
HAL Id: hal-02512655
https://hal.science/hal-02512655v4

Preprint submitted on 21 Jan 2021 (v4), last revised 14 Mar 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Refinements for Guarded Recursive Types
Guilhem Jaber, Colin Riba

To cite this version:
Guilhem Jaber, Colin Riba. Temporal Refinements for Guarded Recursive Types. 2021. �hal-
02512655v4�

https://hal.science/hal-02512655v4
https://hal.archives-ouvertes.fr

Temporal Refinements for Guarded Recursive
Types

Guilhem Jaber1 and Colin Riba2

Université de Nantes, LS2N CNRS, Inria, France guilhem.jaber@univ-nantes.fr

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France
colin.riba@ens-lyon.fr

Abstract. We propose a logic for temporal properties of higher-order
programs that handle infinite objects like streams or infinite trees, rep-
resented via coinductive types. Specifications of programs use safety and
liveness properties. Programs can then be proven to satisfy their specifi-
cation in a compositional way, our logic being based on a type system.

The logic is presented as a refinement type system over the guarded
λ-calculus, a λ-calculus with guarded recursive types. The refinements
are formulae of a modal µ-calculus which embeds usual temporal modal
logics such as LTL and CTL. The semantics of our system is given within a
rich structure, the topos of trees, in which we build a realizability model
of the temporal refinement type system. We use in a crucial way the
connection with set-theoretic semantics to handle liveness properties.

Keywords: coinductive types, guarded recursive types, µ-calculus, re-
finement types, topos of trees.

1 Introduction

Functional programming is by now well established to handle infinite data,
thanks to declarative definitions and equational reasoning on high-level abstrac-
tions, in particular when infinite objects are represented with coinductive types.
In such settings, programs in general do not terminate, but are expected to com-
pute a part of their output in finite time. For example, a program expected to
generate a stream should produce the next element in finite time: it is productive.

Our goal is to prove input-output temporal properties of higher-order pro-
grams that handle coinductive types. Logics like LTL, CTL or the modal µ-
calculus are widely used to formulate, on infinite objects, safety and liveness
properties. Safety properties state that some “bad” event will not occur, while
liveness properties specify that “something good” will happen (see e.g. [9]). Typ-
ically, modalities like 2 (always) or 3 (eventually) are used to write properties
of streams or infinite trees and specifications of programs over such data.

We consider temporal refinement types {A | ϕ}, where A is a standard type
of our programming language, and ϕ is a formula of the modal µ-calculus. Using
refinement types [24], temporal connectives are not reflected in the programming

2 Guilhem Jaber and Colin Riba

language, and programs are formally independent from the shape of their tem-
poral specifications. One can thus give different refinement types to the same
program. For example, the following two types can be given to the same map
function on streams:

map : ({B | ψ} → {A | ϕ}) −→ {StrB | 23[hd]ψ} −→ {StrA | 23[hd]ϕ}
map : ({B | ψ} → {A | ϕ}) −→ {StrB | 32[hd]ψ} −→ {StrA | 32[hd]ϕ} (?)

These types mean that given f : B → A s.t. f(b) satisfies ϕ if b satisfies ψ,
the function (map f) takes a stream with infinitely many (resp. ultimately all)
elements satisfying ψ to one with infinitely many (resp. ultimately all) elements
satisfying ϕ. For ϕ a formula over A, [hd]ϕ is a formula over streams of A’s which
holds on a given stream if ϕ holds on its head element.

It is undecidable whether a given higher-order program satisfies a given input-
output temporal property written with formulae of the modal µ-calculus [45].
Having a type system is a partial workaround to this obstacle, which moreover
enables to reason compositionally on programs, by decomposing a specification
to the various components of a program in order to prove its global specification.

Our system is built on top of the guarded λ-calculus [20], a higher-order pro-
gramming language with guarded recursion [57]. Guarded recursion is a simple
device to control and reason about unfoldings of fixpoints. It can represent coin-
ductive types [55] and provides a syntactic compositional productivity check [5].

Safety properties (e.g. 2[hd]ϕ) can be correctly represented with guarded fix-
points, but not liveness properties (e.g. 3[hd]ϕ, 32[hd]ϕ, 23[hd]ϕ). Combining
liveness with guarded recursion is a challenging problem since guarded fixpoints
tend to have unique solutions. Existing approaches to handle temporal types in
presence of guarded recursion face similar difficulties. Functional reactive pro-
gramming (FRP) [23] provides a Curry-Howard correspondence for temporal
logics [35,36,18] in which logical connectives are reflected as programming con-
structs. When combining FRP with guarded recursion [48,7], and in particular
to handle liveness properties [8], uniqueness of guarded fixpoints is tempered by
specific recursors for temporal types.

Our approach is different from [8], as we wish as much as possible the logi-
cal level not to impact the program level. We propose a two level system, with
the lower or internal level, which interacts with guarded recursion and at which
only safety properties are correctly represented, and the higher or external one,
at which liveness properties are correctly handled, but without direct access to
guarded recursion. By restricting to the alternation-free modal µ-calculus, in
which fixpoints can always be computed in ω-steps, one can syntactically reason
on finite unfoldings of liveness properties, thus allowing for crossing down the
safety barrier. Soundness is proved by a realizability interpretation based on the
semantics of guarded recursion in the topos of trees [13], which correctly repre-
sents the usual set-theoretic final coalgebras of polynomial coinductive types [55].

We provide example programs involving linear structures (colists, streams,
fair streams [18,8]) and branching structures (resumptions à la [48]), for which
we prove liveness properties similar to (?) above. Our system also handles safety
properties on breadth-first (infinite) tree traversals à la [39] and [10].

Temporal Refinements for Guarded Recursive Types 3

Consg := λx.λs. fold(〈x, s〉) : A→ IStrg A→ Strg A
hdg := λs.π0(unfold s) : Strg A→ A
tlg := λs.π1(unfold s) : Strg A→ IStrg A

mapg := λf.fix(g).λs.Consg (f(hdg s)) (g ~ (tlg s)) : (B → A)→ Strg B → Strg A

Fig. 1. Constructor, Destructors and Map on Guarded Streams.

Organization of the paper. We give an overview of our approach in §2.
Then §3 presents the syntax of the guarded λ-calculus. Our base temporal logic
(without liveness) is introduced in §4, and is used to define our refinement type
system in §5. Liveness properties are handled in §6. The semantics is given in §7,
and §8 presents examples. Finally, we discuss related work in §9 and future work
in §10. Table 4 (§8) gathers the main refinement types we can give to example
functions, most of them defined in Table 3. Omitted material is available in the
Appendices.

2 Outline

Overview of the Guarded λ-Calculus. Guarded recursion enforces produc-
tivity of programs using a type system equipped with a type modality I, in
order to indicate that one has access to a value not right now but only “later”.
One can define guarded streams Strg A over a type A via the guarded recursive
definition Strg A = A×IStrg A. Streams that inhabit this type have their head
available now, but their tail only one step in the future. The type modality I is
reflected in programs with the next operation. One also has a fixpoint constructor
on terms fix(x).M for guarded recursive definitions. They are typed with

E `M : A

E ` next(M) : IA
E , x : IA `M : A

E ` fix(x).M : A

This allows for the constructor and basic destructors on guarded streams to
be defined as in Fig. 1, where fold(−) and unfold(−) are explicit operations
for folding and unfolding guarded recursive types. In the following, we use the
infix notation a ::g s for Consg a s. Using the fact that the type modality I
is an applicative functor [54], we can distribute I over the arrow type. This is
represented in the programming language by the infix applicative operator ~.
With it, one can define the usual map function on guarded streams as in Fig. 1.

Compositional Safety Reasoning on Streams. Given a property ϕ on a
type A, we would like to consider a subtype of Strg A that selects those streams
whose elements all satisfy ϕ. To do so, we use a temporal modal formula 2[hd]ϕ,
and consider the refinement type {Strg A | 2[hd]ϕ}. Suppose for now that we

4 Guilhem Jaber and Colin Riba

Typed Formulae Provability Refinement Types Subtyping Typing

Σ ` ϕ : A `A ϕ {A | ϕ} T ≤ U E `M : T
(§4) (where ` ϕ : A, §4) (where ` ϕ : A, §5) (T , U refinement types, §5)

Table 1. Syntactic Classes and Judgments.

can give the following refinement types to the basic stream operations:

hdg : {Strg A | 2[hd]ϕ} −→ {A | ϕ}
tlg : {Strg A | 2[hd]ϕ} −→ I {Strg A | 2[hd]ϕ}

Consg : {A | ϕ} −→ I {Strg A | 2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

By using the standard typing rules for λ-abstraction and application, together
with the rules to type fix(x).M and ~, we can type the function mapg as

mapg : ({B | ψ} → {A | ϕ}) −→ {StrgB | 2[hd]ψ} −→ {Strg A | 2[hd]ϕ}

A Manysorted Temporal Logic. Our logical language, taken with minor
adaptations from [33], is manysorted : for each type A we have formulae of type
A (notation ` ϕ : A), where ϕ selects inhabitants of A.

We use atomic modalities ([πi], [fold], [next], . . .) in refinements to navigate
between types (see Fig. 5, §4). For instance, a formula ϕ of type A0, specifying
a property over the inhabitants of A0, can be lifted to the formula [π0]ϕ of type
A0 × A1, which intuitively describes those inhabitants of A0 × A1 whose first
component satisfy ϕ. Given a formula ϕ of type A, one can define its “head
lift” [hd]ϕ of type Strg A, that enforces ϕ to be satisfied on the head of the
provided stream. Also, one can define a modality © such that given a formula
ψ : Strg A, the formula ©ψ : Strg A enforces ψ to be satisfied on the tail of
the provided stream. These modalities are obtained resp. as [hd]ϕ := [fold][π0]ϕ
and ©ϕ := [fold][π1][next]ϕ. We similarly have atomic modalities [in0], [in1] on
sum types. For instance, on the type of guarded colists defined as CoListg A :=
Fix(X). 1 + A×IX, we can express the fact that a colist is empty (resp. non-
empty) with the formula [nil] := [fold][in0]> (resp. [¬nil] := [fold][in1]>).

We also provide a deduction system `A ϕ on temporal modal formulae.
This deduction system is used to define a subtyping relation T ≤ U between
refinement types, with {A | ϕ} ≤ {A | ψ} when `A ϕ ⇒ ψ. The subtyping
relation thus incorporates logical reasoning in the type system.

In addition, we have greatest fixpoints formulae ναϕ (so that formulae can
have free typed propositional variables), equipped with Kozen’s reasoning prin-
ciples [47]. In particular, we can form an always modality as 2ϕ := να. ϕ∧©α,
with 2ϕ : Strg A if ϕ : Strg A. The formula 2ϕ holds on a stream s = (si | i ≥ 0),
iff ϕ holds on every substream (si | i ≥ n) for n ≥ 0. If we rather start with
ψ : A, one first need to lift it to [hd]ψ : Strg A. Then 2[hd]ψ means that all the
elements of the stream satisfies ψ, since all its suffixes satisfy [hd]ψ.

Table 1 summarizes the different judgments used in this paper.

Temporal Refinements for Guarded Recursive Types 5

Beyond Safety. In order to handle liveness properties, we also need to have
least fixpoints formulae µαϕ. For example, this would give the eventually modal-
ity 3ϕ := µα. ϕ∨©α. With Kozen-style rules, one could then give the following
two types to the guarded stream constructor:

Consg : {A | ϕ} −→ IStrg A −→ {Strg A | 3[hd]ϕ}
Consg : A −→ I {Strg A | 3[hd]ϕ} −→ {Strg A | 3[hd]ϕ}

But consider a finite base type B with two distinguished elements a, b, and sup-
pose that we have access to a modality [b] on B so that terms inhabiting {B | [b]}
must be equal to b. Using the above types for Consg, we could type the stream
with constant value a, defined as fix(s).a ::g s, with the type {Strg B | 3[hd][b]}
that is supposed to enforce the existence of an occurrence of b in the stream. Sim-
ilarly, on colists we would have fix(s).a ::g s of type {CoListg B | 3[nil]}, while
3[nil] expresses that a colist will eventually contain a nil, and is thus finite.
Hence, liveness properties may interact quite badly with guarded recursion. Let
us look at this in a semantic model of guarded recursion.

Internal Semantics in the Topos of Trees. The types of the guarded λ-
calculus can be interpreted as sequences of sets (X(n))n>0 whereX(n) represents
the values available “at time n”. In order to interpret guarded recursion, one also
needs to have access to functions rXn : X(n+ 1)→ X(n), which tell how values
“at n+1” can be restricted (actually most often truncated) to values “at n”. This
means that the objects used to represent types are in fact presheaves over the
poset (N \ {0},≤). The category S of such presheaves is the topos of trees [13].
For instance, the type Strg B of guarded streams over a finite base type B is
interpreted in S as (Bn)n>0 , with restriction maps taking (b0, . . . , bn−1, bn) to
(b0, . . . , bn−1). We write JAK for the interpretation of a type A in S.

The Necessity of an External Semantics. The topos of trees cannot cor-
rectly handle liveness properties. For instance, the formula 3[hd][b] cannot de-
scribe in S the set of streams that contain at least one occurrence of b. Indeed,
the interpretation of 3[hd][b] in S is a sequence (C(n))n>0 with C(n) ⊆ Bn. But
any element of Bn can be extended to a stream which contains an occurrence
of b. Hence C(n) should be equal to Bn, and the interpretation of 3[hd][b] is
the whole JStrg BK. More generally, guarded fixpoints have unique solutions in
the topos of trees [13], and 3ϕ = µα. ϕ ∨©ϕ gets the same interpretation as
να. ϕ ∨©α.

We thus have a formal system with least and greatest fixpoints, that has a
semantics inside the topos of trees, but which does not correctly handle least
fixpoints. On the other hand, it was shown by [55] that the interpretation of
guarded polynomial (i.e. first-order) recursive types in S induces final coalgebras
for the corresponding polynomial functors on the category Set of usual sets and
functions. This applies e.g. to streams and colists. Hence, it makes sense to think
of interpreting least fixpoint formulae over such types externally, in Set.

6 Guilhem Jaber and Colin Riba

S Set

JϕK subobject of JAK {|ϕ|} subset of Γ JAK

Internal External
Γ

∆

>ν ν, µ

J�AK := ∆Γ JAK
J[box]ϕK := ∆ {|ϕ|} (ϕ : A, [box]ϕ : �A)

{|ϕ|} = Γ JϕK (if ϕ is safe)

Fig. 2. Internal and External Semantics

The Constant Type Modality. Figure 2 represents adjoint functors Γ : S →
Set and ∆ : Set→ S. To correctly handle least fixpoints µαϕ : A, we would like
to see them as subsets of Γ JAK in Set rather than subobjects of JAK in S. On
the other hand, the internal semantics in S is still necessary to handle definitions
by guarded recursion. We navigate between the internal semantics in S and the
external semantics in Set via the adjunction ∆ a Γ . This adjunction induces a
comonad ∆Γ on S, which is represented in the guarded λ-calculus of [20] by the
constant type modality �. This gives coinductive versions of guarded recursive
types, e.g. StrA := �Strg A for streams and CoListA := �CoListg A for colists,
which allow for productive but not causal programs [20, Ex. 1.10.(3)].

Each formula gets two interpretations: JϕK in S and {|ϕ|} in Set. The external
semantics {|ϕ|} handles least fixpoints in the standard set-theoretic way, thus the
two interpretations differ in general. But we do have {|ϕ|} = Γ JϕK when ϕ is safe
(Def. 6.5), that is, when ϕ describes a safety property. We have a modality [box]ϕ
which lifts ϕ : A to �A. By defining J[box]ϕK := ∆ {|ϕ|}, we correctly handle
the least fixpoints which are guarded by a [box] modality. When ϕ is safe, we
can navigate between {�A | [box]ϕ} and � {A | ϕ}, thus making available the
comonad structure of � on [box]ϕ. Note that [box] is unrelated to 2.

Approximating Least Fixpoints. For proving liveness properties on func-
tions defined by guarded recursion, one needs to navigate between e.g. [box]3ϕ
and 3ϕ, while 3ϕ is in general unsafe. The fixpoint 3ϕ = µα.ϕ ∨ ©α is
alternation-free (see e.g. [17, §4.1]). This implies that 3ϕ can be seen as the
supremum of the©mϕ for m ∈ N, where each©mϕ is safe when ϕ is safe. More
generally, we can approximate alternation-free µαϕ by their finite unfoldings
ϕm(⊥), à la Kleene. We extend the logic with finite iterations µkαϕ, where k is
an iteration variable, and where µkαϕ is seen as ϕk(⊥). Let 3kϕ := µkα. ϕ∨©α.
If ϕ is safe then so is 3kϕ. For safe ϕ, ψ, we have the following refinement typings
for the guarded recursive mapg and its coinductive lift map:

mapg : ({B | ψ} → {A | ϕ})→
{

StrgB
∣∣ 3k[hd]ψ

}
→
{

Strg A
∣∣ 3k[hd]ϕ

}
map : ({B | ψ} → {A | ϕ})→ {StrB | [box]3[hd]ψ} → {StrA | [box]3[hd]ϕ}

3 The Pure Calculus

Our system lies on top of the guarded λ-calculus of [20]. We briefly review it
here. We consider values and terms from the grammar given in Fig. 3 (left). In

Temporal Refinements for Guarded Recursive Types 7

v ::= M,N ::= v | x E ::= •
| λx.M | MN | EM
| 〈M0,M1〉 | π0(M) | π0(E)
| 〈〉 | π1(M) | π1(E)
| in0(M) | caseM of | caseE of
| in1(M) (x.M0|x.M1) (x.M0|x.M1)
| fold(M) | unfold(M) | unfold(E)
| boxσ(M) | unbox(M) | unbox(E)
| next(M) | prevσ(M) | prev[](E)

| M ~N | E ~M
| fix(x).M | v ~ E

(λx.M)N ; M [N/x]
πi(〈M0,M1〉) ; Mi

case ini(M) of (x.N0|x.N1) ; Ni[M/x]
unfold(fold(M)) ; M

fix(x).M ; M [next(fix(x).M)/x]
next(M)~ next(N) ; next(MN)

unbox(boxσ(M)) ; Mσ
prev[](next(M)) ; M

prevσ(M) ; prev[](Mσ) (σ 6= [])

M ; N

E[M] ; E[N]

Fig. 3. Syntax and Operational Semantics of the Pure Calculus.

both boxσ(M) and prevσ(M), σ is a delayed substitution of the form σ = [x1 7→
M1, . . . , xk 7→Mk] and such that boxσ(M) and prevσ(M) bind x1, . . . , xk in M .
We use the following conventions of [20]: box(M) and prev(M) (without indicated
substitution) stand resp. for box[](M) and prev[](M) i.e. bind no variable of M .
Moreover, boxι(M) stands for box[x1 7→x1,...,xk 7→xk](M) where x1, . . . , xk is a list
of all free variables of M , and similarly for prevι(M). We consider the weak
call-by-name reduction of [20], recalled in Fig. 3 (right).

Pure types (notation A,B, etc.) are the closed types over the grammar

A ::= 1 | A+A | A×A | A→ A | IA | X | Fix(X).A | �A

where, (1) in the case Fix(X).A, each occurrence of X in A must be guarded by a
I, and (2) in the case of �A, the type A is closed (i.e. has no free type variable).
Guarded recursive types are built with the fixpoint constructor Fix(X).A, which
allows for X to appear in A both at positive and negative positions, but only
under a I. In this paper we shall only consider positive types.

Example 3.1. We can code a finite base type B = {b1, . . . , bn} as a sum of
unit types

∑n
i=1 1 = 1 + (· · · + 1), where the ith component of the sum is

intended to represent the element bi of B. At the term level, the elements of B
are represented as compositions of injections inj1(inj2(. . . inji〈〉)). For instance,
Booleans are represented by Bool := 1 + 1, with tt := in0(〈〉) and ff := in1(〈〉).

Example 3.2. Besides streams (Strg A), colists (CoListg A), conatural numbers
(CoNatg) and infinite binary trees (Treeg A), we consider a type Resg A of re-
sumptions (parametrized by I, O) adapted from [48], and a higher-order recursive
type Roug A, used in Martin Hofmann’s breadth-first tree traversal (see e.g. [10]):

Treeg A := Fix(X). A× (IX ×IX) CoNatg := Fix(X). 1 +IX
Resg A := Fix(X). A+ (I→ (O×IX)) Roug A := Fix(X). 1 + ((IX → IA)→ A)

Some typing rules of the pure calculus are given in Fig. 4, where a pure type A is
constant if each occurrence of I in A is guarded by a � modality. The omitted
rules are the standard ones for simple types with finite sums and products (§A).

