v(c;) of [A;]. The
subobject [@]2 of [A] is defined by induction on ¢ in Fig. .

The correctness of Def. namely that we indeed have [p]4 € Sub([A]), as
well as the correspondence with the presentation of §7]are discussed in App.

38 Guilhem Jaber and Colin Riba

(L2
{levohs

v = el =
= {a; € I'lAp x A4]
= {1: € I'TAo + A4]

{Ilmelyyo ™

{lling]pfy ot

mox e {loli}

=0 (T = rlA] flaal}) = ()
= et Ul e Aul = (el n el
(PLAD A1l) U el

{ifold)i}*) = { € P[Fix(X).A] ‘ unfold o & € {Jip}1IFC04/XT}

{leveh? " i= {o € TB — A] | vy € T[B], y € (]}
{Iboxie} ™ = {w € T[MA] | @1(e) € {lol}" }
{Inextle}s* = {nextow € P[wA] | = € I} }

(vt ap(@))s
{lutap(a)l}s

{lvawly;

= {le™ (T}
= {lp™

@8])%

([e] =m)
(fe] =m)

Ely S F[[Az]] (l’ =in; oy and y € {|90|}:1L)}

= evo(x,y) € {|90|}f}

=U {s (S e P(I[A]) and S C {le}f[S/a]}

{lnagly == N{s| s € P(IAD and {ells/m € S}

[LD2(
[v 4] (
[= o] (
[imlldo* 41 (n) :=
[linsJelfo 41 (n) ==
[[fold]eo)
lev(w)]e]d =
[boxle]™* (n) =
[next]p] (1) :
[next]o]%(
[V ()

n

n) =

(n) :=
(

n) =

n) =

17 =

[rap(@)]s =

A

[vagld ==

Fig. 18.

)= [T13 -
n) = [[‘P]] (n) U [¥]7

fte 1l

External Semantics.

[4]
(n)

[:]? = v(a)
Lo A1 (n) == [els (n) N [¥]5 (n)
) | Vk <n, ttk € [¥]; (k) = ttk e [o](k)}

{t € [4o x Ai](n) | m(t) € @] (n)}

{t € [Ao + A1](n) ’ Ju € [As](n), t =in;(u) and u € [[go]]fl(n)}

{t € [Fix(X).A](n) ’ unfold, () € [p]IF<C)-4/X] (n)}
) | ¥k <n, Yu € [B](k), ue [¢]](k)

{te[B— A](n

{t e mAJ(m) = TLAT | 2 € I} }

1

[£]d (n— 1)
™ (M2
[e™ (L)]2

(n>1)
([e] =m)
([l = m)

V{S| S eSub([A]) and S < [¢]ds/m}
[uagl? = A{S | S € Sub([A]) and [¢]As/a < S}

Fig. 19.

Internal Semantics.

—

(k) (u)

€ [¢li ()}

Temporal Refinements for Guarded Recursive Types 39

Remark D.7. For closed formulae we can rephrase Def. as t € [p]A(n) iff
t -2 @, where the forcing relation t I-2 ¢ is inductively defined as follows.

— tIFA L.

-t T,

—tIFA oV ff EIFA @ or £ IFA 4,

—tIFd o A iff tIF2 @ and ¢ IFA .

—t Il-Z ¥ = p iff for all &k < n, tTk Il-,? o whenever t1k Il-,? .

— A A [0 B 7y (8) IFAY .

-t IF%O+A1 [in;] iff there is u € [A;](n) such that ¢ = in;(u) and u I .

— tIFB=A [ev(¥))]p iff for all k < n and all u € [B](k), (t1k)(u) - ¢ whenever

U H—f . _

— £ IFEE A (fold] o iff unfold o ¢ I-4 1 X(X)-A/XT

— tIFF 4 [next]op.

— tIF> 2 [next]y iff ¢ IF e,

— t IF®4 [box]y iff t € {|p[} .

D.4 An Open Geometric Morphism

Key properties of the internal semantics of [box] rely on some further facts on
the adjunction A - I'. We refer to [52/38].

The functor A : Set — S preserves limits (in particular, A 4 I' : § — Set
is a geometric morphism). It follows that A preserves monos, so that for each

set S the function
A eP(S)— AA € Sub(AS)

is a meet preserving (and thus monotone) map. It is easy to see that this map
has a posetal left adjoint

£ : Sub(AS) — P(S)

Proof. A subobject A of AS is a family of subsets A = (4,,), with 4, C S.
Hence we can let fi(A) € P(S) be the set of all @ € S such that a € A,, for
some n > 0. Then assuming f,(A) C B for some set B € P(S5), it follows that if
a € Ay then a € fi(A) C B so that a € (AB),, and thus A < AB. Conversely,
if A < AB, then for every a € fi(A), since a € A,, for some n > 0, we must
have a € (AB),, = B, so that fi(A) C B. O

As a consequence, the adjoint pair A 4 I' : § — Set is an open geometric
morphism (in the sense of [52], Def. IX.6.2]), from which it follows that A induces
maps of (complete) Heyting algebras P(S) — Sub(AS) (see e.g. [52, Thm. X.3.1
& Lem. X.3.2]). We state this for later use.

Lemma D.8. For each set S, the functor A induces a map of (complete) Heyt-
ing algebras P(S) — Sub(AS).

This means that the Set interpretation {J¢|} € P(I'[A]) can be taken to the
subobject A {|p|} € Sub(AI'[A]) = Sub([MA]) in S while respecting the usual
Set semantics of logical connectives. In particular, we can allow the logical theory
under a [box| to be classical, while the S semantics imposes the ambient logical
theory to be intuitionistic.

40 Guilhem Jaber and Colin Riba

D.5 Abstract Modalities

We present here some well-known basic material which will help us proving the
correctness of the internal and external semantics.

Definition D.9. Let C be a category with pullbacks and consider a morphism
k:X —c Y.

— The functor k* : C/Y — C/X 1is defined by pullbacks
A ——s A

|
k*(g)l lg

— The functor (3k) : C/X — C/Y is defined by postcomposition:
(g:A—=X) — (kog:A—>Y)
The following is a basic property of toposes.

Lemma D.10 ([52, Thm. IV.7.2]). Let T be a topos and fix a map k : X —¢
Y. The functor (3k) is left adjoint to k* : T/Y — T/X. Moreover, k* has a
right adjoint (Vk) and preserves exponentials, and thus preserves subobjects.

Lemma D.11.

(1) The map (Jin;) : Set/S; — Set/(Sy + S1) induces a map P(S;) — P(So +
S).

(2) The map (3in;) : S/ X; — S/(Xo+X1) induces a map Sub(X;) — Sub(Xo+
X1).

Proof. Since in both cases the morphism in; is a mono. a

Lemma D.12. The map S/X — S/»X takingg:Y — X tow(g) : »Y — »X
induces a map Sub(X) — Sub(»X).

Proof. The functor » preserves limits since it has a left adjoint ([I3] §2.1]). It
thus follows that » preserves monos. a

D.6 External and Internal Semantics: Local Definitions

Some key properties of the Set and S interpretations are easier to get if one goes
through a local presentation, as operations on subobject and powerset lattices,
similar to that of [—] in The goal is to pave the way toward the correctness
of both semantics:

Lemma D.13 (Lem. . The following holds w.r.t. the full modal theories
of Def.[6-3

(1) If =2 ¢ then {|ol} = T'[A].

(2) If 4 ¢ then [¢] = [A].

The detailed proof of Lem. is deferred to App. It relies on the following

material.

Temporal Refinements for Guarded Recursive Types 41

Internal Semantics We use the material of to devise operations on sub-
object lattices corresponding to our modalities. This formally extends the pre-
sentation given in {7]

Definition D.14.

(a) Given S-objects Xo and X1, define [[m;]] : Sub(X;) — Sub(Xo x X1) as 7},
where m; : Xg X X1 —s X; is the ith projection.

(b) Given S-objects Xo and X1, define [[in;]] : Sub(X;) — Sub(Xy + X1) as
(Fin;), where in; : X; —s Xo + X1 is the ith injection.

(¢) Given a locally contractive functor T on S, define [[fold]] : Sub(T(Fix(T))) —
Sub(Fix(T)) as unfold*, where we have unfold : Fix(T) —s T(Fix(T)).

(d) Given a S-object X, define [[next]] : Sub(X) — Sub(»X) as »(—).

(e) Given a set S, define [[box]] : P(S) — Sub(AS) as A(—).

We now discuss the case of [ev(v))]¢, which is actually interpreted as a logical
predicate, in the categorical generalization of the usual sense discussed in [32]
§9.2 & Prop. 9.2.4]. We follow here [52, VI.5].

— First, extending the above discussion, for an object X of S, the (Heyting
algebra) exponent

(=) =x (=) : Sub(X) x Sub(X) — Sub(X)
is given by
(A=x B)(n) ={t € X(n) | Vk < n, tTk € A(k) = t1k € B(k)}

(see e.g. [62, Prop. 1.8.5]).

— Second, it follows from Lem. that for objects X, Y of S, taking the
pullback of the evaluation map ev : XY xY — X gives a map of subobjects,
as in

evi(A) ——
i _
XY xYy X
which in particular preserves limits and colimits.

— Third, in the internal logic of S, universal quantification over an object Y
w.r.t. a predicate A € Sub(X xY) is given (again via Lem. by the right
adjoint Vy :=V(7) to «*, where 7 is the projection X x Y — X ([562, §VL5,

p. 300]). Moreover, via the Kripke-Joyal semantics for a presheaf topos ([52]
§VL.7, p. 318]), for A € Sub(X x Y), the presheaf Vy (A) at n is

{te X(n) | Yk <n, YueY(k), (tTk,u) € A}
We therefore let, for each pure types A and B,

[lev(—)]] : Sub([B]) — (Sub([A]) — Sub([B — A]))

42 Guilhem Jaber and Colin Riba

take S" € Sub([B]) to
[lev(S]] := S € Sub([A]) — Vipy (7*(S") =papieixgpy ev*(9))

where m: XY xY — XV is a projection.
Now, note that we actually have

Lemma D.15. Consider a formula Xt ¢ : A and v as in Def.[D.6, such that
[¢]w € Sub([A]). We have

(1) l[milely = [ml](lel0)
(2) [limnilely = [lind)([#]0)
(3) [[foldle], = [[fold]]([]v)
(4) llnextlp], = [[next]]([¢].)
(5) [lboxje] = [[box]]([¢])

(6) llev()lele = [lev([¥])]I(Ielv) for each & 4 = B such that [¢] €
Sub([B]).

Proof.

(1) Since limits are computed pointwise in presheaves, we have

[l (Ll) (n) = {(t,u) € [Ao x Ai][(n) x [¢](n) | u=mi(t)}

which is clearly in bijection with [[m;]p]4 %41 (n).
(2) Trivial.

(3) Similar to the case of [m;].

(4) Trivial.

(5) Trivial.

(6) Immediate from the above discussion. O

We thus have done almost all the work to obtain the following basic fact.

Lemma D.16. Given oy : Ay,...,ax : A F ¢ 1 A, and v taking «; for i =
1,...,k to v(ay) € Sub([A;]), we have [o]2 € Sub([A]).

Proof. The proof is by induction on formulae. The interpretation of the propo-
sitional connectives follows the corresponding structures in presheaf toposes [52,
Prop. 1.8.5]. The cases of the modalities [A] follow from the induction hypothesis
and Lem. The cases of fap simply amount to the fact that for presheaf
toposes, subobjects lattices are complete ([52, Prop. 1.8.5]). The cases of 6%y
for t an iteration term are trivial. ad

We now turn to the logical theory. We immediately get from the above:
Corollary D.17.

(1) The maps [[m;]], [[fold]] and [[box]] are maps of Heyting algebras.
(2) The maps [[in;]] preserve V, L and A.
(3) The maps [[next]] preserve A, T and V.

Temporal Refinements for Guarded Recursive Types 43

(4) For each object X of S and each fized S € Sub(X), the map [[ev(S)]] pre-
serves N\, T.

Proof.

(1) This directly follows from Lem. and Lem.

(2) Preservation of Vv, L follows from that fact that [[in;]] is a left adjoint by
Lem. For binary conjunctions, first note that meets in partial orders
are given by pullbacks. In a subobject lattice Sub(X;), this can be expressed
as

ANB—— B

]

A——X;

(where arrows are inclusions maps). Since in; : X; — X + X3 is a mono,
the following is also a pullback in Sub(Xy + X;):

A/\ﬁ B
l_

Xi

l

A X ——=Xo+ X3

n

(3) Preservation of A, T follows from the fact that »(—) is a right adjoint ([I3]
§2.1]). As for preservation of V, we check the details. Consider an object X of
S and subobjects A, B € Sub(X). We have to show »(AVB) = »(A)Ve(B).
But we have

»(AVB)y = 1 = 1U1 = (»(A)Ve(B))

and
»(AVB)y1 = (AVB), = A,UB,

= »(D)ns1 U»(B)nt1

(> (A) V> (B))n1

(4) This directly follows from Lem. via Lem. and the definition of
[[ev(=)1]- O

External Semantics We now turn to operations on powerset lattices for the
external semantics.

Definition D.18.

(a) Given sets Sy and Si, define {|[m]|} : P(S;) — P(So x S1) as w}, where
i+ Sg X S1 — S; is the ith projection.

44 Guilhem Jaber and Colin Riba

(b) Given sets Sy and Sy, define {|[in;][} : P(S;) = P(So + S1) as (Jin;), where
in; 1 .S; = Sy + 51 is the ith injection.
(¢c) Given a S object X, define {|[next][} : P(I'X) — P(I'»X) as ((I'next))",
where (I'next) ™! : I'(»X) — I'X is the inverse of I'(next) (Lem. |D.3).
(d) Given alocally contractive functor T on S, define {|[fold][} : P(IL'(T(Fix(T)))) —
P(IFix(T)) as I'(unfold)”, where unfold : Fix(T) —s T (Fix(T)).
We trivially have (at appropriate types):
fimlel = il o)
{Ilini]el} {ani] (el

]
{Ilnext]pl} = {|[next][} ({[]})
{[[foldlpl} = {llfold][} ({I})

Similarly as in Cor. we obtain the following.
Lemma D.19.

(1) The functions {|[m;]|}, {|[next][}, {|[fold]|} are maps of Boolean algebras.
(2) The function {|[in;]|} preserves V, L and A.

D.7 The Safe Fragment
The property we use on safe formulae for Prop. is the following.

Definition D.20 (Scott Cocontinuity). Let L be a complete lattice. A set
S C L is codirected if it is non-empty and for all a,b € S, there is some
¢ € S such that ¢ < a,b. A function f : L — L is Scott cocontinuous if it is
monotone and preserves infs of codirected sets (for S C L codirected, we have

FINS)=NF(S)).
In other words, a Scott cocontinuous function L — L is a Scott continuous
function L°P — L°P.
Lemma D.21. The greatest fixpoint of a Scott cocontinuous f : L — L is given
by /\mEN fm(—r)
Lemma D.22. Given a safe formula o : A+ ¢(a) : A, the following functions
are Scott cocontinuous:

[s¢] - Sub([A]) — Sub([A]) {lel} : P(L[A]) — P(I'[A])

The key for Lem. is the usual fact that codirected infs commute with infs
and finite sups, in Set as well as in S. The key case of Prop. [7.3] is that of
vap(a) 1 A. We have

{rap@y = (™M and [rap@)] = A [™(T)]

Given a global section z € I'fvap(a)], we have
Vn >0, Vm eN, xz,(e) € [™(T)](n)

We then easily conclude z € {|vap(a)l} from {|¢™(T)|} = I'[¢™(T)]. Note that
this relies on the commutation of the universal quantifications over n and m.

The proofs of Lem. [D.21] Lem. [D.22] and Prop. are deferred to App.

Temporal Refinements for Guarded Recursive Types 45

D.8 The Smooth Fragment
The proof of Lem. [7.4]is deferred to App.

D.9 Constant Objects, Again

For the adequacy of the typing rules of the term constructors box and prev,
we need to generalize Lem. (§D.2) to refinement types. To this end, it is
convenient to extend the notation [—] to refinement types.

Definition D.23. For T is a type without free iteration variables, we define [T
by induction as follows:

A | o} = [¢]

[k - T] = A, cnlT (/4]
[[TO + Tlﬂ = [[To]] + [[Tl]]
[[TQ X Tlﬂ = [[TQ]] X [[Tl]]
[U = 1] := [U] — [T]

[»7] := »[T]
[WT] := AL[T]

We can now extend Lem. [D.4] We crucially rely on the fact that A preserves
limits (see e.g. [38, Ex. 4.1.4]).

Lemma D.24. If T is a constant type, then [T] is a constant object of S.

Proof. The proof is by induction on types. The cases of the type constructors +,
x, — are easy and discussed in [20}, Lem. 2.6]. In the case of Fix(X).A, since all
occurrences of X in A should be guarded by a », and since B can only be applied
to closed types, it follows that X cannot occur in A. Then [A] is constant by
induction hypothesis and we are done since [Fix(X).A] ~ [A4] in this case. The
case of BT is trivial. As for Vk - T, since |T| is constant, we have [|T'|] ~ AS for
some set S. By induction hypothesis for each n € N we have [T'[n/k]] ~ AS,, for
some set S, with AS,, € Sub([|T|]). Note that AS,, can be seen as a subobject
of AS. Recall from §D.4] the posetal left adjoint

fi: Sub(AS) — P(S)
of the map
A: X eP(S)— AX € Sub(AS)
In particular A : P(S) — Sub(AS) preserves meets and we get
[Vk-T] = N\, [T/k]
~ A\, AS,

~ N\, AfAS,
~ A (ﬂn f'ASn)

As for refinement types, we show by induction on - ¢ : A with A constant that
[¢] is a constant object.

46 Guilhem Jaber and Colin Riba

Cases of T, L, A, V and =-.
All these cases follow from (the induction hypothesis and) the fact that A

induces maps of Heyting algebras on subobject lattices (Lem. .
Case of [box]p.

Trivial, since [[box]¢] is in the image of A.

Case of [next]ep.
This case cannot occur since A is constant.

Case of [fold]ep.
In this case, we have A = Fix(X).B. Since X is guarded in B, it must not
occur in B, and we have [A] ~ [B] via unfold. Moreover [B] is constant, with
say [B] ~ AS and by induction hypothesis, [[¢]] is a constant subobject of
[B], say [[¢]] =~ A®. Now, [[fold]¢] lies in the pullback diagram

unfold” ([¢]) = [fld]] —— [ie] = A()

[A]

Since unfold is an iso, the upper arrow 7 is also an iso, and we are done.
Case of [m;]p.

We rely on the description of [[m;]¢] as [[m:]]([¢]) in §D.6l By induction

hypothesis and recalling that A preserves finite products, consider the pull-

back

unfold [[BH = A(S>

[[m]p] — ¢l = A(2)

Then one can take the corresponding pullback in Set
So X Sl ?‘ Sl

and this implies that [[m;]¢] =~ A(¥) since A preserves finite limits.

Case of [in;]e.
We rely on the description of [[in;]¢] as [in;]]([¢]) in The result follows
from the induction hypothesis and the fact that A preserves finite limits and
colimits, as in:

Case of [ev(y)]ep.
We rely on the description of [lev(¥))]¢] in that is

llev()lel = Vs (7*([¥]) = papsixgey eV ([¢]))

Temporal Refinements for Guarded Recursive Types 47

The result then follows from Lem. and the fact that A thus preserves
universal quantifications (see e.g. [62, Thm. X.3.1 & Lem. X.3.2]).

Cases of 0*ay and Hap.
By assumption, the occurrences of o in ¢ should be guarded by a [next].
Since [box] can only be applied to closed formulae, this imposes « not to
appear in ¢. But then the result follows by induction hypothesis. a

D.10 Realizability

We detail the steps toward the Adequacy Theorem Full proofs are deferred
to App. [F-4] The first basic result we need about our notion of realizability is
that it is monotone w.r.t. step indexes.

Lemma D.25 (Monotonicity of Realizability). Let T be a type without free
iteration variables. If x -, T then x Ik T for all k < n.

The correctness of subtyping requires two additional lemmas. The first one
concerns the rule

T <|T|
Lemma D.26. For a pure type A and x € I'[A], we have z Ik, A for alln > 0.

Second, we need a result of [20] for the correctness of the subtyping rules

{B v} = {A| ot <{B—=Allev(¥)]e}

Ex:{B|yY}-M:{A]|p}
EF Xz M:{B— A [ev(®)]e}

An object X of S is total if all its restriction maps rX : X,41 — X, are
surjective. Hence, if X is total, then given t € X, for some n > 0, there is a
global section z : 1 —g X such that z,(e) = t.

Lemma D.27 (|20, Cor. 3.8]). For a pure type A, the object [A] is total.
We then obtain the correctness of subtyping as usual. The rules
o=y o=y
{Alpr<{Ald} {MA]]boxlp} < {MA] [box]i)}
rely on Lem. (Lem. , while

p safe
W {A| o} ={MA[[box]p}

is given by Prop. [7.3]

Lemma D.28 (Correctness of Subtyping (Lem. [7.6))). Given types T,U
without free iteration variable, if x I, U and U < T then x Ik, T.

48 Guilhem Jaber and Colin Riba

We now have all we need for the Adequacy Theorem [7.7] As usual it requires
a stronger inductive invariant than the statement of Thm. [7.7} Given a typed

term
x1:T,...,xp Ty EM:T

and global sections uy € I'[|T1]], ..., ur € I'[|Tk|], we obtain a global section
[M] o {uy,...,ur): 1 —[|T]

We introduce some notation to manipulate these global sections. Given a typing
context & =1 : 11, ...,z : T we write p |= € if p takes each x; fori=1,...k
to some p(z;) € I'[|T:]]. Given a typing judgment £+ M : T, we let

[M], = [M]e(p(z1), .., plax))

Given p = € and n > 0, write p -, € if p(x;) I, T; foralli = 1,..., k. Thm.|7.7]
is proved under the following form.

Theorem D.29 (Adequacy (Thm.) Let £,T have free iteration vari-
ables among ¢, and let m e N. If EF M : T and p = &, then

Yn>0, plik, Eff/m] = [M], I, T[¢/m]

Corollary D.30. (1) Consider a closed term = M : {A | ¢} with ¢ safe. Then
[M]: 1 —s [A] € {iol}

(2) Consider a closed term = M : {A | ¥} — {A| ¢}, with ¢, ¢ safe. Then
[M] induces a function I'[M] taking x € {|Y|} to T'[M] = [M] oz € {l}.

Corollary [D-30] of course extends to any arity. As a consequence of Cor.
and Mggelberg’s Theorem [7.1| [55], for a closed term M : {lP | [box]e} with P
polynomial, the unique global section [M],11(e) = [M],(e) € I'[P] satisfies ¢
in the standard sense (i.e. [M]n+1(e) = [M]n(e) € {|¢|}). Moreover a function,
say M : {HQ | [box]yy} — {MP | [box]e} with @, P polynomial induces a Set-
function

r'[M]: I'MQ] — I'[WP]
x+— [M]ox

such that, if y € I'[Q] ~ T'AI'[Q] = I'[MQ)] satisfies ¥ in the standard sense
(i.e. y € {|¢|}), then the unique global section I'[M](y)n+1(e) = I'[M](y)n(e) €
I'[P] satisfies ¢ in the standard sense (i.e. belongs to {|p[}).

D.11 A Galois Connection

It is common for the classification of temporal properties to identify safety prop-
erties with topologically closed sets and to identify liveness properties with topo-
logically dense sets. As any subset of a topological space is the intersection of
a closed set with a dense set, this provides a topological decomposition of tem-
poral properties, which furthermore restricts to regular properties on (finitary)
polynomial types. We refer to e.g. [I].