8 Guilhem Jaber and Colin Riba

E `M : A[Fix(X).A/X]

E ` fold(M) : Fix(X).A

E `M : Fix(X).A

E ` unfold(M) : A[Fix(X).A/X]

E `M : I(B → A) E ` N : IB
E `M ~N : IA

E `M : A

E ` next(M) : IA
x1 : A1, . . . , xk : Ak `M : IA E `Mi : Ai with Ai constant for 1 ≤ i ≤ k

E ` prev[x1 7→M1,...,xk 7→Mk]
(M) : A

x1 : A1, . . . , xk : Ak `M : A E `Mi : Ai with Ai constant for 1 ≤ i ≤ k
E ` box[x1 7→M1,...,xk 7→Mk](M) : �A

E `M : �A
E ` unbox(M) : A

Fig. 4. Typing Rules of the Pure Calculus (excerpt).

Example 3.3. Figure 1 defines some operations on guarded streams. On other
types of Ex. 3.2, we have e.g. the constructors of colists Nilg := fold(in0〈〉) :
CoListg A and Consg := λx.λxs.fold(in1〈x, xs〉) : A → ICoListg A → CoListg A.
Infinite binary trees Treeg A have operations song

d : Treeg A→ ITreeg A for d ∈
{`, r}, Nodeg : A→ ITreeg A→ ITreeg A→ Treeg A and labelg : Treeg A→ A.

Example 3.4. Coinductive types are guarded recursive types under a �. For
instance StrA := �Strg A, CoListA := �CoListg A, CoNat := �CoNatg and
ResA := �Resg A, with A, I, O constant. Basic operations on guarded types lift
to coinductive ones. For instance

Cons := λx.λs.boxι
(
Consg x next(unbox s)

)
: A→ StrA→ StrA

hd := λs.hdg (unbox s) : StrA→ A
tl := λs.boxι

(
prevι(tlg (unbox s))

)
: StrA→ StrA

These definitions follow a general pattern to lift a function over a guarded re-
cursive type into one over its coinductive version, by performing an η-expansion
with some box and unbox inserted in the right places. For example, one can define
the map function on coinductive streams as:

map := λf.λs.boxι
(
mapg f (unbox s)

)
: (B → A) −→ StrB −→ StrA

4 A Temporal Modal Logic

We present here a logic of (modal) temporal specifications. We focus on syntactic
aspects. The semantics is discussed in §7. For the moment the logic has only one
form of fixpoints (ναϕ). It is extended with least fixpoints (µαϕ) in §6.

Manysorted Modal Temporal Formulae. The main ingredient of this pa-
per is the logical language we use to annotate pure types when forming re-
finement types. This language, that we took with minor adaptations from [33],
is manysorted : for each pure type A we have formulae ϕ of type A (notation
` ϕ : A). The formulation rules of formulae are given in Fig. 5.

Example 4.1. Given a finite base type B = {b1, . . . , bn} as in Ex. 3.1, with ele-
ment bi represented by inj1(inj2(. . . inji〈〉)), the formula [inj1][inj2] . . . [inji]> rep-
resents the singleton subset {bk} of B. On Bool, we have the formulae [tt] :=
[in0]> and [ff] := [in1]> representing resp. tt and ff.

Temporal Refinements for Guarded Recursive Types 9

(α : A) ∈ Σ
Σ ` α : A Σ ` ⊥ : A Σ ` > : A

Σ ` ϕ : A

Σ,α : B ` ϕ : A

Σ ` ϕ : A Σ ` ψ : A

Σ ` ϕ⇒ ψ : A

Σ ` ϕ : A Σ ` ψ : A

Σ ` ϕ ∧ ψ : A

Σ ` ϕ : A Σ ` ψ : A

Σ ` ϕ ∨ ψ : A

Σ ` ϕ : Ai
Σ ` [πi]ϕ : A0 ×A1

Σ ` ϕ : Ai
Σ ` [ini]ϕ : A0 +A1

Σ ` ψ : B Σ ` ϕ : A

Σ ` [ev(ψ)]ϕ : B → A

Σ ` ϕ : A[Fix(X).A/X]

Σ ` [fold]ϕ : Fix(X).A

Σ ` ϕ : A

Σ ` [next]ϕ : IA
` ϕ : A

` [box]ϕ : �A

(ν-F)
Σ,α : A ` ϕ : A α Pos ϕ

Σ ` ναϕ : A
(α guarded in ϕ)

Fig. 5. Formation Rules of Formulae (where A, B are pure types).

Example 4.2. (a) The formula [hd][a] ⇒ ©[hd][b] means that if the head of a
stream is a, then its second element (the head of its tail) should be b.

(b) On colists, we let [hd]ϕ := [fold][in1][π0]ϕ and ©ψ := [fold][in1][π1][next]ψ.
(c) On (guarded) infinite binary trees over A, we also have a modality [lbl]ϕ :=

[fold][π0]ϕ : Treeg A (provided ϕ : A). Moreover, we have modalities ©` and
©r defined on formulae ϕ : Treeg A as ©`ϕ := [fold][π1][π0][next]ϕ and
©rϕ := [fold][π1][π1][next]ϕ. Intuitively, [lbl]ϕ should hold on a tree t over
A iff the root label of t satisfies ϕ, and ©`ϕ (resp. ©rϕ) should hold on t
iff ϕ holds on the left (resp. right) immediate subtree of t.

Formulae have fixpoints ναϕ. The rules of Fig. 5 thus allow for the formation
of formulae with free typed propositional variables (ranged over by α, β, . . .),
and involve contexts Σ of the form α1 : A1, . . . , αn : An. In the formation of a
fixpoint, the side condition “α guarded in ϕ” asks that each occurrence of α is
beneath a [next] modality. Because we are ultimately interested in the external
set-theoretic semantics of formulae, we assume a usual positivity condition of α
in ϕ. It is defined with relations α Pos ϕ and α Neg ϕ (see App. B). We just
mention here that [ev(−)](−) is contravariant in its first argument. Note that
[box]ϕ can only be formed for closed ϕ.

Example 4.3. (a) The modality 2 makes it possible to express a range of safety
properties. For instance, assuming ϕ,ψ : Strg A, the formula 2(ψ ⇒ © ϕ)
is intended to hold on a stream s = (si | i ≥ 0) iff, for all n ∈ N, if (si | i ≥ n)
satisfies ψ, then (si | i ≥ n+ 1) satisfies ϕ.

(b) The modality 2 has its two CTL-like variants on Treeg A, namely ∀2ϕ :=
να. ϕ ∧ (©`α ∧©rα) and ∃2ϕ := να. ϕ ∧ (©`α ∨©rα). Assuming ψ : A,
∀2[lbl]ψ is intended to hold on a tree t : Treeg A iff all node-labels of t satisfy
ψ, while ∃2[lbl]ψ holds on t iff ψ holds on all nodes of some infinite path
from the root of t.

10 Guilhem Jaber and Colin Riba

Name Formulation [πi] [fold] [next] [ini] [ev(ψ)] [box] [hd] ©

(RM)
` ψ ⇒ ϕ

` [4]ψ ⇒ [4]ϕ
X X X X X X X X

(C) [4]ϕ ∧ [4]ψ =⇒ [4](ϕ ∧ ψ) X X X X X X X X

(N) [4]> X X X X X X X
(P) [4]⊥ =⇒ ⊥ X X (C) X X X (C)

(C∨) [4](ϕ ∨ ψ) =⇒ [4]ϕ ∨ [4]ψ X X X X X X X
(C⇒) ([4]ψ ⇒ [4]ϕ)⇒ [4](ψ ⇒ ϕ) X X (C) X X (C)

Table 2. Modal Axioms and Rules. Types are omitted in ` and (C) marks axioms
assumed for `c but not for `. Properties of the non-atomic [hd] and © are derived.

Modal Theories. Formulae are equipped with a modal deduction system which
enters the type system via a subtyping relation (§5). For each pure type A, we
have an intuitionistic theory `A (the general case) and a classical theory `Ac
(which is only assumed under �/[box]), summarized in Fig. 6 and Table 2 (where
we also give properties of the derived modalities [hd], ©). In any case, `A(c) ϕ is

only defined when ` ϕ : A (and so when ϕ has no free propositional variable).

Fixpoints ναϕ are equipped with their usual Kozen axioms [47]. The atomic
modalities [πi], [fold], [next], [ini] and [box] have deterministic branching (see
Fig. 12, §7). We can get the axioms of the intuitionistic (normal) modal logic
IK [61] (see also e.g. [65,53]) for [πi], [fold] and [box] but not for [ini] nor for the
intuitionistic [next]. For [next], in the intuitionistic case this is due to semantic
issues with step indexing (discussed in §7) which are absent from the classical
case. As for [ini], we have a logical theory allowing for a coding of finite base
types as finite sum types, which allows to derive, for a finite base type B:

`B
∨

a∈B

(
[a] ∧

∧
b∈B
b6=a
¬[b]

)
Definition 4.4 (Modal Theories). For each pure type A, the intuitionistic
and classical modal theories `A ϕ and `Ac ϕ (where ` ϕ : A) are defined by
mutual induction:

– The theory `A is deduction for intuitionistic propositional logic augmented
with the check-marked (X) axioms and rules of Table 2 and the axioms and
rules of Fig. 6 (for `A).

– The theory `Ac is `A augmented with the axioms (P) and (C⇒) for [next] and
with the axiom (CL) (Fig. 6).

For example, we have `Strg A 2ψ ⇒ (ψ ∧©2ψ) and `Strg A (ψ ∧©2ψ)⇒ 2ψ.

Temporal Refinements for Guarded Recursive Types 11

`B ψ ⇒ φ ` ϕ : A

`B→A [ev(φ)]ϕ⇒ [ev(ψ)]ϕ `B→A ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ)⇒ [ev(ψ0 ∨ ψ1)]ϕ

`Ac ((ϕ⇒ ψ)⇒ ϕ)⇒ ϕ
(CL)

`Ac ϕ

`�A [box]ϕ `A0+A1
(
[in0]> ∨ [in1]>

)
∧ ¬
(
[in0]> ∧ [in1]>

)
`A0+A1 ([ini]>)⇒ (¬[ini]ϕ⇔ [ini]¬ϕ) `A ναϕ⇒ ϕ[ναϕ/α]

`A ψ ⇒ ϕ[ψ/α]

`A ψ ⇒ ναϕ

Fig. 6. Modal Axioms and Rules.

T ≤ |T | A ≤ {A | >}
`A ϕ⇒ ψ

{A | ϕ} ≤ {A | ψ}
`Ac ϕ⇒ ψ

{�A | [box]ϕ} ≤ {�A | [box]ψ}

{IA | [next]ϕ} ≡ I {A | ϕ} {B → A | [ev(ψ)]ϕ} ≡ {B | ψ} → {A | ϕ}

Fig. 7. Subtyping Rules (excerpt).

5 A Temporally Refined Type System

Temporal refinement types (or types), notation T,U, V, etc., are defined by:

T,U ::= A | {A | ϕ} | T + T | T × T | T → T | IT | �T

where ` ϕ : A and, in the case of �T , the type T has no free type variable. So
types are built from (closed) pure types A and temporal refinements {A | ϕ}.
They allow for all the type constructors of pure types.

As a refinement type {A | ϕ} intuitively represents a subset of the inhabitants
of A, it is natural to equip our system with a notion of subtyping. In addition
to the usual rules for product, arrow and sum types, our subtyping relation is
made of two more ingredients. The first follows the principle that our refinement
type system is meant to prove properties of programs, and not to type more
programs, so that (say) a type of the form {A | ϕ} → {B | ψ} is a subtype of
A→ B. We formalize this with the notion of underlying pure type |T | of a type
T . The second ingredient is the modal theory `A ϕ of §4. The subtyping rules
concerning refinements are given in Fig. 7, where T ≡ U enforces both T ≤ U
and U ≤ T . The full set of rules is given in Fig. 17 in §C. Notice that subtyping
does not incorporate (un)folding of guarded recursive types.

Typing for refinement types is given by the rules of Fig. 8, together with the
rules of §3 extended to refinement types, where T is constant if |T | is constant.
Modalities [πi], [ini], [fold] and [ev(−)] (but not [next]) have introduction rules
extending those of the corresponding term formers.

12 Guilhem Jaber and Colin Riba

(Pii-I)
E `Mi : {Ai | ϕ} E `M1−i : A1−i

E ` 〈M0,M1〉 : {A0 ×A1 | [πi]ϕ}
(Pii-E)

E `M : {A0 ×A1 | [πi]ϕ}
E ` πi(M) : {Ai | ϕ}

(Ev-I)
E , x : {B | ψ} `M : {A | ϕ}
E ` λx.M : {B → A | [ev(ψ)]ϕ} (Ev-E)

E `M : {B → A | [ev(ψ)]ϕ} E ` N : {B | ψ}
E `MN : {A | ϕ}

(Fd-I)
E `M : {A[Fix(X).A/X] | ϕ}
E ` fold(M) : {Fix(X).A | [fold]ϕ} (Fd-E)

E `M : {Fix(X).A | [fold]ϕ}
E ` unfold(M) : {A[Fix(X).A/X] | ϕ}

(Inji-E)
E `M : {A0 +A1 | [ini]ϕ} E , x : {Ai | ϕ} ` Ni : U E , x : A1−i ` N1−i : U

E ` caseM of (x.N0|x.N1) : U

(∨-E)

for i ∈ {0, 1},
E `M : {A | ϕ0 ∨ ϕ1} E , x : {A | ϕi} ` N : U

E ` N [M/x] : U
(Inji-I)

E `M : {Ai | ϕ}
E ` ini(M) : {A0 +A1 | [ini]ϕ}

(MP)
E `M : {A | ψ ⇒ ϕ} E `M : {A | ψ}

E `M : {A | ϕ} (ExF)
E `M : {A | ⊥} E ` N : |U |

E ` N : U

(Sub)
E `M : T T ≤ U
E `M : U

Fig. 8. Typing Rules for Refined Modal Types.

Example 5.1. Since ϕ ⇒ ψ ⇒ (ϕ ∧ ψ) and using two times the rule (MP), we
get the first derived rule below, from which we can deduce the second one:

E `M : {A | ϕ} E `M : {A | ψ}
E `M : {A | ϕ ∧ ψ}

E `M : {A | ϕ} E ` N : {B | ψ}
E ` 〈M,N〉 : {A×B | [π0]ϕ ∧ [π1]ψ}

Example 5.2. We have the following derived rules:

E `M : {Strg A | 2ϕ}
E `M : {Strg A | ϕ ∧©2ϕ}

and
E `M : {Strg A | ϕ ∧©2ϕ}
E `M : {Strg A | 2ϕ}

Example 5.3. We have Consg : A → I {Strg A | ϕ} → {Strg A | ©ϕ} as well as
tlg : {Strg A | ©ϕ} → I {Strg A | ϕ}.

Example 5.4 (“ Always” (2) on Guarded Streams). The refined types of Consg,
hdg, tlg and mapg mentioned in §2 are easy to derive. We also have the type

{Strg A | 2[hd]ϕ0} −→ {Strg A | 2[hd]ϕ1} −→ {Strg A | 2([hd]ϕ0 ∨ [hd]ϕ1)}

for the mergeg function which takes two guarded streams and interleaves them:

mergeg : Strg A −→ Strg A −→ Strg A
:= fix(g).λs0.λs1. (hdg s0) ::g next

(
(hdg s1) ::g (g ~ (tlg s0)~ (tlg s1))

)
6 The Full System

The system presented so far has only one form of fixpoints in formulae (ναϕ).
We now present our full system, which also handles least fixpoints (µαϕ) and
thus liveness properties. A key role is played by polynomial guarded recursive
types, that we discuss first.

Temporal Refinements for Guarded Recursive Types 13

(µ-F)
Σ,α : A ` ϕ : A

Σ ` µαϕ : A

Σ,α : A ` ϕ : A

Σ ` µtαϕ : A

Σ,α : A ` ϕ : A

Σ ` νtαϕ : A

Fig. 9. Extended Formation Rules of Formulae (with α Pos ϕ and α guarded in ϕ).

`A ϕ[µαϕ/α]⇒ µαϕ

`A ϕ[ψ/α]⇒ ψ

`A µαϕ⇒ ψ

`A θt+1αϕ ⇔ ϕ[θtαϕ/α] `A µ0αϕ ⇔ ⊥ `A ν0αϕ ⇔ >

JtK ≤ JuK
`A µtαϕ ⇒ µuαϕ `A µtαϕ ⇒ µαϕ

JtK ≥ JuK
`A νtαϕ ⇒ νuαϕ `A ναϕ ⇒ νtαϕ

Fig. 10. Extended Modal Axioms and Rules (with A a pure type and θ either µ or ν).

Strictly Positive and Polynomial Types. Strictly positive types (notation
P+, Q+, etc.) are given by

P+ ::= A | X | IP+ | P+ + P+ | P+ × P+ | Fix(X).P+ | B → P+

where A, B are (closed) constant pure types. Strictly positive types are a conve-
nient generalization of polynomial types. A guarded recursive type Fix(X).P (X)
is polynomial if P (X) is induced by

P (X) ::= A | IX | P (X) + P (X) | P (X)× P (X) | B → P (X)

where A, B are (closed) constant pure types. Note that if Fix(X).P (X) is poly-
nomial, X cannot occur on the left of an arrow (→) in P (X). We say that
Fix(X).P (X) (resp. P+) is finitary polynomial (resp. finitary strictly positive)
if B is a finite base type (see Ex. 3.1) in the above grammars. The set-theoretic
counterpart of our polynomial recursive types are the exponent polynomial func-
tors of [34], which all have final Set-coalgebras (see e.g. [34, Cor. 4.6.3]).

Example 6.1. For A a constant pure type, e.g. Strg A, CoListg A and Treeg A as
well as Strg(StrA), CoListg(StrA) and Resg A (with I, O constant) are polyno-
mial. More generally, polynomial types include all recursive types Fix(X).P (X)
where P (X) is of the form

∑n
i=0Ai × (IX)Bi with Ai, Bi constant. The non-

strictly positive recursive type Roug A of Ex. 3.2, used in Hofmann’s breadth-first
traversal (see e.g. [10]), is not polynomial.

The Full Temporal Modal Logic. We assume given a first-order signature
of iteration terms (notation t, u, etc.), with iteration variables k, `, etc., and for
each iteration term t(k1, . . . , km) with variables as shown, a given primitive
recursive function JtK : Nm → N. We assume a term 0 for 0 ∈ N and a term k+1

for the successor function n ∈ N 7→ n+ 1 ∈ N.

14 Guilhem Jaber and Colin Riba

The formulae of the full temporal modal logic extend those of Fig. 5 with least
fixpoints µαϕ and with approximated fixpoints µtαϕ and νtαϕ where t is an
iteration term. The additional formation rule for formulae are given in Fig. 9. We
use θ as a generic notation for µ and ν. Least fixpoints µαϕ are equipped with
their usual Kozen axioms. In addition, iteration formulae νtαϕ(α) and µtαϕ(α)
have axioms expressing that they are indeed iterations of ϕ(α) from resp. > and
⊥. A fixpoint logic with iteration variables was already considered in [68].

Definition 6.2 (Full Modal Theories). The full intuitionistic and classical
modal theories (still denoted `A and `Ac) are defined by extending Def. 4.4 with
the axioms and rules of Fig. 10.

Example 6.3. Least fixpoints allow us to define liveness properties. On streams
and colists, we have 3ϕ := µα. ϕ ∨ ©α and ϕ U ψ := µα. ψ ∨ (ϕ ∧ ©α).
On trees, we have the CTL-like ∃3ϕ := µα. ϕ ∨ (©`α ∨ ©rα) and ∀3ϕ :=
µα. ϕ ∨ (©`α ∧©rα). The formula ∃3ϕ is intended to hold on a tree if there
is a finite path which leads to a subtree satisfying ϕ, while ∀3ϕ is intended to
hold if every infinite path crosses a subtree satisfying ϕ.

Remark 6.4. On finitary trees (as in Ex. 6.1 but with Ai, Bi finite base types),
we have all formulae of the modal µ-calculus. For this fragment, satisfiability is
decidable (see e.g. [17]), as well as the classical theory `c by completeness of
Kozen’s axiomatization [73] (see [63] for completeness results on fragments of
the µ-calculus).

The Safe and Smooth Fragments. We now discuss two related but dis-
tinct fragments of the temporal modal logic. Both fragments directly impact the
refinement type system by allowing for more typing rules.

The safe fragment plays a crucial role, because it reconciles the internal and
external semantics of our system (see §7). It gives subtyping rules for � (Fig. 11),
which makes available the comonad structure of � on [box]ϕ when ϕ is safe.

Definition 6.5 (Safe Formula). Say α1 : A1, . . . , αn : An ` ϕ : A is safe if

(i) the types A1, . . . , An, A are strictly positive, and
(ii) for each occurrence in ϕ of a modality [ev(ψ)], the formula ψ is closed, and

(iii) each occurrence in ϕ of a least fixpoint (µα(−)) and of an implication (⇒)
is guarded by a [box].

Note that the safe restriction imposes no condition on approximated fixpoints
θtα. Recalling that the theory under a [box] is `Ac , the only propositional connec-
tives accessible to `A in safe formulae are those on which `A and `Ac coincide.
The formula [¬nil] = [fold][in1]> is safe. Moreover:

Example 6.6. Any formula without fixpoint nor [ev(−)] is equivalent in `c to a
safe one. It ϕ is safe, then so are [hd]ϕ, [lbl]ϕ, as well as4ϕ (for4 ∈ {2,∀2,∃2})
and [box]4ϕ (for 4 ∈ {3,∃3,∀3}).

Temporal Refinements for Guarded Recursive Types 15

Definition 6.7 (Smooth Formula). A formula α1 : A1, . . . , αn : An ` ϕ : A
is smooth if

(i) the types A1, . . . , An, A are finitary strictly positive, and
(ii) for each occurrence in ϕ of a modality [ev(ψ)], the formula ψ is closed, and

(iii) ϕ is alternation-free: for θ, θ′ ∈ {µ, ν}, (1) if θβ0ψ0 is a subformula of ϕ,
and θ′β1ψ1 is a subformula of ψ0 s.t. β0 occurs free in ψ1, then θ = θ′, (2)
if some αi occurs in two subformulae θβ0ψ0 and θ′β1ψ1 of ϕ, then θ = θ′,
and (3) if some αi occurs in a subformula θ′βψ of ϕ, then αi Pos ψ.

Our notion of alternation freedom is adapted from [17], in which propositional
(fixpoint) variables are always positive. Note that the smooth restriction imposes
no further conditions on approximated fixpoints θtα. In the smooth fragment,
greatest and least fixpoints can be thought about resp. as∧

m∈N
ϕm(>) and

∨
m∈N

ϕm(⊥)

Iteration terms allow for formal reasoning about such unfoldings. Assuming JtK =
m ∈ N, the formula νtαϕ(α) (resp. µtαϕ(α)) can be read as ϕm(>) (resp.
ϕm(⊥)). This gives the rules (ν-I) and (µ-E) (Fig. 11), which allow for reductions
to the safe case (see examples in §8).

Remark 6.8. It is well-known (see e.g. [17, §4.1]) that on finitary trees (see
Rem. 6.4) the alternation-free fragment is equivalent to Weak MSO (MSO with
second-order variables restricted to finite sets). In the case of streams Str B (for a
finite base type B), Weak MSO is in turn equivalent to the full modal µ-calculus.
In particular, the alternation-free fragment contains all the flat fixpoints of [63]
and thus LTL on Str B and CTL on Tree B and on Res B with I, O, B finite base
types. A typical property on Tree B which cannot be expressed with alternation-
free formulae is “there is an infinite path with infinitely many occurrences of b”
for a fixed b : B (see e.g. [17, §2.2]).

Example 6.9. Any formula without fixpoint nor [ev(−)] is smooth. It ϕ is smooth,
then so are [hd]ϕ, [lbl]ϕ and 4ϕ for 4 ∈ {2,∀2,∃2,3,∃3,∀3}.

The Full System. We extend the types of §5 with universal quantification over
iteration variables (∀k · T). The type system of §5 is extended with the rules of
Fig. 11.

Example 6.10. The logical rules of Fig. 10 give the following derived typing rules
(where β Pos γ):

(µ-I)
E `M : {�A | [box]γ[µtαϕ/β]}
E `M : {�A | [box]γ[µαϕ/β]}

(ν-E)
E `M : {�A | [box]γ[ναϕ/β]}
E `M : {�A | [box]γ[νtαϕ/β]}

16 Guilhem Jaber and Colin Riba

ϕ safe

{�A | [box]ϕ} ≡ � {A | ϕ} ∀k ·IT ≡ I∀k · T

(∀-I) E `M : T

E `M : ∀k · T (∀-CI)
E `M : T [0/k] E `M : T [k+1/k]

E `M : ∀k · T

(ν-I)
E `M :

{
�A

∣∣ [box]γ[ν`αψ/β]
}

E `M : {�A | [box]γ[ναψ/β]} (∀-E)
E `M : ∀k · T
E `M : T [t/k]

(µ-E)
E `M : {�A | [box]γ[µαψ/β]} E , x :

{
�A

∣∣ [box]γ[µ`αψ/β]
}
` N : U

E ` N [M/x] : U

Fig. 11. Extended (Sub)Typing Rules for Refinement Types (where k is not free in E
in (∀-I) & (∀-CI), ` is fresh in (ν-I) & (µ-E), θαψ and γ are smooth, and β Pos γ).

7 Semantics

We present the main ingredients of the semantics of our type system. We take
as base the denotational semantics of guarded recursion in the topos of trees.

Denotational Semantics in the Topos of Trees. The topos of trees S pro-
vides a natural model of guarded recursion [13]. Formally, S is the category
of presheaves over (N \ {0},≤). In words, the objects of S are indexed sets
X = (X(n))n>0 equipped with restriction maps rXn : X(n + 1) → X(n). Ex-
cluding 0 from the indexes is a customary notational convenience ([13]). The
morphisms from X to Y are families of functions f = (fn : X(n)→ Y (n))n>0

which commute with restriction, that is fn◦rXn = rYn ◦fn+1. As any presheaf cat-
egory, S has (pointwise) limits and colimits, and is Cartesian closed (see e.g. [52,
§I.6]). We write Γ : S → Set for the global section functor, which takes X to
S[1, X], the set of morphisms 1→ X in S, where 1 = ({•})n>0 is terminal in S.

A typed term E `M : T is to be interpreted in S as a morphism

JMK : J|E|K −→ J|T |K

where J|E|K = J|T1|K × · · · × J|Tn|K for E = x1 : T1, . . . , xn : Tn. In particular, a
closed term M : T is to be interpreted as a global section JMK ∈ Γ J|T |K. The
×/+ /→ fragment of the calculus is interpreted by the corresponding structure
in S. TheImodality is interpreted by the functorI : S → S of [13]. This functor
shifts indexes by 1 and inserts a singleton set 1 at index 1. The term constructor
next is interpreted by the natural map with component nextX : X → IX as in

X

nextX

��

X1

1

��

X2

rX1oo

rX1
��

Xn

rXn−1

��

oo Xn+1

rXnoo

rXn
��

oo

IX 1 X1
1

oo Xn−1
oo Xn

rXn−1

oo oo

Temporal Refinements for Guarded Recursive Types 17

{|[πi]ϕ|} := {x ∈ Γ JA0 ×A1K | πi ◦ x ∈ {|ϕ|}} {|[next]ϕ|} := {next ◦ x ∈ Γ JIAK | x ∈ {|ϕ|}}
{|[fold]ϕ|} := {x ∈ Γ JFix(X).AK | unfold ◦ x ∈ {|ϕ|}} {|[box]ϕ|} := {x ∈ Γ J�AK | x1(•) ∈ {|ϕ|}}
{|[ini]ϕ|} :=

{
x ∈ Γ JA0 +A1K

∣∣ ∃y ∈ Γ JAiK
(
x = ini ◦ y and y ∈ {|ϕ|}

)}
{|[ev(ψ)]ϕ|} :=

{
x ∈ Γ JB → AK

∣∣ ∀y ∈ Γ JBK
(
y ∈ {|ψ|} =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|}

)}
Fig. 12. External Semantics (for closed formulae).

The guarded fixpoint combinator fix is interpreted by the morphism fixX :
XIX → X of [13, Thm. 2.4].

The constant type modality � is interpreted as the comonad ∆Γ : S → S,
where the left adjoint ∆ : Set → S is the constant object functor, which takes
a set S to the constant family (S)n>0. In words, all components J�AK(n) are
equal to Γ JAK, and the restriction maps of J�AK are identities. In particular, a
global section x ∈ Γ J�AK is a constant family (xn)n describing a unique global
section xn+1(•) = xn(•) ∈ Γ JAK. We refer to [20] and §D for the interpretation
of prev, box and unbox. Just note that the unit η : IdSet → Γ∆ is an iso.

Together with an interpretation of guarded recursive types, this gives a deno-
tational semantics of the pure calculus of §3. See [13,20] for details. We write fold :
JA[Fix(X).A/X]K→ JFix(X).AK and unfold : JFix(X).AK→ JA[Fix(X).A/X]K for
the two components of the iso JFix(X).AK ' JA[Fix(X).A/X]K.

External Semantics. Møgelberg [55] has shown that for polynomial types
such as StrgB with B a constant type, the set of global sections Γ JStrgBK is
equipped with the usual final coalgebra structure of streams over B in Set. To
each polynomial recursive type Fix(X).P (X), we associate a polynomial functor
PSet : Set→ Set in the obvious way.

Theorem 7.1 ([55] (see also [20])). If Fix(X).P (X) is polynomial, then the
set Γ JFix(X).P (X)K carries a final Set-coalgebra structure for PSet.

We devise a Set interpretation {|ϕ|} ∈ P(Γ JAK) of formulae ϕ : A. We
rely on the (complete) Boolean algebra structure of powersets for propositional
connectives and on Knaster-Tarski Fixpoint Theorem for fixpoints µ and ν.
The interpretations of νtαϕ(α) and µtαϕ(α) (for t closed) are defined to be
the interpretations resp. of ϕJtK(>) and ϕJtK(⊥), where e.g. ϕ0(>) := > and
ϕn+1(>) := ϕ(ϕn(>)). We give the cases of the atomic modalities in Fig. 12
(where for simplicity we assume formulae to be closed). It can be checked that,
when restricting to polynomial types, one gets the coalgebraic semantics of [33]
(with sums as in [34]) extended to fixpoints.

Internal Semantics of Formulae. We would like to have adequacy w.r.t. the
external semantics of formulae, namely that givenM : {A | ϕ}, the global section
JMK ∈ Γ JAK satisfies {|ϕ|} ∈ P(Γ JAK) in the sense that JMK ∈ {|ϕ|}. But in
general we can only have adequacy w.r.t. an internal semantics JϕK ∈ Sub(JAK)

18 Guilhem Jaber and Colin Riba

of formulae ϕ : A. We sketch it here. First, Sub(X) is the (complete) Heyting
algebra of subobjects of an object X of S. Explicitly, we have S = (S(n))n ∈
Sub(X) iff for all n > 0, S(n) ⊆ X(n) and rXn (t) ∈ S(n) whenever t ∈ S(n+ 1).
For propositional connectives and fixpoints, the internal J−K is defined similarly
as the external {|−|}, but using (complete) Heyting algebras of subobjects rather
than (complete) Boolean algebras of subsets.

As for modalities, let [4] be of the form [πi], [ini], [next] or [fold], and assume
[4]ϕ : B whenever ϕ : A. Standard topos theoretic constructions give posets
morphisms J[4]K : Sub(JAK) → Sub(JBK) such that J[πi]K, J[fold]K are maps
of Heyting algebras, J[ini]K preserves ∨,⊥ and ∧, while J[next]K preserves ∧,>
and ∨. With J[4]ϕK := J[4]K(JϕK), all the axioms and rules of Table 2 are
validated for these modalities. To handle guarded recursion, it is crucial to have
J[next]ϕK := I(JϕK), with J[next]ϕK true at time 1, independently from ϕ. As a
consequence, [next] and © do not validate axiom (P) (Table 2), and 3[hd]ϕ can
“lie” about the next time step. We let J[box]ϕK := ∆({|ϕ|}).

The modality [ev(ψ)] is a bit more complex. For ψ : B and ϕ : A, the formula
[ev(ψ)]ϕ is interpreted as a logical predicate in the sense of [32, §9.2 & Prop.
9.2.4]. The idea is that for a term M : {B → A | [ev(ψ)]ϕ}, the global section
ev ◦ 〈JMK, x〉 ∈ Γ JAK should satisfy ϕ whenever x ∈ Γ JBK satisfies ψ. We refer
to §D for details.

Our semantics are both correct w.r.t. the full modal theories of Def. 6.2.

Lemma 7.2. If `Ac ϕ then {|ϕ|} = {|>|}. If `A ϕ then JϕK = J>K.

The Safe Fragment. For α (positive and) guarded in ϕ, the internal semantics
of θαϕ is somewhat meaningless because S has unique guarded fixpoints [13,
§2.5]. In particular, the typing fix(s).Consg a s : {Strg A | 3[ϕ]} for arbitrary
a : A and ϕ : Strg A (extending §2) is indeed verified by the S semantics J−K.
This prevents us from adequacy w.r.t. the external semantics in general. But
this is possible for safe formulae since in this case we have:

Proposition 7.3. If ϕ : A is safe then {|ϕ|} = Γ JϕK.

Proposition 7.3 gives the subtyping rule {�A | [box]ϕ} ≡ � {A | ϕ} (Fig. 11),
which makes available the comonad structure of � on [box]ϕ when ϕ is safe.
Recall that in safe formulae, implications can only occur under a [box] modality
and thus in closed subformulae. It is crucial for Prop. 7.3 that infs and sups are
pointwise in the subobject lattices of S, so that conjunctions and disjunctions
are interpreted as with the usual classical Kripke semantics (see e.g. [52, §VI.7]).
This does not hold for implications!

The second key to Prop. 7.3 is the following. For L a complete lattice, a
Scott cocontinuous function L → L is a Scott continuous function Lop → Lop,
i.e. which preserves codirected infs. For a safe α : A ` ϕ : A, the poset maps JϕK :
Sub(JAK)→ Sub(JAK) and {|ϕ|} : P(Γ JAK)→ P(Γ JAK) are Scott cocontinuous.
The greatest fixpoint ναϕ(α) can thus be interpreted, both in Set and S, using
Kleene’s Fixpoint Theorem, as the infs of the interpretations of ϕm(>) form ∈ N.
This leads to the expected coincidence of the two semantics for safe formulae.

Temporal Refinements for Guarded Recursive Types 19

x �n {A | ϕ} iff xn(•) ∈ JϕKA(n) x �n Fix(X).A iff unfold ◦ x �n A[Fix(X).A/X]
x �n T0 + T1 iff ∃i ∈ {0, 1}, ∃y ∈ Γ J|Ti|K, x = ini ◦ y and y �n Ti
x �n T0 × T1 iff π0 ◦ x �n T0 and π1 ◦ x �n T1 x �n 1
x �n U → T iff ∀k ≤ n, ∀y ∈ Γ J|U |K, y �k U =⇒ ev ◦ 〈x, y〉 �k T
x �n+1 IT iff ∃y ∈ Γ J|T |K, x = next ◦ y and y �n T x �1 IT
x �n �T iff ∀m > 0, xn(•) �m T (where x ∈ Γ J|�T |K)
x �n ∀k · T iff x �n T [t/k] for all closed iteration terms t

Fig. 13. The Realizability Semantics.

The Smooth Fragment. The smooth restriction allows for continuity proper-
ties needed to compute fixpoints iteratively, following Kleene’s Fixpoint Theo-
rem. This implies the correctness of the typing rules (ν-I) and (µ-E) of Fig. 11.

Lemma 7.4. Given a closed smooth ναϕ(α) : A (resp. µαϕ(α) : A), the func-
tion {|ϕ|} : P(Γ JAK)→ P(Γ JAK) is Scott-cocontinuous (resp. Scott-continuous).
We have {|ναϕ(α)|} =

⋂
m∈N {|ϕm(>)|} (resp. {|µαϕ(α)|} =

⋃
m∈N {|ϕm(⊥)|}).

The Realizability Semantics. The correctness of the type system w.r.t. its
semantics in S is proved with a realizability relation.

Definition 7.5 (Realizability). Given a type T without free iteration variable,
a global section x ∈ Γ J|T |K and n > 0, we define the realizability relation x �n T
by induction on lexicographicaly ordered pairs (n, T) in Fig. 13.

Lemma 7.6. Given types T,U without free iteration variable, if x �n U and
U ≤ T then x �n T .

Theorem 7.7 (Adequacy). If `M : T , where T has no free iteration variable,
then JMK �n T for all n > 0.

By Thm. 7.7, a program M : B → A induces a set-theoretic function Γ JMK :
Γ JBK→ Γ JAK, x 7→ JMK◦x. When B and A are polynomial (e.g. streams Strg B,
Strg A with B, A constant), Møgelberg’s Thm. 7.1 says that Γ JMK is a function
on the usual final coalgebra for B, A in Set (e.g. the set of usual streams over
B and A). Moreover, if e.g. M : {Str B | [box]ψ} → {Str A | [box]ϕ}, then (modulo
Γ∆ ' IdSet) given a stream x that satisfies ψ (i.e. x ∈ {|ψ|}) the stream
Γ JMK(x) satisfies ϕ (i.e. Γ JMK(x) ∈ {|ϕ|}). See §8 for examples.

8 Examples

We exemplified basic manipulations of our system over §3-6. We give further
examples here. The functions used in our main examples are gathered in Table 3,
with the following conventions. We use the infix notation a ::g s for Consg a s
and write []g for the empty colist Nilg. Moreover, we use some syntactic sugar for
pattern matching, e.g. assuming s : CoListg A we write case s of ([]g 7→ N |x ::g

xs 7→ M) for case(unfold s) of (y.N [〈〉/y]|y.M [π0(y)/x , π1(y)/xs]). Most of the

20 Guilhem Jaber and Colin Riba

append : CoListA −→ CoListA −→ CoListA
:= λs.λt.

boxι(appendg (unbox s) (unbox t))

appendg : CoListg A→ CoListg A→ CoListg A
:= fix(g).λs.λt.case s of
| []g 7→ t
| x ::g xs 7→ x ::g (g ~ xs~ (next t))

sched : ResA −→ ResA −→ ResA
:= λp.λq.

boxι(schedg (unbox p) (unbox q))

schedg : Resg A −→ Resg A −→ Resg A
:= fix(g).λp.λq. case p of
| Retg a 7→ Retg a
| Contg k 7→

let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

diag := λs.boxι
(
diagg (unbox s)

)
: Str(StrA) −→ StrA

diagg := diagauxg (λx.x) : Strg(StrA) −→ Strg A

diagauxg : (StrA→ StrA) −→ Strg(StrA) −→ Strg A
:= fix(g).λt.λs. Consg

(
(hd ◦ t)(hdg s)

) (
g ~ next(t ◦ tl)~ (tlg s)

)
fb : CoNat −→ CoNat −→ Str Bool

:= λc.λm. boxι(fbg (unbox c) (unbox m))
fbg : CoNatg −→ CoNatg −→ Strg Bool

:= fix(g).λc.λm. case c of
| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sgn 7→ tt ::g g ~ n~ (next m)

extract : Roug(CoListg A) −→ CoListg A
:= fix(g).λc. case c of
| Overg 7→ Nilg

| Contgf 7→ fg~

unfold : Roug A −→ (IRoug A→ IA) −→ IA
:= λc. case c of
| Overg 7→ λk. k (next Overg)
| Contgf 7→ λk. next(fk)

bftg := λt. extract (bftaux t Overg) : Treeg A −→ CoListg A

bftaux : Treeg A −→ Roug(CoListg A) −→ Roug(CoListg A)
:= fix(g).λt.λc. Cont

(
λk. (labelg t) ::g unfold c

(
k ◦ (g ~ (song

`t))
~ ◦ (g ~ (song

rt))
~
))

Table 3. Code of the Examples.

functions of Table 3 are obtained from usual recursive definitions by inserting ~
and next at the right places. We often write ψ ‖→ ϕ for [ev(ψ)]ϕ. Table 4 recaps
our main examples of refinement typings, all of which (for A, B, O, I constant, I
finite and ϕ, ψ safe and smooth) can be derived syntactically for the functions of
Table 3. We use intermediate typings requiring iteration terms whenever a 3 is
involved. Below, “Γ JMK satisfies ϕ” means Γ JMK ∈ {|ϕ|} (modulo Γ∆ ' IdSet,
see §7). We refer to §E for details.