Temporal Refinements for Guarded Recursive Types 49

Here, we make explicit the relation between safe formulae on polynomial
types (in the sense of Def. and safety properties understood as closed subsets
of the corresponding final Set-coalgebras (in view of Mggelberg’s Theorem [55]),
for the usual tree (or stream) topology.

First, it might be useful to remember what it means for a global section
x € I'X in § to satisfy a property S, where S € Sub(X) is a subobject of X.
Following e.g. [52I51], we say that € I'X satisfies a property S € Sub(X) if x
factors through 9, as in

e 3
J that is: Vn >0, xz,(e) € S(n)
1 =X

Fix an object X of S. There is a Galois connection between the subobjects
of X in § and the subsets of I'X in Set:

Pref 4 Clos : Sub(X) — P(I'X)
where for S € P(I'X) and B € Sub(X),

Pref(S): n+—— {x,(e) |z € S}
Clos(B) :={z e I'X | Vn >0, z,(e) € B(n)}

Of course, Clos is the restriction of I' : § — Set to the subobjects of X.
Let us spell out the fact that Pref 4 Clos form a Galois connection. Fix an
object X of S. First, it is trivial that the functions

Pref : P(I'X) — Sub(X)
Clos : Sub(X) — P(I'X)

are monotone w.r.t. the orders of the lattices P(I'X) and Sub(X). Moreover, we
have:

Lemma D.31. We have

(i) S C Clos(Pref(S)) for S € P(I'X).
(ii) Pref(Clos(B)) C B for B € Sub(X).

Proof.

(i) Given z € S, by definition we have z, (o) € Pref(S)(n) for all n > 0, so
x € Clos(Pref(S)).

(ii) Given a € Pref(Clos(B))(n), there is some x € Clos(B) such that a
zn (o). But € Clos(B) means z;(e) € B(k) for all k > 0, so that a
zn (o) € B(n). O

As usual, we trivially get

Pref(S)<B if S C Clos(B)

50 Guilhem Jaber and Colin Riba

Say that S € P(I'X) is closed if S = Clos(B) for some B € Sub(X). It is easy to
see that S is closed if and only if S = Clos(Pref(5)). Note that S = Clos(Pref(S5))
unfolds to

VeeI'[A], zeS if ¥n>0,3yesS, z,(e) =yn(e)

When A is a polynomial recursive type, Thm. thus says that S is closed if
and only if S is closed for the corresponding usual tree (or stream) topology.
Since Prop. can be formulated as

{lel} = Clos([¢])

it indeed says that {|o[} is closed for the usual topology.

We finally briefly elaborate on this in view of the coincidence of the & and
Set semantics for safe formulae (Prop. [7.3). Let us consider the cases of O[hd]p
and <[hd]e on guarded streams Str®B. Assume that ¢ is safe. The equality
{|O0[hd]¢|} = I'[O]hd]¢] implies that the usual Set semantics of O[hd]y is in the
image of I'. But a subset of I'[Str® B] which is in the image of I' is necessarily
a closed set w.r.t. the usual product topology on streams in Set, i.e. a safety
property. Formulae of the form O[hd]e define safety properties on streams, but
liveness properties of the form <[hd]p are not closed (for non-trivial ¢), and thus
cannot be in the image of I'.

Temporal Refinements for Guarded Recursive Types 51

E Detalils of the Examples

E.1 Guarded Streams
The Later Modality on Guarded Streams

Ezample E.1. We have the following basic modal refinement types for Cons® and
tl8:
Const: A — »{StrfA| o} — {StrtA| Oy}
tlE:{Strt A | Op} — »{StrtA| ¢}

Proof. We begin with Cons®. Recall that Cons® = Az.As.fold(z,s) and that
O(=) = [fold][m][next](—). The result then follows from the following derivation:

x:A s {StrtA| o}tk s:p{Strt A | ¢}

x: A s:p{StrfA| o} (z,s): {Ax »Str® A | [m][next]p}
x: A s {Strt A | ¢} F fold(x, s) : {Str® A | [fold][m1][next]x}

As for tI®, recalling that tI® = As.m; (unfold s), the result follows from

s:{Strf A | Op} F s: {Str® A | [fold][m1][next]p}
s:{Str* A | O¢} b unfold s: {A x »Str® A | [m1][next]p}
s:{Strf A | Op} F w1 (unfold s) : {» Str® A | [next]p}

s:{Strt A | Op} F m(unfold s) : » {Str® A | ¢}

Destructors of Guarded Streams

Ezxample E.2. The types of hd® and tI® can be refined as follows with the always
modality O:

hd® : {Strf A | Ofhd]e} — {A] ¢}
tl : {Strf A | Ofhd]p} — » {Str¥ A | O[hd]y}

Proof. Recall that [hd]e = [fold][mg]. We begin with the typing of
hd® := As.mp(unfold s) : {Str® A | Ohd]p} — {A | ¢}

We use F5* 4 Olhd]y = [hd]e.

FSt* 4 Olhd]e = [hd]e

s:{Str® A | Ohd]p} F s : {Str® A | Olhd]p} {Str® A | Olhd]p} < {Str® A | [hd]yp}

s:{Str* A | Olhd]p} F s : {Str® A | [hd]¢}
s:{Strt A | Ofhd]¢} F unfold s: {A x »Str® A | [mo]p}
s:{Strf A | Ofhd]p} F mo(unfold s) : {A | ¢}
F As.mo(unfold s) : {Str® A | O[hd]p} — {A | ¢}

52 Guilhem Jaber and Colin Riba

We continue with the typing of
tl® := As.m1(unfold s) : {Str® A | Ohd]e} — » {Str® A | O[hd|p}

We use F5* 4 Olhd)y = OO[hd]e. Recall that Oy = [fold][m;][next]e.

FS** A Olhd]e = OOhd]p

s:{Str® A | Ohd]p} F s : {Str® A | Olhd]p} {Str® A | Olhd]p} < {Str¢ A | OO[hd]¢}

s:{Str® A | Olhd]p} F s : {Strt A | OO[hd]e}
s: {Strt A | Ofhd]¢} F unfold s: {A x »Str® A | [mg][next]O[hd]p}
s:{Str® A | O[hd]p} F 71 (unfold s) : {» Str® A | [next]O[hd]p}

s:{Str® A | Olhd]¢} F 71 (unfold s) : » {Str® A | O[hd]p}
F As.my(unfold s) : {Str® A | Olhd]p} — » {Str® A | Olhd]p}

O

Constructor of Guarded Streams

Ezample E.3. The type of Cons® can be refined as follows with the always modal-
ity O:

Cons®: {A | ¢} — »{Str® A | Ohdlp} — {Str® A | O[hd]y}
Proof. We show
Cons® := Az As.fold(z,s) : {A | ¢} — »{Str® A | Ohdlp} — {Str® A | O[hd]e}
To this end, we use the following derived rule (see Ex. :

EFM:{A|g} EFN:{B|y}
EF (M,N):{Ax B | [mo]p A [m]}

Consider the typing context
E=xz:{A| ¢}, s:»{Strt A | Olhd]p}
We know from that
E Ffold(z, s) : {Str® A | OO[hd]p}
Since F5* 4 ([hd]p A OO[hd]¢) = O[hd]ep, we are done if we show
E F fold(x, s) : {Str® A | [hd]¢}

But this is trivial:

Erax:{A] ¢}
EF(z,s): {Axw»Strt A | [mo]e}
E +fold(x, s) : {Str® A | [fold][mo]p}

Temporal Refinements for Guarded Recursive Types 53

Map over Guarded Streams

Example E.j. We have the following:

mapf: ({A| o} = {B|¢}) — {StrfA|Ofhdlp} — {StrfB|O[hd]y}
= Affix(g).As.(f(hd® s)) ::8 (g ® (tI® 5))

Proof. We proceed as follows, using §E.1] and §E.I}

EF s:{Strt A | Ohd]ep} EF s:{Str® A | Ohd]e}

F Affix(g).As.(f(hd® s)) ::8 (g® (t1® 5)) : T

T:={Alp}={Bly}) — {Str¥*A|Ohdlp} — {Str® B | Ofhd]y}
E=f:{A] ¢} > {B| ¢}, g:»({Strt A | Ohd]e} — {Str® B | O[hd]e}), s : {Str® A | O[hd]e}

a

Merge over Guarded Streams

Example E.5. We have the following:

merge® : {Str® A | Olpo]} — {Strf A | Ofgen]} — {Str* A | O([ipo] V [#1])}
:= fix(g).As0.As1.Cons® (hd® sq) (next(Cons® (hd® s1) (g @ (tl® sp) ® (tI® 51))))

Proof. Let &€ be the context

g :»({Str® A | Ofpo]} — {Str® A | Ofpn]} — {Str® A | O([eeo] V [¢1])})
so 1 {Str® A | Ofpo]} ,
s1:{Str* A | Ofp1]}

We have
EFhd® so: {A| o} EFtIE so:» {StrE A | Ofgo]}
EFNd® sy :{A]| 1} EFtlE sy {Str! A | Olp1]}
We thus get

g ® (t¥ s50) ® (tI® s1) : > {Str® A [O([i00] V [#1])}
and we are done since using subtyping we have

Cons®: {A | o} — »{Sr¥A|DO(po] V[pr])} — {Str®A|DO([w0] V [p1])}
Cons®: {A |1} — »{SEA|DO(po] Vi)l — {StrfA|DO([wo] Vp1])}

a

54 Guilhem Jaber and Colin Riba

E.2 Operations on Coinductive Streams

Ezample E.6 (Operations on Coinductive Streams). For a safe ¢ of the appro-
priate type, we have

hd : {Str A | [box|O[hd]p} — {4 | ¢}
tl: {Str A | [box]Ohd]¢} — {StrA | [box]O[hd]p}
th: {StrA | [box] O ¢} — {StrA]| [box|e}

Proof.

Case of hd.

Recall that
hd: StrA — A

:= As.hd® (unbox s)
We have

s: {Str A | [box]O[hd]p} F s : {Str A | [box]O[hd]x} O[hd]p safe

s:{Str A | [box|Olhd]p} F s : M{Str® A | Ofhd]¢}
s: {Str A | [box]O[hd]¢} F unbox s : {Str® A | Of[hd]y}

s:{Str A | [box]O[hd]¢} F hd®(unbox s) : {A | ¢}
F As.hd® (unbox s) : {StrA | [box]O[hd]p} — {A]| ¢}

Cases of tl.
Recall that

tl: StrA — StrA
:= As.box, (prev, (tI® (unbox s)))

We have
s: {StrA | [box]O[hd]p} s : {Str A | [box]O[hd]ep}

s:{Str A | [box]O[hd]¢} F tI® (unbox s) : »{Str® A | O[hd]p} Str A constant
s: {Str A | [box]O[hd]p} I prev, (tI® (unbox s)) : {Str® A | O[hd]ep}

s:{Str A | [box]O[hd]¢} I box,(prev,(tl® (unbox s))) : M{Str® A | O[hd]p} O[hd]y safe

s:{Str A | [box]O[hd]¢} F box,(preve(tl® (unbox s))) : {StrA | [box|O[hd]e}
F As.box,(prev, (tI® (unbox s))) : {StrA | [box]O[hd]p} — {StrA | [box]O[hd]p}

and

s:{StrA | [box] O ¢} Fs:{StrA| [box] O ¢}

s:{StrA | [box] O ¢} F tl® (unbox s) : »{Strt A | ¢} Str A constant
s:{StrA | [box] O ¢} F prev,(tl® (unbox s)) : {Str® A | ¢}
s:{StrA | [box] O ¢} F box,(preve(tl® (unbox s))) : B{Str® A | ¢} safe

s:{StrA | [box] O ¢} F box,(prev,(tl® (unbox s))) : {StrA | [box]¢}
F As.box,(prev,(tl® (unbox s))) : {StrA | [box] O} — {StrA| [box]p}
O

Temporal Refinements for Guarded Recursive Types 55

E.3 Map over Coinductive Streams

We discuss here the cases of
map: ({B | v} = {A| ¢}) — {StrB | [box]A[hd]y} — {Str A | [box]Alhd]p}

where ¢, ¢ are safe and smooth and where A € {0, O, &0, 04}, The case of O

is handled as in Ex. 5.4} using that O[hd]p and O[hd]y are safe. The case of &
is detailed in Ex. (§E.3). The idea is that since <[hd]p, <[hd]y) are smooth

and since O¥[hd]p, O¥[hd]y are safe, we can reduce to typing the guarded map®
as

mape : ({B | ¥} = {A] ¢}) — Vk- ({Str¥ B | OF[hd]y} — {Strf A | OF[hd]e})
The case of <0, detailed in Ex. (4E.3), is more involved. Since <O[hd]e,
<©0O[hd]y are smooth and OFO[hd]p, O¥O[hd]y are safe, we similarly reduce to
showing (map® f) : Vk - T(k) where

T(k) := {Str® B | OFO[hd]yp} — {Str® A | OFO[hd]p}
and assuming f of type {B | ¢} — {4 | ¢}. But this is unfortunately too weak.
Similarly as with <, it is natural to first assume the type »Vk - T'(k) for the

recursion variable g and then to apply the (V-CI) rule (Fig. on Vk-T (k). In
the case of T'(k+1), we unfold

ok1ofhdly < Ohdly v O ©FO[hd]y

and apply the (V-E) rule (Fig. . But in the branch of Ofhd]¢y, giving g the

type, say,
{Strf B | ©'Ofhd]y} — {Str# A | ©'Olhd]e}

is not sufficient to derive
s:{Str® B | O[hd|y} - g @ (tl® s) : » {Str® A | O[hd]e}

The reason is that [next] (and thus () does not satisfy axiom (P) of Table
(see §7). The solution is to use the [ev(—)]/|» modality to encode a kind of
“Intersection” on arrow types, and to type (map&f) with

Vi {Strf B — Str® A | (OFO[hd]y ||+ ©*Ofhd]p) A (Ofhd]e | Ofhd]y) }

We finally turn to O<. Using that OC[hd]p and OO [hd]y are both smooth, we
first unfold the O’s using the rules (v-I) (Fig. and then (v-E) (Ex. ,
thus reducing to

box, (map® f (unbox s)) : {Str A | [box]0‘C[hd]p}

assuming f : {B | ¥} — {4 | ¢} and s : {Str B | [box]0*O[hd]e}. Then, since
Olhd]p, ©[hd]y are smooth, we can unfold the <’s using the rules (u-E) and
(u-I) with the non-trivial smooth context

v(B) =108

56 Guilhem Jaber and Colin Riba

Since the formulae OfOF[hd]y and Of O [hd]y are safe, we can reduce to showing

As. (f(hd® s)) =8 (g® (tl8 s)): VL-Vk-U(LK)
UL, k) = {Strf B | OOFhdly} — {Strf A | OfOr[hd]p}

assuming f: {B | ¢} = {A | ¢} and g : »V¢-VE - U({, k). We apply the (V-CI)
rule on V¢-Vk-U (¢, k). The case of Vk-U (0, k) is trivial since 0% < T. We then
apply the (V-CI) rule, this time on Vk - U(¢+1, k). The case of U(¢+1,0) can be
dealt with using the (EXF) rule. In the case of U(¢{+1, k+1), we conclude with
a straightforward case analysis based on the unfoldings

OEHLORH[hd] < OFFthd]y A O OORthd]y
OkFihd]9 < [hd]9 v O OF[hd]d

See Ex. (§E.3)) for details. Just note that since OT < T (Table[2) we have
09 < 9, so that

g:wVL-VE-U(L k) Fg: {Sut B | Ok[hdly} — {Strf A | OF[hd]p}

The Case of Eventually (<[hd]y)

Example E.7. We have the following, for safe and smooth ¢ and :

map: ({B|v}—={A|¢}) — {StrB| [box|Clhd]y} — {StrA | [box]<[hd]p}
=)\f.)\s.boxb(mapg f (unbox s))

Proof. Since <[hd]e and <[hd]y are both smooth, we can first reduce to
Er, s {StrB | [box]OF[hd]tp} + box, (map f (unbox s)) : {Str A | [box]OF[hd]p}

where
Ep=f:AB[¢Y} = {A]y}
Since the formulae ©¥[hd]y) and O*[hd]p are safe, we are done if we show

mapt: ({B| ¢} = {A|¢}) — Vk-({StrtB | OFhdjp} — {Str® A | OF[hd]ep})
= M f.fix(g).As.(f(hd® 5)) =8 (g ® (tI® s))

Let
N = (f(hdf 5)) (g @ (2 5)
M :=As.N
T(k):={Strt B | OF[hd]y} — {Str# A | OFlhd]ep}
E =&, g:wVk-T(k)
We show

EF M :Vk-T(k)
We reason by cases on k with the rule

EFM:T(0) EF M :T(k+1)
EF M :VEk-T(k)

Temporal Refinements for Guarded Recursive Types 57
Case of T'(0).
We show
E, s:{Strt B | O%hd]y} = N : {Str® A | OO[hd]p}
Since F O°[¢] & L, we conclude with the (EXF) rule

E, s:{Str* B | O°lhd]y} - s: {Strf B | L} E, s:{Str* B | O°lhd]yo} = N : Str® A
E, s:{Strt B | OOlhd]y} - N : {Stré A | OClhd]p}

Case of T'(k+1).
We show

g, s:{Strf B | OFthd]y} = N : {Str¥ A | OFF[hd]p}

Using
- OF+[hd]y & ((hd)y v OO [hd]y)

we do a case analysis on the refinement type of s.
(Sub)Case of [hd]i.
Since - [hd]¢ = ©OF*+1[hd]y, we reduce to showing

E, s:{Strt B | [hd]yp} = N : {Str® A | [hd]p}
By we have
E, s:{Strt B | [hd]y} - hd® s: {B | ¥}
But we are done since
Const: {A|p} — »StrfA — {Strf A | [hd]p}

(Sub)Case of OO [hd]v.
Since = OO [hd]p = OF*+1[hd]p, we reduce to showing

g, s:{StrfB | OOFhd]y} = N : {Strf A | OOF[hd]y}
By §E.I] we have
g, s:{Strf B | OO*hd]y} -t s : > {Str¥ B | OF[hd]y}
Since
Etg:Vk-» ({Strf B | OF[hd]y} — {Str¢ A | OF[hd]p})
we have
Erg:w ({Strt B | OFlhd]yy} — {Str® A | OF[hd]e})
Since moreover by §E.I] we have
Cons®: A — »{StrfA| OFhdlp} — {StrB A | OOF[hd]p}
we deduce that

g, s: {StEB | OO*hd]y} b N : {Strf B | OOk [hd]ep}

58 Guilhem Jaber and Colin Riba

The Case of Eventually Always (¢O[hd]y)

Ezxample E.8. We have the following, for safe and smooth ¢ and :

map: ({B| v} —{A|¢}) — {StrB | [box|]<Ohd]yp} — {StrA | [box]< O[hd]p}
= A f.As.box, (map® f (unbox s))

Proof. Since ¢O[hd]p and <O[hd]y are both smooth, we can first reduce to
Er, s:{StrB | [box]O*O[hd]t) } - box,(mape f (unbox s)) : {Str A | [box]O*O[hd]e}

where
Er=fAB ¢} = {A]p}

Since the formulae ¢*O[hd]y) and ©¥O[hd]y are safe, we are done if we show

mape: ({B |9} = {A|¢}) — Vk-({Str®B | OFOhdly} — {Str¥A | OFDlhd]p})
= M f.fix(g).As.(f(hd® 5)) =8 (g ® (tI® s))

Let
N = (f(hd® 5)) £ (g @ (15 5)
M = Xs.N

T(k) := {Str® B — Str® A | (O*O[hd]y |+ ©*Olhd]e) A (O[hd]e [Olhd]e) }
E =&, g:wVk-T(k)

‘We show
EF M :Vk-T(k)

We reason by cases on k£ with the rule

EFM:T(0) EF M :T(k+1)
EF M :VEk-T(k)

Case of T(0).
We have to show

E, s:{Strt B | Olhdlyy} F N :{Str®* A | O[hd]p}
and E, s:{Str®* B | ©°Ofhd]y} = N : {Str® A | O°Ofhd]e}

We only detail the latter since the former can be dealt-with as in §E.I] Since
o0 & L
we conclude with the (EXF) rule

E, s:{Str¢ B | o°O[hd]yp} - s: {Str¥ B | L} E, s:{Str* B | ©°Ofhd]y} = N : Str® A
E, s:{Strt B | o°Ofhd]yp} + N : {Stre A | &°O[hd]y}

Temporal Refinements for Guarded Recursive Types 59

Case of T'(k+1).
We show

E, s:{Str® B | Olhd]y} F N :{Str* A | O[hd]p}
and g, s: {Strt B | Ok 'Ofhd]y} F N : {Strf A | OF+10Ohd]p}

We only detail the latter since the former can be dealt-with as in §E.I] Using
F ok+i0lhd]y < (O[hd]yw v OO*O[hd]y)

we do a case analysis on the refinement type of s.
(Sub)Case of Ohd].
We show

g, s:{Str¥ B | Ohd]y} - N : {Str® A | OFF10[hd]p}
Note that - O[hd]¢ = ©*+10[hd]p. We can therefore reduce to
E, s:{Str®* B | O[hd]y)} = N : {Str® A | O[hd]p}
and we can conclude as in §E.1]
(Sub)Case of O<kOhd]w.
Since - O<O*0O[hd]p = OF+10[hd]p, we reduce to showing
g, s: {Strt B | OO O[hd]y} F N : {Str¥ A | OO T[hd]p}
By §E.1] we have
g, s: {Strf B | OO Olhd]y} +t1® s : - {Stré B | OFO[hd]e}
Since
Etg:Vk-» ({Strf B | OFOlhd]y} — {Str® A | OFOlhd]e})
we have
Erg:» ({Strt B | O*Ohd]yy} — {Str® A | O*Olhd]e})
Since moreover by we have
Cons®: A — »{StrfA| OFOlhdlp} — {Strf A | OO*O[hd]p}
we deduce that

g, s: {Strt B | OO*Olhd]y} F N : {Str¥ B | OO*O[hd]e}

60 Guilhem Jaber and Colin Riba

The Case of Always Eventually (O<[hd]p)
Ezample E.9. We have the following, for safe and smooth ¢ and v:

map: ({B|v} —{A]¢}) — {StrB | [box|O0C[hd]yy} — {StrA | [box]O<C[hd]p}
:= Af.As.box, (map& f (unbox s))
Note E.10. We let
Ofp = pta.p vV Qo
O%¢ :=va.p A Qo

Proof. We start in the same spirit as in and Using that O<$[hd]e and
O<¢[hd]ey are both smooth, we first unfold the O using the rules (v-1) and (v-E).
Then, since <lhd]p and <[hd]y are both smooth, we can unfold the < using the
rules (u-E) and (u-I) with the non-trivial smooth context

¥(B) =0
We are thus led to deriving
Er, s {StrB | [box]OOFhd]y} F box,(mapé f (unbox s)) : {Str A | [box]T¢OF hd]e}

where
Er=fAB |}t = {A] ¢}

Since the formulae O¢GF[hd]y and O°OF[hd]y are safe, we are done if we show

mape: ({B | ¢} > {A|¢}) — VE-VL-({Str¥B | O'OF[hd]yp} — {Strf A | O'OF[hd]p})
= M f.fix(g).As.(f(hd® 5)) 8 (g ® (tI® s))

Let
N = (f(hd) 5 (g @ (¢ 5)
M = As.N
T(k,0) := {Str® B | O‘OFhd]y} — {Str® A | OO [hd]p}
& =&, g:wVk-VL-T(k,)
We show

EFM :Vk-VL-T(k,0)
We reason by cases on k and ¢. This amounts to the derived rule

EFM:T(0,0) EFM:T(0,6+1) EFM:T(k+1,0) EF M :T(k+1,0+1)
EF M :Vk-V0-T(k,0)

Cases of T'(u,0).
We have - 0°) < T, and we are done since

E, s:{Str*B| T}FN:{Str* A | T}

Temporal Refinements for Guarded Recursive Types 61

Case of T(0,¢+1).
We have - O°[0] & L, and we reduce to showing

E, s:{St!B | D L} N {Strf A | DL}
But since - 011 = 1, we have
E, s:{StfB |0} s {StrtB | 1}
and we conclude with the (EXF) rule

E, s:{StfB |0 L} s {StrtB | L} E, s:{St!B | 0L} N :Strf A
E, s:{Str¢tB | Ot 1} N : {Strt A | 0611}

Case of T'(k+1,0+1).
Using F"* 4 0419 < (9 A OD%), we show

E, s {Strf B | O 1OR hd]y} = N {Strf A | OFF[hd]e A O OO hd]p}

We consider each conjunct separately.
(Sub)Case of ¢**1[hd]p.
We show

g, s {Strf B | OT1OR A hd]yp} = N : {Strf A | OFF[hd]e}
Using

£, 51 {StE B | DO hdlg) b s ¢ {Strf B | OF+ihd]y)}
and - Ok hd]y < ((hd]er v OO*[hd]ih) we do a case analysis on the

refinement type of s.
(SubSub)Case of [hd]¢.