Example 8.1 (The Append Function on CoLists). Our system can derive that
Γ JappendK returns a non-empty colist if one of its argument is non-empty. Using
3[nil] (which says that a colist is finite), we can derive that Γ JappendK returns a
finite colist if its arguments are both finite. This involves the intermediate typing

∀k·∀`·
({

CoListg A
∣∣ 3k[nil]

}
→
{

CoListg A
∣∣ 3`[nil]

}
→
{

CoListg A
∣∣ 3k+`[nil]

})
In addition, if the first argument of Γ JappendK has an element which satisfies
ϕ, then the result has an element which satisfies ϕ. The same holds if the first
argument is finite while the second one has an element which satisfies ϕ. ut

Temporal Refinements for Guarded Recursive Types 21

Map over coinductive streams (with 4 either 2, 3, 32 or 23)
map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]4[hd]ψ} −→ {StrA | [box]4[hd]ϕ}

Diagonal of coinductive streams of streams (with 4 either 2 or 32)
diag : {Str(StrA) | [box]4[hd][box]2[hd]ϕ} −→ {StrA | [box]4[hd]ϕ}

A fair stream of Booleans (adapted from [18,8])
fb : CoNat −→ CoNat −→ Str Bool
fb 0 1 : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}

Append on guarded recursive colists
appendg : {CoListg A | [¬nil]} −→ CoListg A −→ {CoListg A | [¬nil]}
appendg : CoListg A −→ {CoListg A | [¬nil]} −→ {CoListg A | [¬nil]}

Append on coinductive colists
append : {CoListA | [box]3[hd]ϕ} −→ CoListA −→ {CoListA | [box]3[hd]ϕ}
append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[hd]ϕ} −→ {CoListA | [box]3[hd]ϕ}
append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]}

Breadth-first tree traversal
bftg : {Treeg C | ∀2[lbl]ϑ} −→ {CoListg C | 2[hd]ϑ}

(à la [39] or with Hofmann’s algorithm (see e.g. [10]))

A scheduler of resumptions (adapted from [48])
sched : {ResA | [box]3[Ret]} −→ {ResA | [box]3[Ret]} −→ {ResA | [box]3[Ret]}
sched : {ResA | [box]3[now]ψ} −→ {ResA | [box]3[now]ψ} −→ {ResA | [box]3[now]ψ}
sched : {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]}
sched : {ResA | [box]23[out]ϑ} −→ {ResA | [box]23[out]ϑ} −→ {ResA | [box]23[out]ϑ}

(where 3 is either ∀3 or ∃3, 2 is either ∀2 or ∃2, and [out] is either [∧out] or [∨out])

Table 4. Some Refinement Typings (functions defined in Table 3).

Example 8.2 (The Map Function on Streams). The composite modalities 23

and 32 over streams are read resp. as “infinitely often” and “eventually always”.
Provided with a function f : Γ JBK → Γ JAK taking b ∈ Γ JBK satisfying ψ to
f(b) ∈ Γ JBK satisfying ϕ, the function Γ JmapK on set-theoretic streams returns
a stream which infinitely often (resp. eventually always) satisfies ϕ whenever its
stream argument infinitely often (resp. eventually always) satisfies ψ. ut

Example 8.3 (The Diagonal Function). Consider a stream of streams s. We have
s = (si | i ≥ 0) where each si is itself a stream si = (si,j | j ≥ 0). The diagonal
of s is then the stream (si,i | i ≥ 0). Note that si,i = hd(tli(hd(tli(s))). Indeed,
tli(s) is the stream of streams (sk | k ≥ i), so that hd(tli(s)) is the stream si and
tli(hd(tli(s))) is the stream (si,k | k ≥ i). Taking its head thus gives si,i. In the
diag function of Table 3, the auxiliary higher-order function diagauxg iterates the
coinductive tl over the head of the stream of streams s. We write ◦ for function
composition, so that assuming s : Strg(StrA) and t : StrA→ StrA, we have (on
the coinductive type StrA), (hdg s) : StrA and

(hd ◦ t) : StrA→ A (hd ◦ t)(hdg s) : A (t ◦ tl) : StrA→ StrA

The expected refinement types for diag (Table 4) say that if its argument is a
stream whose component streams all satisfy 2ϕ, then Γ JdiagK returns a stream

22 Guilhem Jaber and Colin Riba

whose elements all satisfy ϕ. Also, if the argument of Γ JdiagK is a stream such
that eventually all its component streams satisfy 2ϕ, then it returns a stream
which eventually always satisfies ϕ. See §E.4 for details. ut

Example 8.4 (A Fair Stream of Booleans). The non-regular stream (fb 0 1),
adapted from [18,8], is of the form ff · tt · ff · tt2 · ff · · ·ff · ttm · ff · ttm+1 · ff · · ·. It
thus contains infinitely many tt’s and infinitely many ff’s. We indeed have (see
§E.5 for details) (fb 0 1) : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}. ut

Example 8.5 (Resumptions). The type of resumptions Resg A (see Ex. 3.2) is
adapted from [48]. Its guarded constructors are

Retg := λa. fold(in0 a) : A −→ Resg A
Contg := λk. fold(in1 k) : (I→ (O×IResg A)) −→ Resg A

Retg(a) represents a computation which returns the value a : A, while Contg〈f, k〉
(with 〈f, k〉 : I → (O × IResg A)) represents a computation which on input
i : I outputs fi : O and continues with ki : IResg A. Given p, q : Resg A, the
scheduler (schedg p q), adapted from [48], first evaluates p. If p returns, then
the whole computation returns, with the same value. Otherwise, p evaluates to
say Contg〈f, k〉. Then (schedg p q) produces a computation which on input i : I
outputs fi and continues with (schedg q (ki)), thus switching arguments.

Let I be a finite base type (so that Resg A is finitary polynomial). Let ψ : A,
ϑ : O and ϕ : Resg A. We have the following formulae (where i : I):

[Ret] := [fold][in0]> [outi]ϑ := [fold][in1] ([i] ‖→ [π0]ϑ)
[now]ψ := [fold][in0]ψ ©iϕ := [fold][in1] ([i] ‖→ [π1][next]ϕ)

The formula [Ret] (resp. [now]ψ) holds on a resumption which immediately re-
turns (resp. with a value satisfying ψ) and we have Retg : A→ {Resg A | [Ret]},
Retg : {A | ψ} → {Resg A | [now]ψ}. Moreover, the typings

Contg : {I→ (O×IResg A) | [i] ‖→ [π0]ϑ} −→ {Resg A | [outi]ϑ}
Contg : {I→ (O×IResg A) | [i] ‖→ [π1][next]ϕ} −→ {Resg A | ©iϕ}

express that [outi]ϑ : Resg A is satisfied by Contg〈f, k〉 if fi satisfies ϑ, and that
©iϕ : Resg A is satisfied by Contg〈f, k〉 if ki satisfies [next]ϕ. Since I is a finite
base type, it is possible to quantify over its inhabitants. We thus obtain CTL-like
variants of 2 and 3 (Ex. 4.3.(b) and Ex. 6.3). Namely:

[∧out]ϑ := ∧i∈I[outi]ϑ : Resg A T ϕ := ∧i∈I©i ϕ : Resg A
[∨out]ϑ := ∨i∈I[outi]ϑ : Resg A U ϕ := ∨i∈I©i ϕ : Resg ϕ
∀2ϕ := να. ϕ∧ T α : Resg A ∀3ϕ := µα. ϕ∨ T α : Resg A
∃2ϕ := να. ϕ∧ U α : Resg A ∃3ϕ := µα. ϕ∨ U α : Resg A

Our system can prove that Γ JschedK returns in finite time when so do its argu-
ments, either along some or along any sequence of inputs. We moreover have
expected 23 properties for all possible (consistent) combinations of ∃/∀ and
[Ret]/[∨out]/[∧out] (Table 4, with ψ : A, ϑ : O safe and smooth). See §E.7. ut

Temporal Refinements for Guarded Recursive Types 23

Example 8.6 (Breadth-First Traversal). The function bftg of Table 3 (where g~

stands for λx.g ~ x) implements Martin Hofmann’s algorithm for breadth-first
tree traversal. This algorithm involves the higher-order type Roug A (see Ex. 3.2)
with constructors Overg := fold(in0〈〉) : Roug A and

Contg := λf.fold(in1f) :
(
(IRoug A→ IA)→ A

)
→ Roug A

We refer to [10] for explanations. Consider a formula ϕ : A. We can lift ϕ to

[Rou]ϕ := να. [fold][in1](([next]α ‖→ [next]ϕ) ‖→ ϕ) : Roug A

We then easily derive the expected refinement type of bftg (Table 4, where ϑ : C).
Assume that ϑ is safe. On the one hand it is not clear what the meaning of [Rou]ϑ
is, because it is an unsafe formula over a non-polynomial type. On the other
hand, the type of bftg in Tab. 4 has its standard expected meaning (namely: if
all nodes of a tree satisfy ϑ then so do all elements of its traversal) because the
types Treeg C, CoListg C are polynomial and the formulae ∀2[lbl]ϑ, 2[hd]ϑ are
safe. Hence, our system can prove standard statements via detours through non-
standard ones, which illustrates its compositionality. We have the same typing
for a usual breadth-first tree traversal with forests (à la [39]). See §E.8. ut

9 Related Work

Type systems based on guarded recursion have been designed to enforce prop-
erties of programs handling coinductive types, like causality [49], productiv-
ity [5,55,20,6,28,27], or termination [67]. These properties are captured by the
type systems, meaning that all well-typed programs satisfy these properties.

In an initially different line of work, temporal logics have been used as type
systems for functional reactive programming (FRP), starting from LTL [35,36] to
the intuitionistic modal µ-calculus [18]. These works follow the Curry-Howard
“proof-as-programs” paradigm, and reflect in the programming languages the
constructions of the temporal logic.

The FRP approach has been adapted to guarded recursion, e.g. for the ab-
sence of space leaks [48], or the absence of time leaks, with the Fitch-style system
of [7]. This more recently lead [8] to consider liveness properties with an FRP ap-
proach based on guarded recursion. In this system, the guarded λ-calculus (pre-
sented in a Fitch-style type system) is extended with a delay modality (written
©) together with a “until type” A Until B. Following the Curry-Howard corre-
spondence, A Until B is eliminated with a specific recursor, based on the usual
unfolding of Until in LTL, and distinct from the guarded fixpoint operator.

In these Curry-Howard approaches, temporal operators are wired into the
structure of types. This means that there is no separation between the program
and the proof that it satisfies a given temporal property. Different type formers
having different program constructs, different temporal specifications for the
same program may lead to different actual code.

We have chosen a different approach, based on refinement types, with which
the structure of formulae is not reflected in the structure of types. This allows

24 Guilhem Jaber and Colin Riba

for our examples to be mostly written in a usual guarded recursive fashion (see
Table 3). Of course, we indeed use the modality� at the type level as a separation
between safety and liveness properties. But different liveness properties (e.g. 3,
32, 23) are uniformly handled with the same �-type, which is moreover the
expected one in the guarded λ-calculus [20].

Higher-order model checking (HOMC) [59,43] has been introduced to check
automatically that higher-order recursion schemes, a simple form of higher-order
programs with finite data-types, satisfy a µ-calculus formula. Automatic verifi-
cation of higher-order programs with infinite data-types (integers) has been ex-
plored for safety [44], termination [50], and more generally ω-regular [56] prop-
erties. In presence of infinite datatypes, semi-automatic extensions of HOMC
have recently been proposed [74]. In contrast with this paper, most HOMC ap-
proaches do not consider input-output behaviors on coalgebraic data. A notable
exception is [45,26], but it does not handle higher-order functions (such as map),
nor polynomial types such as Str(StrA) (Ex. 8.3) or non-positive types such as
RouA (Ex. 8.6) and imposes a strong linearity constraint on pattern matching.

Event-driven approaches consider effects generating streams of events [66],
which can be checked for temporal properties with algorithms based on (HO)MC
[30,31], or, in presence of infinite datatypes, with refinement type systems [46,58].
Our iteration terms can be seen as oracles, as required by [46] to handle liveness
properties, but we do not know if they allow for the non-regular specifications
of [58]. While such approaches can handle infinite data types with good levels of
automation, they do not have coinductive types nor branching time properties,
such as the temporal specification of sched on resumptions (Ex. 8.5)

Along similar lines, branching was approached via non-determinism in [69],
which also handles universal and existential properties on traces. This frame-
work can handle CTL-like properties of the form ∃/∀-2/3 (with our notation
of Ex. 8.5), but not nested combinations of these (as e.g. ∃2∀3 for sched in
Ex. 8.5). It moreover does not handle coinductive types.

10 Conclusion and Future Work

We have presented a refinement type system for the guarded λ-calculus, with re-
finements expressing temporal properties stated as (alternation-free) µ-calculus
formulae. As we have seen, the system is general enough to prove precise behav-
ioral input/output properties of coinductively-typed programs. Our main con-
tribution is to handle liveness properties in presence of guarded recursive types.
As seen in §2, this comes with inherent difficulties. In general, once guarded
recursive functions are packed into coinductive ones using �, the logical reason-
ing is made in our system directly on top of programs, following their shape,
but requiring no further modification. We thus believe to have achieved some
separation between programs and proofs.

We provided several examples. While they demonstrate the flexibility of our
system, they also show that more abstraction would be welcomed when proving

Temporal Refinements for Guarded Recursive Types 25

liveness properties. In addition, our system lacks expressiveness to prove e.g.
liveness properties on breadth-first tree traversals.

We believe that our approach could be generalized to other programming
languages with inductive or coinductive types. The key requirement are: (1)
modalities in the temporal logic to navigate through the types of the languages,
(2) a semantics to indicate when a program satisfies a formula of the temporal
logic, which is sufficiently closed to the set-theoretic one for liveness proper-
ties to get their expected meaning, and (3) inference rules to reason over this
realizability semantics.

Extensions of the guarded λ-calculus with dependent types have been ex-
plored [14,11,6,27]. It may be possible to extend our work to these systems. This
would require to work in a Fitch-style presentation of the �modality, as in [7,12],
since it is not known how to extend delayed substitutions to dependent types
while retaining decidability of type-checking [15]. Also, it is appealing to inves-
tigate the generalization of our approach to sized types [1], in which guarded
recursive types are representable [72].

We plan to investigate type checking. For instance, in a decidable frag-
ment like the µ-calculus on streams, one can check that a function of type
{Strg C | 32[hd]ϑ} → {StrgB | 32[hd]ψ} can be postcomposed with one of
type {StrgB | 23[hd]ψ} → {Strg A | 23[hd]ϕ} (since 32[hd]ψ ⇒ 23[hd]ψ).
Hence, we expect that some automation is possible for fragments of our logic. In
presence of iteration terms, arithmetic extensions of the µ-calculus [41,42] may
provide interesting backends. An other direction is the interaction with HOMC.
If (say) a stream over A is representable in a suitable format, one may use HOMC
to check whether it can be argument of a function expecting e.g. a stream of
type {Strg A | 23[hd]ϕ}. This might provide automation for fragments of the
guarded λ-calculus. Besides, the combination of refinement types with automatic
techniques like predicate abstraction [62], abstract interpretation [37], or SMT
solvers [71,70] has been particularly successful. More recently, the combination
of refinement types inference with HOMC has been investigated [64].

We would like to explore temporal specification of general, effectful programs.
To do so, we wish to develop the treatment of the coinductive resumptions
monad [60], that provides a general framework to reason on effectful computa-
tions, as shown by interaction trees [75]. It would be interesting to study tem-
poral specifications we could give to effectful programs encoded in this setting.
To formalize reasoning on such examples, we would like to design an embedding
of our system in a proof assistant like Coq.

Following [3], guarded recursion has been used to abstract the reasoning on
step-indexing [4] that has been used to design Kripke Logical Relations [2] for
typed higher-order effectful programming languages. Program logics for reason-
ing on such logical relations [21,22] uses this representation of step-indexing via
guarded recursion. It is also found in Iris [40], a framework for higher-order con-
current separation logic. It would be interesting to explore the incorporation of
temporal reasoning, especially liveness properties, in such logics.

26 Guilhem Jaber and Colin Riba

References

1. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types.
J. Funct. Program. 26, e2 (2016). https://doi.org/10.1017/S0956796816000022,
https://doi.org/10.1017/S0956796816000022 25

2. Ahmed, A.: Step-Indexed Syntactic Logical Relations for Recursive and Quanti-
fied Types. In: Proceedings of the 15th European Conference on Programming
Languages and Systems. pp. 69–83. ESOP’06, Springer-Verlag, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11693024 6, https://doi.org/10.1007/11693024 6
25

3. Appel, A., Melliès, P.A., Richards, C., Vouillon, J.: A Very Modal Model
of a Modern, Major, General Type System. SIGPLAN Not. 42(1), 109–
122 (2007). https://doi.org/10.1145/1190215.1190235, https://doi.org/10.1145/
1190215.1190235 25

4. Appel, A.W., McAllester, D.: An Indexed Model of Recursive Types for Founda-
tional Proof-Carrying Code. ACM Trans. Program. Lang. Syst. 23(5), 657–683
(2001). https://doi.org/10.1145/504709.504712, https://doi.org/10.1145/504709.
504712 25

5. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 197–208. ICFP ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2500365.2500597 2, 23

6. Bahr, P., Grathwohl, H.B., Møgelberg, R.E.: The Clocks Are Ticking: No More De-
lays! In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005097 23, 25

7. Bahr, P., Graulund, C., Møgelberg, R.: Simply RaTT: A Fitch-Style Modal Calcu-
lus for Reactive Programming without Space Leaks. Proc. ACM Program. Lang.
3(ICFP), 109:1–109:27 (2019). https://doi.org/10.1145/3341713 2, 23, 25

8. Bahr, P., Graulund, C., Møgelberg, R.: Diamonds are not Forever: Liveness in Re-
active Programming with Guarded Recursion (2020), https://arxiv.org/abs/2003.
03170, To Appear in POPL’21 2, 21, 22, 23, 66

9. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008) 1,
48

10. Berger, U., Matthes, R., Setzer, A.: Martin Hofmann’s Case for Non-Strictly
Positive Data Types. In: Dybjer, P., Esṕırito Santo, J., Pinto, L. (eds.)
24th International Conference on Types for Proofs and Programs (TYPES
2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 130,
pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019).
https://doi.org/10.4230/LIPIcs.TYPES.2018.1, https://hal.archives-ouvertes.fr/
hal-02365814 2, 7, 13, 21, 23, 103

11. Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.:
Guarded cubical type theory. Journal of Automated Reasoning 63(2), 211–253
(2019). https://doi.org/10.1007/s10817-018-9471-7 25

12. Birkedal, L., Clouston, R., Mannaa, B., Møgelberg, R., Pitts, A.M.,
Spitters, B.: Modal dependent type theory and dependent right ad-
joints. Mathematical Structures in Computer Science 30(2), 118–138 (2020).
https://doi.org/10.1017/S0960129519000197 25

13. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. Logical Methods
in Computer Science 8(4) (2012) 2, 5, 16, 17, 18, 35, 40, 43

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1145/3341713
https://arxiv.org/abs/2003.03170
https://arxiv.org/abs/2003.03170
https://doi.org/10.4230/LIPIcs.TYPES.2018.1
https://hal.archives-ouvertes.fr/hal-02365814
https://hal.archives-ouvertes.fr/hal-02365814
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1017/S0960129519000197

Temporal Refinements for Guarded Recursive Types 27

14. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
Dependent Type Theory with Coinductive Types. In: Jacobs, B., Löding, C. (eds.)
Foundations of Software Science and Computation Structures. pp. 20–35. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016) 25

15. Bizjak, A., Møgelberg, R.E.: Denotational semantics for guarded dependent type
theory. Mathematical Structures in Computer Science 30(4), 342–378 (2020).
https://doi.org/10.1017/S0960129520000080 25

16. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press (2002) 33

17. Bradfield, J.C., Walukiewicz, I.: The mu-calculus and Model Checking. In: Clarke,
E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking,
pp. 871–919. Springer (2018) 6, 14, 15

18. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair Reactive Programming.
In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 361–372. POPL ’14, ACM, New York, NY, USA
(2014) 2, 21, 22, 23, 66

19. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)
32

20. Clouston, R., Bizjak, A., Bugge Grathwohl, H., Birkedal, L.: The Guarded Lambda-
Calculus: Programming and Reasoning with Guarded Recursion for Coinductive
Types. Logical Methods in Computer Science 12(3) (2016) 2, 6, 7, 17, 23, 24, 32,
35, 36, 37, 45, 47, 125, 129

21. Dreyer, D., Ahmed, A., Birkedal, L.: Logical Step-Indexed Logical Rela-
tions. Logical Methods in Computer Science Volume 7, Issue 2 (2011).
https://doi.org/10.2168/LMCS-7(2:16)2011, https://lmcs.episciences.org/698 25

22. Dreyer, D., Neis, G., Rossberg, A., Birkedal, L.: A Relational Modal Logic for
Higher-order Stateful ADTs. In: Proceedings POPL’10. pp. 185–198. ACM (2010)
25

23. Elliott, C., Hudak, P.: Functional Reactive Animation. In: Proceedings of
the Second ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 263–273. ICFP’97, ACM, New York, NY, USA (1997).
https://doi.org/10.1145/258948.258973, http://doi.acm.org/10.1145/258948.
258973 2

24. Freeman, T., Pfenning, F.: Refinement Types for ML. In: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Im-
plementation. pp. 268–277. PLDI’91, Association for Computing Machinery, New
York, NY, USA (1991). https://doi.org/10.1145/113445.113468, https://doi.org/
10.1145/113445.113468 1

25. Frittella, S.: Monotone Modal Logics & Friends. Ph.D. thesis, Aix-Marseille Univ.
(2014) 32

26. Fujima, K., Ito, S., Kobayashi, N.: Practical Alternating Parity Tree Au-
tomata Model Checking of Higher-Order Recursion Schemes. In: APLAS
’13: Proceedings of the 11th Asian Symposium on Programming Lan-
guages and Systems - Volume 8301. pp. 17–32. Springer-Verlag, Berlin, Hei-
delberg (2013). https://doi.org/10.1007/978-3-319-03542-0 2, https://doi.org/10.
1007/978-3-319-03542-0 2 24

27. Gratzer, D., Kavvos, G.A., Nuyts, A., Birkedal, L.: Multimodal dependent type
theory. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. pp. 492–506. LICS ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3373718.3394736, https://
doi.org/10.1145/3373718.3394736 23, 25

https://doi.org/10.1017/S0960129520000080
https://doi.org/10.2168/LMCS-7(2:16)2011
https://lmcs.episciences.org/698
https://doi.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1007/978-3-319-03542-0_2
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736

28 Guilhem Jaber and Colin Riba

28. Guatto, A.: A Generalized Modality for Recursion. In: Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 482–491. LICS
’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3209108.3209148
23

29. Hansen, H.H.: Monotonic Modal Logics. Master’s thesis, ILLC, Amsterdam (Oct
2003) 32

30. Hofmann, M., Chen, W.: Abstract interpretation from büchi automata.
In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. pp. 51:1–51:10.
ACM (2014). https://doi.org/10.1145/2603088.2603127, https://doi.org/10.1145/
2603088.2603127 24

31. Hofmann, M., Ledent, J.: A cartesian-closed category for higher-order model check-
ing. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/LICS.2017.8005120, https://doi.org/10.1109/
LICS.2017.8005120 24

32. Jacobs, B.: Categorical Logic and Type Theory. Studies in logic and the founda-
tions of mathematics, Elsevier (2001) 18, 41

33. Jacobs, B.: Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study. ITA
35(1), 31–59 (2001) 4, 8, 17

34. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press (2016) 13, 17

35. Jeffrey, A.: LTL Types FRP: Linear-time Temporal Logic Propositions As Types,
Proofs As Functional Reactive Programs. In: Proceedings of the Sixth Workshop on
Programming Languages Meets Program Verification. pp. 49–60. PLPV’12, ACM,
New York, NY, USA (2012). https://doi.org/10.1145/2103776.2103783, http://doi.
acm.org/10.1145/2103776.2103783 2, 23

36. Jeltsch, W.: An Abstract Categorical Semantics for Functional Reactive Program-
ming with Processes. In: Proceedings of the ACM SIGPLAN 2014 Workshop
on Programming Languages Meets Program Verification. pp. 47–58. PLPV’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2541568.2541573,
http://doi.acm.org/10.1145/2541568.2541573 2, 23

37. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying functional programs
using abstract interpreters. In: International Conference on Computer Aided Ver-
ification. pp. 470–485. Springer (2011) 25

38. Johnstone, P.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides, Clarendon Press (2002) 39, 45

39. Jones, G., Gibbons, J.: Linear-time Breadth-first Tree Algorithms: An Exercise in
the Arithmetic of Folds and Zips. Technical report, University of Auckland (1993)
2, 21, 23

40. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28 (2018) 25

41. Kobayashi, K., Nishikawa, T., Igarashi, A., Unno, H.: Temporal Verification of
Programs via First-Order Fixpoint Logic. In: Chang, B.E. (ed.) Static Analy-
sis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11822, pp. 413–436.

https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1109/LICS.2017.8005120
https://doi.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
https://doi.org/10.1145/2541568.2541573
http://doi.acm.org/10.1145/2541568.2541573

Temporal Refinements for Guarded Recursive Types 29

Springer (2019). https://doi.org/10.1007/978-3-030-32304-2 20, https://doi.org/
10.1007/978-3-030-32304-2 20 25

42. Kobayashi, N., Fedyukovich, G., Gupta, A.: Fold/Unfold Transformations for
Fixpoint Logic. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 12079, pp. 195–214.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 12, https://doi.org/
10.1007/978-3-030-45237-7 12 25

43. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: 2009 24th Annual IEEE
Symposium on Logic In Computer Science. pp. 179–188. IEEE (2009) 24

44. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR
for higher-order model checking. SIGPLAN Not. 46(6), 222–233 (2011).
https://doi.org/10.1145/1993316.1993525, https://doi.org/10.1145/1993316.
1993525 24

45. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-Order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL ’10: Pro-
ceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. pp. 495–508. Association for Computing Ma-
chinery, New York, NY, USA (2010). https://doi.org/10.1145/1707801.1706355,
https://doi.org/10.1145/1707801.1706355 2, 24

46. Koskinen, E., Terauchi, T.: Local Temporal Reasoning. In: Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). CSL-LICS’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2603088.2603138, https://
doi.org/10.1145/2603088.2603138 24

47. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Sci-
ence 27(3), 333 – 354 (1983), special Issue Ninth International Colloquium on
Automata, Languages and Programming (ICALP) Aarhus, Summer 1982 4, 10

48. Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Proceedings of ICFP’13. pp. 221–232. ACM, New York, NY, USA
(2013) 2, 7, 21, 22, 23, 91, 92

49. Krishnaswami, N.R., Benton, N.: Ultrametric Semantics of Reactive Programs. In:
2011 IEEE 26th Annual Symposium on Logic in Computer Science. pp. 257–266
(2011). https://doi.org/10.1109/LICS.2011.38 23

50. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic Termination
Verification for Higher-Order Functional Programs. In: Shao, Z. (ed.) Programming
Languages and Systems. pp. 392–411. ESOP’14, Springer Berlin Heidelberg, Berlin,
Heidelberg (2014) 24

51. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. CUP
(1986) 49

52. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to
topos theory. Springer (1992) 16, 18, 35, 39, 40, 41, 42, 47, 49, 111

53. Marin, S.: Modal proof theory through a focused telescope. Phd thesis, Université
Paris Saclay (Jan 2018), https://hal.archives-ouvertes.fr/tel-01951291 10

54. McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming 18(1) (2008). https://doi.org/10.1017/S0956796807006326 3

https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/1707801.1706355
https://doi.org/10.1145/1707801.1706355
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1109/LICS.2011.38
https://hal.archives-ouvertes.fr/tel-01951291
https://doi.org/10.1017/S0956796807006326

30 Guilhem Jaber and Colin Riba

55. Møgelberg, R.E.: A type theory for productive coprogramming via guarded recur-
sion. In: Proceedings of CSL-LICS 2014. CSL-LICS ’14, ACM (2014) 2, 5, 17, 23,
48, 49

56. Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal Verifi-
cation of Higher-Order Functional Programs. In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 57–68. POPL’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2837614.2837667, https://doi.org/10.
1145/2837614.2837667 24

57. Nakano, H.: A Modality for Recursion. In: Proceedings of LICS’00. pp. 255–266.
IEEE Computer Society (2000) 2

58. Nanjo, Y., Unno, H., Koskinen, E., Terauchi, T.: A Fixpoint Logic and De-
pendent Effects for Temporal Property Verification. In: Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science. pp.
759–768. LICS’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3209108.3209204, https://doi.org/10.1145/
3209108.3209204 24

59. Ong, C.H.L.: On Model-Checking Trees Generated by Higher-Order Recursion
Schemes. In: Proceedings of LICS 2006. pp. 81–90. IEEE Computer Society (2006)
24

60. Piróg, M., Gibbons, J.: The coinductive resumption monad. Electronic Notes in
Theoretical Computer Science 308, 273–288 (2014) 25

61. Plotkin, G., Stirling, C.: A Framework for Intuitionistic Modal Logics: Extended
Abstract. In: Proceedings of the 1986 Conference on Theoretical Aspects of Rea-
soning About Knowledge. pp. 399–406. TARK ’86, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1986) 10, 33

62. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid Types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 159–169. PLDI’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1375581.1375602, https://doi.org/10.1145/
1375581.1375602 25

63. Santocanale, L., Venema, Y.: Completeness for flat modal fixpoint logics. Ann.
Pure Appl. Logic 162(1), 55–82 (2010) 14, 15

64. Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model check-
ing with refinement type inference. In: Hermenegildo, M.V., Igarashi, A. (eds.)
Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM@POPL 2019, Cascais, Portugal, January 14-15,
2019. pp. 47–53. ACM (2019). https://doi.org/10.1145/3294032.3294081, https:
//doi.org/10.1145/3294032.3294081 25

65. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Phd
thesis, University of Edinburgh (Jul 1994), https://www.era.lib.ed.ac.uk/handle/
1842/407 10

66. Skalka, C., Smith, S., Van horn, D.: Types and Trace Effects of
Higher Order Programs. J. Funct. Program. 18(2), 179–249 (Mar 2008).
https://doi.org/10.1017/S0956796807006466, https://doi.org/10.1017/
S0956796807006466 24

67. Spies, S., Krishnaswami, N., Dreyer, D.: Transfinite Step-Indexing
for Termination. Proc. ACM Program. Lang. 5(POPL) (Jan 2021).
https://doi.org/10.1145/3434294, https://doi.org/10.1145/3434294 23

https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081
https://www.era.lib.ed.ac.uk/handle/1842/407
https://www.era.lib.ed.ac.uk/handle/1842/407
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1145/3434294
https://doi.org/10.1145/3434294

Temporal Refinements for Guarded Recursive Types 31

68. Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular
and Tree-Shaped Proofs in the µ-Calculus. In: Gordon, A.D. (ed.) Founda-
tions of Software Science and Computational Structures, 6th International Con-
ference, FOSSACS 2003 Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2620, pp. 425–
440. Springer (2003). https://doi.org/10.1007/3-540-36576-1 27, https://doi.org/
10.1007/3-540-36576-1 27 14

69. Unno, H., Satake, Y., Terauchi, T.: Relatively complete refinement type system
for verification of higher-order non-deterministic programs. Proc. ACM Program.
Lang. 2(POPL), 12:1–12:29 (2018). https://doi.org/10.1145/3158100, https://doi.
org/10.1145/3158100 24

70. Vazou, N.: Liquid Haskell: Haskell as a theorem prover. Ph.D. thesis, UC San Diego
(2016) 25

71. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Re-
finement Types for Haskell. In: Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Programming. pp. 269–
282. ICFP’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2628136.2628161, https://doi.org/10.1145/
2628136.2628161 25

72. Veltri, N., van der Weide, N.: Guarded Recursion in Agda via Sized Types. In:
Geuvers, H. (ed.) 4th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 131, pp. 32:1–32:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.FSCD.2019.32,
http://drops.dagstuhl.de/opus/volltexte/2019/10539 25

73. Walukiewicz, I.: Completeness of Kozen’s Axiomatisation of the Propositional µ-
Calculus. Information and Computation 157(1-2), 142–182 (2000) 14

74. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction
from Branching-Time Property Verification of Higher-Order Programs to
HFL Validity Checking. In: Proceedings of the 2019 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. pp. 22–
34. PEPM 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3294032.3294077, https://doi.org/10.1145/
3294032.3294077 24

75. Xia, L.Y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C., Zdancewic,
S.: Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc.
ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/3371119, https:
//doi.org/10.1145/3371119 25

https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1145/3158100
https://doi.org/10.1145/3158100
https://doi.org/10.1145/3158100
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
http://drops.dagstuhl.de/opus/volltexte/2019/10539
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

32 Guilhem Jaber and Colin Riba

(x : A) ∈ E
E ` x : A

E , x : B `M : A

E ` λx.M : B → A

E `M : B → A E ` N : B

E `MN : A E ` 〈〉 : 1

E `M0 : A0 E `M1 : A1

E ` 〈M0,M1〉 : A0 ×A1

E `M : Ai
E ` ini(M) : A0 +A1

for i ∈ {0, 1},
E `M : A0 +A1 E , x : Ai ` Ni : B

E ` caseM of (x.N0|x.N1) : B

E `M : A0 ×A1

E ` πi(M) : Ai

E , x : IA `M : A

E ` fix(x).M : A

E `M : A[Fix(X).A/X]

E ` fold(M) : Fix(X).A

E `M : Fix(X).A

E ` unfold(M) : A[Fix(X).A/X]

E `M : I(B → A) E ` N : IB
E `M ~N : IA

E `M : A

E ` next(M) : IA
x1 : A1, . . . , xk : Ak `M : A E `Mi : Ai with Ai constant for 1 ≤ i ≤ k

E ` prev[x1 7→M1,...,xk 7→Mk]
(M) : A

x1 : A1, . . . , xk : Ak `M : A E `Mi : Ai with Ai constant for 1 ≤ i ≤ k
E ` box[x1 7→M1,...,xk 7→Mk](M) : �A

E `M : �A
E ` unbox(M) : A

Fig. 14. Typing Rules of the Pure Calculus (full version).

A Additional Material for §3 (The Pure Calculus)

The typing rules for our pure calculus (i.e. the guarded λ-calculus of [20]) are
given in Fig. 14.

B Additional Material for §4 (A Temporal Modal Logic)

Figure 15 presents the definition of the variance predicates α Pos ϕ and α Neg ϕ
for the full logical language (§4 and §6). The intuitionistic propositional deduc-
tion rules are given in Fig. 16.

Remark B.1. All modalities ([πi], [fold], [next], [ini], [ev(ψ)] and [box]) satisfy the
monotonicity rule (RM) and are thus monotone in the sense of [19], from which
we borrowed the terminology used in Table 2 (see also [29,25]). Assuming the
rule (RM), we easily get the following:

(a) Axiom (N) implies the usual necessitation rule:

` ϕ
` [4]ϕ

(RN)

Proof. Indeed, one can derive

(N)
` [4]>

ϕ

` > ⇒ ϕ
(RM)

` [4]> ⇒ [4]ϕ

[4]ϕ
ut

(b) Axiom (C) implies the usual axiom (K):

[4](ϕ⇒ ψ) =⇒ ([4]ϕ⇒ [4]ψ)

Temporal Refinements for Guarded Recursive Types 33

α Pos α

α 6= β

α Pos β α Pos > α Pos ⊥

α Pos ϕ α Pos ψ

α Pos ϕ ∨ ψ
α Pos ϕ α Pos ψ

α Pos ϕ ∧ ψ
α Neg ψ α Pos ϕ

α Pos ψ ⇒ ϕ

α Pos ϕ

α Pos [πi]ϕ

α Pos ϕ

α Pos [ini]ϕ

α Pos ϕ

α Pos [fold]ϕ

α Pos ϕ

α Pos [next]ϕ

α Neg ψ α Pos ϕ

α Pos [ev(ψ)]ϕ

α Pos ϕ α 6= β

α Pos νβϕ

α Pos ϕ α 6= β

α Pos µβϕ

α Pos ϕ α 6= β

α Pos νtβϕ

α Pos ϕ α 6= β

α Pos µtβϕ

α 6= β

α Neg β α Neg > α Neg ⊥

α Neg ϕ α Neg ψ

α Neg ϕ ∨ ψ
α Neg ϕ α Neg ψ

α Neg ϕ ∧ ψ
α Pos ψ α Neg ϕ

α Neg ψ ⇒ ϕ

α Neg ϕ

α Neg [πi]ϕ

α Neg ϕ

α Neg [ini]ϕ

α Neg ϕ

α Neg [fold]ϕ

α Neg ϕ

α Neg [next]ϕ

α Pos ψ α Neg ϕ

α Neg [ev(ψ)]ϕ

α Neg ϕ α 6= β

α Neg νβϕ

α Neg ϕ α 6= β

α Neg µβϕ

α Neg ϕ α 6= β

α Neg νtβϕ

α Neg ϕ α 6= β

α Neg µtβϕ

Fig. 15. Positive and Negative Occurrences for the Full Logical Language.

Proof. Indeed, one has (
(ϕ⇒ ψ) ∧ ϕ

)
=⇒ ψ

(RM)
[4]
(
(ϕ⇒ ψ) ∧ ϕ

)
=⇒ [4]ψ

(C)
[4](ϕ⇒ ψ) ∧ [4]ϕ =⇒ [4]ψ

[4](ϕ⇒ ψ) =⇒ ([4]ϕ⇒ [4]ψ)
ut

(c) We have the monotonicity axioms

[4](ϕ ∧ ψ) =⇒ [4]ϕ ∧ [4]ψ
[4]ϕ ∨ [4]ψ =⇒ [4](ϕ ∨ ψ)

In our context, the normal intuitionistic modal logic IK of [61] is (RM) + (C) +
(N) + (P) + (C∨) + (C⇒), while the normal modal logic K is IK + (CL) (see
e.g. [16]).

C Additional Material for §5 (A Temporally Refined
Type System)

The definition of the subtyping relation ≤ for the full system (§5 and §6) is given
in Fig. 17.

34 Guilhem Jaber and Colin Riba

`A ϕ ∨ ϕ⇒ ϕ `A ϕ⇒ ϕ ∧ ϕ `A ϕ⇒ ϕ ∨ ψ `A ϕ ∧ ψ ⇒ ϕ

`A ϕ ∨ ψ ⇒ ψ ∨ ϕ `A ϕ ∧ ψ ⇒ ψ ∧ ϕ
`A ϕ ∧ ψ ⇒ θ

`A ϕ⇒ (ψ ⇒ θ)

`A ϕ⇒ (ψ ⇒ θ)

`A ϕ ∧ ψ ⇒ θ

`A ϕ `A ϕ⇒ ψ

`A ψ
`A ϕ⇒ ψ `A ψ ⇒ θ

`A ϕ⇒ θ `A ⊥ ⇒ ϕ

`A ϕ⇒ ψ

`A θ ∨ ϕ⇒ θ ∨ ψ

Fig. 16. Intuitionistic Propositional Deduction Rules.

T ≤ T
T ≤ U U ≤ V

T ≤ V
T ≤ U
IT ≤ IU

U ≤ T
�U ≤ �T

T0 ≤ U0 T1 ≤ U1

T0 × T1 ≤ U0 × U1

T0 ≤ U0 T1 ≤ U1

T0 + T1 ≤ U0 + U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ |T | A ≤ {A | >}
`A ϕ⇒ ψ

{A | ϕ} ≤ {A | ψ}

{B | ψ} → {A | ϕ} ≡ {B → A | [ev(ψ)]ϕ}

I {A | ϕ} ≡ {IA | [next]ϕ} ∀k ·IT ≡ I∀k · T

ϕ safe

� {A | ϕ} ≡ {�A | [box]ϕ}
`Ac ϕ⇒ ψ

{�A | [box]ϕ} ≤ {�A | [box]ψ}

Fig. 17. Subtyping Rules (full version).