Since (by
&, s:{Strf B | [hd]y} b hd® s : {Str® B | [hd]i}
we easily deduce that
€, s:{Strf B[[hd]y} b N : {Str¥ A | [hd]}

and we are done since I [hd]p = OEF1hd]ep.
(SubSub)Case of)< [hd]w.

By §E.1] we have
g, s: {Strf B | OOFhd]} -t s {Strf B | OF[hd]y}
Since

Etg:Vk-VC-» ({Strf B | OOk [hd]yp} — {Strf A | O‘OF[hd]p})

62 Guilhem Jaber and Colin Riba

we have
Erg:» ({Strt B | O*Ok[hd]yp} — {Str¥ A | O*OF[hd]p})
But - (0 AQT) « 6, so that - 00 < 6, and thus
Erg:ow ({Strt B | OF[hd]yp} — {Str¥ A | OF[hd]p})

Since moreover by §E.I] we have

Cons®: A — »{StrBA | OFlhdlp} — {Strf A | OOF[hd]p}

we deduce that

g, s:{Str¥ B | OOFhd]y} = N : {Str® B | OOF[hd]y}
and we are done since - Q0¥ [hd]p = O#+1[hd]p.
(Sub)Case of OO‘OF1[hd]p.

We show

g, s: {Strt B | 01O hd]y} - N : {Strf A | OO!OFFhd]p}
Since

&, s: {Str¥ B | 01Ok hd]yp} b s ¢ {Strf B | QO‘OF[hd]y)
by {E-1] we have

&, s:{Str¥ B | 01Ok hd]ih} -t s - {Str® B | OfOF L hd]y}
But now since
EFg:Vk-V0-» ({Strf B | OOk [hd]yp} — {Str8 A | O¢OF[hd]p})

we have

Er g:w ({Strt B | OO hd]yp} — {Strf A | O¢OFFthd]p})
and we conclude with namely
Cons®B: A — »{StrBA| OOk hdlpl — {Strf A | OO'OF 1 [hd]p}

O

E.4 The Diagonal Function

Consider a stream of streams s. We have s = (s; | ¢ > 0) where each s; is itself a
stream s; = (s | j > 0). The diagonal of s is then the stream (s; ; | i > 0). Note
that s; ; = hd(tl"(hd(tlI’(s))). Indeed, tI"(s) is the stream of streams (s | k >),

Temporal Refinements for Guarded Recursive Types 63

so that hd(tl’(s)) is the stream s; and tI*(hd(tl’(s))) is the stream (s; 5 | k > i).
Taking its the head thus gives s; ;.
We implement the diagonal function as follows:

diag := As.box, (diag® (unbox s)) : Str(Str A) — Str A
diag® := diagaux® id : Stré(StrA) — Strf A

diagaux® : (Str A — Str A) — Str®(Str A) — Strf A
:= fix(g).At.As. Cons® ((hd o t)(hd® s)) (g ® next(totl) ® (tl® s))

The auxiliary higher-order function diagaux® iterates the coinductive tl over the
head of the stream of streams s. We write o for function composition, so that
assuming s : Str®(Str A) and ¢ : Str A — Str A, we have

(hd® s) : Str A (hdot):StrA — A
(hdot)(hd® s): A (totl):StrA — StrA

This requires the coinductive type Str A. In Ex. (§E.4) below, for a safe ¢
we obtain

diag® : {Stré(Str A) | Olhd|[box]O[hd]¢} — {Str® A | O[hd]¢}

This easily follows from the fact that using Ex. and Ex. we can type
diagaux® with

({Str A | [box]O[hd]} — {Str A | [box]O[hd]p}) —

{Str8(Str A) | O[hd][box]O[hd]} — {Str® A | O[hd]e}

In Ex. m (we show that for a safe and smooth ¢, we have

diag : {Str(Str A) | [box]<>O[hd][box]O[hd]¢} — {Str A | [box]<OO[hd]e}
Similarly as for map in we reduce to

diagaux® : Vk- (({StrA | [box|O[hd]p} — {Str A | [box]O[hd]¢}) — U(k))
where U(k) := {Str8(StrA) — Str¥ A | Y¥o(k) A 91}
Yo(k) := ©FO[hd][box]O[hd]¢ |+ ©*O[hd]e
1 := Olhd][box]O[hd]¢ |F» O[hd]e

The Guarded Diagonal Function
Ezample E.11 (The Guarded Diagonal Function). For a safe ¢, we have
diag® : {Str8(Str A) | Olhd|[box]O[hd]¢} — {Str® A | O[hd]e}
Recall that
diagt: Str®(StrA) — StrfA

:= diagaux® id

diagaux®: (StrA — Str4) — Str¥(StrA) — Strf A
:= fix(g).At.As.Cons® ((hd o t)(hd® s5)) (g ® next(totl) ® (tI® s))

64 Guilhem Jaber and Colin Riba
Proof. We reduce to
diagaux® : ({StrA| [box]O[hd]¢} — {StrA | [box]O[hd]¢}) —
{Stré(Str A) | Olhd][box]O[hd]¢} — {Str® A | O[hd]e}
Let £ be the context

T,
i: {Str A | [box]Olhd]p} — {StrA | [box]O[hd]¢} ,
s : {Str8(Str A) | O[hd][box]O[hd]p}

where T is the type

({StrA | [box]O[hd]p} — {Str A | [box]O[hd]p}) —>
{Stré(Str A) | O[hd][box]O[hd]¢} — {Str® A | O[hd]p}

The result directly follows from the following typings, which are themselves given

by §E.1] {E.T and E.2}

EFhdot : {StrA| [box]Ohdlp} — {A] ¢}
EFhd®s . {StrA | [box]O[hd]¢}

Ertotl : {StrA| [box]Ohd]p} — {StrA | [box]O[hd]p}
EFtlEs : »{Str¥(Str A) | Ohd][box]O[hd]p}

The Coinductive Diagonal Function

Ezample E. 12 (The Coinductive Diagonal Function). For a safe and smooth o,
we have

diag: {Str(Str A) | [box]<O[hd][box]O[hd]p} — {Str A | [box]<O[hd]e}
:= As.box, (diag® (unbox s))

Proof. Using that *0O/hd][box]O[hd]¢ and <¥O[hd]y are both smooth, we can
first reduce to

51 {Str(Str A) | [box]O*O[hd][box]T[hd]¢} - box,(diag® (unbox s)) : {Str A | [box]O*O[hd]p}

Since the formulae ¢*O[hd][box]|O[hd]p and ¢¥O[hd]y are safe, we are done if
we show

diag® : Vk - ({Str8(Str A) | OFOlhd][box]Ofhd]} — {Str® A | O*Ofhd]e})
Consider the types

U(k) := {Stré(StrA) = Str® A | g AN 1}
T(k) := ({StrA | [box]Ofhd]p} — {Str A | [box]Olhd]p}) — U(k)

Temporal Refinements for Guarded Recursive Types

where
Yo 1= OFOlhd][box]O[hd] |-+ ©*Ofhd]e
¢y := Ohd][box|Olhd]p > Ofhd]e
We show
diagaux® : Vk - T'(k)
Let

N := Cons® ((hd o t)(hd® s)) (g ® next(totl) ® (tl® s))
M := Ag.As.N
E =g:»Vk-T(k)

We reason by cases on k with the rule

EFM:T(0) EFM :T(k+1)
EF M :VEk-T(k)

Let
g =&, t:{StrA| [box|Ohdlp} — {StrA | [box]Olhd]y}

We omit the proof of
E'F As.N : {Stré(Str A) — Str® A | [ev(O[hd][box]O[hd]¢)]O[hd]¢}
since it follows that of §E-4

Case of T(0).
Since F <% < L, we reduce to showing

65

EFAAs.N : ({StrA | [box]Olhd]p} — {Str A | [box]Olhd]p}) — {Str¥(StrA) | L}
— {Str®t A | 0°O[hd]e}

and we conclude using the (EXF) rule.
Case of T'(k+1).
We show

&', s: {Stré(StrA) | OF10Ohd][box|Olhd]e} - N : {Str® A | OFFiO[hd]e}

Using
FooMlY — o v OO
we reason by cases on the refinement of s. This leads to two subcases.

(Sub)Case of O[hd][box]O[hd]ep.
We show

&', s : {Str¥(Str A) | O[hd][box|Olhd]} F N : {Str® A | OF+10Ohd]e}

Since + O[hd]p = ©*+10[hd]p, we can reduce to

&, s {Str&(Str A) | Ofhd][box]Ofhd]} F N : {Strt A | Ofhd]io}

which is proved as in §E.4

66 Guilhem Jaber and Colin Riba

(Sub)Case of O<*0hd][box]O[hd]¢.
We show

&', s {Str8(StrA) | OO*Ohd][box]T[hd]p} F N : {Str¥ A | OC*Olhd]e}

Let
) g =& s: {Stre(Str A) | O0*Olhd][box]O[hd]e }

Note that £” t g : »T(k), so that by §E.2 we have
E"F g@next(totl) : » ({Str¥(Str A) | ©*Olhd][box]O[hd]e} — {Str¥ A | O*O[hd]e})

Using we derive

E" s {Str¥(Str A) | O©*O[hd][box]Olhd]¢}

E" I Cons?® ((hdot)(hd® s)) (g ® next(totl) ® (tl® 5)) : {Str¥ A | OO*Dlhd]y}

O

E.5 Fair Streams

We discuss here an adaptation of the fair streams of [I8J8]. We rely on the basic
datatypes presented in §E-B] In we discuss a function

fb : CoNat — CoNat — Str Bool

such that, writing 0 for Z and 1 for (S Z) (see Ex. [E.15)), the non-regular stream
(fb 0 1), adapted from [I8I8], is of the form

ffott fF ottt tt ff tt tt tt ff tt tt tt tt ff

This stream thus contains infinitely many tt’s and infinitely many ff’s. This is
expressed with the formula [box]OC[hd][tt] A [box]O<C[hd][ff] where [tt], [ff]
represent the value of a Boolean, as in

tt : {Bool | [tt]} and ff : {Bool | [ff]}
Examples and show that we indeed have
(fb 0 1) : {StrBool | [box]O<C[hd][tt] A [box]O<[hd][ff]}

The key are the following refinement typings for the guarded fb&, discussed in

Ex. [E19 and Ex. [E21}

fb® : CoNat® — {CoNat® | [S]} — {Str®Bool | O ([hd][tt] Vv O [hd][tt])}
fb® : Vk - V£ - ({CoNat® | Of[Z]} — {CoNat® | OfF1[Z]} — {Str® Bool | OFOFF[hd][ff]})

Temporal Refinements for Guarded Recursive Types 67

where, as in Not. (7 we let
O :=vta.p A Qo
Finally, in §E.5] we discuss a stream scheduler
sched : StrBool — Str A — Str B — Str(A + B)
such that sched can be typed as follows (Ex. :

{StrBool | [box]O<[hd][tt]} — Str A — Str B — {Str(A + B) | [box]O<[hd][ing] T}
{StrBool | [box]O<[hd][ff]} — Str A — Str B — {Str(A + B) | [box]O<[hd][in1] T}

and thus

sched (fb 0 1) : {Str(A + B) | [box]O<C[hd][ing] T A [box]O<[hd][ing] T}

Basic Datatypes
Ezample E.13 (Booleans). Let
Bool:=1+1
with constructors
tt :=ing({)) : Bool
ff :=in1(()) : Bool
Ezample E.14 (Formulae on Booleans).

[tt] := [ing] T : Bool
[ff] := [in1] T : Bool

Ezample E.15 (CoNatural Numbers). Let

CoNat := HCoNat®
CoNat := Fix(X).1+ »X

with constructors

Z :=box,(Z8) :CoNat S := An.box,(S& (unbox n)) : CoNat — CoNat

78 .= fold(ing()) : CoNat® Sg := An.fold(iny n) : » CoNat® — CoNat®
Ezample E.16 (Formulae on CoNatural Numbers).

[Z] := [fold][ing] : CoNat®
[S] := [fold][iny] : CoNat®
O := [fold][iny][next]¢ : CoNat®
Cp =pa. oV OQa : CoNat®
Ot = pta. oV Oa : CoNat®

where ¢ : CoNat®.

68 Guilhem Jaber and Colin Riba

A Fair Stream of Booleans

Ezxample E.17.

fb : CoNat — CoNat — StrBool
:= Ae.Adm. box, (fb® (unbox ¢) (unbox m))

fb® . CoNat® — CoNat® — Str® Bool
:= fix(g).Ac.Am. case ¢ of
| Z&8 — ff ::8 g ® (next m) ® next(S& (next m))
| S8n +— tt 8 g ®n ® (next m)

Ezxample E.18.

fb : {CoNat | [box]<[Z

1} — CoNat — {Str Bool | [box|<[hd][ff]}
fb® : Vk - ({CoNat® | OF[

Z]} — CoNat® —» {Str® Bool | ©F[hd][ff]})
Proof. Let
T(k) := {CoNat® | ©¥[Z]} — CoNat® — {Str® Bool | OF[hd][ff]}

and assume

g :»VEk-T(k)
Let
M(g,c,m) := case c of
| Z&8 — ff ::8 g ® (next m) ® next(S& (next m))
|SEn — tt 8 g®n® (next m)
We show

Aedm.M(g,c,m) : Vk - T(k)
We apply the (V-CI) rule on Vk. This leads to two cases.
Case of T'(0). We get the result from the (EXF) rule since
Z] & L
Case of T'(k+1). We show
M (g,c,m) : {Str® Bool | OF*[hd][ff] }
assuming

¢ : {CoNat® | OF1[Z]}
m : CoNat®

Using
OFZ] & [Z] v OO*(Z]

we reason by cases on the refinement type of c¢. This leads to two subcases.

Temporal Refinements for Guarded Recursive Types 69

(Sub)Case of [Z]. We apply the (INJg-E) rule on the refinement type of
(unfold ¢). Since
[hd][ff] = O*+1[hd]]ff]

the result follows from the fact that
ff ::8 g ® (next m) ® next(S (next m)) : {Str® Bool | [hd][ff]}
(Sub)Case of O<CF[Z]. We have
unfold ¢ : {1 4 » CoNat® | [iny][next]O*[Z] }

By applying the (INJ;-E) rule on the refinement type of (unfold c), we
are left with showing

tt =% g ®n ® (next m) : {Str® Bool | OFF1[hd][ff] }

assuming
n: » {CoNat® | OF[Z]}

Using
OCF[hd][ff] = OFF1[hd]]ff]

we are done since

g ®n® (next m) : » {Stré Bool | OF[hd][ff]}

Ezample E.19. Consider a function
f:NxN—N

such that

1< f(k+1,041)

= f(k, 0 +2) < f(E+1,0+1)
—l+1< fk+1,041)

= f(k,t+1) < f(E+1,0+1)

for instance f(k,¢) = k + £. Then we can give the following refined type to fb:
Vk-W-({CoNatg | 04Z]} —> {CoNat® | o*+1[z]} —» {Strg Bool ‘ Dkof(k’e)[hd][ff]})
Proof. Let

U(k,£) := {CoNat® — CoNat® — Str Bool | p(k,¢) Ap(£)}
ok, 0) = O4Z] || ©1[Z] || OFO D hd][ff]
U(l) =0UZ] > T | Offhd][ff]

and assume
g:»Vk-V0-U(k)

70 Guilhem Jaber and Colin Riba

Let
M(g,c,m) := case c of
| Z&8 — ff ::8 g ® (next m) ® next(S& (next m))
| S8n +— tt::B g®n ® (next m)
We show

Ac.am.M (g, c,m) : Vk -V - U(k)
First, proceeding similarly as in Ex. [E.I§]
Ac.Am.M (g, c,m) : VL - {CoNat® — CoNat® — Str® Bool | O(Z] || T [+ ©*[hd][ff] }
Let
T(k, () := {CoNat® | ©f[Z]} —» {CoNat® | O*F*[Z]} — {Str® Bool | OF GO hd][ff] }

We show
Aedm.M(g,e,m) : Vk -V - T (k)

We apply the (V-CI) rule on Vk. In the case of V¢ - T(0,¢), the result is trivial
since
00O OO hd][ff] & T

In the case of V¢-T'(k+1,¢), we apply the (V-CI) rule, this time on V¢. The case
of T(k+1,0) is dealt-with using the (EXF') rule since

ANz & L
In the case of T'(k+1,¢+1), we show
M(g,c,m) : {Str® Bool | OFFLOH+LEED [hd][ff] }

assuming

¢ : {CoNat®
m : {CoNat®

<>€+1 [Z%
ott2[z]

We apply the typing rule for case (Fig. [)). This leads to two branches, one
for (unfold ¢) = fold(ing()) (denoted Z#), and one for (unfold ¢) = fold(iny n)
(denoted S&n).

Case of 78.
We have to show

ff 8 g ® (next m) ® next(S (next m)) : {Str® Bool | DFF1OF(k+LED [hd][ff] }
We have
Dk+1<>f(k+1,é+1)[hd][{:f] PN <>f(k+1,é+1)[hd][ﬂ'] A O Dk<>f(k+1,€+1) [hd] [ﬂ:]

and we consider each conjunct separately.

Temporal Refinements for Guarded Recursive Types 71

(Sub)Case of Of (k1641 [hd][ff].
We have

ff ::8 g ® (next m) ® next(S (next m)) : {Str® Bool | [hd][ff]}
and as f(k+1,£/+1) > 1 we are done with
[hd][ff] = Of*+LLEHY) [hd][ff]
(Sub)Case of OOFOLk+LEF) [hd][ff].
Since

m : {CoNat® | ©f2[Z]}
Se (next m) : {CoNat® | Of+3(Z]}

we have
g ® (next m) ® next(S (next m)) : » {Str® Bool | OF OGR4 [hd][ff]}
so that
ff ::8 g @ (next m) ® next(S (next m)) : {Str® Bool | OOk OEh-E+2)[hd][ff] }
But since f(k,0+2) < f(k+1,£+ 1), we have
OERLE2) [hd|[ff] = OF(FH+LEHD) [hd][ff]

and we obtain

ff ::8 g @ (next m) ® next(S (next m)) : {Str® Bool | QTFOF+LED[hd][ff] }

Case of Sén.
We have to show

tt = g ®n ® (next m) : {Str® Bool | OFF1OHRFLED [hd][ff] }
assuming
n : {CoNat® | Of[Z]}
We have
OFHOIEHLE D [hd][ff] o OTFHLED[hd][] A O OFOLRHLED [hd][f]

and we consider each conjunct separately.
(Sub)Case of Of*+1L.LH1)[hd][ff].
Using
g : » {CoNat® — CoNat® — Str® Bool | O[Z] [+ T |+ ©f[hd][ff]}

we get
tt 8 g ®n ® (next m) : {Stré Bool | O+ [hd][ff] }

and the result follows from the fact that

04+1< f(k+1,0+1)

72 Guilhem Jaber and Colin Riba

(Sub)Case of OOFOL*+LEH) hd][ff].
Since £ < £+ 1, we have

n: {CoNat® | Of1(Z]}

and thus
g ®n® (next m) : » {Str® Bool | OFOHREH1) [hd][ff]}
so that
tt 8 g ®n ® (next m) : {Str® Bool | QOO KL+ [hd][ff] }
But since f(k,£+1) < f(k+1,£+ 1) we have
OERED [hd][ff] = Of LD [hd][ff]

and we obtain

tt 8 g ®n @ (next m) : {Stré Bool | QOFOEFHLEAD [hd][ff]}

Ezample E.20. We have
fb Z (S Z) : {StrBool | [box]O<[hd][ff]}
Proof. Recall that

fb: CoNat — CoNat — Str Bool
:= Ae.Am. box, (fb® (unbox ¢) (unbox m))

We show
fb: V¢ ({CoNat | [box]0f[Z]} — {CoNat | [box]O“T2[Z]} —» {StrBool | [box]O< hd][ff]})
We apply the (V-I) rule. Assume

[box]O4(Z] }

[box] O [Z]}

¢ : {CoNat
m : { CoNat

Since the formulae O¢[Z] and O“F1[Z] are safe we have

c : M{CoNat®
m: 1l {CoNatg

o(z]}
<>£+1 [Z]}

and thus
(unbox ¢) : {CoNat®

(unbox m) : { CoNat®

o4z)}
<>£+1 [Z]}

Temporal Refinements for Guarded Recursive Types 73

Now, it follows from Ex. that
fb® (unbox c) (unbox m) : {Str® Bool | OF O (kO hd][ff]}
so that
box, (fb® (unbox c) (unbox m)) : M {Str® Bool | OF O (k-0 [hd][ff] }
Since the formula OFO(R: [hd][ff] is safe we have
box, (fb® (unbox c) (unbox m)) : {Str Bool] [box] Ok OF (kO hd] [fF] }
The (p-I) rule then gives
box, (fb® (unbox c) (unbox m)) : {StrBool | [box]O¥ < [hd][ff]}
and the (v-I) rule gives
box, (fb® (unbox ¢) (unbox m)) : {StrBool | [box]O<[hd][ff]}

The result then follows from the fact that

Z :{CoNat | [box]Ct[Z]}
S Z: {CoNat | [box] O ©[Z]}

Ezample E.21. We have
fb® : CoNat® — {CoNat® | [S]} — {Str® Bool | O ([hd][tt] Vv O [hd][tt])}

Proof. Let
T := {CoNat® — CoNat® — StrfBool | ¢ A ¥}
¢ :=[5] [>T [[hd][tt]
¢ =T = [S] = O ((hd][tt] v Olhd][tt])

and assume

g:»T
Let
M(g,c,m) := case c of
| Z& — ff ::82 g ® (next m) ® next(S8 (next m))
| S8n +— tt::B g®n ® (next m)
We show

Aeam.M(g,e,m) : T
First, by using the (INJ;-E) rule we easily get

Ae.Adm.M(g,c,m) : {CoNat® — CoNat® — Str® Bool | [S] |> T |~ [hd][tt]}

74 Guilhem Jaber and Colin Riba

It remains to show
Ae.dm.M(g,c,m) : {CoNat® — CoNat® — Str® Bool | T |- [S] | O ([hd][tt] vV O[hd][tt])}

Assume
¢ : CoNat®

m : {CoNat® | [S]}

We apply the typing rule for case (Fig. [)). This leads to two branches, one
for (unfold ¢) = fold(ing()) (denoted Z8), and one for (unfold ¢) = fold(iny n)
(denoted S&n).