The underlying pure type |T | of a refinement type T is inductively defined as
follows:

|A| := A
| {A | ϕ} | := A
∀k · T	:=	T		
T + U	:=	T	+	U
T × U	:=	T	×	U
U → T	:=	U	→	T
IT	:= I	T		
�T	:= �	T		

D Additional Material for §7 (Semantics)

This Appendix presents material that we omitted in §7 for space reasons. We
follow roughly the same plan. Most proofs a deferred to App. F. We often use θ
as a generic notation for µ and ν.

Temporal Refinements for Guarded Recursive Types 35

D.1 The Topos of Trees (Basic Structure)

Note D.1. Given an object X of S and 0 < k ≤ n, we write t↑k for the restriction
of t ∈ X(n) into X(k), obtained by composing restriction functions rXi for
i = k, . . . , n− 1.

Full definitions and proofs of the semantic require the explicit manipulation of
some of the structure of S. We refer to [13,20] for details.

First, as in any presheaf category, limits and colimits are computed pointwise.
In particular binary sums and products are given by

(X + Y)(n) = X(n) + Y (n)
(X × Y)(n) = X(n)× Y (n)

Moreover, exponentials are induced by the Yoneda Lemma (see e.g. [52, §I.6]).
Explicitly, given S object X and Y , the exponent Y X at n is the set of all
sequences (f`)`≤n of functions f` : X(`) → Y (`) which are compatible with

restriction (i.e. rY` ◦ f`+1 = f` ◦ rX`).

The morphism fixX : XIX → X is defined as

fixXn ((fm)m≤n) := (fn ◦ · · · ◦ f1)(•)

The morphism fixX : XIX → X is natural in X. Given f : IX × Y → X with
exponential transpose f t : Y → XIX , the morphism fixX ◦f t : Y → X is unique
such that fixX ◦ f t = f ◦ 〈nextX ◦ fixX ◦ fT , idX〉 ([13, Thm. 2.4]).

Since we do not require the explicit constructions, we refer to [13] for the
interpretation of guarded recursive types Fix(X).A(X) and for the definition of
the isos

fold : JA(Fix(X).A(X))K −→ JFix(X).A(X)K
unfold : JFix(X).A(X)K −→ JA(Fix(X).A(X))K

We now have all the structure we need for the denotational semantics of the
�-free fragment of the pure calculus.

D.2 Global Sections and Constant Objects

As for any presheaf topos, the global section functor Γ : S → Set is right adjoint
to the constant object functor ∆ : Set→ S (see e.g. [52, §I.6]):

S
Γ

**
> Set

∆

ii

We record the following easy well-known facts for later use.

Lemma D.2. Given a set S and given X, Y objects of S, we have in Set:

(1) the unit η : IdSet → Γ∆ of ∆ a Γ is an iso,

36 Guilhem Jaber and Colin Riba

(2) Γ (X × Y) ' ΓX × ΓY and Γ1 ' 1
(3) Γ (X + Y) ' ΓX + ΓY
(4) Γ (X∆S) ' (ΓX)S

(5) Γ (IX) ' ΓX (via Γ (next))

where all the mentioned isos are natural in X and Y (when applicable).

Proof.

(1) The unit ηS of ∆ a Γ at S takes a ∈ S to the constant map (n 7→ (• 7→
a)) ∈ S[1,∆S]. Its inverse is the function S[1,∆S] → S taking a constant
map x ∈ S[1,∆S] to x(0)(•).

(2) Since Γ is a right adjoint.
(3) Since for any x ∈ S[1, X + Y] there is some i ∈ {0, 1} such that x(•)(n) is

of the form ini(xn) for all n ∈ N.
(4) Using the Cartesian closed structure of S and the adjunction ∆ a Γ we

have
Γ (X∆S) = S[1, X∆S]

' S[1×∆S,X]
' S[∆S,X]
' Set[S,ΓX]

(5) We show that x ∈ ΓX 7→ next ◦ x ∈ Γ (IX) is a bijection. We first show
surjectivity. Consider x′ ∈ S[1,IX]. Then for each n ∈ N, we have x′n+1(•) ∈
IX(n+1) = X(n) with x′n+2(•)↑ = x′n+1(•). This defines a map x ∈ S[1, X]
as xn(•) := x′n+1(•). Moreover, (next0 ◦ x0)(•) = • = x′0(•) and

(nextn+1 ◦ xn+1)(•) = xn+1(•)↑ = x′n+2(•)↑ = x′n+1(•)

We now show injectivity. Let x, y ∈ S[1, X] and assume next ◦ x = next ◦ y :
1 →S IX. Then for all n we have xn+1(•)↑ = yn+1(•)↑ and thus xn(•) =
yn(•). ut

Following [20], for a (closed) pure type A, we have

J�AK := ∆Γ JAK

In words, all components J�AK(n) are equal to Γ JAK, and the restriction maps
of J�AK are identities. In particular, a global section x ∈ Γ J�AK is a constant
family (xn)n>0 describing a unique global section xn+1(•) = xn(•) ∈ Γ JAK.

The term constructor unbox(−) is interpreted as the counit ε of the adjunc-
tion ∆ a Γ : given E `M : �A, we let Junbox(M)K be the composite

JEK JMK−→ J�AK = ∆Γ JAK ε−→ JAK

The term constructors box and prev rely on a strong semantic property of
constant types, namely that their interpretation lie (modulo isomorphism) in
the image of the constant object functor ∆.

Temporal Refinements for Guarded Recursive Types 37

Definition D.3 ([20, Def. 2.2]). An object X of S is constant if X '∆S for
some set S.

Note that the restriction maps of constant objects are bijections. Similarly as
in [20, Def. 2.2], if x ∈ X(n) with X constant, then we write x ∈ X(k) for the
unique element of X(k) which is equal to x modulo the bijective restriction maps
of X.

Lemma D.4 ([20, Lem. 2.6]). If A is a constant (pure) type, then JAK is a
constant object of S.

We now give the interpretations of boxσ(M) and prevσ(M) (where σ stands for
[x1 7→M1, . . . , xk 7→Mk]). Assuming in both cases JMK to be defined, for n > 0
we let

Jboxσ(M)K(n) : JEK(n) −→∆Γ JAK(n) = Γ JAK
γ 7−→

(
m 7→ JMKm

(
JM1Kn(γ) , . . . , JMkKn(γ)

))
Jprevσ(M)K(n) : JEK(n) −→ IJAK(n) = JAK(n+ 1)

γ 7−→
(
JMKn+1

(
JM1Kn(γ) , . . . , JMkKn(γ)

))
where the mismatches between n and m and between n and n+ 1 are legal since
JA1K, . . . , JAkK are constant by Lem. D.4.

D.3 External and Internal Semantics: Global Definitions

We can now give the full Set and S interpretations of the logical language. In
both cases, for α : A ` ϕ : A(α), we let

ϕ0(>) := >
ϕm+1(>) := ϕ(ϕm(>))

ϕ0(⊥) := ⊥
ϕm+1(⊥) := ϕ(ϕm(⊥))

(Recall that θtαϕ is only allowed when ϕ as at most α as free variable.)

Definition D.5 (External Semantics). Consider a formula α1 : A1, . . . , αk :
Ak ` ϕ : A without free iteration variable. Assume given a valuation v taking
each propositional variable αi for i = 1, . . . , k to a set v(αi) ∈ P(Γ JAiK). We

define {|ϕ|}Av ∈ P(Γ JAK) by induction on ϕ in Fig. 18.

As for the internal S semantics J−K, we give a global definition, in a form
similar to Def. D.5.

Definition D.6 (Internal Semantics). Consider a formula α1 : A1, . . . , αk :
Ak ` ϕ : A without free iteration variable. Assume given a valuation v taking
each propositional variable αi for i = 1, . . . , k to a subobject v(αi) of JAiK. The
subobject JϕKAv of JAK is defined by induction on ϕ in Fig. 19.

The correctness of Def. D.6, namely that we indeed have JϕKA ∈ Sub(JAK), as
well as the correspondence with the presentation of §7 are discussed in App. D.6.

38 Guilhem Jaber and Colin Riba

{|⊥|}Av := ∅ {|>|}Av := Γ JAK {|αi|}Av := v(αi)

{|ϕ ∨ ψ|}Av := {|ϕ|}Av ∪ {|ψ|}
A
v {|ϕ ∧ ψ|}Av := {|ϕ|}Av ∩ {|ψ|}

A
v

{|ψ ⇒ ϕ|}Av :=
(
Γ JAK \ {|ψ|}Av

)
∪ {|ϕ|}Av

{|[πi]ϕ|}A0×A1
v :=

{
x ∈ Γ JA0 ×A1K

∣∣∣ πi ◦ x ∈ {|ϕ|}Ai
v

}
{|[ini]ϕ|}A0+A1

v :=
{
x ∈ Γ JA0 +A1K

∣∣∣ ∃y ∈ Γ JAiK
(
x = ini ◦ y and y ∈ {|ϕ|}Ai

v

)}
{|[fold]ϕ|}Fix(X).A

v :=
{
x ∈ Γ JFix(X).AK

∣∣∣ unfold ◦ x ∈ {|ϕ|}A[Fix(X).A/X]
v

}
{|[ev(ψ)]ϕ|}B→Av :=

{
x ∈ Γ JB → AK

∣∣∣ ∀y ∈ Γ JBK, y ∈ {|ψ|}Bv =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|}Av
}

{|[box]ϕ|}�A :=
{
x ∈ Γ J�AK

∣∣∣ x1(•) ∈ {|ϕ|}A
}

{|[next]ϕ|}IAv :=
{

next ◦ x ∈ Γ JIAK
∣∣∣ x ∈ {|ϕ|}Av }

{|νtαϕ(α)|}Av := {|ϕm(>)|}Av (JtK = m)

{|µtαϕ(α)|}Av := {|ϕm(⊥)|}Av (JtK = m)

{|ναϕ|}Av :=
⋃{

S
∣∣∣ S ∈ P(Γ JAK) and S ⊆ {|ϕ|}Av[S/α]

}
{|µαϕ|}Av :=

⋂{
S
∣∣∣ S ∈ P(Γ JAK) and {|ϕ|}Av[S/α] ⊆ S

}
Fig. 18. External Semantics.

J⊥KAv (n) := ∅ J>KAv := JAK JαiKAv := v(αi)

Jϕ ∨ ψKAv (n) := JϕKAv (n) ∪ JψKAv (n) Jϕ ∧ ψKAv (n) := JϕKAv (n) ∩ JψKAv (n)

Jψ ⇒ ϕKAv (n) :=
{
t ∈ JAK(n)

∣∣ ∀k ≤ n, t↑k ∈ JψKAv (k) =⇒ t↑k ∈ JϕKAv (k)
}

J[πi]ϕKA0×A1
v (n) :=

{
t ∈ JA0 ×A1K(n)

∣∣ πi(t) ∈ JϕKAi
v (n)

}
J[ini]ϕKA0+A1

v (n) :=
{
t ∈ JA0 +A1K(n)

∣∣ ∃u ∈ JAiK(n), t = ini(u) and u ∈ JϕKAi
v (n)

}
J[fold]ϕKFix(X).A

v (n) :=
{
t ∈ JFix(X).AK(n)

∣∣∣ unfoldn(t) ∈ JϕKA[Fix(X).A/X]
v (n)

}
J[ev(ψ)]ϕKB→Av (n) :=

{
t ∈ JB → AK(n)

∣∣ ∀k ≤ n, ∀u ∈ JBK(k), u ∈ JψKBv (k) =⇒ (t↑k)(u) ∈ JϕKAv (k)
}

J[box]ϕK�A(n) :=
{
t ∈ J�AK(n) = Γ JAK

∣∣∣ t ∈ {|ϕ|}A}
J[next]ϕKIAv (1) := 1

J[next]ϕKIAv (n) := JϕKAv (n− 1) (n > 1)

Jνtαϕ(α)KAv := Jϕm(>)KAv (JtK = m)

Jµtαϕ(α)KAv := Jϕm(⊥)KAv (JtK = m)

JναϕKAv :=
∨{

S
∣∣ S ∈ Sub(JAK) and S ≤ JϕKAv[S/α]

}
JµαϕKAv :=

∧{
S
∣∣ S ∈ Sub(JAK) and JϕKAv[S/α] ≤ S

}
Fig. 19. Internal Semantics.

Temporal Refinements for Guarded Recursive Types 39

Remark D.7. For closed formulae we can rephrase Def. D.6 as t ∈ JϕKA(n) iff
t An ϕ, where the forcing relation t An ϕ is inductively defined as follows.

– t 6An ⊥.
– t An >.
– t An ϕ ∨ ψ iff t An ϕ or t An ψ.
– t An ϕ ∧ ψ iff t An ϕ and t An ψ.
– t An ψ ⇒ ϕ iff for all k ≤ n, t↑k Ak ϕ whenever t↑k Ak ψ.
– t A0×A1

n [πi]ϕ iff πi(t) Ai
n ϕ.

– t A0+A1
n [ini]ϕ iff there is u ∈ JAiK(n) such that t = ini(u) and u Ai

n ϕ.
– t B→An [ev(ψ)]ϕ iff for all k ≤ n and all u ∈ JBK(k), (t↑k)(u) Ak ϕ whenever
u Bk ψ.

– t Fix(X).A
n [fold]ϕ iff unfold ◦ t A[Fix(X).A/X]

n ϕ.
– t IA0 [next]ϕ.
– t IAn+1 [next]ϕ iff t An ϕ.

– t �An [box]ϕ iff t ∈ {|ϕ|}A.

D.4 An Open Geometric Morphism

Key properties of the internal semantics of [box] rely on some further facts on
the adjunction ∆ a Γ . We refer to [52,38].

The functor ∆ : Set → S preserves limits (in particular, ∆ a Γ : S → Set
is a geometric morphism). It follows that ∆ preserves monos, so that for each
set S the function

A ∈ P(S) 7−→∆A ∈ Sub(∆S)

is a meet preserving (and thus monotone) map. It is easy to see that this map
has a posetal left adjoint

f! : Sub(∆S) −→ P(S)

Proof. A subobject A of ∆S is a family of subsets A = (An)n with An ⊆ S.
Hence we can let f!(A) ∈ P(S) be the set of all a ∈ S such that a ∈ An for
some n > 0. Then assuming f!(A) ⊆ B for some set B ∈ P(S), it follows that if
a ∈ An then a ∈ f!(A) ⊆ B so that a ∈ (∆B)n and thus A ≤ ∆B. Conversely,
if A ≤ ∆B, then for every a ∈ f!(A), since a ∈ An for some n > 0, we must
have a ∈ (∆B)n = B, so that f!(A) ⊆ B. ut

As a consequence, the adjoint pair ∆ a Γ : S → Set is an open geometric
morphism (in the sense of [52, Def. IX.6.2]), from which it follows that∆ induces
maps of (complete) Heyting algebras P(S)→ Sub(∆S) (see e.g. [52, Thm. X.3.1
& Lem. X.3.2]). We state this for later use.

Lemma D.8. For each set S, the functor ∆ induces a map of (complete) Heyt-
ing algebras P(S)→ Sub(∆S).

This means that the Set interpretation {|ϕ|} ∈ P(Γ JAK) can be taken to the
subobject ∆ {|ϕ|} ∈ Sub(∆Γ JAK) = Sub(J�AK) in S while respecting the usual
Set semantics of logical connectives. In particular, we can allow the logical theory
under a [box] to be classical, while the S semantics imposes the ambient logical
theory to be intuitionistic.

40 Guilhem Jaber and Colin Riba

D.5 Abstract Modalities

We present here some well-known basic material which will help us proving the
correctness of the internal and external semantics.

Definition D.9. Let C be a category with pullbacks and consider a morphism
k : X →C Y .

– The functor k∗ : C/Y → C/X is defined by pullbacks

A′y //

k∗(g)

��

A

g

��
X

k
// Y

– The functor (∃k) : C/X → C/Y is defined by postcomposition:

(g : A→ X) 7−→ (k ◦ g : A→ Y)

The following is a basic property of toposes.

Lemma D.10 ([52, Thm. IV.7.2]). Let T be a topos and fix a map k : X →T
Y . The functor (∃k) is left adjoint to k∗ : T /Y → T /X. Moreover, k∗ has a
right adjoint (∀k) and preserves exponentials, and thus preserves subobjects.

Lemma D.11.

(1) The map (∃ini) : Set/Si → Set/(S0 + S1) induces a map P(Si) → P(S0 +
S1).

(2) The map (∃ini) : S/Xi → S/(X0 +X1) induces a map Sub(Xi)→ Sub(X0 +
X1).

Proof. Since in both cases the morphism ini is a mono. ut

Lemma D.12. The map S/X → S/IX taking g : Y → X to I(g) : IY → IX
induces a map Sub(X)→ Sub(IX).

Proof. The functor I preserves limits since it has a left adjoint ([13, §2.1]). It
thus follows that I preserves monos. ut

D.6 External and Internal Semantics: Local Definitions

Some key properties of the Set and S interpretations are easier to get if one goes
through a local presentation, as operations on subobject and powerset lattices,
similar to that of J−K in §7. The goal is to pave the way toward the correctness
of both semantics:

Lemma D.13 (Lem. 7.2). The following holds w.r.t. the full modal theories
of Def. 6.2.

(1) If `Ac ϕ then {|ϕ|} = Γ JAK.
(2) If `A ϕ then JϕK = JAK.

The detailed proof of Lem. D.13 is deferred to App. F.1. It relies on the following
material.

Temporal Refinements for Guarded Recursive Types 41

Internal Semantics We use the material of §D.5 to devise operations on sub-
object lattices corresponding to our modalities. This formally extends the pre-
sentation given in §7.

Definition D.14.

(a) Given S-objects X0 and X1, define J[πi]K : Sub(Xi)→ Sub(X0 ×X1) as π∗i ,
where πi : X0 ×X1 →S Xi is the ith projection.

(b) Given S-objects X0 and X1, define J[ini]K : Sub(Xi) → Sub(X0 + X1) as
(∃ini), where ini : Xi →S X0 +X1 is the ith injection.

(c) Given a locally contractive functor T on S, define J[fold]K : Sub(T (Fix(T)))→
Sub(Fix(T)) as unfold∗, where we have unfold : Fix(T)→S T (Fix(T)).

(d) Given a S-object X, define J[next]K : Sub(X)→ Sub(IX) as I(−).
(e) Given a set S, define J[box]K : P(S)→ Sub(∆S) as ∆(−).

We now discuss the case of [ev(ψ)]ϕ, which is actually interpreted as a logical
predicate, in the categorical generalization of the usual sense discussed in [32,
§9.2 & Prop. 9.2.4]. We follow here [52, VI.5].

– First, extending the above discussion, for an object X of S, the (Heyting
algebra) exponent

(−)⇒X (−) : Sub(X)× Sub(X) −−→ Sub(X)

is given by

(A⇒X B)(n) = {t ∈ X(n) | ∀k ≤ n, t↑k ∈ A(k) =⇒ t↑k ∈ B(k)}

(see e.g. [52, Prop. I.8.5]).
– Second, it follows from Lem. D.10 that for objects X, Y of S, taking the

pullback of the evaluation map ev : XY ×Y → X gives a map of subobjects,
as in

ev∗(A)y
//

��

A��

XY × Y
ev

// X

which in particular preserves limits and colimits.
– Third, in the internal logic of S, universal quantification over an object Y

w.r.t. a predicate A ∈ Sub(X×Y) is given (again via Lem. D.10) by the right
adjoint ∀Y := ∀(π) to π∗, where π is the projection X × Y → X ([52, §VI.5,
p. 300]). Moreover, via the Kripke-Joyal semantics for a presheaf topos ([52,
§VI.7, p. 318]), for A ∈ Sub(X × Y), the presheaf ∀Y (A) at n is

{t ∈ X(n) | ∀k ≤ n, ∀u ∈ Y (k), (t↑k, u) ∈ A}

We therefore let, for each pure types A and B,

J[ev(−)]K : Sub(JBK) −→
(
Sub(JAK) → Sub(JB → AK)

)

42 Guilhem Jaber and Colin Riba

take S′ ∈ Sub(JBK) to

J[ev(S′)]K := S ∈ Sub(JAK) 7−→ ∀JBK
(
π∗(S′) ⇒JAKJBK×JBK ev∗(S)

)
where π : XY × Y → XY is a projection.

Now, note that we actually have

Lemma D.15. Consider a formula Σ ` ϕ : A and v as in Def. D.6, such that
JϕKv ∈ Sub(JAK). We have

(1) J[πi]ϕKv = J[πi]K(JϕKv)
(2) J[ini]ϕKv = J[ini]K(JϕKv)
(3) J[fold]ϕKv = J[fold]K(JϕKv)
(4) J[next]ϕKv = J[next]K(JϕKv)
(5) J[box]ϕK = J[box]K(JϕK)
(6) J[ev(ψ)]ϕKv = J[ev(JψKv)]K(JϕKv) for each ` ψ : B such that JψK ∈

Sub(JBK).

Proof.

(1) Since limits are computed pointwise in presheaves, we have

J[πi]K(JϕKAi)(n) = {(t, u) ∈ JA0 ×A1K(n)× JϕK(n) | u = πi(t)}

which is clearly in bijection with J[πi]ϕKA0×A1(n).
(2) Trivial.
(3) Similar to the case of [πi].
(4) Trivial.
(5) Trivial.
(6) Immediate from the above discussion. ut

We thus have done almost all the work to obtain the following basic fact.

Lemma D.16. Given α1 : A1, . . . , αk : Ak ` ϕ : A, and v taking αi for i =
1, . . . , k to v(αi) ∈ Sub(JAiK), we have JϕKAv ∈ Sub(JAK).

Proof. The proof is by induction on formulae. The interpretation of the propo-
sitional connectives follows the corresponding structures in presheaf toposes [52,
Prop. I.8.5]. The cases of the modalities [4] follow from the induction hypothesis
and Lem. D.15. The cases of θαϕ simply amount to the fact that for presheaf
toposes, subobjects lattices are complete ([52, Prop. I.8.5]). The cases of θtαϕ
for t an iteration term are trivial. ut

We now turn to the logical theory. We immediately get from the above:

Corollary D.17.

(1) The maps J[πi]K, J[fold]K and J[box]K are maps of Heyting algebras.
(2) The maps J[ini]K preserve ∨,⊥ and ∧.
(3) The maps J[next]K preserve ∧,> and ∨.

Temporal Refinements for Guarded Recursive Types 43

(4) For each object X of S and each fixed S ∈ Sub(X), the map J[ev(S)]K pre-
serves ∧,>.

Proof.

(1) This directly follows from Lem. D.10 and Lem. D.8.
(2) Preservation of ∨,⊥ follows from that fact that J[ini]K is a left adjoint by

Lem. D.10. For binary conjunctions, first note that meets in partial orders
are given by pullbacks. In a subobject lattice Sub(Xi), this can be expressed
as

A ∧By //

��

B

��
A // Xi

(where arrows are inclusions maps). Since ini : Xi → X0 + X1 is a mono,
the following is also a pullback in Sub(X0 +X1):

A ∧By //

��

B

��
Xi

ini

��
A // Xi

ini
// X0 +X1

(3) Preservation of ∧,> follows from the fact that I(−) is a right adjoint ([13,
§2.1]). As for preservation of ∨, we check the details. Consider an object X of
S and subobjects A,B ∈ Sub(X). We have to show I(A∨B) = I(A)∨I(B).
But we have

I(A ∨B)0 = 1 = 1 ∪ 1 = (I(A) ∨I(B))0

and
I(A ∨B)n+1 = (A ∨B)n = An ∪Bn

= I(A)n+1 ∪I(B)n+1

= (I(A) ∨I(B))n+1

(4) This directly follows from Lem. D.10, via Lem. D.15 and the definition of
J[ev(−)]K. ut

External Semantics We now turn to operations on powerset lattices for the
external semantics.

Definition D.18.

(a) Given sets S0 and S1, define {|[πi]|} : P(Si) → P(S0 × S1) as π∗i , where
πi : S0 × S1 → Si is the ith projection.

44 Guilhem Jaber and Colin Riba

(b) Given sets S0 and S1, define {|[ini]|} : P(Si)→ P(S0 + S1) as (∃ini), where
ini : Si → S0 + S1 is the ith injection.

(c) Given a S object X, define {|[next]|} : P(ΓX)→ P(ΓIX) as ((Γ next)−1)
∗
,

where (Γ next)−1 : Γ (IX)→ ΓX is the inverse of Γ (next) (Lem. D.2).
(d) Given a locally contractive functor T on S, define {|[fold]|} : P(Γ (T (Fix(T))))→
P(ΓFix(T)) as Γ (unfold)

∗
, where unfold : Fix(T)→S T (Fix(T)).

We trivially have (at appropriate types):

{|[πi]ϕ|} = {|[πi]|} ({|ϕ|})
{|[ini]ϕ|} = {|[ini]|} ({|ϕ|})
{|[next]ϕ|} = {|[next]|} ({|ϕ|})
{|[fold]ϕ|} = {|[fold]|} ({|ϕ|})

Similarly as in Cor. D.17, we obtain the following.

Lemma D.19.

(1) The functions {|[πi]|}, {|[next]|}, {|[fold]|} are maps of Boolean algebras.
(2) The function {|[ini]|} preserves ∨,⊥ and ∧.

D.7 The Safe Fragment

The property we use on safe formulae for Prop. 7.3 is the following.

Definition D.20 (Scott Cocontinuity). Let L be a complete lattice. A set
S ⊆ L is codirected if it is non-empty and for all a, b ∈ S, there is some
c ∈ S such that c ≤ a, b. A function f : L → L is Scott cocontinuous if it is
monotone and preserves infs of codirected sets (for S ⊆ L codirected, we have
f(
∧
S) =

∧
f(S)).

In other words, a Scott cocontinuous function L → L is a Scott continuous
function Lop → Lop.

Lemma D.21. The greatest fixpoint of a Scott cocontinuous f : L→ L is given
by
∧
m∈N f

m(>).

Lemma D.22. Given a safe formula α : A ` ϕ(α) : A, the following functions
are Scott cocontinuous:

JϕK : Sub(JAK) −→ Sub(JAK) {|ϕ|} : P(Γ JAK) −→ P(Γ JAK)

The key for Lem. D.22 is the usual fact that codirected infs commute with infs
and finite sups, in Set as well as in S. The key case of Prop. 7.3 is that of
ναϕ(α) : A. We have

{|ναϕ(α)|} =
⋂
m∈N
{|ϕm(>)|} and Jναϕ(α)K =

∧
m∈N

Jϕm(>)K

Given a global section x ∈ Γ Jναϕ(α)K, we have

∀n > 0, ∀m ∈ N, xn(•) ∈ Jϕm(>)K(n)

We then easily conclude x ∈ {|ναϕ(α)|} from {|ϕm(>)|} = Γ Jϕm(>)K. Note that
this relies on the commutation of the universal quantifications over n and m.

The proofs of Lem. D.21, Lem. D.22 and Prop. 7.3 are deferred to App. F.2.

Temporal Refinements for Guarded Recursive Types 45

D.8 The Smooth Fragment

The proof of Lem. 7.4 is deferred to App. F.3.

D.9 Constant Objects, Again

For the adequacy of the typing rules of the term constructors box and prev,
we need to generalize Lem. D.4 (§D.2) to refinement types. To this end, it is
convenient to extend the notation J−K to refinement types.

Definition D.23. For T is a type without free iteration variables, we define JT K
by induction as follows:

J{A | ϕ}K := JϕK
J∀k · T K :=

∧
n∈NJT [n/k]K

JT0 + T1K := JT0K + JT1K
JT0 × T1K := JT0K× JT1K
JU → T K := JUK→ JT K

JIT K := IJT K
J�T K := ∆Γ JT K

We can now extend Lem. D.4. We crucially rely on the fact that ∆ preserves
limits (see e.g. [38, Ex. 4.1.4]).

Lemma D.24. If T is a constant type, then JT K is a constant object of S.

Proof. The proof is by induction on types. The cases of the type constructors +,
×, → are easy and discussed in [20, Lem. 2.6]. In the case of Fix(X).A, since all
occurrences of X in A should be guarded by a I, and since � can only be applied
to closed types, it follows that X cannot occur in A. Then JAK is constant by
induction hypothesis and we are done since JFix(X).AK ' JAK in this case. The
case of �T is trivial. As for ∀k ·T , since |T | is constant, we have J|T |K '∆S for
some set S. By induction hypothesis for each n ∈ N we have JT [n/k]K '∆Sn for
some set Sn with ∆Sn ∈ Sub(J|T |K). Note that ∆Sn can be seen as a subobject
of ∆S. Recall from §D.4 the posetal left adjoint

f! : Sub(∆S) −→ P(S)

of the map
∆ : X ∈ P(S) 7−→∆X ∈ Sub(∆S)

In particular ∆ : P(S)→ Sub(∆S) preserves meets and we get

J∀k · T K =
∧
nJT [n/k]K

'
∧
n∆Sn

'
∧
n∆f!∆Sn

'∆ (
⋂
n f!∆Sn)

As for refinement types, we show by induction on ` ϕ : A with A constant that
JϕK is a constant object.

46 Guilhem Jaber and Colin Riba

Cases of >, ⊥, ∧, ∨ and ⇒.
All these cases follow from (the induction hypothesis and) the fact that ∆
induces maps of Heyting algebras on subobject lattices (Lem. D.8).

Case of [box]ϕ.
Trivial, since J[box]ϕK is in the image of ∆.

Case of [next]ϕ.
This case cannot occur since A is constant.

Case of [fold]ϕ.
In this case, we have A = Fix(X).B. Since X is guarded in B, it must not
occur in B, and we have JAK ' JBK via unfold. Moreover JBK is constant, with
say JBK '∆S and by induction hypothesis, J[ϕ]K is a constant subobject of
JBK, say J[ϕ]K '∆Φ. Now, J[fold]ϕK lies in the pullback diagram

unfold∗(JϕK) ' J[fold]ϕKy
π //

� _

��

JϕK '∆(Φ)� _

��
JAK

unfold
// JBK '∆(S)

Since unfold is an iso, the upper arrow π is also an iso, and we are done.
Case of [πi]ϕ.

We rely on the description of J[πi]ϕK as J[πi]K(JϕK) in §D.6. By induction
hypothesis and recalling that ∆ preserves finite products, consider the pull-
back

π∗(JϕK) ' J[πi]ϕKy
//

� _

��

JϕK '∆(Φ)� _

��
∆(S0)×∆(S1)

πi

// ∆(Si)

Then one can take the corresponding pullback in Set

Ψy //
_�

��

Φ� _

��
S0 × S1 πi

// Si

and this implies that J[πi]ϕK '∆(Ψ) since ∆ preserves finite limits.
Case of [ini]ϕ.

We rely on the description of J[ini]ϕK as J[ini]K(JϕK) in §D.6. The result follows
from the induction hypothesis and the fact that ∆ preserves finite limits and
colimits, as in:

JϕK '∆(Φ) ↪→∆(Si)
∆(ini)=ini
−−→ ∆(S0) +∆(S1)

Case of [ev(ψ)]ϕ.
We rely on the description of J[ev(ψ)]ϕK in §D.6, that is

J[ev(ψ)]ϕK = ∀JBK
(
π∗(JψK) =⇒JAKJBK×JBK ev∗(JϕK)

)

Temporal Refinements for Guarded Recursive Types 47

The result then follows from Lem. D.8 and the fact that ∆ thus preserves
universal quantifications (see e.g. [52, Thm. X.3.1 & Lem. X.3.2]).

Cases of θtαϕ and θαϕ.
By assumption, the occurrences of α in ϕ should be guarded by a [next].
Since [box] can only be applied to closed formulae, this imposes α not to
appear in ϕ. But then the result follows by induction hypothesis. ut

D.10 Realizability

We detail the steps toward the Adequacy Theorem 7.7. Full proofs are deferred
to App. F.4. The first basic result we need about our notion of realizability is
that it is monotone w.r.t. step indexes.

Lemma D.25 (Monotonicity of Realizability). Let T be a type without free
iteration variables. If x �n T then x �k T for all k ≤ n.

The correctness of subtyping requires two additional lemmas. The first one
concerns the rule

T ≤ |T |

Lemma D.26. For a pure type A and x ∈ Γ JAK, we have x �n A for all n > 0.

Second, we need a result of [20] for the correctness of the subtyping rules

{B | ψ} → {A | ϕ} ≤ {B → A | [ev(ψ)]ϕ}

E , x : {B | ψ} `M : {A | ϕ}
E ` λx.M : {B → A | [ev(ψ)]ϕ}

An object X of S is total if all its restriction maps rXn : Xn+1 → Xn are
surjective. Hence, if X is total, then given t ∈ Xn for some n > 0, there is a
global section x : 1→S X such that xn(•) = t.

Lemma D.27 ([20, Cor. 3.8]). For a pure type A, the object JAK is total.

We then obtain the correctness of subtyping as usual. The rules

`A ϕ⇒ ψ

{A | ϕ} ≤ {A | ψ}
`Ac ϕ⇒ ψ

{�A | [box]ϕ} ≤ {�A | [box]ψ}

rely on Lem. D.13 (Lem. 7.2), while

ϕ safe

� {A | ϕ} ≡ {�A | [box]ϕ}

is given by Prop. 7.3.

Lemma D.28 (Correctness of Subtyping (Lem. 7.6)). Given types T,U
without free iteration variable, if x �n U and U ≤ T then x �n T .

48 Guilhem Jaber and Colin Riba

We now have all we need for the Adequacy Theorem 7.7. As usual it requires
a stronger inductive invariant than the statement of Thm. 7.7. Given a typed
term

x1 : T1, . . . , xk : Tk `M : T

and global sections u1 ∈ Γ J|T1|K, . . . , uk ∈ Γ J|Tk|K, we obtain a global section

JMK ◦ 〈u1, . . . , uk〉 : 1 −→ J|T |K

We introduce some notation to manipulate these global sections. Given a typing
context E = x1 : T1, . . . , xk : Tk we write ρ |= E if ρ takes each xi for i = 1, . . . , k
to some ρ(xi) ∈ Γ J|Ti|K. Given a typing judgment E `M : T , we let

JMKρ := JMK ◦ 〈ρ(x1), . . . , ρ(xk)〉

Given ρ |= E and n > 0, write ρ �n E if ρ(xi) �n Ti for all i = 1, . . . , k. Thm. 7.7
is proved under the following form.

Theorem D.29 (Adequacy (Thm. 7.7)). Let E , T have free iteration vari-
ables among `, and let m ∈ N. If E `M : T and ρ |= E, then

∀n > 0, ρ �n E [`/m] =⇒ JMKρ �n T [`/m]

Corollary D.30. (1) Consider a closed term `M : {A | ϕ} with ϕ safe. Then
JMK : 1→S JAK ∈ {|ϕ|}.

(2) Consider a closed term ` M : {A | ψ} → {A | ϕ}, with ϕ, ψ safe. Then
JMK induces a function Γ JMK taking x ∈ {|ψ|} to Γ JMK = JMK ◦ x ∈ {|ϕ|}.

Corollary D.30 of course extends to any arity. As a consequence of Cor. D.30
and Møgelberg’s Theorem 7.1 [55], for a closed term M : {�P | [box]ϕ} with P
polynomial, the unique global section JMKn+1(•) = JMKn(•) ∈ Γ JP K satisfies ϕ
in the standard sense (i.e. JMKn+1(•) = JMKn(•) ∈ {|ϕ|}). Moreover a function,
say M : {�Q | [box]ψ} → {�P | [box]ϕ} with Q,P polynomial induces a Set-
function

Γ JMK : Γ J�QK −→ Γ J�P K
x 7−→ JMK ◦ x

such that, if y ∈ Γ JQK ' Γ∆Γ JQK = Γ J�QK satisfies ψ in the standard sense
(i.e. y ∈ {|ϕ|}), then the unique global section Γ JMK(y)n+1(•) = Γ JMK(y)n(•) ∈
Γ JP K satisfies ϕ in the standard sense (i.e. belongs to {|ϕ|}).

D.11 A Galois Connection

It is common for the classification of temporal properties to identify safety prop-
erties with topologically closed sets and to identify liveness properties with topo-
logically dense sets. As any subset of a topological space is the intersection of
a closed set with a dense set, this provides a topological decomposition of tem-
poral properties, which furthermore restricts to regular properties on (finitary)
polynomial types. We refer to e.g. [9].

Temporal Refinements for Guarded Recursive Types 49

Here, we make explicit the relation between safe formulae on polynomial
types (in the sense of Def. 6.5) and safety properties understood as closed subsets
of the corresponding final Set-coalgebras (in view of Møgelberg’s Theorem [55]),
for the usual tree (or stream) topology.

First, it might be useful to remember what it means for a global section
x ∈ ΓX in S to satisfy a property S, where S ∈ Sub(X) is a subobject of X.
Following e.g. [52,51], we say that x ∈ ΓX satisfies a property S ∈ Sub(X) if x
factors through S, as in

S� _

��
1

x //

55

X

that is: ∀n > 0, xn(•) ∈ S(n)

Fix an object X of S. There is a Galois connection between the subobjects
of X in S and the subsets of ΓX in Set:

Pref a Clos : Sub(X) −→ P(ΓX)

where for S ∈ P(ΓX) and B ∈ Sub(X),

Pref(S) : n 7−→ {xn(•) | x ∈ S}
Clos(B) := {x ∈ ΓX | ∀n > 0, xn(•) ∈ B(n)}

Of course, Clos is the restriction of Γ : S → Set to the subobjects of X.
Let us spell out the fact that Pref a Clos form a Galois connection. Fix an

object X of S. First, it is trivial that the functions

Pref : P(ΓX) −→ Sub(X)
Clos : Sub(X) −→ P(ΓX)

are monotone w.r.t. the orders of the lattices P(ΓX) and Sub(X). Moreover, we
have:

Lemma D.31. We have

(i) S ⊆ Clos(Pref(S)) for S ∈ P(ΓX).
(ii) Pref(Clos(B)) ⊆ B for B ∈ Sub(X).

Proof.

(i) Given x ∈ S, by definition we have xn(•) ∈ Pref(S)(n) for all n > 0, so
x ∈ Clos(Pref(S)).

(ii) Given a ∈ Pref(Clos(B))(n), there is some x ∈ Clos(B) such that a =
xn(•). But x ∈ Clos(B) means xk(•) ∈ B(k) for all k > 0, so that a =
xn(•) ∈ B(n). ut

As usual, we trivially get

Pref(S) ≤ B iff S ⊆ Clos(B)

50 Guilhem Jaber and Colin Riba

Say that S ∈ P(ΓX) is closed if S = Clos(B) for some B ∈ Sub(X). It is easy to
see that S is closed if and only if S = Clos(Pref(S)). Note that S = Clos(Pref(S))
unfolds to

∀x ∈ Γ JAK, x ∈ S iff ∀n > 0, ∃y ∈ S, xn(•) = yn(•)

When A is a polynomial recursive type, Thm. 7.1 thus says that S is closed if
and only if S is closed for the corresponding usual tree (or stream) topology.
Since Prop. 7.3 can be formulated as

{|ϕ|} = Clos(JϕK)

it indeed says that {|ϕ|} is closed for the usual topology.
We finally briefly elaborate on this in view of the coincidence of the S and

Set semantics for safe formulae (Prop. 7.3). Let us consider the cases of 2[hd]ϕ
and 3[hd]ϕ on guarded streams Strg B. Assume that ϕ is safe. The equality
{|2[hd]ϕ|} = Γ J2[hd]ϕK implies that the usual Set semantics of 2[hd]ϕ is in the
image of Γ . But a subset of Γ JStrg BK which is in the image of Γ is necessarily
a closed set w.r.t. the usual product topology on streams in Set, i.e. a safety
property. Formulae of the form 2[hd]ϕ define safety properties on streams, but
liveness properties of the form 3[hd]ϕ are not closed (for non-trivial ϕ), and thus
cannot be in the image of Γ .