Case of 78.
We have to show

ff ::8 g ® (next m) ® next(S (next m)) : {Str® Bool | O ([hd][tt] v Olhd][tt])}
We have

O ([hd]ftt] v Olhd][tt]) < ([hd][tt] v Olhd]ftt]) A O O ([hd][tt] v Olhd]tt])

and we consider each conjunct separately.
(Sub)Case of ([hd][tt] V O[hd][tt]).

Since

m : {CoNat® | [S]}
g :» ({CoNat® | [S]} — CoNat® — {Str€ Bool | [hd][tt]})

we get
g ® (next m) ® next(S (next m)) : » {Str® Bool | [hd][tt]}

and the result follows.
(Sub)Case of OO ([hd][tt] vV O[hd][tt]).
Since

Se(next m) : {CoNat® | [S]}
g : » (CoNat® — {CoNat® | [S]} — {Str® Bool | O ([hd][tt] V O[hd][tt])})

we get
g ® (next m) ® next(S (next m)) : » {Str® Bool | O ([hd][tt] V O[hd][tt])}

and the result follows.
Case of Sén.
We have to show

tt ::8 g ®n ® (next m) : {Str® Bool | O ([hd][tt] V O[hd][tt])}

assuming
n : CoNat®

We have
O ([hd][tt] v Olhd][tt]) «< ([hd][tt] v O[hd][tt])) A O O ([hd][tt] v O[hd][tt])

and we consider each conjunct separately.

Temporal Refinements for Guarded Recursive Types 75

(Sub)Case of ([hd][tt] vV O[hd]]tt]).
We have
tt =8 g ®n ® (next m) : {Stré Bool | [hd][tt]}

(Sub)Case of OO ([hd][tt] vV O[hd][tt]).
Since

m : {CoNat® | [S]}
g : » (CoNat® — {CoNat® | [S]} — {Str® Bool | O ([hd][tt] V O[hd][tt])})

we get
g ® (next m) ® next(S (next m)) : » {Str® Bool | O ([hd][tt] vV Olhd][tt])}
and the result follows. ad
Ezample E.22. We have
fb Z (S Z) : {StrBool | [box]O<[hd][tt]}
Proof. By Ex. we have
fb® (unbox Z) (unbox (S Z)) : {Str¥ Bool | O ([hd][tt] v O [hd]tt])}

so that
fb Z (S Z): B{Str®Bool | O([hd][tt] Vv O [hd][tt])}

Since the formula O ([hd][tt] Vv O [hd][tt]) is safe we get
fb Z (S Z) : {StrBool | [box]O ([hd][tt] Vv O [hd][tt])}
Now, the result follows from the fact that

([hd][tt] v O [hd][tt]) = <lhd][tt]

The following uses the rule

FB=A (lev(vo)le A lev(¥1)]e) = [ev(vo V i)y
Ezample E.23. We have

fb® : CoNat® — {CoNat® | [S]} — {Str® Bool | [hd][tt] VvV O [hd][tt]}

Proof. Let T be the type

{CoNat& — CoNat& — Str&Bool | [S] | T | [hd][tt] A [Z] | [S] | Olhd][t]}
Note that

T < CoNat® — {CoNat® | [S]} — {Str® Bool | [hd][tt] VvV O [hd][tt]}

76 Guilhem Jaber and Colin Riba

Assume

Let
M(g,c,m) := case c of
| Z&8 — ff ::8 g ® (next m) ® next(S& (next m))
| S8n +— tt:B g®n ® (next m)

We show
Aem.M(g,e,m) : T

We consider each conjunct separately.

Case of [S] |I»> T | [hd][tt].
Assume
c: {CoNat® | [S]}

Applying the (INJ;-E) rule, we are done since
tt :8 g ® n ® (next m) : {Str® Bool | [hd][tt]}

assuming
n : CoNat®

Casz of [Z] |~ [S] I Olhd][tt].
c :{CoNat® | [Z]}
m : {CoNat® | [S]}

Applying the (INJp-E) rule, we are left with showing
ff ::8 g ® (next m) ® next(S (next m)) : {Str® Bool | O[hd]]tt]}
But the result is trivial since

g : » {CoNat® — CoNat® — Str® Bool | [S] = T | [hd]tt}

A Scheduler
Example E.2/.

sched : StrBool — Str A — Str B — Str(A + B)
:= Ab.As.\t. box, (sched® (unbox b) (unbox s) (unbox t))

sched® : Str® Bool — Str® A — Str® B — Str8(A + B)
:= fix(g).\b.As.\t. case (hd® b) of
[tt — (ing (hd® 5)) :B g® (tI® b) ® (tI® s) ® (tl® t)
[ff +— (ing (hd® t)) ::8 g ® (tI® b) ® (tI® s) ® (tI® ¢)

Temporal Refinements for Guarded Recursive Types 77

Ezample E.25. We can give the following refinement types to sched :

{StrBool | [box]O<[hd][tt]} — Str A — Str B — {Str(A + B) | [box]O<[hd][ing] T}
{StrBool | [box]O<[hd][ff]} — Str A — Str B — {Str(A + B) | [box]O<[hd][ing] T}

Proof. Direct, using the following Ex. a
Ezample E.26. We can give the following refinement types to sched® :

VEk - V0 - ({Str® Bool | OFOf[hd][tt]} — Str® A — Strf B — {Str®(A + B) | 0% [hd][ing] T })
Vk - V0 - ({Str Bool | OFO![hd][ff]} — Str¥ A — Str® B — {Str¥(A + B) | O*O4hd][ing] T)

Proof. We only discuss the first type, since the second one is completely similar.
Let T(k,¢) be the type

{Str® Bool | OFOf(hd][tt]} — Str¥ A — Str® B — {Str¥(A + B) | 0FO%[hd][ing] T}

and assume

g wVk-V0-T(k,0)

Let
M(g,b,s,t) := case (hd® b) of
|tt — (ing (hd® s)) ::8 g ® (tI® b) @ (tI® s) ® (tI® ¢)
| ff — (iny (hd®) =8 g ® (tl® b) ® (tl® s) ® (tI® ¢)
We show

Ab.As N.M (g, b, s,t) : VEk-VC-T(k,0)

We apply the (V-CI) rule on Vk. In the case of V¢ - T(0,¢), the result is trivial
since

09G4 hd][ing] T < T
As for V¢ - T(k+1,¢), we apply the (V-CI) rule, this time on V¢. In the case of
T(k+1,0), since

OF1O0hd][tt] < O°fhd][tt] A O OFO0[hd][tt]
and OOhd][tt] & L

we get

OF 100 hd][tt] < L
and we can conclude using the (ExF) rule. It remains to deal with the case of
T(k+1,¢+1). We have to show

M(g,b, s,t) : {Str¥(A+ B) | OF104+ [hd][ing| T}

assuming
b : {Stré Bool | OF 1O hd[tt] }
s:Strf A
t:Strt B

We have

OO hd][ing] T < Ot [hd][ing] T A O DFO [hd][in] T

and we consider each conjunct separately.

78 Guilhem Jaber and Colin Riba

Case of O“*t[hd][ing] T.

Since
OFFLOMHhd][tt] < OFihd][tt] A O OFOH i hd][tt]
we have
b: {Str® Bool | O“T[hd][tt] }
Using

OHihd][tt] < [hd][tt] v O ©f[hd]]tt]

we reason by cases on the refinement type of b.
(Sub)Case of [hd]]tt].
We apply the (INJo-E) rule on b and we are done since

(ing (hd® 5)) ::B g ® (tI® b) ® (tI® s) ® (tI® ¢) : {Str¥(A+ B) | [hd][ing] T}
(Sub)Case of O<Of[hd][tt].
We have
tl® b : » {Str® Bool | O[hd][tt]}

We apply the case-elimination rule on b. In both branches, since (by
subtyping) ¢ has type

> ({Str¥ Bool | O*O!hd][tt]} — Strf A — Str¥ B — {Str¥(A + B) | 0 [hd][ing] T })
and since, according to Table
0'0 < 0
we get
g® (t8b) ® (t® s) ® (t® t) : » {Str¥(A + B) | O4Thd][ing] T}
so that
(=) B g® (tl8 b) ® (tl8 5) ® (I8 t) : {Str¥(A+ B) | OC*[hd][ing] T }
and we are done since
O0*[hd][ing] T = ©“**[hd][ing] T

Case of OUOFOhd][ing] T.

Since
OFFLOMAHhd][tt] < OFihd][tt] A O OFOHthd][tt]
we have
b: {Str¥ Bool | QO*O4 [hd][tt] }
so that

t1® b : » {Str® Bool | 0"+ [hd[tt] }

Temporal Refinements for Guarded Recursive Types 79

We apply the case-elimination rule on b. In both branches, since (by subtyp-
ing) ¢ has type

> ({Str¥ Bool | OFO hd][tt]} — Strf A — Str¥ B — {Str¥(A + B) | 0F O hd][ing] T })
we get
g® (tl8 b) ® (t1® s) @ (t1® t) : » {Str¥(A+ B) | OFOH [hd][ing] T }
so that
(=) =& g @ (tl8 b) ® (t1® s) @ (t1® 1) : {Str¥(A + B) | OTFOH 2 hd][ing] T }

O

E.6 Colists

We detail here the refinement types given to the guarded and coinductive append
functions on colists in Table [l We present some basic material in §E.6] The
append function itself is detailed in §E.6] and we give sharper refinements with
iteration terms in We begin in with an overview of the main examples
on colists.

Overview The cases of

append® : {CoList® A | [-nil]} — ColList® A — {CoList® A | [-nil]}
append® : CoList® A — {CoList® A | [-nil]} — {CoList® A | [—nil]}

are detailed in Ex. [E.33
We now discuss

append : {ColList A | [box][fin]} — {CoList A | [box][fin]} — {CoList A | [box][fin]}

which says that append takes finite colists to a finite colist. Recall that [fin] =
<O[nil]. Details are given in Ex. m The other refinement types for append are
detailed in Ex. [E:36] and Ex.

We refer here to the code of the append function as defined in Table [3] and
Ex. First, since <[nil] is smooth, we can apply the rule (u-E) (Fig.
twice and reduce to

& F box,(append® (unbox s) (unbox t)) : {CoList A | [box]<[nil]}

where € assumes s of type {CoList A | [box] ¥ [nil] } and ¢ of type { CoList A | [box]*[nil] }.
Using the derived rule (u-I) (Ex.[6.10]), we further reduce to

& - box, (append® (unbox s) (unbox t)) : {CoList A | [box]OFH[nil] }
Now, since the formulae <t[nil] are safe, by subtyping (Fig. we have

Ers:M{ColistA | OFnil]} and &£rt:M{CoListA | Onill}

80 Guilhem Jaber and Colin Riba

and we can reduce to showing that the guarded append® has type Vk-V¢-T'(k, {),
where

T(k,0) := {ColList® A | OF[nil]} — {ColList® A | O*nil]} — {CoList® A | OF+*[nil] }
Let N(g, s,t) be such that append® = fix(g).As.\t.N (g, s,t). We show
AsAt.N(g,s,t): Vk-VL-T(k,)

in a typing context (leaved implicit) which assumes g of type »Vk - V¢ - T'(k,).
We apply the (V-CI) rule on Vk - V¢ - T(k,£). Since O°nil] < L, the branch of
V¢-T(0,¢) can be dealt with using the (EXF) rule. In the branch of V¢-T'(k+1, £),
we apply the (V-I) rule. We are thus left with showing

N(g,s,t) : {ColList® A ‘ OFFE il }

assuming further s : {CoList® A | O¥*![nil]} and ¢ : {CoList® A | O*[nil]}. We
unfold OF+1nil] as
K il < [nil] v O OF[nil]

Using the (V-E) rule, we have two cases for the refinement type of s. In the case
of {Colist A | [nil]}, since [nil] = [fold][ing] T, we have (unfold s) : [ing] T. Thanks
to the (INJg) rule, we are left with showing

t:{Colist A | Of[nil]} ¢ : {Colist A | OFFHnil]}
But we are done since [¢] < [k+¢+1] so that
O nil] = O+ njl]

Assume now that s has type {CoList A | O<*|nil]}. By unfolding OF++[nil] we
reduce to showing
N(g,s,t) : {CoList® A | OO nill}

Since, on colists, O(—) = [fold][in1][m1][next](—), we can apply the (INJ;-E) rule
on (unfold s). This amounts to showing

Cons® z (g ® xs ® (next t)) : {CoList A | QO *[nil]}
where, since
(unfold s) : {1+ A x » ColList® A | [iny][m1][next]OF [nil] }

we can assume xs : B {CoList® A ‘ OFnil]}. By subtyping and (V-E) we have
g :»T(k, L), so that
g®xs® (next t) : » {Colist A | OFF[nil] }

and we conclude by the analogue of Ex. for colists. The other typings for
append are dealt with similarly. Let us finally just mention that the type of
append® can be sharpened to

Vk-Ve-({CoList® A | O¥[nil]} — {CoList® A | O“**[nil]} — {ColList® A | OF[nil]})

reflecting that on finite colists, append® removes one constructor Nil® from its
arguments (see Ex. [E.38]).

Temporal Refinements for Guarded Recursive Types 81

The Type of CoLists The type of colists is

ColList A := EColList® A
Colists A := Fix(X).1+ A x »X

Its usual guarded constructors are represented as

Nil® := fold(ing()) : CoList® A
Cons® := Az.Azs.fold(iny (z,zs)) : A — » CoList® A — ColList® A

Their coinductive (for A a constant type) variants are

Nil := box,(Nil®) : ColList A
Cons := Az.\xs.box,(Cons® x (next (unbox zs))) : A — Colist A — CoList A

Note E.27. Extending the notation for (guarded) streams, we often write

(x 8 xs):=Cons® z xs [|8:=Nil® [z, 21,...,2,]8 ==z =8 [21,...,2,]8
(x:xs) :=Consxas [:=Nil [xo,21,...,2,] =0 [T1,...,20]

Note E.28 (Syntactic Sugar for Pattern Matching). Assuming s : ColList® A, we

often write
case s of

INilE s N
| Cons® z zs — M

for
case (unfold s) of

| y. N[()/y]
| y. Mmo(y)/z, m1(y)/xs]

Ezample E.29 (Formulae over Colist®). Assuming % : A and ¢ : CoList® A,

[nil] := [fold][ing] T : CoList® A
[—nil] := [fold][iny] T : CoList® A
[hd]y := [fold][in1][mo] : Colist® A
Qg := [fold][in1][m1][next]¢ : CoList® A
Cp = pa. Vo : Colist® A
Oty ==pta. pV Qo : CoList® A
Op =va. ¢ AQu : CoList® A
afirg .= va. [nil] vV (¢ A OQa) : CoList® A
[inf] := O[-nil] : CoList® A
[fin] = <©|nill CoListt A

Ezxzample E.30.

Cons® : A — » ColList® A — {ColList® A | [-nil]}
Cons® : A — » {ColList® A | [inf]} — {CoList® A | [inf]}
Nil® : {CoList® A | [nil]}

82 Guilhem Jaber and Colin Riba

Note that
|-Colist® A [m'] = \:‘ﬁn(p
Example E.31. Similarly as in and assuming ¢ : A we have
Cons?® : {A | ¢} — » {ColList® A | Ofin[hd]p} — {Colist® A | Ofin[hd]e}
Cons® : {A | ¢} — »{ColList® A | [nil]} — {CoList® A | Ofi*[hd]¢}
Nile : { CoList® A | Ofin[hd]ip}

Cons® : {A | ¢} — »{Colist® A | Ohd]p} — {CoList® A | O[hd]¢}

The Append Function on Colists

Ezample E.32 (The Append Function on Colists).
append® : ColList® A — CoList® A — Colist® A
= fix(g).\s.At.case s of
| NilE s ¢
| Cons® z zs — Cons® x (g ® xs @ (next t))

append : ColList A — Colist A — ColList A
:= As.\t.box, (append® (unbox s) (unbox t))

Ezample E.33 (Properties of Append).

append® : {CoList® A | [-nil]} — CoList® A — {Colist® A | [-nil]}
append® : CoList® A — {CoList® A | [-nil]} — {CoList® A | [-nil]}

Ezample E.34. Assuming o : A,
append® : {CoList® A | Ofi*[hd]p} — {ColList® A | Ofi[hd]p} — {ColList® A | Ofn[hd]e}
Proof. Let
T := {ColList® A | Ofir[hd]e} — {CoList® A | Ofi*[hd]p} — {ColList® A | O [hd]e}
and assume

g:»T

s : {ColList® A
t : {ColList® A4

Dﬁ“[hd]gpi
ofin[hd]e

Note that
O hd]e < [nil] v ([hd] A OO [hd]p)

We reason by cases on the refinement type of s, applying the (V-E) rule

(Fig. .

Temporal Refinements for Guarded Recursive Types 83
Case of [nil].
We thus have
unfold(s) : {1+ A x » ColList® A | [ing] T}
We apply the (INJo-E) rule and get the result by
t: {ColList® A | Ofin[hd]ep}

Case of [hd]p A OO [hd]e.
We thus have
s : {ColList® A | [hd]p A ODf"[hd]p}

Since the modalities [fold] and [iny] preserve A this gives
s : {CoList® A | [fold][in1] ([mo] A [m1][next] O [hd]y) }
so that
unfold(s) : {14 A x » CoList® A | [in1] ([mo]e A [m1][next]T2[hd]y) }
We then apply the (INJ;-E) rule. Assume
y: {A x » CoList® A | [mo]e A [m1][next] 02 [hd]p }

and let

z =mo(y): {A | ¢}

zs =1 (y) : » {Colist® A | O [hd]e}
Then Ex. easily gives

Cons® z (g ® xs ® (next t)) : {ColList® A | Ofin[hd]y}

Ezample E.35.

append : {Colist A | [box]<[nil]} — {CoList A | [box]<[nil]} — {CoList A | [box]<nil]}
append® : Vk - V£ - ({CoList® A | OF[nil]} — {CoList® A | Of[nil]} — {CoList® A | OF+[nil]})

Proof. Let
T(k,0) := ({CoList® A | OF[nil]} — {ColList® A | O*[nil]} —» {CoList® A | OF*[nil] })

and assume

g:»VE-VC-T(k,{)

Let
M(g,s,t) := case s of
| Nil® — ¢
| Cons® z zs — Cons® z (g ® xs @ (next t))
We show

As M (g, s,t) : Vk-VC-T(k,£)
We apply the (V-CI) rule on Vk. This leads to two cases.

84 Guilhem Jaber and Colin Riba

Case of V/-T(0,Y).
Apply the (V-I) rule on V¢ and assume
s : {CoList® A | O°nil]}
Since
Qi & L

the result follows using the rule (EXF).
Case of V¢ - T(k+1,7).
Apply the (V-I) rule on V¢ and assume

s : {CoList® A | OFF1nil]}
t : {Colist® A | O[nil]}
We have to show
M(g,s,t) : {CoList® A | OF ¢ nil]}
Using
Ok nil] < [nil] v OQOFnil]

we apply the (V-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].
We have
unfold(s) : {1+ A x » CoList® A | [ing] T}
Since [¢] < [k+1 + £], the result then follows by applying the (INJo-E)
rule.
(Sub)Case of OO nil].
We have

unfold(s) : {1+ A x » CoList® A | [iny][m1][next] O*[nil] }
Using the (INJ;-E) rule we are left with showing
Cons® x (g ® xs ® (next t)) : {ColList® A | OO+ [njl]}

where
x =mo(y): A
zs :=m(y) : » {Colist® A | OF[nil]}
assuming
y: {Ax» CoList® A | [m1][next] OF[nil] }
We have

g®axs® (next t) : > {Colist® A | OFF[nil]}
It follows that
Cons® (g ® xs ® (next t)) : {Colist® A | OOF+[nil]}
and we are done since

OOF+il] = kO il]

Temporal Refinements for Guarded Recursive Types 85

Example E.36. Assuming ¢ : A,
append : {Colist A | [box]<¢[hd]¢p} — Colist A — {CoList A | [box]<[hd]p}

append® : Vk - ({ColList® A | OF[hd]¢} — Colist® A — {Colist® A | OF[hd]p})
where, in the case of append, ¢ : A is safe and smooth.
Proof. Let

T(k) := {ColList® A | OF[hd]p} — CoList® A —s {ColList® A | OF[hd]e}

and assume

g Yk -T(k)
Let
M(g,s,t) := case s of
| NilE s ¢
| Cons® z zs — Cons® x (g ® xs @ (next t))
We show

As.At.M(g, s,t) : Vk - T(k)
We apply the (V-CI) rule on Vk. This leads to two cases.

Case of T'(0).
Assume
s : {CoList® A | ©°[hd]p}

Since
OOlhd]p & L

the result follows using the rule (EXF).
Case of T'(k+1).

Assume

s: {ColList® A | O*[hd]e}

t: Colist® A
Using

OkFhd]p < [hd]p v OOF[hd]p

we apply the (V-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [hd]p.

We have
unfold(s) : {1 + A x » ColList® A | [iny][mo]e}

Using the (INJ;-E) rule we are left with showing
Cons® x (g ® xs ® (next t)) : {ColList® A | O*[hd]e}
where

z =mo(y): {A | ¢}
zs :=m(y) : » Colist® A

86 Guilhem Jaber and Colin Riba

assuming

y: {A x » Colist® A | [m]e}
We have

Cons® = (g ® xzs ® (next t)) : {ColList® A | [hd]p}

and we are done since
[hd] = O*F*[hd]e

(Sub)Case of)<k hd]ep.
We have

unfold(s) : {1+ A x » CoList® A | [iny][m1][next] O [hd]e }
Using the (INJ1-E) rule we are left with showing

Cons® z (g ® x5 ® (next t)) : {CoList® A | OF+![hd]e}

where
x =m(y): A
xs =71 (y) : » {Colist® A | OF[hd]p}
assuming
y: {A x » CoList® A | [m1][next]OF [hd]¢ }
We have

g®xs® (next t) : » {Colist® A | OF[hd]ep}

It follows that
Cons® z (g ® xs ® (next t)) : {Colist® A | OOF[hd]p}
and we are done since

OCF[hd]p = Ok Fihd]p

Example E.37. Assuming ¢ : A, we have
append : {Colist A | [box]<[nil]} — {CoList A | [box]<[hd]p} — {ColList A | [box]<[hd]p}
append® : Vk - V£ - ({CoList® A | OF[nil]} — {CoList® A | Of[hd]p} — {Colist® A | O [hd]ep})

where, in the case of append, ¢ : A is safe and smooth.

Temporal Refinements for Guarded Recursive Types 87

Proof. Let
T(k,¢) := ({CoList® A | OFil]} — {CoList® A | Of[hd]p} — {Colist® A ‘ OFlhd]e})

and assume

gk -V0-T(k,0)

Let
M(g,s,t) := case s of
| Nil® — ¢
| Cons® z zs — Cons® z (g ® xs & (next t))
We show

As M (g, s,t) : Vk -VC-T(k, L)
We apply the (V-CI) rule on Vk. This leads to two cases.

Case of V¢ -T(0,¢).
We apply the (V-I) rule on V¢ and assume

s : {CoList® A | O[nil]}

Since
Ol & L

the result follows using the rule (EXF).
Case of V¢ - T(k+1,¢).
We apply the (V-I) rule on V¢ and assume

s : {CoList® A | OFF1nil]}
t : {Colist® A | Of[hd]ep}

Using
SR il] < [nil] v OO nil]

we apply the (V-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].
We have
unfold(s) : {1+ A x » ColList® A | [ing] T}

Since [¢] < [k + 1+ £], the result then follows by applying the (INJy-E)
rule.

(Sub)Case of OO nill.
We have

unfold(s) : {1+ A x » CoList® A | [iny][m1][next]OFnil] }
Using the (INJ1-E) rule we are left with showing

Cons® z (g ® zs @ (next t)) : {Colist® A | OO+ [hd]p}

88 Guilhem Jaber and Colin Riba

where
x =mo(y): A
zs :=m(y) : » {Colist® A | OF[nil]}
assuming
y: {Ax» CoList® A | [m][next] OF[nil] }
We have

g®xs® (next t) : » {Colist® A | OF[hd]e}
It follows that
Cons® z (g ® xs ® (next t)) : {Colist® A | OO+ [hd]p}
and we are done since

O0*+[hdlip = O*+0+1 hd]p

Sharper Refinements for the Append Function on Colists
Ezxzample E.38.

append® : Vk - V¢ - ({CoList® A | OFnil]} —» {CoList® A | OF*[nil]} — {Colist® A | OF¢[nil]})
Proof. Let
T(k,0) := ({ColList® A | OF[nil]} — {ColList® A | O*T*[nil]} — {ColList® A | OF+[nil]})

and assume
g:»VEk-VL-T(k, L)

Let
M(g,s,t) := case s of
| NilE s ¢
| Cons® x zs — Cons® z (g ® xs & (next t))
We show

As At M (g, s,t) : Vk-VL-T(k,)
We apply the (V-CI) rule on Vk. This leads to two cases.

Case of V/-T(0,Y).
Apply the (V-I) rule on V¢ and assume

s : {ColList® A | ©Onil]}

Since
QOnill & L

the result follows using the rule (EXF).

Temporal Refinements for Guarded Recursive Types 89

Case of V¢ - T(k+1,().
Apply the (V-I) rule on V¢ and assume

s: {Colist® A | OF+*[nil]}
t : {Colist® A | O nill}

We have to show
M(g,s,t) : {Colist® A | Ok nil] }
Using
Ok il] < [nil] v OO nil]

we apply the (V-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].
We have
unfold(s) : {1+ A x » Colist® A | [ing] T}

Since [¢+1] < [k+1+/], the result then follows by applying the (INJo-E)
rule.

(Sub)Case of O<OFnil].
We have

unfold(s) : {1+ A x » CoList® A | [iny][m][next]OF nil] }
Using the (INJ;-E) rule we are left with showing

Cons® x (g ® xs ® (next t)) : {ColList® A | OFF1+[nil] }

where
x =mo(y): A
zs :=m(y) : » {Colist® A | OF[nil]}
assuming
y: {A x » ColList® A | [m][next]OF[nil] }
We have

g®axs® (next t) : » {Colist® A | OFF[nil]}
It follows that

Cons® (g ® xs ® (next t)) : {CoList® A | OOF+[nill}
and we are done since

OOk nil] = Ok nil]

Example E.39. Assuming ¢ : A, we have
append® : Vk - V£ - ({CoList® A | OF[nil]} — {CoList® A | O*F*[hd]p} — {ColList® A | OF+[hd]p})

90 Guilhem Jaber and Colin Riba
Proof. Let
T(k,¢) := ({ColList® A | OF[nil]} — {ColList® A | O*T[hd]p} — {ColList® A | OF[hd]¢})

and assume

g:»Vk V- T(k,0)

Let
M(g,s,t) := case s of
| Nil® — ¢
| Cons® z zs — Cons® x (g ® xs @ (next t))
We show

As M (g, 5,1) = Vh - Ve - T(k, €)
We apply the (V-CI) rule on Vk. This leads to two cases.

Case of V¢ -T(0,¢).
We apply the (V-I) rule on V¢ and assume

s : {ColList® A | O°[nil]}
Since
Ol & L

the result follows using the rule (EXF).
Case of V(- T(k+1,¢).
We apply the (V-I) rule on V¢ and assume

s: {Colist® A | OF+*[nil]}
t : {Colist® A | O**tlhd]p}

We have to show
M(g,s,t): {CoList® A | Ok + 1 + £[hd]p}
Using
O il] < [nil] v OO nil]

we apply the (V-E) rule on the refinement type of s. This leads to two
subcases.

(Sub)Case of [nil].
We have
unfold(s) : {1+ A x » CoList® A | [ing] T}

Since [¢+1] < [k+1+/], the result then follows by applying the (INJy-E)
rule.

Temporal Refinements for Guarded Recursive Types 91

(Sub)Case of OO¥nill.
We have
unfold(s) : {1+ A x » CoList® A | [iny][m][next]OF nil] }
Using the (INJ1-E) rule we are left with showing

Cons?® z (g ® xs ® (next t)) : { Colist® A | OF 1 hd]p}

where
x =mo(y): A
zs :=m1(y) : » {Colist® A | OF[nil]}
assuming
y: {Axw» CoList® A | [m][next] OF[nil] }
We have

g® xs ® (next t) : » {Colist® A | OF[hd]e}
It follows that
Cons® x (g ® xs ® (next t)) : {ColList® A | OOF+[hd]e}
and we are done since

O<>k+€[hdk0 = <>k+1+z[hd]g0

E.7 Resumptions

This example is adapted from [48]. Fix a constant type 0 and a finite base type

I. Let
Res A := HRes® A

Res® A := Fix(X).A + (0 x »X)?
and
Ret® := Aa. fold(ing a) : A —> Res® A
Cont® := Ak. fold(iny k) : (0 X » Res® A)T — Res® A

Ezample E.40 (A Scheduler on Resumptions).

sched : ResA — ResA — Res A
:= Ap.\g. box,(sched® (unbox p) (unbox ¢))

sched® : Res® A — Res® A — Res® A
:= fix(g).Ap.Aq. case p of
| Ret® a — Ret® a
| Cont® k —
let h = Xi. let {(o,t) = ki
in (0,9 ® (next q) ® t)
in Cont® h

92 Guilhem Jaber and Colin Riba

Here, Ret®(a) represents a computation which returns the value a : A, while
Cont®(f, k) (with (f,k) : T — (0 x » Res® A)) represents a computation which
on input i : I outputs fi : 0 and continues with the computation ki : » Res® A.

Provided with resumptions p, ¢ : Res® A, the scheduler (sched® p ¢), adapted
from [48], first evaluates p. If p returns, then the whole computation returns,
with the same value. Otherwise, p evaluates to say Cont®(f, k). Then (sched® p q)
produces a computation which on input i : T outputs fi and continues with the
computation (sched® ¢ (ki)), thus switching arguments.

Ezample E. 41 (Formulae on Res® A). Assuming ¢ : A, ¢ : Res® A, ¢ : 0 and
iel,

[Ret] :=[fold][ino] T : Res® A
[Cont] := [fold][iny] T : Res® A
[now]yp := [fold][ing]v : Res® A
[out;]¢ := [fold][in1] ([i] |~ [m0]?) : Res® A
[Aout]d) := Ajerfout;]d : Res® A
[Vout]¥ := Vjerfout;]d : Res® A
Oip = [fold][in1] ([i] |~ [m1][next]e) : Res® A
¢ =NhertOigp :Res® A
Q¢ =Vier O1 ¢ : Res® A
d0p =va. pA@« : Res® A
VOp :=va. pAB® « : Res® A
IO = pa. pV o« : Res® A
VO = pa. pV O« : Res® A
We moreover let
VO%) := v*a. YA ® a : Res® A YO = pta. PV ® o : Res® A
0% := v*a. YA @ a : Rest A IOt == pta. YV @ o : Res® A

The formula 3C¢ holds on a resumption if there is a finite sequence of inputs
which leads to a resumption satisfying ¢, while VO holds on a resumption if ¢
holds at some point for any infinite sequence of inputs (this relies on Weak Konig
Lemma). Moreover, 30¢ expresses that there is an infinite sequence of inputs in
which the resumption never returns and along which ¢ always holds, while VO
expresses that for all infinite sequence of inputs, the resumption never returns
and ¢ always holds. For instance, the composite formula 303O[Ret] says that
there is an infinite sequence of inputs along which (1) the resumption does not
return and (2), at any point, there is a finite sequence of inputs which leads to
a return.

Temporal Refinements for Guarded Recursive Types 93

Ezample E.42. Let ¢ : Abe a safe and smooth formula and let ¢ € {[Ret], [now]y}.
We have

sched : {Res A | [box]3OC¢} — {Res A | [box]FOp} — {Res A | [box]FOp}
sched : {Res A | [box]V<Op} — {Res A | [box]VO@p} — {Res A | [box]VOp}

sched® : Vk - V0 - ({Res® A | 30Fp} — {Res® A | 30fp} — {Res® A | 3OF+0p 1)
sched® : Vk - V0 - ({Res® A | VOFp} — {Res® A | VOlp} — {Res® A | VOl
Proof. Let & € {30,V<¢} and

T(k,0) := {Res® A | OFp} — {Res® A | Ofp} — {Res® A | OF oy}

and assume
g:w»Vk-VC-T(k,)

Let
M(g,p,q) := case p of
| Ret® @ — Ret® a
| Cont® k& —
let h = Xi. let {(o,t) = ki
in (0,9 ® (next q) ®t)
in Cont® h
We show

ApAg.M(g,p,q) : Vk -0 -T(k,£)

We apply the (V-CI) rule on Vk. In the case of V¢ - T(0,¢), we get the result
using the (ExF) rule since
OV = L

As for V¢ - T(k+1,), we apply the (V-I) rule on V¢. We have to show
M(g,p.q) : {Res® A | Ottt}

assuming
p:{Resf A | OF 1y}
q: {Res® A | Oy}
Using
IOkl = p v @30k
VOl = v o VOFp
we reason by cases on the refinement type of p.
Case of [Ret].

We have
unfold p : {A+ (0 x » Res® A)! | [ing] T}

We apply the (INJg-E) rule on p and we are done since
Ret® a : {Res® A | [Ret]}

assuming
a:A

94 Guilhem Jaber and Colin Riba

Case of [now]i.
We have
unfold p : {A + (0 x » Res® A)! | [ing]e}

We apply the (INJp-E) rule on p and we are done since
Ret® a : {Res® A | [now]t}

assuming
a:{A |y}

Case of @ 3OF .
We apply the (V-E) rule on the refinement type of p. So let 1 € I and assume

p:{Res® A | O:30Fp}
We have
unfold p : {A+ (0 x » Res® A)! | [iny] ([i] | [m1][next]FOFp) }
We apply the (INJ;-E) rule on the refinement type of p. Let

N(g,k,q) :=let h = X\i. let {o,t) = ki
in (0,9 ® (next q) ®t)

in Cont® I
We show
N(g,k,q) : {Res® A | O;3F0OF o}
assuming
k: {(O X » Res® A)! ’ [i] |+ [wl][next]ﬂokgo}
Assuming

i {T | [i]}
we thus have
ki: {0 x » Res® A | [m][next]IOF¢}

It follows that
(mo(ki), g ® (next q) @ (1 (ki))) : {0 x > Res® A | [][next] 3O+
and thus
Ni. (mo(ki), g @ (next q) @ (m1(ki))) : {(0 x > Res® A)T | [i] |+ [m][next] 30+ +e}

Now we are done since

0130k = [fold][iny] ([i] > [m1][next] IO)
and Cont® = Ah. fold(iny h)

Temporal Refinements for Guarded Recursive Types 95

Case of 0 VOF .
Using
v<>k+£+1<p Sp Vv ®v<>k+£<p

for each i € T we show
M(g,p,q) : {Rest A | O1VOFHp}

So let i € I. Since
p: {ResgA | W) 3<>k'<p}

We have
unfold p : {A+ (0 x » Res® A)! | [iny] ([i] [[m1][next]FOFp) }
and we conclude similarly as in the case of @ 30OF . ad

Ezxample E.43. Let ¢ : 0 be a safe and smooth formula. Furthermore, let O €
{vO, 30}, ¢ € {vO,30} and [out] € {[Aout], [Vout]}. We have

sched : {Res A | [box]O<[out]} — {Res A | [box]O< out]d} — {Res A | [box]O< [out]d}

Proof. We show that we can give the following refinement type to sched®:

Vk-lo-Vly-({Res® A | 0Fo% out]d} — {Res® A | OFof Jout]d} — {Res® A | oFofTh [out]y})
Let T(k, £y, ¢1) be the type

{Res® A | OFO%[out]d} — {Res® A | OFOH [out]d} — {Res® A | OF OO [out]y }

and assume
qg: »VEk - Vily -Vl - T(k,go,éﬁ

Let
M(g,p,q) := case p of
| Ret® @ — Ret® a
| Cont® k& —
let h = Xi. let {o,t) = ki
in (0,9 ® (next q) ®t)
in Cont® h
We show

Ap-Aq-M (g, p,q) : Vk - Vlo - ey - T(k, Lo, 1)
We apply the (V-CI) rule on Vk. The case of V¢, - V¢1 - T'(0, Lo, ¢1) is trivial since

000+ [out]) < T

As for Vo - Vtq - T(k+1,£0,¢1), we apply the (V-CI) rule, this time on V4. In
the case of ¥/ - T(k+1,0,¢1), since O¥F100out]dd is of the form

Olout]d A ¢

96 Guilhem Jaber and Colin Riba

while
Olout]d & L

we can conclude using the (EXF) rule. It remains to deal with the case of ¥/; -
T(k+1,0p+1,¢1). We apply the (V-I) rule on V¢;. We show

M(g,p,q) : {Res® A | OFF1Ol+aHout]y}

assuming
p: {Res® A | OF+10l+out]d}
q: {Res® A | OFF1O4 out]y}

We will apply the (INJ;-E) rule on (unfold p) and show
N(g,k,q) : {Res® A | OFF1OhTO+ out]}

where
N(g,k,q) :=let h = \i. let {o,t) = ki
in (0,9 ® (next q) ®t)
in Cont® h

and under suitable assumption on the refinement type of k. We have

Ok O tatout] < Olothitioutly A o VOFOLHa+out]y
Jokttolhtatiout]y < Ohthtioutly A @ IOFOLTh+iout]y

and we consider each conjunct separately.

Cases of Ofottti[out]y.
We have
p: {Res® A | Ofottlout]}

Using
JFolottout]d < [out]d Vv @ IO out]d
vohttout]d & [out]d VvV @ VO out]d
we reason by cases on the refinement type of p.
(Sub)Cases of [out]d.
We show
N(g,k,q) : {Res® A | [out]9}
We handle the cases of [Vout] and [Aout] separately.
(SubSub)Case of [Vout].
We apply the (V-E) rule on the refinement type of p. So let i € I

and assume
p: {Res® A | [out;]J}

This amounts to
k:{(0 x »Res® A)! | [i] || [mo]V}

Hence assuming

iA{A T[]}

Temporal Refinements for Guarded Recursive Types 97

we have
(mo (ki) , g ® (next q) ® (m1(ki))) : {0 x » Res® A | [mo]d}
It follows that
Ni. (mo(ki) , g ® (next q) ® (1 (ki) : {(0 x » Res® A)T | [1] |} o]}
and we are done since
Cont® = Ah. fold(iny h)

(SubSub)Case of [Aout].
For each i € I we have to show

N(g,k,q) : {Res® A | [out;]9}

So let i € I. Since
p: {Res® A | [out;]}

we have

ke {(0 % » RestE A)T | [1] |- [mo]0}

and we conclude similarly as in the case of [Vout].
(Sub)Case of @ 3% [out]d.
We show
N(g,k,q) : {Res® A | @ 301 out]}

We apply the (V-E) rule on the refinement type of p. So let i € I and
assume
p:{Rest A | O30 [out]d}

This amounts to
k: {(0 x »Res® A) | [i] ||+ [m1][next] 3O [out] }

Assuming
i AT | [i]}

we thus have
ki: {0 x » Res® A | [m1][next]3O% [out]d}
since (by subtyping) g has type
> ({Res® A | 0'30%out]d} — {Res® A | 0'30 Jout]d} — {Res® A | O30T [out]9 })
and since, according to Table

09 < 6

98 Guilhem Jaber and Colin Riba

it follows that

(mo(ki), g ® (next q) ® (my(ki))) : {0 x > Res® A | [m1][next]FOO T4 [out]d }

We thus get

Ai. (mo(ki), g ® (next q) ® (w1 (ki) : {(0 x » Res® A)! | [] ||+ [m1][next] 3O [out]d)}
Now we are done since

01300+ out]d) = [fold][iny] ([1] [[m][next] IO+ [out])

and Cont® = \h. fold(iny h)
(Sub)Case of ® VO [out]d.
We show

N(g,k,q) : {Res® A | @ VO out]y }
Hence, for each i € T we have to show
N(g,k,q) : {Res® A | O1 VO [out]d}
So let i € I. Since
p:{Res® A | O: VO out]d}
we have
k: {(0 x »Res® A) | [1] > [m1][next] V<O [out]d) }

and we conclude similarly as in the case of @ 3O [out]¥.
Case of @ YOFO T+t out]d).

For each i € I we have to show
N(g,k,q): {Res® A ’ O;VOkOoTh+[out] }
So let i € I. Since
p: {Res® A | O;VOFOHL T out]y}
we have
k:{(0x »Res® A)L | [i] |+ [m1][next]vOF O [out]d }
Assuming
AT | [i]}

we thus have

ki : {0 x » Res® A | [m1][next]VOF O [out]d }
and it follows that
Ni. (mo(ki), g ® (next q) ® (w1 (ki) : {(0 x » Res® A)! | [i] |l [m1][next]vOFOfotatt [out]d }

Now we are done since

O VO30Tt [out]y = [fold][iny] ([1] | [m1] [next]VOFIO T+ [out]d)
and Cont® = \h. fold(iny h)

Temporal Refinements for Guarded Recursive Types 99

Case of @ JOF Ottt out]d.
We have to show

N(g,k,q) : {Res® A | @ IOFOOT0+out]y}
We apply the (V-E) rule on the refinement type of p. So let 1 € I and assume
p: {Res® A | O;30FO+out]i)}
We have
k: {(0 x » Res® A)! | [4] [+ [m1][next] 30ROt [out]y) }

and we conclude similarly as in the case of @ YOFOf T+ out]d. 0
Example E.44. Let O € {VO,30} and © € {VO,3O}. We have
sched : {Res A | [box]O<C[Ret]} — {Res A | [box]O<C[Ret]} — {Res A | [box]O<[Ret]}
Proof. We show that we can give the following refinement type to sched®:
V-Vl V01 ({Res® A | OFOD[Ret]} — {Res® A | O0"O [Ret]} — {Res® A | DF O [Ret] })
Let T'(k, 4o, ¥¢1) be the type
{Res® A | 0P [Ret]} — {Res® A | 0P [Ret]} — {Res® 4 | DR [Ret] }

and assume

g: | A V&) . Vél . T(k,ﬁo,ﬁl)

Let
M(g,p,q) := case p of
| Ret® @ — Ret® a
| Cont® k& —
let h = Xi. let {o,t) = ki
in (0,9 ® (next q) ®t)
in Cont® h
We show

ApAg.M(g,p,q) : Vk - Vly -Vl - T(k, lo, 1)
We apply the (V-CI) rule on Vk. The case of V¢, - V¢1 - T'(0, £o, ¢1) is trivial since

00+ [Ret] < T

As for Vo - Vtq - T(k+1,£o,¢1), we apply the (V-CI) rule, this time on V4. In
the case of V/; - T'(k+1,0,¢1), since O¥*1OC[Ret] is of the form

OORet] A ¢

while
OORet] & L

100 Guilhem Jaber and Colin Riba

we can conclude using the (EXF) rule. It remains to deal with the case of V/; -
T(k+1,00+1,41). We apply the (V-I) rule on V¢;. We show

M(g,p,q) : {Res® A | OF+H1OHOH[Ret]}

assuming
p: {Res® A | OF+1OO T Ret]}
q: {Res® A | OFF1OA [Ret]}

We have

YORHLGl+HH [Ret] < Olothti[Ret] A @ VOFGOTa+[Ret]
JorH1OhHa L Ret] & Ohothti[Ret] A @ FOFOL AT Ret]

and we consider each conjunct separately.

Cases of Ofotit1[Ret].
We have
p: {Res® A | Ofotfout]y}

Using
JOlott[Ret] < [Ret] vV @ IO [Ret]
VOt [Ret] < [Ret] V@ VO[Ret]

we reason by cases on the refinement type of p. In the case of [Ret], apply
the (INJp-E) rule on (unfold p), and we conclude similarly as in Ex. In
the other cases, we apply the (INJ;-E) rule on (unfold p) and show

N(g,k,q) : {Res® A | Ofotfitt[Ret]}

where
N(g,k,q) :=let h=M\i. let {(o,t) = ki
in (0,9 ® (next q) ® t)
in Cont® h

and under suitable assumption on the refinement type of k. We can then
conclude similarly as in Ex. [E-43]

Cases of QOOFO 1+ [Ret].
We apply the (INJ;-E) rule on (unfold p) and show

N(g.k,q) : {Res® A | OFF1OlT0H [Ret]}

where
N(g,k,q) :=let h = X\i. let {o,t) = ki
in (0,9 ® (next q) ®t)
in Cont®

and under suitable assumption on the refinement type of k. We can then
conclude similarly as in Ex. ad

Temporal Refinements for Guarded Recursive Types 101

E.8 Breadth-First Tree Traversal

Infinite Binary Trees The guarded recursive type of binary trees is

Tree® A := Fix(X).Ax (»X x »X)
Tree A =M Tree® A

The usual guarded constructors and destructors on Tree® A are represented as

Node® := Av. M. Ar.fold((v, (€,7))) : A — » Tree®? A — » Tree® A — Tree® A

label® := At.m(unfold t) :Tree®! A — A
sonf := At.mo(m (unfold t)) : Tree®? A — » Tree® A
song = At.m (m (unfold ¢)) : Tree®? A — » Tree® A

Their coinductive (for A a constant type) variants are

Node := Av. AL 7. A — TreeA — Tree A — Tree A
box,(Node® v (next (unbox £)) (next (unbox ¢)))

label := At.label® (unbox t) :TreeA — A

song := At.son? (unbox t) : Tree A — Tree® A

son, := At.son& (unbox t) : Tree A — Tree A

Ezample E.45 (Tree Formulae). Assuming ¢ : Tree® A,

VOp : Tree® A
=va. p A (Qea A Ora)

IO Treef A
= pa. oV (OQra VvV Ora)

Ezxample E.46. Assuming ¢ : A, we have

Node® : {A | ¢} — » {Tree® A | vO[Ibl]p} — » {Tree® A | VO[Ibl]p} — {Tree® A | VO[Ibl]}
label® : {Tree® A | VO[Ibllo} — {A | ¢}

sonf : {Tree® A | VO[Ibljp} — » {Tree® A | VO[Ibl]p}

song : {Tree® A | VO[lbljp} — » {Tree® A | VO[Ibl]p}

Breadth-First Traversal of Guarded Trees Using Forests

102 Guilhem Jaber and Colin Riba

Example E. 7.

bft : Tree A — Colist 4
:= At. box, (bft® (unbox t))

bft® : Tree® A — ColList® A
:= At.bftaux® [t]8

bftaux® : CoList®(Tree® A) — CoList® A
:= fix(g).As. case s of
| NilE s Nil®

| Cons® z s — (label® z) :8 g ® (next(appendg) ® xs ® [(sonf), (son& :c)]g>)

where
15> := next([J8)
[Yo, Y1, - - - ,yn]g> := next(Cons®) ® yo ® next[yi, ..., Yn)

g>
FEzample E.48.
bft® : Tree®? A — {ColList® A | [-nil]}
bftaux® : {CoList®(Tree® A) | [-nil]} — {CoList® A | [-nil]}
Example E.49.
bft® : Tree A — {ColList® A | [inf]}
bftaux® : {CoList®(Tree A) | [-nil]} — {CoList® A | [inf]}
Ezample E.50. Assuming ¢ : A,
bfté : {Tree® A | VO[Ibl]p} — {CoList® A | O[hd]p}
Proof. Thanks to Ex. [E:30] and Ex. we can reduce to showing
bftaux® : { CoList®(Tree® A) | [-nil] A O [hd]VO[Iblj} — {CoList® A | O[hd]¢}
Let
T := {Colist®(Tree® A) | [-nil] A O [hd]vO[Ibl]p} — {ColList® A | O[hd]e}
and assume

g:»T
s : {CoList®(Tree® A) | [—nil] A O [hd]vO([Ibl] }

Note that we have, at type CoList®(Tree® A),

[—nil] A O [hd]VO(Ibllp < [—nil] A ([nil] v ([hd]YO[Ibljp A OO [hd]¥O[Ibl]¢))
& ([=nil] Anil]) Vv ([=nil] A [hd]VO[Ibl]p A OO [hd]VO[Ibl]¢)

Temporal Refinements for Guarded Recursive Types 103

Since the modality [fold] preserves A and L (Table[2), we have
([=nil] A [nil]) = L

We apply the (V-E) rule on the refinement type of s. The branch of [—nil] A [nil]
is dealt-with using the rule (EXF). It remains to handle the case of

s : {CoList®(Tree® A) | [=nil] A [hd]VO[Ibljp A OO [hd]VO[Iblje}
Since the modalities [fold] and [in1] preserve A we have
unfold(s) : {1 + Tree® A x » CoList®(Tree® A) | [in1]([mole A [m1][next]T 2 [hd]VO[Ibl)¢) }
Using the typing rule (INJ;-E) (Fig. [8) and Ex. we are left with showing

v ::€ g ® (next(append®) ® zs @ [/, r}g’) : {ColList® A | O[hd]p}

where
TS:=T Y : » {CoList®(Tree® A) | Ofin[hd]vO[Iblj¢ }
v :=label® (mp y) : {4 | ¢}
¢ :=sonf (mpy) :»{Tree® A | VO[Ibl]p}
r :=song (my y) :»{Tree® A | VO[Ibl]x}
assuming

y : {Tree® A x » Colist®(Tree® A) | [mo]p A [m1][next] D2 [hd]VO[Iblje }
It follows from Ex. [E.30] and Ex. [E:31] that
[¢,r]e” : » {CoList®(Tree A) | [=nil] A Ofin[hd]VO[lbl]p }
Hence, by Ex. and Ex. we obtain
next(append®) @ s ® [¢,7]8% : » { CoList®(Tree A) | [=nil] A DR [hd]vO[Ibl]p }
and the result follows. O

Martin Hofmann’s Algorithm We follow the presentation of [I0] with some
slight changes in terminology and notation. Consider the non-strictly positive

type
Rou® A := Fix(X). 1+ ((»X — »A) — A)

so that
Rou®(ColList® A) := Fix(X). 1 + ((»X — » CoList® A) — ColList® A)
The constructors of Rou® A are

Over® := fold(ing()) :Rou® A
Cont® := Af.fold(iny f) : ((» Rou® A — »A) — A) — Rou® A

104 Guilhem Jaber and Colin Riba

The following are two basic important functions on Rou®:

unfold : Rou® A — (»Rout A — »A) — »A
:= Ac. case c of
| Over® +— Mk. k (next Over®)
| Cont®f — Mk. next(fk)

extract : Rou®(CoList® A) — ColList® A
:= fix(g).\c. case c of
| Over® — Nil®
| Cont;f — fg®

where
g2 =drg®2x

‘We then let

bft® : Tree® A — Colist® A
:= At. extract (bftaux ¢ Over®)

bftaux : Tree® A — Rou®(CoList® A) — Rou®(CoList® A)
:= fix(g). A\t Ac.
Cont (k. (label®) ::8 unfold ¢ (ko (g ® (sonft))® o (g ® (songt))®))

Ezample E.51 ((Non) Emptiness).

[ov] := [fold][ing] T : Rou® A
[ct] := [fold][in1]T : Rou® A

Example E.52. Assuming ¢ : A, we let
[Rou]y := va. [fold][in](([next]a | [next]y) | ¢) : Rou® A
Then for ¢ : CoList® A we have
extract : {Rou®(Colist® A) | [Rou]p} — {ColList® A | v}

Proof. Assume

g : » ({Rou®(ColList® A) | [Rou]p} —> {ColList® A | ©})
¢ : {Rou®(Colist® A) | [Rou]p}

and let
B := Colist® A
Since
[Roulp = va. [fold][in1](([next]a [~ [next]y) > »)
we have

(unfold ¢) : {1 + (» Rou® B — »B) — B | [in1](([next][Rou]y ||~ [next]e) |)}

Temporal Refinements for Guarded Recursive Types 105

We can thus apply the (INJ;-E) rule, which leads us to showing
fQx. g@x):{B|¢}
assuming
f:{(»Rou® B — »B) — B | ([next][Rou]p ||~ [next]y) |+ ¢}

that is
f (> {Rout B | [Rou]p} = »{B | ¢}) — {B | ¢}

But this is trivial, by assumption on the type of g. O
Example E.53. Assuming ¢ : A we have
unfold : Rou® A — (> Rouf A — »-{A | o}) — » {4 | ¢}
Proof. Assume
¢ :Rou® A
E:»Rout A — »{A]| p}
S+ (»{Rouf A | [Roujp} — > {A | 0}) — {A] ¢}

Then we have
k (next Over®) : » {A | p}

Moreover, by subtyping we have
k:» {Rou® A | [Roulp} — »{A| ¢}

so that
next(fk) : » {A | ¢}

Ezxample E.5/. Assuming ¢ : A we have

bft® : {Tree® A | vO[Ibl]¢} — {CoList® A | Olhd]p}
Proof. Tt follows from the type of extract in Ex.[E.52)that we are done if we show
bftaux : {Tree® A | vO[Ibl])} — Rou®(CoList® A) — {Rou®(ColList® A) | [Rou]O[hd]¢}
Let
T := {Tree® A | VO[Ibl]t)} — Rou®(Colist® A) — {Rou®(CoList® A) | [Rou]O[hd]¢}
and assume

g:»T

t : {Tree® A | VO[Ibl]p}
¢ : Rou®(Colist® A)

106 Guilhem Jaber and Colin Riba

Using Ex. let

0 :=son% t: »{Tree® A | VO[Ibl]}
r:=son8 ¢ : » {Tree® A | VO[Ibl]¢}

Since (label® t) : {A | ¢}, it follows from Ex. [E.31] that we are done if we show
unfold ¢ (ko (g® £)® o (g®r)®) : »{CoList® A | O[hd]¢}
assuming
k : » {Rou® (CoList® A) | [Rou]d[hd]¢} — » {CoList® A | O[hd]p}
But by Ex. [E-53] we are done since

ko(g®0)®o(g®r)®:»Rou (CoList A) — » {Colist® A | O[hd]p}

F Proofs of

Note F.1. In §F.1] we assume formulae to have no free iteration variables.
Free iteration variables in types are then always instantiated in the Adequacy
Theorem (Thm. Thm. [7.7)).

F.1 Correctness of the External and Internal Semantics
Proof of Lem. (Lem. [7.2))
Lemma F.2. If+2 ¢ in full modal theory of Def. then {|p[} = T'[A].

Lemma[D.19] gives almost all the axioms and rules of Table [and Fig. [6 but
for the [ev(—)] modality that we treat separately. We first treat the axioms of
Table 21

Lemma F.3. If p: A is an aziom of Table@ then {|g0|}A = [4].

Proof. Most of the axioms follow from Lem. Following Def. [£.4] we include
the axioms marked (C) in Table [2] The cases of [box] are trivial and omitted.

Case of (C). Since in each case, the map {|[A]|} preserves A.
The case of [ev(—)] is treated directly:

FE2A ([ev()lv Alev(d)lp) = [ev(9)](¥ Ay)

Let € I'| B — A] and assume that = € {|[ev(¢)]¥[} N {|[ev(#)]¢[}. Let now
y € I'[B] such that y € {|¢|}. We then have ev o (x,y) € {|v|} N {|ol}.

Temporal Refinements for Guarded Recursive Types 107

Case of (N). Since {|[m;]|}, {|[next][} and {|[fold][} are maps of Heyting algebras.
The case of [ev(—)] is treated directly:

FE= A fev(e)] T

Let x € I'|B — A]. Given y € I'[B] such that y € {|¢|}, we have evo(z,y) €
LA = {71

Case of (P). Since {|[m;][}, {|[next][} and {|[fold]|} are maps of Heyting algebras.
As for [in;], this follows from Lem. |D.19

Case of (Cy/). By Lem.

Case of (C.,). Since {|[m]|}, {|[next]|} and {|[fold]|} are maps of Heyting alge-
bras. O

—

In order to handle fixpoints, we have the usual monotonicity lemma w.r.t. set
inclusion.

Lemma F.4. Consider, for a formula oy : A1,...,ap : A F p, the map
{lel} : P(I'[AL]) x - - x P(C[AR]) — P(I[A]), v — {l¢l},

Forie{1,...,k}, if a; Pos ¢ (resp. a; Neg @), then w.r.t. set inclusion, {|¢|}
is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma

Proof (Proof of Lemma . By induction on 4 . The rules of intuitionistic
propositional logic (Fig. [16) as well as of (CL) are trivial and omitted.

Case of
FYy=p
=AY = [Alp

By Lem. this holds for [m;], [next] and [fold] since {|[m;][}, {|[next]|} and
{|[fold]|} are maps of Heyting algebras. As for [in;], this follows from the fact
that {|[in;]|} preserves implications as it preserves V.

The case of [ev(—)] is treated directly:

(RM)

FAy =
FEoATev(9)]Y = [ev(@)e

Let ¢ € I'[B — A]. Given y € I'[B] such that y € {|¢[}, we have evo(x,y) €

{[¥[}, so that ev o (z,y) € {|¢[} since {[[} {|l}.
Case of

H
+BA Thox|p

Trivial.

108 Guilhem Jaber and Colin Riba

Case of
}—Bw:(b Fo:A

FB—A [ev(d)]p = [ev(¥)]e

Let © € I'lB — A] and assume that = € {|[ev(¢)]p[}. Let furthermore
y € I'[B] such that y € {|v|}. We have to show ev o (x,y) € {¢[}. By
induction hypothesis we have y € {|¢ = ¢|}, so that y € {|¢[}. But this

implies ev o (x,y) € {|p|} since = € {|[ev(p)]pl[}.
Case of

FE=4 (fev(vo)]e A lev(¥1)le) = [ev(vo V)]

Let © € I'|B — A] and assume that « € {|([ev(¢o)]e A [ev(¥1)]e)[}. Let
furthermore y € I'[B] such that y € {|1o V 11 [}. We have to show evo(z,y) €
{lp[}. But if y € {|1bo|} then we are done since x € {|[ev(¢)o)]¢|}, and similarly
if y € {[enl}.

Case of

FAo+ A ([ing] TV [ing]T) A —(fing] T A [ina] T)

Consider « € I'[Ag + A1] ~ I'[4¢] + I'[A1] (via Lem. [D.2). Hence z =
in;(y) for some y € I'[4;] and we have « € {|[in;] T|}. Moreover, since the
injections ing and in; have disjoint images, we have {|[ing] T A [iny]T[} = 0 so
2 € {=({ino] T A fim] T}

Case of

FAotAr [in,]T = (=i < [ini]—p)

Let © € I'[Ag + A1] ~ I'[Ao] + I'[A4], and assume x € {|[in;]T|}, so that
x = in;(y) for some (unique) y € I'[A;]. We show

z e {=linle = [in]-¢l} and 2 € {[[ini=p = —inifel}

For the former, assume z ¢ {|[in;]¢|}. Since y is unique such that « = in;(y),
we have y ¢ {|¢|}. But this implies y € {|-¢[} and we are done.
For the latter, assume x € {|[in;]—¢p[}. Assume toward a contradiction that
x € {|[in;]p[}. Since y is unique such that z = in;(y), we have both y ¢ {|o|}
and y € {J¢|}, a contradiction.

Cases of

FAap < T FA vt ttlap & o[vtap/al FA oy < L FA pttlap < olutap/al
By definition of {|0®ap]}.

Cases of
[t] = [u] [t] < [u]
FA vtap = viap FA utap = ptap

These cases follows from Lem. [F.4] (in 8*ap we assume that « is positive in
¢) and the definition of {|#*c|}.

Temporal Refinements for Guarded Recursive Types 109

Cases of
Hy = plp/a] A plp/a] =
Flrvap = plvap/al FA Y = vap F4 plpap/al = pagp A pap = ¢
By Lem. and the Knaster-Tarski Theorem.
Cases of

A prap(a) = papla) Flrap(a) = vtap(a)
We show by induction on m € N that
{lrmap(@)l} S {lpap(a)lt and {jrap(@)]} € {Vap(a)l}
The base case m = 0 is trivial since
{IKap(a)ff ={|L} and {Pap(a)f} ={T}
For the induction step we have
{lem (@)} = {le(urap(@)} and {* ap(e)]} = {e(ap(a)[}
So the induction hypothesis together with Lem. [F.4] gives
{limrap(a)ly C{le(nap(@))l} and {lp(rap(@))} € {le("ap(a))}

and we are done since by the Knaster-Tarski Theorem, we have

{le(pagp(a)l = {lpap(@)lt and {Je(vap(@))l} = {rap(@)l}

Proof of Lem. D.13}(2) (Lem. [7.2)
Lemma F.5. If 4 ¢ in full modal theory of Def. then [¢] = [A].

Corollary [D.17] gives almost everything we need for the semantic correctness
of the modal theory. We begin with the axioms of Table [2}

Lemma F.6. If p: A is an axiom of Table@ then [¢]4 = [A].
Proof. Most of the axioms follow from Cor.

Case of (C). Since in each case, the map [[A]] preserves A.

Case of (N). Since in each case, the map [[A]] preserves T (recall that axiom
is not assumed for [in;]).

Case of (P). The result for [r;], [fold] and [box] follows from the fact that [[[m;]],
[[fold]] and [[box]] are maps of Heyting algebras.
As for [in;], it follows from the fact that [[in;]] preserves L (Cor. [D.17).

Case of (Cy). By Cor.

110 Guilhem Jaber and Colin Riba

Case of (C..). Since [[m;]], [[fold]] and [[box]] are maps of Heyting algebras.
O

In order to handle fixpoints, we have the usual monotonicity property w.r.t.
subobject posets.

Lemma F.7. Consider, for a formula oy : Ay,...,ax : A F @, the map
[] : Sub([A1]) x -+ x Sub([Ax]) — Sub([A]), v — [¢]+

Fori e {1,...,k}, if a; Pos ¢ (resp. a; Neg ¢), then w.r.t. subobjects posets,
[¢] is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma

Proof (Proof of Lemma . By induction on 4 ¢. The rules of Fig. [16]follow
from the fact that in a topos, the subobjects of a given object form a Heyting
algebra.

Case of
FY =
=AY = [Ale

The result holds for [m;], [fold] and [box] since [[m;]], [[fold]] and [[box]] are
maps of Heyting algebras.
As for [in;], [next] and [ev(—)], this follows from the fact that the maps [[[in,]],
[[next]] and [[ev(—)]] preserve implications since they preserve A.

Case of

(RM)

F o
HBA Thox|p

By Cor. [D17]

Case of
FB = o Fp:A

FB=A Tev(d)]p = [ev(¥)]p

This case can be seen as following (via Lem. from the definition of
[lev(=)]]- A direct argument is nevertheless possible. Let ¢ € [B — A](n).
Let k < n such that Tk Ik [ev(¢)]p. Let furthermore £ < k and u €
[B](¢) such that u IFZ 1. We have to show ev o (t1,u) IF* . By induction
hypothesis we have u ll—éB 1 = ¢, so that u Il—f ¢. But this implies ev o
({10, u) IF* @ since t1k IFy [ev(e)]e.

Case of

FB=4 (fev(vo)]e A lev(¥1)le) = [ev(vo V)]
Let t € [B — A](n). Let k < n such that ¢1k Ik ([ev(o)]e A [ev(¥1)]e).
Let furthermore ¢ < k and u € [B](¢) such that u IFF o V ¢1. We have to

show ev o (14, u) IF . If u IFP 4y, then we are done since t Iy [ev(1o)]ep,
and similarly if u IFZ ;.

Temporal Refinements for Guarded Recursive Types 111

Case of

FAotAr ([ing] TV [ing]T) A = ([ing] T A [ing] T)

Write A = Ag+ A; and consider ¢t € [Ag+ A1](n). Hence ¢ = in;(u) for some
u € [A4;](n) and we have ¢ I, [in;] T. Moreover, since the injections ing and
iny have disjoint images, we have [[ing]T A [in1]T](k) = @ for all & > 0 so
t I, =([ing] T A fing] T).

Case of

FAotAr [in,]T = (—[ing]e & [in;]—y)

Write A = Ay + A;. Let t € [Ag + A1](n), and let k < n such that 1k Iy
[in;] T, so that we have tTk = in;(u) for some (unique) u € [A;](k). We show

tll—,’?”""“1 =lingle = [ing]—e and tH—?‘H'Al [in;]—p = —ling]p

For the former, let £ < k such that t1¢ = (¢1k)1¢ I, —[in;]p, that is such
that ttm Y, [in;]e for all m < £. We show t14 Ik, [in;]—p. Hence we are
done if utm I, ¢ for all m < ¢. But if utm I, ¢, then we would have
ttm = in;(utm) Ik, [in;]¢, a contradiction.

For the latter, let £ < k such that ¢1¢ I, [in;]—p. We have to show 1€ Ik,
—[in;]p, that is tm Y, [ing]e for all m < €. So assume ttm Iz [in;]e for
some m < (. Hence, there is u' € [A;](m) such that ¢tm = in;(u’) and
u' Ik . But we have «/ = utm. On the other hand, since 14 Ik, [in;] -,
there is some u” € [A;](¢) such that ¢1¢ = in;(v”) and v tm Iff,, ¢ for all
m < £. But we also have v”tm = ulm, thus contradicting utm Iz .

Cases of

FA Lap & T FA vt ttap & plvtap/al FA wap < L FA pttHap < olutap/al
By definition of [#*ay].

Cases of
[t] = [u] [t] < [u]
FA vtap = viap FA ptap = utap

These cases follows from Lem. m (in 0*ap we assume that « is positive in
©) and the definition of [¢*asp].
Cases of

Hy = olp/al HA olp/a] = ¢
FAvap = olvap/al Ay = vap FA plpap/al = pap FA pnap = 1

By Lem. [F.7] and the Knaster-Tarski Theorem, since subobject lattices of S
are complete ([52, Prop. 1.8.5]).
Cases of

F fap(a) = papl@) FAvag(a) = rapla)

Similar to the same case in the proof of Lem. 0

112 Guilhem Jaber and Colin Riba

F.2 The Safe Fragment

Lemma F.8 (Lem. [D.21)). The greatest fixpoint of a Scott cocontinuous func-
tion f: L — L is given by

v(f) = Npen f(T)

Proof. That v(f) is a fixpoint of f follows from the continuity of f and the fact
that the set {f"(T) | € N} is codirected, which in turn follows from the fact
that f is monotone. In order to show that v(f) is the greatest fixpoint of f,
recall that the greatest fixpoint of f is in any case given by

b:=V{ael]|a< f(a)}

We trivially have v(f) < b as v(f) is a fixpoint of f. For the revere inequality,
for all a such that a < f(a), it follows by induction on n € N and from the
monotony of f that we have a < f(T) for all n € N. Hence a < v(f) for all a
such that a < f(a), which in turn gives b < v(f). O

Lemma F.9 (Lem. . Consider a safe formula oy : Pf‘, R TR P,:' F
© : P*. The following two functions are Scott-cocontinuous:

[ie] : Sub([P;7]) x - - x Sub([B]) — Sub([P*]), v +— [i].
{lely : PTIPFT) x - x PTIEF]) — PIIPHD), 0 — {lel),

Proof. In both cases, monotony w.r.t. lattice order follows by an easy induction
from the positivity of safe formulae. We now turn to preservation of codirected
meets. We first consider the case of {|p]}. We reason by induction on ¢.

Cases of a, T, L.
Trivial.

Case of p A .
Let D1 C P(L'[P]),..., Dy, € P(I'[P;]) be codirected. By induction hy-
pothesis we obtain

Je ol (D108 = el (D1 D) 0 (I8 (Dss-.., DY)

and the result is trivial.

Case of ¢ V.
This is the interesting case. Let D1 C P(I'[P]),..., Dy € P(I'[P]]) be
codirected. By induction hypothesis we obtain

{lon el (D1 (\Dk) = (el (D1, D) U ({0 Dy, -, Di)

We then trivially get

(el (D1, .. De) U (Ve (D1, Dk) - € (e Vel (D, D)

Temporal Refinements for Guarded Recursive Types 113

It remains to show the converse direction

MoVl (Di...Di) € (el (Diveeo. D) U (¥ (D, D)

So let x € I'[P*] such that = € {Jp V[t (S1,...,Sk) for every S; €
Dq,...,S; € Dg. Assume toward a contradiction that there are S1 € Dq,..., Sk €
Dy, such that « ¢ {J¢[} (S1,...,Sk) and that there are S7 € D1,...,S), € Dy,
such that = ¢ {|¢[} (S1,...,S),). Since the D;’s are codirected for inclusion,
there are S € Dy,...,S} € Dy such that S; C S, NS, fori =1,... k.

By monotonicity w.r.t. inclusion, we have = ¢ {|¢|} (S7,...,Sy) and = ¢
{9} (SY,...,SY). But this implies = ¢ {jo V¥[} (S7,...,Sy), a contradic-
tion.

Case of [m;]p.
Let Dy € P(I'[P{]),...,Dx € P(I[P;]) be codirected. Let x € I'[P*]
and write P* = Q¢ x Q. Then we are done since by induction hypothesis

v € {llmlol (N Dy, N Dy
iff ;o € {Jpl} (ND1,---,Dx)
ifft ;o € N{|el} (D1,...,Dx)
iff VS, € D1,...,Sk €Dy, moxé€ {|§0|}(D17,Dk)
iff VS, € Dqy,..., Sy € Di, x € {|[7TZ](,0|} (Dl,...,Dk>
iff z € N{|[mi]el} (D1, ..., D)

Case of [in;]p.
Let D1 C P(L[P]),...,Dx € P(L[P;]) be codirected. Let z € I'[PT]
and write Pt = Q& + Q7. By Lem. we have 2 = in; oy for some unique
je{0,1} andy eI’ [[Q;r]] Then we are done since by induction hypothesis
we have x € {|[in;]¢} (N D1,--.,(Dx)

iff j =i and y € {ll} (N D1, N Di)

iff j = i and y € ({lel} (D1 ..., Dy)

iff j=iandVSy € Dy,...,S € Di, y€{el} (D1,...,Dx)

iff V51€D1,...,Sk€Dk, xe{|[|nz]4p|}(D1,,Dk)
iff z € NA{|[in:)el} (D1,..., Dg)

Case of [next]ep.
Let Dy C P(I[P]),...,Dx € P(I'[P;]) be codirected. Let = € I'[PT]
and write P = »Q*. By Lem. we have x = next o y for some unique
y € I'[QT]. Then we are done since by induction hypothesis we have

€ {|[next]ol} (D1, - -, D)
iff y € {ol} (N D1,....MN Dx)
ift y € N{lol} (D1, .-, Di)
i VS1 € D1,..., Sk € Dy, y € {olt (D1,...,Dx)
ifft VS € Dy,...,S; € Di, x € {|[next]e|} (D1,...,Dg)
iff x € N {|[next]e[} (D1, ..., Dx)

Case of [fold]ep.
This case is dealt-with similarly as that of [m;].

114 Guilhem Jaber and Colin Riba

Case of [box]ep.
Trivial since ¢ is required to be closed.
Case of [ev(y)]ep.
Note that 1 is assumed to be closed since [ev(¢))]¢ is safe. Let D1 C P(T[P;]),..., Dy C
P(I'[P{]) be codirected. Let x € I'[PT] and write P* = RT — Q. Then
we are done since by induction hypothesis we have

v € lev(@)]¢h (N DN D)
ift ¥y € (0]}, evo (z,y) € ¢} (N DN D)
iff vy € {W}7 evo (x,y) € ﬂ{\<ﬂ|} (D17"'ﬂDk)
iff vS, € Dy,..., Sk € Dy, Yy € {|’lp|}, ev o <.’E,y> S {l(,0|} (Sl,...7Sk)
iff VS, € Dy,..., S € D, x € {|[ev(w)]<p|} (Sl, .. .,Sk)
iff v € (N {llev(¥)]elt (D1, ..., D)

Cases of 0 ap.
By induction hypothesis, the function

{lely = P[P % xPLIRTD*PILPT]) — PLIPT]), v, 8+ {loltys/a

is Scott-cocontinuous. Hence by Lem. for Sy € P(C[P/]),...,S €
P(I'[P{]) we have

{7l (S1,-...8%) = {lelt (S1,...,9%)™(T)
where

[l (St 8™ (T = Al (S, Sk (Il (S, -+, Sk))™(T))

and where ({{[} (S1,...,S%)%(T) :== T and ({{¢|} (S1,...,S%))°(L) :== L.
An easy induction on m € N then shows that each function

el (=, =)™(T) : PIP]) x - x P(C[P]) — PI[P])

is Scott-cocontinuous.
Case of vayp.
By induction hypothesis, the function

{lely = P[P % xPIRID*PEPT]) — PLIPT]), v, 8+ {loltys/a

is Scott-cocontinuous. Hence by Lem. for Sy € P(C[P/]),...,S €
P(L[P;]) we have

{lvael} (S1,-,8) = (el (St S))"(T)

neN

where ({l¢|} (S1,...,S5%))%(T) := T and

{el (St 8™ M) = {lel (S-S (el (Sh,- -, S6)™(T))

Temporal Refinements for Guarded Recursive Types 115

An easy induction on n shows that each function
{lelt (=i =D™(T) = PIP]) x - x P(OIRT]) — P(I[PT])

is Scott-cocontinuous.
Consider now codirected Dy C P(I'[P;]),...,Dr € P(I[P]]). Then we

are done since

{lvaolt (N Dy, -, D)

MnenUlel (N D1+, Dx))"(T)
Mnen Nl (D1, -5 D)™ (T)
NNnen{lely (D1, -+ Dy))™(T)
N{lva.el} (D1,...,Dg)

Case of pap.
This case cannot occur since pap is not safe.

We now turn to the case of [¢]. Most of cases are similar to those for {¢[}. Also,
note that

[e] = Sub([Pr]) x -+ x Sub([Pf]) — Sub([P])

being Scott-continuous means that for D1 C Sub([P}]),...,Dx C Sub([P])
codirected w.r.t. subobject lattice orders, we have

[el(A\D1,.... ADx) = Alel(Di,....Dy)

But since meets in subobject lattices of S are pointwise, the above is equivalent
to have, for all n > 0 that

WA D1 AD() = ([@l(Dr,-.., Di)(n)

Cases of a, T, L.
Trivial.

Case of p A .
Let D1 C Sub([P{']),...,Dx C Sub([P]) be codirected. By induction
hypothesis we obtain

[eAel(A\ D1, ADk) = AIel(Dy,....Dx) A A[I(Dy, ..., Dy)

and the result is trivial.

Case of o V.
Let D1 C Sub([P{']),...,Dx C Sub([P]) be codirected. By induction
hypothesis we obtain

[[@quﬂ(/\Dlvv/\Dk) = /\[[(P]](D1,,Dk) v /\[[wﬂ(Dla’Dk)

By monotonicity w.r.t. subobject lattice orders, we trivially get

N, D) v AWID,....D) € Al Vel(Dy,.... Dy)

116 Guilhem Jaber and Colin Riba

It remains to show the converse direction

/\[[@V?/J]](Dlaka) c /\H¢H(D1’7Dk) v /\Hw]](DhaDk)

Since meets and joins are computed pointwise in subobject lattices, we are
done if for each n > 0 we show

m[[(va]](Dlw"JDk)(n) c ﬂH@H(D177Dk)(n) U ﬂW]](Dlaka)(”)

We can then conclude as in the case of {|—[}. Fix n > 0 and let ¢t € [P"] such
that t € [V](A1,...,Ar)(n) for every Ay € Dy,..., A € Dy. Assume
toward a contradiction that there are A; € Dq,..., Ay € D such that
t ¢ [¢](A1,...,Ar)(n) and that there are A} € D, ..., A}, € Dy, such that
t ¢ [Y](AL, ..., A})(n). Since the D;’s are codirected for inclusion, there
are AY € Dy,..., A} € Dy such that A7 < A; AN A} for i = 1,...,k. By
monotonicity w.r.t. subobject lattice orders, we have t ¢ [¢](A7,..., AY)(n)
and t ¢ [Y](AY,..., AL)(n). But this implies t ¢ [V ¥](AY,..., A})(n), a
contradiction.
Case of [m;]e.

Let Dy C Sub([P;']),..., Dk C Sub([P]) be codirected. We show that for
all n > 0 we have

[[[Wi]@ﬂ(/\Dlv"'v/\Dk)(n) = ﬂ[[[ﬂl]@]](Dlvak)(n)

and this goes similarly as for {|—|}.

Case of [in;]e.
Let Dy C Sub([P{]), ..., Dk C Sub([P]) be codirected. We show that for
all n > 0 we have

[indel(A\Dis-- . ADi)(n) = (Iinile)(Ds,-.. Di)(n)

and this goes similarly as for {|—[} since the pointwise maps (in;)s, : [Qj]] (n) —

[QE1(n) + [QF](n) are injective.
Case of [next]y.

Let Dy C Sub([P;T]),..., Dk C Sub([P{]) be codirected. Write PT = »-Q.
We show that for all n > 0 we have

[[next]go]](/\ Dy,..., /\ Di)(n) = ﬂ[[[next]goﬂ (D1,...,Dg)(n)

The result is trivial if n = 1. For n > 1, it reduces to

[el(AD1,..., ADo)(n—1) = (ll(D1,....Di)(n— 1)

which follows from the induction hypothesis.
Case of [fold]¢.

This case is handled similarly as that of [m;].
Case of [box]p.

Trivial since ¢ is required to be closed.

Temporal Refinements for Guarded Recursive Types 117

Case of [ev(y))]e.

Note that 1 is assumed to be closed since [ev(¢))]¢ is safe. Let D; C Sub([P;]),...

Sub([P;]) be codirected. Write P* = Rt — Q. We show that for alln > 0

we have

[ev()lel(A\Dis- .. A D)) = ([lev()I@l(Dy,..., Di)(n)

Let n > 0 and ¢ € [PT](n). Then we are done since by induction hypothesis
we have:

t € [lev(¥)el(A Dy, ..., A Di)(n)
it V0 <n, Yu e ¢, evo (t14,u) € [¢](AD1,..., \Dxg)(¥)
ift V¢ < n, Yu € [¢](£), evo (¢, u) € N[e](D1,-..,Di)¥)

ifft vSy € Dy,...,S; € Di, Y€ <mn, Yu € [¢](£), evo (tT4,u) € [¢](S1,--.,5%)(¢)

iff VS) € Dy, ..., Sk € Dy, t € [[ev(¥)]¢] (S, .., SK)(n)
iff t € Nllev())(Dr,. .., Di) ()

Cases of 0*ayp and vap.
These cases are handled exactly as for {|—|}.
Case of pap.
This case cannot occur since pap is not safe. a

Proposition F.10 (Prop. [7.3). Let a; : P ag: P,j' F o : PT be a safe
formula. Given S1 € Sub([P{T]), ..., Sk € Sub([P]), we have

{lelH (L'(S1), ..., T(Sk)) = T ([l (S1, - ., Sk))

Proof. We reason by induction on the derivation of oy : P, ... ay : P,j Fo:
P7T. In all cases but §*ap and vayp, the parameters are irrelevant and we omit
them.

Cases of a, T and L.
Trivial.
Case of p A .
Let x € I'[P*]. Then we are done since by induction hypothesis we have

z € {lp AyYl}iff z € {Joft and z € {|¢[}
iff (Vn >0, z,(e) € [¢](n)) and (¥n > 0, x,(e) € [¢](n))
iff Vn > 0, x,(e) € [¢](n) and z,(e) € [¢](n)
ift Vn > 0, x,(e) € [AY](n)

Case of p V.

Let @ € I'[P*]. Assume first that « € {jo Vo[}. If (say) = € {|p[}, then
by induction hypothesis we get x,,(e) € [¢](n) for all n > 0, which implies
zn (o) € [VY](n) for all n > 0.

Conversely, assume that z,(e) € [V ¢](n) for all n > 0. Assume toward
a contradiction that there are k,¢ > 0 with (say) k < £ such that xzy(e) ¢
[¢](n) and z.(e) ¢ [¢](n). Since k < ¢, by Lem. we have xy(e) ¢
[#](n), but this contradicts zx(e) € [pVe](n). Hence, we have either z,, (o) €
[¢](n) for all n > 0 or z,(e) € [¢](n) for all n > 0, and the result follows
by induction hypothesis.

N

118 Guilhem Jaber and Colin Riba

Case of ¥ = .
This case cannot occur since ¥ = ¢ is not safe.

Case of [m;]e.
Let z € I'[P*] and write Pt = Qf x QF. Then we are done since (; o
Z)n(®) = m;(x,(e)) so that by induction hypothesis we have

z € {|[m]epl} iff m; 0z € {of}
iff vn >0, (m 02),(e) € [¢](n)
iff ¥n >0, z,(e) € [[mi]e](n)

Case of [in;]p.
Let z € I'[PT] and write Pt = QF + Q7. By Lem. we have z = injoy
for some unique j € {0,1} and y € F[[Qj]] Then we are done since z,,(e) =
(injoy)n(®) =inj(yn(e)) so that by induction hypothesis we have

z € {[ling]gl} iff j =i and y € {|o[}
iff j=¢andVn >0, y,(e) € [¢](n)
iff Vn >0, z,(e) € [[in;]e](n)

Case of [next]ep.
Let z € I'[P"] and write PT = »Q*. By Lem. we have r = nextoy
for some unique y € I'[Q*]. Assume first z € {|[next]p|}. Hence we have
y € {l¢l}, which by induction hypothesis implies y,(e) € [¢](n) for all
n > 0. Now, we trivially have z1(e) € [[next]¢](1). Moreover, for n > 1, we
have x,,(e) = y,_1(e), so that z,(e) € [[next]¢](n) = [¢](n —1).
Assume conversely that x,(e) € [[next]¢](n) for all n > 0. This implies
Zn(®) € [p](n —1) for all n > 1, which in turn implies y,—1(®) € [¢](n —1)
for all n > 1. But by induction hypothesis this implies y € {|¢|} so that
x € {|[next]e[}.

Case of [fold]ep.
This case is handled similarly as that of [r;].

Case of [box]p.
Recall that ¢ is required to be closed. Also, by definition we have

[[box)e]™A(n) := {t € [MAJ(n) = IA] | t € {le]}"}
{Ibodell™ = {o € r[mA] | 21(e) € o} }

It follows that given x € I'[MA], we have

x € {|[box)p[t™ " iff 21 () € {0}
it Vn > 0, z,(e) € {o}*
iff Vi > 0, 2, (e) € [[box]e]™A(n)

Case of [ev(y))]e.
This case cannot occur since P is assumed to be strictly positive.

Temporal Refinements for Guarded Recursive Types 119

Case of [ev(y))]e.
Since [ev(1))]p is smooth, the formula 1 is closed and we have Q* = B — R™
where B is constant. Since B is constant, by Lem. [D-4] there is a set A such
that [B] ~ AA, so that I'B] ~ A by Lem. Moreover, it follows from
Lem. @ that [¢] is also constant, so there is a set S such that [¢] ~
Now, by induction hypothesis we have I'[¢)] = {|¢[}. Since I'A ~ Idget
(Lem. [D.2), it follows that [¢/] ~ A {|¢[}. We then have

z € {llev()]el} it Vy € C[B] (y € {[[} = evo(z,y) € {lel})

and

t € [lev(®)lel(n) it Vk <, Yu e A(uc{[9l} = (1k)(u) € [¢](F))
ifftvu € A(u e[y} = Vk<n, (1Tk)(u) € [¢](F))

Given z € I'| B — R*] and y € I'[B], for all 0 < k < n we have

(evo (z,y))n(e)Tk = (xn(e)Th)(yx(e))
Since {|p|} ~ I'[¢] by induction hypothesis, we are done with

z € {|lev(¥)]pl} iff Vy € T[B] (v € {|¥} = evo(z,y) € {l¢l})
iff vy € I[B] (y € {{¥I} = Vn >0, (evo(z,y))n(e) € [¢](n))
iff vy € I[B] (y € {{¢|} = Vn >0, Vk <n, ((evo (z,y))n(e))Tk € [¢](k))
iff vy € I[B] (y € {[¥[} = Vn >0, Vk <n, (zn(e)Tk)(yk(°)) [el (%))
iff vu € A(u € {[Y[} = Vn >0, Vk <n, (z(0)tk)(u) € [¢](k))
iffvn >0, Vu e A(u e {[Y} = Vk <n, (z.(0)Tk)(u) € [¢](k))
iff Vn > 0, z,(e) € [[ev()]¢]

Cases of 0*ap(a).
Assume oy : P, .. ap: PP a: P E () : PYandlet S1 € Sub([Py]), ..., Sk €
Sub([P;]). Using the induction hypothesis on ¢, an easy induction on m € N
shows that

{le™ [(L(S1), -, L(Sk), T) = T[] ™ (S1, -, Sk, T))
and {l™ [} (L(S1),. .., T(Sk), L) = T([e]™(S1, -, Sk, 1))

Case of vayp.
Assume oy : P, ... ot PP a: PT () : P andlet S € Sub([P]),..., S €
Sub([P;1]). Similarly as above, for all m € N we have

{lo™H (I (S1), ..., T(Sk), T) = L([]™(S1, .., Sk, T))
It then directly follows that for all z € I'[P*], we have
z < nmeN {‘(pml} (F<Sl)a R F(Sk)v T)
iff Vn > 0, Jin(o) S nmeN[[@ﬂm(Sla .. .,Sk,—l—)(n)

and we conclude by Lem. [F.9) and Lem. [F.§]
Case of pap.
This case cannot occur since pap is not safe. a

120 Guilhem Jaber and Colin Riba

F.3 The Smooth Fragment

Assume for this that the set of propositional variables is partitionned into
two infinite sets {a”,8Y,...} and {a*, 8", ...} of respectively gfp (or v) and
Ifp (or u) propositional variables. Write X (resp. X*) if the context X only
declares gfp (resp. lfp) propositional variables.

Lemma F.11. If ¢ is alternation-free, then @ can be formed with the rules of
Fig. [5 and Fig.[9, but with the rules (v-F) and (u-F) replaced respectively by

Xvia¥ Ak e A YHh ot A p: A
XVEvarp: A YEE patp A

where in both cases o is guarded in p, and o as well as all variables of X% are
positive in .

Proof. By induction on (. The only relevant cases are fap. Since the two cases
are similar, we only discuss that of X' F vay : A. First, since va is alternation-
free, we can assume that all variables declared in X' are positive in ¢. Moreover,
since vap is alternation-free, then so is ¢. By induction hypothesis Y’ can be
split into X#, 2 and we have

XrOXY ar AR p i A

Assume toward a contradiction that X* cannot be made empty. This means that
there is some variable 8* which does occur in ¢, and such that g* must occur
in the context of a p rule for some subformula of ¢. But then 8* occurs free
in vayw under two fixpoints of different kinds, a contradiction. It follows that
we can assume X* empty. Similarly, o can be assumed to be gfp variable, since
otherwise it would occur free under a lfp in vae. d

Lemma F.12 (Lem. [7.4). Let a1 : P;",...,ax : PH,a: QY F ¢ : P bea
smooth formula and let v be a valuation taking each propositional variable c; for
i=1,...,k to a set v(a;) € P(L[P]). Consider the function

{lelt : P(C[QT]) — P(IP]), S ¥— {leltyis/a
Then,

— if a is positive in @ (i.e. @ Pos ¢):
e if « is a gfp variable, then {|p|} is Scott-cocontinuous,
o if « is a lfp variable, then {|p|} is Scott-continuous,
— if « is negative in p (i.e. a Neg @), then {||} is antimonotone and
o takes meets of codirected sets to joins of directed sets if « is a gfp variable,
o takes joins of directed sets to meets of codirected sets if a is a lfp variable.

Proof. The proof is by induction on formation of formulae a; : P, ... ay :
Pl,a: QT+ ¢: P*. Monotonicity and antimonotonicity follow from Lem. [F.4
Note that since formulae of the form [box]e are necessarily closed, nothing has

to be proved for these. Some cases are already handled by Lem. (Lem. [F.9)),
and we do not repeat them. We omit the valuation v when possible.

Temporal Refinements for Guarded Recursive Types 121

Cases of o, T, L.
Trivial.

Case of ¢ A ¢ (monotone).
Preservation of codirected meets is trivial (see Lem. (Lem. [F.9)). As
for the preservation of directed joins, let D C P(I'[Q*]) be directed. Then
by induction hypothesis we have

lenvlUD) = Ulleb @) n Utk @) 2 Jlereh (D)

For the converse inclusion, consider some x both in J {|¢[} (D) and U {|¢[} (D).
Hence there are S, 5" € D such that = € {|¢|} (S) and = € {|¢[} (S"). Now
since D is directed and by monotonicity, there is some S” € D such that
z € {el} (5") N {l9[} (57).

Case of ¢ A ¢ (antimonotone).
That {j¢ A ¢[} turns directed joins into codirected meets is trivial (as codi-
rected meets commute over binary meets) and omitted. Let us show that
{l¢ A9]} turns codirected meets into directed joins. So let D C P(I'[Q™])
be codirected. Then by induction hypothesis we have

lenel (YD) = Ulleb @) n Ul @) 2 Jlereh (D)

We then conclude as for preservation of directed joins in the monotone case.
Given z both in |J{|¢[} (D) and U{|¥} (D), there are S, S’ € D such that
z € {lpl} (S) and z € {|¥[} (S"). Now since D is codirected there is some
S” € D such that S” € SNS’, and by antimonotonicity we have x €
{lely (57) {Jl} (57).

Case of ¢ V¢ (monotone).
Preservation of codirected meets is handled in Lem. (Lem. [F.9) while
preservation of directed join is trivial.

Case of ¢ V¢ (antimonotone).
That {|¢ V |} turns codirected meets into directed joins is trivial (as directed
joins commute over binary joins) and omitted. Let us show that {|¢ V ¢[}
turns directed joins into codirected meets. So let D C P(I'[Q*]) be directed.
By induction hypothesis we have

{lever (D) = Nl @ v @) < llevel (D)

We can then conclude similarly as in Lem. (Lem.[F.9). Let = € N {l¢ V ¥} (D)
and assume toward a contradiction that there are S,S’ € D such that x ¢

{lel} (S) and x ¢ {|9[} (S’). Then since D is directed, there is some S” € D

such that SUS" C S”, and by antimonotonicity we get = ¢ {|o V ¢[} (S”), a
contradiction.

Case of ¢ = .

With the classical semantics, the interpretation of = can be decomposed

into V and —, where {|-p[} is the complement of {|¢[} (at the appropriate
type). Let a be positive in ¢ and negative in v, with a : QT F p,¢ : PT,

122 Guilhem Jaber and Colin Riba

and let furthermore by D and D’ (of the appropriate type) be resp. directed
and codirected. We then trivially have

{I=elh (U D) = PP \ {lel} (U D) {I=elH (N D) = PP\ {Jel (N D)

= P[P\ UAl¢l} (D) = P[P\ Nl (D)
=NP@PD\Alelt (D)) =U@P@PTD\Alelr (D))
{I=e(UD) =PL[PT)\ I} (U D) {~v(ND) =PPD\A{¢} (N D)
=P@'P)\N{Iv} (D) = P@[P]) \ Ul (D)
=U@P@PD\AIv (D)) =NP@PD\A{L} (DY)

Cases of [m;]¢, [in;]p, [next]y and [fold]p.
These modalities are handled similarly as in Lem. (Lem. [F.9).

Case of [ev(¢)]ep.
Since [ev(1))]p is smooth, the formula 1 is closed and we have Q* = B — R™
with B a finite base type. Since B is constant, by Lem. there is a finite
set A such that [B] ~ AA, so that I'[B] ~ A by Lem. Now, given
x € I'[P*] and S C I'l[Q"] we have

z € {llev(¥)]elt (9) iff vy € Ay € {[Yl} = evo(z,y) € {lel} (5))

Since A is finite, we can then reason similarly as in the cases of conjunction
(A) above.

Cases of 6* 5.
We have a1 : Pi", ..., Proa:QY,8: Pt ¢ PT with 3 Pos ¢. Let v
be a valuation. Since for S C I'[Q™] and m € N we have

{lo™1Bol}, (5) = {lel6"Be/BIl}, (S)

it follows from Lem. (Lem.[E.9), that the function {|6* B}, is monotone
(resp. antimonotone) if a Pos ¢ (resp. a Neg). We can then reason as in
Lem. (Lem. [F.9).

Case of vfp.
We have oy : P, ... ap : P,:',a Q1,3 : Pt 1= ¢ : Pt where the involved
variables are gfp variables and are positive in . The result is then proved
exactly the same way as in Lem. (Lem. [F.9)).

Case of ufo.
The result is proved the same way as in Lem. [F.9| (replacing codirected meets
by directed joins and Scott cocontinuity by Scott continuity). ad

F.4 Realizability

Lemma F.13 (Monotonicity of Realizability (Lem. [D.25))). Let T be a
type without free iteration variables. If x Ik, T then x ki T for all k < n.

Proof. By induction on the definition of lIF.

Temporal Refinements for Guarded Recursive Types 123

Case of a refinement type {A | ¢}.
The result follows from monotony of forcing (i.e. that [¢] is a subobject of
[4]) .

Case of 1.
The result is trivial as x I, 1 for all n > 0.

Case of Ty + 1.
Assume z Ik, Ty + 177 and let & < n. Then we have x = in; o y for some
i = 0,1 and some y € I'[|T;|] such that y I, T;. By induction hypothesis
we get y Ik T;, so that x Ik, Ty + 1.

Case of T x Tj.
Assume z Ik, To x T7 and let & < m. Then for each ¢ = 0,1 we have
m; o x Ik, T;, so that m; o x Ik T; by induction hypothesis, and it follows
that x ‘”‘k TO X Tl.

Case of U — T.
Assume z Ik, U — T and let k¥ < n. But given ¢ < k and y € I'[|U]] such
that y lIF, U we have ev o (z,y) Ik, T since ¢ < n.

Case of »T.
Assume z I, »T and let £ < n. If £ = 1 then we are done since always
z llFy »T. Otherwise, k = ¢ + 1, so that n = m 4+ 1 with ¢ < m. Moreover,
there is y € I'[T] such that = nextoy and y I, T. We get y Iy T by
induction hypothesis, so that = ll-; »T.

Case of Fix(X).A .
Assume x Ik, Fix(X).A and let k& < n. We have unfoldox IIF, A[Fix(X).A/X],
so that unfoldoz lIF;, A[Fix(X).A/X] by induction hypothesis and thus x Il
Fix(X).A.

Case of HT.
Trivial. a

Lemma F.14 (Lem.[D.26)). For a pure type A and x € I'[A], we have z Ik, A
for all n > 0.

Proof. The proof is by induction on pairs (n, A), using implicitly Lem. When—
ever required.

Case of 1.
Trivial.

Case of Ay + A;.
Given z € I'[Ag + A1] ~ I'[A¢] + I'[A1], we have 2 = in; o y for some
y € I'[A;]. Then we are done since y I, A; by induction hypothesis.

Case of Ay x A;.
Given z € I'[Ap x A1] =~ I'[Ag] x I'[A1], we have 7y o = IIF, Ay and
my o x Ik, Ay by induction hypothesis, and the result follows.

Case of B — A.
Fix x € I'|B — A]. Given y € I'B] and k < n, we have y lIF; B by
induction hypothesis, so that ev o (x,y) b A. Hence z lI-, B — A.

Case of »A.
The result is trivial if n = 1, so assume n > 1. Given z € I'[»A], we have

124 Guilhem Jaber and Colin Riba

x = nextoy for some y € I'[A]. But then y lIF,,_1 A by induction hypothesis,
so that z Ik, »A.

Case of Fix(X).A.
Let © € I'[Fix(X).A]. It follows by induction on A from the induction hy-
pothesis on n and the guardedness of X in A that unfoldoz IIF,, A[Fix(X).A/X],
and we are done.

Case of BT.
Let € I'[MT]. Given n > 0, we have z,(e) € I'[T], so that z,(e) ll-,, T
for all m > 0 by induction hypothesis. But this implies z lI-,, BT O

Lemma F.15 (Correctness of Subtyping (Lem. [D.28)). Given types T, U
without free iteration variable, if x I, U and U < T then x I, T.

Proof. By induction on U < T.

Cases of
T<U U<V
T<T T<V
Trivial.
Cases of
To < Uy T <U; To < Uy T <U; Uy <Ty W <U;
Tox Ty <Uyx U To+T1 <Uy+U; To— T, <Uy— U
T<U
T < pU
Trivial
Case of
Uu<T
BU <AT

Let : 1 -5 AI'[U] such that « I, WU, so that x,(e) I, U for all
m > 0. By induction hypothesis we get x,(e) Ik, T for all m > 0 and we

are done.

Case of
T <|T|

By Lem.

Case of
A<{A|T}

Trivial

Case of
FA @ =)
{A| o} <{A]|y}

By Lem. (Lem. [D.13] (2)).

Temporal Refinements for Guarded Recursive Types 125

Case of

{B— A|lev()le} <{B| v} = {A] ¢}

Let # € I'|B — A] and n > 0. Assume z Ik, {B — A | [ev(¢)]p}, that is
zn (o) € [lev(¥)]@](n). Let further y € I'[B] and k < n such that y Il
{B | ¥}, that is yi(e) € [¢](k). Then by monotonicity of [—] (Lem.
we have zi(e) € [lev(¥)]¢](k), from which it follows that (zx(e))(yx(e)) €
[¢] (k). But this means ev o (z,y) Ik {A | ¢} and we are done.

Case of

{(Blo}={Al¢} <{B—Allev(y)]v}

Let + € I'[B] - A and n > 0. Assume z I, {B| ¢} — {4] ¢}. Let
furthermore k¥ < n and u € [¢](k). By Lem. ([20, Cor. 3.8]) there is
some y € I'[B] such that yi(e) = u. We thus have y lIF, {B | ¥}, and it
follows that evo (z,y) Ik, {A | ¢}, that is zi(e)(yx(e)) € [¥](k), and we are
done.

Case of

> {A| ¢} ={»A] [next]p}

Let x € I'[»A]. First, we always have x ll-; » A, as well as z; € [[next]¢]™*.
Let now n > 1. By Lem. We have & = next oy for some y € I'[A]. Since
Zn(®) = yn—1(e), we have

zlb, »{A | p}iffylF,_; {A] ¢}
iff yn—1(e) € []*(n —1)
iff 2,,(¢) = yn—1(e) € [[next]p]>*(n)
iff z Ik, {»A | [next]p}.

Case of

Vk-»T =w»VEk-T

Let x € T'[»|T].
Assume first that x lI-,, Vk-»T. We have to show z lI,, »Vk-T. The result is
trivial if n = 1. So assume n > 1. By Lem. there some unique y € I'[|T]
such that 2 = next o y. We have to show y ll-,,_1 T[m/k] for all m € N. But
by assumption we have z I, »T'[m/k], so that by uniqueness of y we get
ylIkn—1 Tm/E].
Conversely, assume that = I, »Vk - T. We have to show z I, Vk - »T.
Let m € N. If n = 1, then we trivially have z ll-,, »T[m/k]. Otherwise, by
Lem. [D.2]let y € I'[|T] such that = = next o y. But since x I, »Vk - T, we
get y lIF,,—1 T'[m/k], so that z I, »T'[m/k] and we are done.
Case of
¢ safe
B{A] /) = (WA | boxs}

126 Guilhem Jaber and Colin Riba

Let z : 1 —5 ATI[A]. Since ¢ is safe we have {|p[}* = Clos([¢]*) by
Prop. (Prop. [7.3). Then we are done since:

-, B{A | o} iff z,(e) Ik, {A | ¢} for all m >0
iff (2,(9))m(®) € [¢]*(m) for all m >0
iff 2 (o) € {l}”
iff 25, (o) € [[box]o]"* (n)
iff 2 -, {MA | [box]e}

Case of
H o=
{BA] boly} < (WA | [boxjo}
By Lem. (Lem. [D.13] (T))). O

Theorem F.16 (Adequacy (Thm. [D.29))). Let &, T have free iteration vari-
ables among ¢, and letm € N. If EF M : T and p =&, then

Vn>0, plk, El/m] = [M], I, T[t/m]

Proof. The proof is by induction on typing derivations. We implicitly use Lem.
whenever required. We omit iteration variables when possible.

Case of
Ex:»wTHM:T

EFfix(x).M: T
Let p |= € and write y := [fix(z).M], € I'[T]. Note that

y = [Mext(fix(z).M)/z]l, = [M]ppmextoy/a]

We show by induction on n > 0 that p Ik, £ implies y lI-, T. In the base case
n =1, since nextoy Iy BT, we have p[nextoy/z] Il €,z : »T, so that the
induction hypothesis on typing derivations gives y = [M] sjnextoy /2] F1 T'-
As for induction step, assume p I, 1 €. By Monotonicity of Realizability
(Lem. , we have p I, £, and the induction hypothesis on n gives y I+,
T. It follows that nextoy Ik, 1 T, so that p[nextoy/z] I, 41 €,z : »T and
the induction hypothesis on typing derivations gives y = [M] sjnextoy/z] Fn+1
T.

Case of
E-M:T

EFnext(M) : »T

Let p |= € and write x := [next(M)], € I'[»T]. Let n > 0 such that p lI-, T
If n = 1 then we trivially have x -, »7". Assume n > 1. Write y := [M],,
so that * = next o y. By Monotonicity of Realizability (Lem. , we
have plIF,_1 &, so that the induction hypothesis on typing derivations gives
y llFp—1 T and we are done.

Temporal Refinements for Guarded Recursive Types 127

Case of

vl e Ty 2 M T EFM:Ty ... EF My:Ty
E FboxXpe, ..z (M) - BT

(T1, ..., Ty constant)

Let p = € and write z := [box,(M)], where o = [x1 — My,...,x, — My].
Let n > 0 such that p Ik, £. We show z lI-,, BT, i.e. that x,,(e) ll-,, T for
all m > 0. Fix m > 0. We have by definition

tn(®) 5 0 M (M (pn(®) - [Midn(pm(®))))

For i = 1,...,k, since the type T} is constant, we have by Lem. that
[MLn (o (8)) = [MiJo(pe(o) for all £ > 0, s0 that

tm(®) = O [M]e([M]elpe(e)) - [Mile(pe(s))))

Now, by induction hypothesis, since p I, £ by assumption, for each i =
1,...,k we have [M;], IIF,, T; and since T; is constant, by Lem. this
implies [M;], ke T; for all £ > 0. By induction hypothesis again, this in
turn gives [M] o ([Mi],,...,[Mg],) IF¢ T for each £ > 0. But then we are

done since

Tm(8) = € [M1e([M]e(pe(®)) - [MJe(pe(s))))
= [[M]] © <[[M1Hp’) [[Mk]]p>
Case of
E-M: AT
EFunbox(M) : T
Let p = € and write « := [unbox(M)],. Let n > 0 such that p lIF, €. By
induction hypothesis we get [M], -, BT, that is ([M],)m(e) -, T for
all m > 0, so in particular ([M],),(e) I, T. But now we are done since
T (0) = ([M],)n()m (o) for each m > 0.
Case of
1Ty, 2T =M »T EF-M,:Ty ... Sl—Mk:Tk(
&k prev| M):T

T,..., T} constant)
a:p—)Ml,...,IkO—)Mk](

Let p = € and write © := [box,(M)], where o = [x1 — My,...,xp — My].
Let n > 0 such that p Ik, £ We show « llF, »T. If n = 1 then the result
trivially holds. Assume n > 1. For each m > 0, we have by definition

(@) = Ml (M (pm(®) - [Mid(pm(®))))

For i = 1,...,k, since the type T} is constant, we have by Lem. that
[M;]m(pm(®)) = [Mi]m+1(pm+1(e)), so that

2n(®) = (ML (L1 (o1 (9)) s oo s Mt (o ()

128 Guilhem Jaber and Colin Riba

and it follows that
x = nexto[M]o ([Mi],,...,[Mi],)

Now, by induction hypothesis, since p I, £ by assumption, for each i =
1,...,k we have [M;], lF, T; and since T; is constant, by Lem. this
implies [M;], IIF,—1 T;. By induction hypothesis again, this in turn gives
[M] o ([Mi],,-..,[Mi],) IFn—1 T and we are done.

Case of
E-M:T T<U

EF-M:U

By Lem. (Lem. |F.15]).

Case of
EEM {A| Y= ¢} EEM:{A]| Y}
EFM:{A] ¢}
Let p = & and write := [M], € I'[A]. Let n > 0 such that p I, £. By

induction hypothesis, the right premise gives z,,(e) € [¢/]*(n) and the left
premise implies x,,(e) € [¢]*(n).

Case of
for i € {0,1},
EFM:{A]|poVer} Ex:{A|p;}FN:U
EEN[M/z):U

Let p = £ and write y := [M], € I'[A] and z := [N],[,/z € T'[|U]]. Let
n > 0 and assume p I, €. By induction hypothesis we have y € [g;] for
some i € {0,1}. It follows that p[y/z] Ik, €,z : {A | ¢;}, from which we get
z Ik, B by induction hypothesis.

Case of

EFEM:{A]| L} EFN:|U|
EFN:U

Let p = € and write z := [M], € I'[A]. Let n > 0 such that p I,
&. By induction hypothesis, the left premise gives x,(e) € [L](n) = 0, a
contradiction. Hence p lf-,, £, and the result follows.

Case of

EFM;: {A; | p} EFMy_;: A1
ErH <M0,M1> : {AO X A1 | [TK’AQO}
Let p = €. Write yo := [Mo], € I'[Ao], y1 := [Mi], € I'[A{], and = :=
[(Mo, M1)], = (Yo, y1)- Let n > 0 such that p ll-, £. By induction hypothesis
on typing derivations we have (y;), () € [¢]. But since m;(x,(®)) = (y;)n (o),
this gives x,, (o) € [[mi]¢].
Case of

EFM:{Ay x Ay | [m]p}
Ebmi(M):{A; | ¢}
Let p = €. Write y := [M], € I'[Ao x Ai] and z := [m;(M)], = m; o y. Let
n > 0 such that p lIF, £. By induction hypothesis on typing derivations we
have y,(e) € [[m]¢], so that m;(y,(e)) € [¢]. But then we are done since
2n(®) = 7i(Yn(®)).

Temporal Refinements for Guarded Recursive Types 129

Case of

EF mz(M) : {Ao +A1 | [lnl]go}
Let p = & Write y := [M], € I'[A;], and « := [in;(M)], = in;oy. Let n > 0
such that p lI-, £. Hence by induction hypothesis on typing derivations we
have y,(®) € [¢]. But since z,,(®) = in;(yn(e)), this implies z, () € [[in;]¢].
Case of

SI—M{AO—l—Alez]cp} 871‘{141‘()0}'_NZU (c,’,l'ZAl,i}_Nl,i

U

E F case M of (z.Ng|z.Ny) : U

Let p = £ Write y := [M], € I'Ao + A1] ~ I'[Ao] + I'[A1]. Hence
y = in; o z for some (unique) j € {0,1} and z € I'[A;]. Let n > 0 such that
p Ik, €. By induction hypothesis, the left premise gives y,(e) € [[in;]¢](n),
so that y,(e) = in;(u) for some u € [¢](n). But this implies j7 = i and
u = zp(e), so that z Ik, {4; | ¢}. It follows that p[z/x] -, €,z : {4; | ¢},
and the induction hypothesis on typing derivations gives [N;],[./z) IFn U.
But then we are done since

[case M of (x.Nolz.N1)], = [Nilpz/a)

Case of

Ex:{BYrM:{A] ¢}

EF Xz M :{B— A|[ev(®)]p}
Let p = €. Write y := [Az.M], € I'|B — A]. Let n > 0 such that p lI-, &.
We show y,,(e) € [[ev(¥)]p](n). So let k < n and u € I'[B](k) such that
u € [¢](k). By [20, Cor. 3.8] there is some z € I'[B] such that zx(e) = t.
By Monotonicity of Realizability (Lem. [F.13]), we have p Ik, &, so that
plz/x]) kg E,2 : {B | ¥}. The induction hypothesis on typing derivations
thus gives ([M],[z/2))k(®) € [¢], and we are done since (yi(e))(2x(®)) =
([[Mﬂp[z/x])k(')'

Case of
EFM:{B— A| ev(¥)]e} EFN:{B |y}
EFMN:{A] ¢}
Let p = £ Write y := [M], € I'|B — A], z := [N], € I'B] and
z := [MN], = evo (y,z). Let n > 0 such that p I, £. By induc-
tion on typing derivations, the right premise gives z,(e) € [¢](n), so that
the left premise gives (y,(e))(zn(®)) € [¢](n). But then we are done since

Zn(®) = (yn(®))(zn(®))-

Case of
EF M : {A[Fix(X).A/X] | ¢}
E Ffold(M) : {Fix(X).A | [fold]}
Let p = &. Write y := [M], € I'lA[Fix(X).A/X]] and = := [fold(M)], =
fold o y. Let n > 0 such that p I, £. By induction hypothesis on typing
derivations we have y,,(e) € [¢]. But then we are done since unfold,,(x,,(e)) =

Yn(e).

130 Guilhem Jaber and Colin Riba

Case of
EF M : {Fix(X).A | [fold]p}

E F unfold(M) : {A[Fix(X).A/X] | ¢}
Let p = &. Write y := [M], € I'[Fix(X).A] and « := [unfold(M)], =
unfold o . Let n > 0 such that p ll-, £. By induction hypothesis on typing
derivations we have y, (o) € [[fold]¢]. Hence unfold,(y,(e)) € [¢] and we
are done since x,(e) = unfold,,(y,(e)).
Cases of

EFM:T[0/4 EFM :T[t+1/1) . EFM:T
EFEM:VI-T (¢not freein &) 777 (

Let p = &€ and write = := [M], € I'[|T|]. Let n > 0 and assume p IIF, &.
Let m € N. We have to show M Ik, T'[m/¢]. Since ¢ does not occur free in
&, we have p lI-, E[m’/¢] for all m’ € N. For both rules we can conclude from
the induction hypothesis.

Case of

£ not free in &)

EFM:NL-T

EF M :T[t/{]
Let p |= € and write z := [M], € I'[|T|]. Let n > 0 and assume p I, &.
By induction hypothesis we have x lIF, T[m/¢] for m = [t] and the result

follows.
Cases of

EFM: {IA ’ [box]’y[l/acp/ﬂ]} B Pos v
EFM:{BA | [box]y[vap/H]}

EF M :{BA | [box]y[uap/B]} E,x: {MA | [boxy[u‘ayp/Bl} F N : U B Pos ~y
EF N[M/z]: U

where £ is not free in £,U,~, and v, ¢ are smooth. First, since ¢ is smooth
by Lem. [7.4] we have

{lvap(@)lt = Npen ™ (T}
and A{lpap(@)]} = Upen {le™ (T}

Moreover, since f3 is positive in v and v is smooth, it follows from Lem. [F-12]
(Lem. [7.4) that {|[} is continuous and cocontinuous in 5. We thus get

{yrep(@)/Bll} = Nmen IVle™(T) /5]l
and {ly[pap(@)/BIl} = Unen {V[e™ (T) /51

and the result follows. O

Table of Contents

[Temporal Refinements for Guarded Recursive Types|................... 1
e i ol Ribd

[T0Eroduckon]. - .« v v et 1

|Organization of the paper....... 3

R OURING - oo 3

[Overview of the Guarded A-Calculus) 3

|Compositional Satety Reasoning on Streams.|.................. 3

|A Manysorted Temporal Logic.|.............. 4

.. 5

[[nternal Semantics in the Topos of Trees.|..................... 5

[The Necessity of an Frternal Semantics. 5

[The Constant Type Modality.|............ 6

|Approximating Least Fixpoints.|........ 6

B__The Pure Caleulusl oo 6

4 A Temporal Modal Logic| 8

IManysorted Modal Temporal Formulae.|...................... 8

Modal Theories). 10

b A Temporally Refined Type System|......... 11

6 The Full System|........ 12

|Strictly Positive and Polynomial Types.|.. 13

[The Full Temporal Modal Logic.| 13

[The Safe and Smooth Fragments.......... 14

[The Full System.|...... 15

[T Semanticsl. . . o vve e 16

IDenotational Semantics in the Topos of Trees.| 16

[External Semantics] 17

IInternal Semantics of Formulael.......... 17

[The Safe Fragment.|........ ... 18

[The Smooth Fragment.|........, 19

IThe Realizability Semantics.|............. 19

8 XAPles| . . .o 19

9 Related Workl 23

[10 Conclusion and Future Workl 24

A Additional Material for §3] (The Pure Calculus)|.................... 32

B Additional Material for §4] (A Temporal Modal Logid)| 32

C Additional Material for A Temporally Refined Type System)). 33

D Additional Material for g7 (Semantics]|. 34

D.1 The Topos of Trees (Basic Structure)| 35

[D.2~ Global Sections and Constant Objects|ooouunnn.. 35

D.3 Fxternal and Internal Semantics: Global Definitions| 37

ID.4 An Open Geometric Morphisml. 39

132 Guilhem Jaber and Colin Riba
ID.5 Abstract Modalitiesl 40
ID.6 FExternal and Internal Semantics: Local Definitions| 40
Internal Semanticsl. 41
[External Semantics 43
[D.7 The Safe Fragment| o 44
.8 € Dmoot agment| 45
ID.9 Constant Objects, Again| 45
ID.10 Realizability| 47
ID.I1 A Galois Connectionl.ovvev v 48
|[E_Details of the Examples|.o 51
EI _Guarded STreamsl. . . .« ..o veeetee e 51
|The Later Modality on Guarded Streams|..................... 51
IDestructors of Guarded Streams|. 51
[Constructor of Guarded Streams| 52
[Map over Guarded Streams|................. L 53
erge over Guarded Streams| L L. 53
IE.2 Operations on Coinductive Streams|.......................... 54
|E.3~ Map over Coinductive Streams|........ 55
[The Case of Eventually (Clhd[@)] ... ovovee i 56
The Case of Fventually Always (COlhd|o)|. ...t 58
The Case of Always Eventually (OO @)|. ..o oovveeeee. .. 60
|E.4 The Diagonal Function|............ 62
[T'he Guarded Diagonal Function| 63
[The Coinductive Diagonal Functionl|. 64
.5 Fair Streamsl. oot 66
asic Datatypes|. 67
A Fair Stream of Booleandl. 68
BASAREden] -« .o vvveee e 76
o COlISE - - o oottt 79
OVErvIEW]. . . oot 79
[Ihe Type of Colists|........... o .. 81
[The Append Function on Colists]oovvviiiiiiiinnnn. 82
[Sharper Refinements for the Append Function on Colists|....... 88
IE.7 Resumptions|. 91
.8 Breadth-First Tree Traversall. 101
[[Infinite Binary Trees|........... 101
[Breadth-First Traversal of Guarded Trees Using Forests|. 101
[Martin Hofmann's Algorithm]ooviiiiiinnnnnn.. 103
' Proofs of §7] 106
.1 Correctness of the Fxternal and Internal Semantics............ 106
Proof of Lem. [D.13[(1]) (Lem.[7.2)f................... 106
Proof of Lem. [D.13](2) (Lem.[7.2)[.................... 109
IF.2° The Safe Fragment| 112
IF.3 The Smooth Fragment|......... L. 120
[F.4 Realizability] 122

	Temporal Refinements for Guarded Recursive Types
	Introduction
	Organization of the paper.

	Outline
	Overview of the Guarded -Calculus.
	Compositional Safety Reasoning on Streams.
	A Manysorted Temporal Logic.
	Beyond Safety.
	Internal Semantics in the Topos of Trees.
	The Necessity of an External Semantics.
	The Constant Type Modality.
	Approximating Least Fixpoints.

	The Pure Calculus
	A Temporal Modal Logic
	Manysorted Modal Temporal Formulae.
	Modal Theories.

	A Temporally Refined Type System
	The Full System
	Strictly Positive and Polynomial Types.
	The Full Temporal Modal Logic.
	The Safe and Smooth Fragments.
	The Full System.

	Semantics
	Denotational Semantics in the Topos of Trees.
	External Semantics.
	Internal Semantics of Formulae.
	The Safe Fragment.
	The Smooth Fragment.
	The Realizability Semantics.

	Examples
	Related Work
	Conclusion and Future Work
	Additional Material for §3 (The Pure Calculus)
	Additional Material for §4 (A Temporal Modal Logic)
	Additional Material for §5 (A Temporally Refined Type System)
	Additional Material for §7 (Semantics)
	The Topos of Trees (Basic Structure)
	Global Sections and Constant Objects
	External and Internal Semantics: Global Definitions
	An Open Geometric Morphism
	Abstract Modalities
	External and Internal Semantics: Local Definitions
	Internal Semantics
	External Semantics

	The Safe Fragment
	The Smooth Fragment
	Constant Objects, Again
	Realizability
	A Galois Connection

	Details of the Examples
	Guarded Streams
	The Later Modality on Guarded Streams
	Destructors of Guarded Streams
	Constructor of Guarded Streams
	Map over Guarded Streams
	Merge over Guarded Streams

	Operations on Coinductive Streams
	Map over Coinductive Streams
	The Case of Eventually ([hd])
	The Case of Eventually Always ([hd])
	The Case of Always Eventually ([hd])

	The Diagonal Function
	The Guarded Diagonal Function
	The Coinductive Diagonal Function

	Fair Streams
	Basic Datatypes
	A Fair Stream of Booleans
	A Scheduler

	Colists
	Overview
	The Type of CoLists
	The Append Function on Colists
	Sharper Refinements for the Append Function on Colists

	Resumptions
	Breadth-First Tree Traversal
	Infinite Binary Trees
	Breadth-First Traversal of Guarded Trees Using Forests
	Martin Hofmann's Algorithm

	Proofs of §7
	Correctness of the External and Internal Semantics
	Proof of Lem. D.13.(1) (Lem. 7.2)
	Proof of Lem. D.13.(2) (Lem. 7.2)

	The Safe Fragment
	The Smooth Fragment
	Realizability