Temporal Refinements for Guarded Recursive Types 51

E Details of the Examples

E.1 Guarded Streams

The Later Modality on Guarded Streams

Example E.1. We have the following basic modal refinement types for Consg and
tlg:

Consg : A −→ I {Strg A | ϕ} −→ {Strg A | ©ϕ}
tlg : {Strg A | ©ϕ} −→ I {Strg A | ϕ}

Proof. We begin with Consg. Recall that Consg = λx.λs.fold〈x, s〉 and that
©(−) = [fold][π1][next](−). The result then follows from the following derivation:

x : A, s : I {Strg A | ϕ} ` s : I {Strg A | ϕ}
x : A, s : I {Strg A | ϕ} ` s : {IStrg A | [next]ϕ}

x : A, s : I {Strg A | ϕ} ` 〈x, s〉 : {A×I Strg A | [π1][next]ϕ}
x : A, s : I {Strg A | ϕ} ` fold〈x, s〉 : {Strg A | [fold][π1][next]ϕ}

As for tlg, recalling that tlg = λs.π1(unfold s), the result follows from

s : {Strg A | ©ϕ} ` s : {Strg A | [fold][π1][next]ϕ}
s : {Strg A | ©ϕ} ` unfold s : {A×IStrg A | [π1][next]ϕ}
s : {Strg A | ©ϕ} ` π1(unfold s) : {IStrg A | [next]ϕ}
s : {Strg A | ©ϕ} ` π1(unfold s) : I {Strg A | ϕ}

ut

Destructors of Guarded Streams

Example E.2. The types of hdg and tlg can be refined as follows with the always
modality 2:

hdg : {Strg A | 2[hd]ϕ} −→ {A | ϕ}
tlg : {Strg A | 2[hd]ϕ} −→ I {Strg A | 2[hd]ϕ}

Proof. Recall that [hd]ϕ = [fold][π0]ϕ. We begin with the typing of

hdg := λs.π0(unfold s) : {Strg A | 2[hd]ϕ} −→ {A | ϕ}

We use `Strg A 2[hd]ϕ⇒ [hd]ϕ.

s : {Strg A | 2[hd]ϕ} ` s : {Strg A | 2[hd]ϕ}
`Str

g A 2[hd]ϕ⇒ [hd]ϕ

{Strg A | 2[hd]ϕ} ≤ {Strg A | [hd]ϕ}
s : {Strg A | 2[hd]ϕ} ` s : {Strg A | [hd]ϕ}

s : {Strg A | 2[hd]ϕ} ` unfold s : {A×IStrg A | [π0]ϕ}
s : {Strg A | 2[hd]ϕ} ` π0(unfold s) : {A | ϕ}
` λs.π0(unfold s) : {Strg A | 2[hd]ϕ} −→ {A | ϕ}

52 Guilhem Jaber and Colin Riba

We continue with the typing of

tlg := λs.π1(unfold s) : {Strg A | 2[hd]ϕ} −→ I {Strg A | 2[hd]ϕ}

We use `Strg A 2[hd]ϕ⇒©2[hd]ϕ. Recall that ©ϕ = [fold][π1][next]ϕ.

s : {Strg A | 2[hd]ϕ} ` s : {Strg A | 2[hd]ϕ}
`Str

g A 2[hd]ϕ⇒©2[hd]ϕ

{Strg A | 2[hd]ϕ} ≤ {Strg A | ©2[hd]ϕ}
s : {Strg A | 2[hd]ϕ} ` s : {Strg A | ©2[hd]ϕ}

s : {Strg A | 2[hd]ϕ} ` unfold s : {A×IStrg A | [π0][next]2[hd]ϕ}
s : {Strg A | 2[hd]ϕ} ` π1(unfold s) : {IStrg A | [next]2[hd]ϕ}
s : {Strg A | 2[hd]ϕ} ` π1(unfold s) : I {Strg A | 2[hd]ϕ}
` λs.π1(unfold s) : {Strg A | 2[hd]ϕ} −→ I {Strg A | 2[hd]ϕ}

ut

Constructor of Guarded Streams

Example E.3. The type of Consg can be refined as follows with the always modal-
ity 2:

Consg : {A | ϕ} −→ I {Strg A | 2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

Proof. We show

Consg := λx.λs.fold〈x, s〉 : {A | ϕ} −→ I {Strg A | 2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

To this end, we use the following derived rule (see Ex. 5.1):

E `M : {A | ϕ} E ` N : {B | ψ}
E ` 〈M,N〉 : {A×B | [π0]ϕ ∧ [π1]ψ}

Consider the typing context

E := x : {A | ϕ} , s : I {Strg A | 2[hd]ϕ}

We know from §E.1 that

E ` fold〈x, s〉 : {Strg A | ©2[hd]ϕ}

Since `Strg A ([hd]ϕ ∧©2[hd]ϕ)⇒ 2[hd]ϕ, we are done if we show

E ` fold〈x, s〉 : {Strg A | [hd]ϕ}

But this is trivial:

E ` x : {A | ϕ}
E ` 〈x, s〉 : {A×IStrg A | [π0]ϕ}
E ` fold〈x, s〉 : {Strg A | [fold][π0]ϕ}

ut

Temporal Refinements for Guarded Recursive Types 53

Map over Guarded Streams

Example E.4. We have the following:

mapg : ({A | ϕ} → {B | ψ}) −→ {Strg A | 2[hd]ϕ} −→ {StrgB | 2[hd]ψ}
:= λf.fix(g).λs.(f(hdg s)) ::g (g ~ (tlg s))

Proof. We proceed as follows, using §E.1 and §E.1:

E ` s : {Strg A | 2[hd]ϕ}
E ` hdg s : {A | ϕ}
E ` f(hdg s) : {B | ψ}

E ` s : {Strg A | 2[hd]ϕ}
E ` tlg s : I {Strg A | 2[hd]ϕ}

E ` g ~ (tlg s) : I {StrgB | 2[hd]ψ}
E ` (f(hdg s)) ::g (g ~ (tlg s)) : {StrgB | 2[hd]ψ}
` λf.fix(g).λs.(f(hdg s)) ::g (g ~ (tlg s)) : T

where

T := ({A | ϕ} → {B | ψ}) −→ {Strg A | 2[hd]ϕ} −→ {StrgB | 2[hd]ψ}
E := f : {A | ϕ} → {B | ψ} , g : I({Strg A | 2[hd]ϕ} → {StrgB | 2[hd]ψ}), s : {Strg A | 2[hd]ϕ}

ut

Merge over Guarded Streams

Example E.5. We have the following:

mergeg : {Strg A | 2[ϕ0]} −→ {Strg A | 2[ϕ1]} −→ {Strg A | 2([ϕ0] ∨ [ϕ1])}
:= fix(g).λs0.λs1.Consg (hdg s0)

(
next

(
Consg (hdg s1) (g ~ (tlg s0)~ (tlg s1))

))
Proof. Let E be the context

g : I
(
{Strg A | 2[ϕ0]} −→ {Strg A | 2[ϕ1]} −→ {Strg A | 2([ϕ0] ∨ [ϕ1])}

)
,

s0 : {Strg A | 2[ϕ0]} ,
s1 : {Strg A | 2[ϕ1]}

We have

E ` hdg s0 : {A | ϕ0}
E ` hdg s1 : {A | ϕ1}

E ` tlg s0 : I {Strg A | 2[ϕ0]}
E ` tlg s1 : I {Strg A | 2[ϕ1]}

We thus get

g ~ (tlg s0)~ (tlg s1) : I {Strg A | 2([ϕ0] ∨ [ϕ1])}

and we are done since using subtyping we have

Consg : {A | ϕ0} −→ I {Strg A | 2([ϕ0] ∨ [ϕ1])} −→ {Strg A | 2([ϕ0] ∨ [ϕ1])}
Consg : {A | ϕ1} −→ I {Strg A | 2([ϕ0] ∨ [ϕ1])} −→ {Strg A | 2([ϕ0] ∨ [ϕ1])}

ut

54 Guilhem Jaber and Colin Riba

E.2 Operations on Coinductive Streams

Example E.6 (Operations on Coinductive Streams). For a safe ϕ of the appro-
priate type, we have

hd : {StrA | [box]2[hd]ϕ} −→ {A | ϕ}
tl : {StrA | [box]2[hd]ϕ} −→ {StrA | [box]2[hd]ϕ}
tl : {StrA | [box]© ϕ} −→ {StrA | [box]ϕ}

Proof.

Case of hd.
Recall that

hd : StrA −→ A
:= λs.hdg (unbox s)

We have

s : {StrA | [box]2[hd]ϕ} ` s : {StrA | [box]2[hd]ϕ} 2[hd]ϕ safe

s : {StrA | [box]2[hd]ϕ} ` s : � {Strg A | 2[hd]ϕ}
s : {StrA | [box]2[hd]ϕ} ` unbox s : {Strg A | 2[hd]ϕ}
s : {StrA | [box]2[hd]ϕ} ` hdg(unbox s) : {A | ϕ}

` λs.hdg (unbox s) : {StrA | [box]2[hd]ϕ} −→ {A | ϕ}
Cases of tl.

Recall that
tl : StrA −→ StrA

:= λs.boxι(prevι(tlg (unbox s)))

We have

s : {StrA | [box]2[hd]ϕ} ` s : {StrA | [box]2[hd]ϕ}
s : {StrA | [box]2[hd]ϕ} ` unbox s : {Strg A | 2[hd]ϕ}

s : {StrA | [box]2[hd]ϕ} ` tlg (unbox s) : I {Strg A | 2[hd]ϕ} StrA constant

s : {StrA | [box]2[hd]ϕ} ` prevι(tlg (unbox s)) : {Strg A | 2[hd]ϕ}
s : {StrA | [box]2[hd]ϕ} ` boxι(prevι(tlg (unbox s))) : � {Strg A | 2[hd]ϕ} 2[hd]ϕ safe

s : {StrA | [box]2[hd]ϕ} ` boxι(prevι(tlg (unbox s))) : {StrA | [box]2[hd]ϕ}
` λs.boxι(prevι(tlg (unbox s))) : {StrA | [box]2[hd]ϕ} −→ {StrA | [box]2[hd]ϕ}

and

s : {StrA | [box]© ϕ} ` s : {StrA | [box]© ϕ}
s : {StrA | [box]© ϕ} ` unbox s : {Strg A | ©ϕ}

s : {StrA | [box]© ϕ} ` tlg (unbox s) : I {Strg A | ϕ} StrA constant

s : {StrA | [box]© ϕ} ` prevι(tlg (unbox s)) : {Strg A | ϕ}
s : {StrA | [box]© ϕ} ` boxι(prevι(tlg (unbox s))) : � {Strg A | ϕ} ϕ safe

s : {StrA | [box]© ϕ} ` boxι(prevι(tlg (unbox s))) : {StrA | [box]ϕ}
` λs.boxι(prevι(tlg (unbox s))) : {StrA | [box]© ϕ} −→ {StrA | [box]ϕ}

ut

Temporal Refinements for Guarded Recursive Types 55

E.3 Map over Coinductive Streams

We discuss here the cases of

map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]4[hd]ψ} −→ {StrA | [box]4[hd]ϕ}

where ψ, ϕ are safe and smooth and where 4 ∈ {2,3,32,23}. The case of 2
is handled as in Ex. 5.4, using that 2[hd]ϕ and 2[hd]ψ are safe. The case of 3
is detailed in Ex. E.7 (§E.3). The idea is that since 3[hd]ϕ, 3[hd]ψ are smooth
and since 3k[hd]ϕ, 3k[hd]ψ are safe, we can reduce to typing the guarded mapg

as

mapg : ({B | ψ} → {A | ϕ}) −→ ∀k ·
({

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
})

The case of 32, detailed in Ex. E.8 (§E.3), is more involved. Since 32[hd]ϕ,
32[hd]ψ are smooth and 3k2[hd]ϕ, 3k2[hd]ψ are safe, we similarly reduce to
showing (mapg f) : ∀k · T (k) where

T (k) :=
{

StrgB
∣∣ 3k2[hd]ψ

}
−→

{
Strg A

∣∣ 3k2[hd]ϕ
}

and assuming f of type {B | ψ} → {A | ϕ}. But this is unfortunately too weak.
Similarly as with 3, it is natural to first assume the type I∀k · T (k) for the
recursion variable g and then to apply the (∀-CI) rule (Fig. 11) on ∀k · T (k). In
the case of T (k+1), we unfold

3k+12[hd]ψ ⇔ 2[hd]ψ ∨ ©3k2[hd]ψ

and apply the (∨-E) rule (Fig. 8). But in the branch of 2[hd]ψ, giving g the
type, say, {

StrgB
∣∣ 312[hd]ψ

}
−→

{
Strg A

∣∣ 312[hd]ϕ
}

is not sufficient to derive

s : {StrgB | 2[hd]ψ} ` g ~ (tlg s) : I {Strg A | 2[hd]ϕ}

The reason is that [next] (and thus ©) does not satisfy axiom (P) of Table 2
(see §7). The solution is to use the [ev(−)]/‖→ modality to encode a kind of
“intersection” on arrow types, and to type (mapgf) with

∀k ·
{

StrgB → Strg A
∣∣ (3k2[hd]ψ ‖→ 3k2[hd]ϕ

)
∧
(
2[hd]ψ ‖→ 2[hd]ϕ

)}
We finally turn to 23. Using that 23[hd]ϕ and 23[hd]ψ are both smooth, we
first unfold the 2’s using the rules (ν-I) (Fig. 11) and then (ν-E) (Ex. 6.10),
thus reducing to

boxι
(
mapg f (unbox s)

)
:
{

StrA
∣∣ [box]2`3[hd]ϕ

}
assuming f : {B | ψ} → {A | ϕ} and s :

{
StrB

∣∣ [box]2`3[hd]ψ
}

. Then, since
3[hd]ϕ, 3[hd]ψ are smooth, we can unfold the 3’s using the rules (µ-E) and
(µ-I) with the non-trivial smooth context

γ(β) := 2`β

56 Guilhem Jaber and Colin Riba

Since the formulae 2`3k[hd]ψ and 2`3k[hd]ϕ are safe, we can reduce to showing

λs. (f(hdg s)) ::g (g ~ (tlg s)) : ∀` · ∀k · U(`, k)
U(`, k) :=

{
StrgB

∣∣ 2`3k[hd]ψ
}
−→

{
Strg A

∣∣ 2`3k[hd]ϕ
}

assuming f : {B | ψ} → {A | ϕ} and g : I∀` · ∀k · U(`, k). We apply the (∀-CI)
rule on ∀` ·∀k ·U(`, k). The case of ∀k ·U(0, k) is trivial since 20ϑ⇔ >. We then
apply the (∀-CI) rule, this time on ∀k ·U(`+1, k). The case of U(`+1, 0) can be
dealt with using the (ExF) rule. In the case of U(`+1, k+1), we conclude with
a straightforward case analysis based on the unfoldings

2`+13k+1[hd]ϑ⇔ 3k+1[hd]ϑ ∧ ©2`3k+1[hd]ϑ
3k+1[hd]ϑ⇔ [hd]ϑ ∨ ©3k[hd]ϑ

See Ex. E.9 (§E.3) for details. Just note that since ©>⇔ > (Table 2) we have
21ϑ⇔ ϑ, so that

g : I∀` · ∀k · U(`, k) ` g :
{

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
}

The Case of Eventually (3[hd]ϕ)

Example E.7. We have the following, for safe and smooth ϕ and ψ:

map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]3[hd]ψ} −→ {StrA | [box]3[hd]ϕ}
= λf.λs.boxι

(
mapg f (unbox s)

)
Proof. Since 3[hd]ϕ and 3[hd]ψ are both smooth, we can first reduce to

Ef , s :
{

StrB
∣∣ [box]3k[hd]ψ

}
` boxι(mapg f (unbox s)) :

{
StrA

∣∣ [box]3k[hd]ϕ
}

where
Ef := f : {B | ψ} → {A | ϕ}

Since the formulae 3k[hd]ψ and 3k[hd]ϕ are safe, we are done if we show

mapg : ({B | ψ} → {A | ϕ}) −→ ∀k ·
({

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
})

= λf.fix(g).λs.(f(hdg s)) ::g (g ~ (tlg s))

Let
N := (f(hdg s)) ::g (g ~ (tlg s))
M := λs.N
T (k) :=

{
StrgB

∣∣ 3k[hd]ψ
}
−→

{
Strg A

∣∣ 3k[hd]ϕ
}

E := Ef , g : I∀k · T (k)

We show
E `M : ∀k · T (k)

We reason by cases on k with the rule

E `M : T (0) E `M : T (k+1)

E `M : ∀k · T (k)

Temporal Refinements for Guarded Recursive Types 57

Case of T (0).
We show

E , s : {StrgB | 30[hd]ψ} ` N : {Strg A | 30[hd]ϕ}

Since ` 30[ψ]⇔ ⊥, we conclude with the (ExF) rule

E , s : {StrgB | 30[hd]ψ} ` s : {StrgB | ⊥} E , s : {StrgB | 30[hd]ψ} ` N : Strg A

E , s : {StrgB | 30[hd]ψ} ` N : {Strg A | 30[hd]ϕ}

Case of T (k+1).
We show

E , s :
{

StrgB
∣∣ 3k+1[hd]ψ

}
` N :

{
Strg A

∣∣ 3k+1[hd]ϕ
}

Using
` 3k+1[hd]ψ ⇔ ([hd]ψ ∨©3k[hd]ψ)

we do a case analysis on the refinement type of s.
(Sub)Case of [hd]ψ.

Since ` [hd]ϕ⇒ 3k+1[hd]ϕ, we reduce to showing

E , s : {StrgB | [hd]ψ} ` N : {Strg A | [hd]ϕ}

By §E.1 we have

E , s : {StrgB | [hd]ψ} ` hdg s : {B | ψ}

But we are done since

Consg : {A | ϕ} −→ IStrg A −→ {Strg A | [hd]ϕ}

(Sub)Case of ©3k[hd]ψ.
Since ` ©3k[hd]ϕ⇒ 3k+1[hd]ϕ, we reduce to showing

E , s :
{

StrgB
∣∣ ©3k[hd]ψ

}
` N :

{
Strg A

∣∣ ©3k[hd]ϕ
}

By §E.1 we have

E , s :
{

StrgB
∣∣ ©3k[hd]ψ

}
` tlg s : I

{
StrgB

∣∣ 3k[hd]ψ
}

Since

E ` g : ∀k ·I
({

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
})

we have

E ` g : I
({

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
})

Since moreover by §E.1 we have

Consg : A −→ I
{

Strg A
∣∣ 3k[hd]ϕ

}
−→

{
Strg A

∣∣ ©3k[hd]ϕ
}

we deduce that

E , s :
{

StrgB
∣∣ ©3k[hd]ψ

}
` N :

{
StrgB

∣∣ ©3k[hd]ψ
}

ut

58 Guilhem Jaber and Colin Riba

The Case of Eventually Always (32[hd]ϕ)

Example E.8. We have the following, for safe and smooth ϕ and ψ:

map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]32[hd]ψ} −→ {StrA | [box]32[hd]ϕ}
= λf.λs.boxι

(
mapg f (unbox s)

)
Proof. Since 32[hd]ϕ and 32[hd]ψ are both smooth, we can first reduce to

Ef , s :
{

StrB
∣∣ [box]3k2[hd]ψ

}
` boxι(mapg f (unbox s)) :

{
StrA

∣∣ [box]3k2[hd]ϕ
}

where

Ef := f : {B | ψ} → {A | ϕ}

Since the formulae 3k2[hd]ψ and 3k2[hd]ϕ are safe, we are done if we show

mapg : ({B | ψ} → {A | ϕ}) −→ ∀k ·
({

StrgB
∣∣ 3k2[hd]ψ

}
−→

{
Strg A

∣∣ 3k2[hd]ϕ
})

= λf.fix(g).λs.(f(hdg s)) ::g (g ~ (tlg s))

Let

N := (f(hdg s)) ::g (g ~ (tlg s))
M := λs.N
T (k) :=

{
StrgB → Strg A

∣∣ (3k2[hd]ψ ‖→ 3k2[hd]ϕ
)
∧
(
2[hd]ψ ‖→ 2[hd]ϕ

)}
E := Ef , g : I∀k · T (k)

We show

E `M : ∀k · T (k)

We reason by cases on k with the rule

E `M : T (0) E `M : T (k+1)

E `M : ∀k · T (k)

Case of T (0).

We have to show

E , s : {StrgB | 2[hd]ψ} ` N : {Strg A | 2[hd]ϕ}
and E , s : {StrgB | 302[hd]ψ} ` N : {Strg A | 302[hd]ϕ}

We only detail the latter since the former can be dealt-with as in §E.1. Since

` 302[ψ]⇔ ⊥

we conclude with the (ExF) rule

E , s : {StrgB | 302[hd]ψ} ` s : {StrgB | ⊥} E , s : {StrgB | 302[hd]ψ} ` N : Strg A

E , s : {StrgB | 302[hd]ψ} ` N : {Strg A | 302[hd]ϕ}

Temporal Refinements for Guarded Recursive Types 59

Case of T (k+1).

We show

E , s : {StrgB | 2[hd]ψ} ` N : {Strg A | 2[hd]ϕ}
and E , s :

{
StrgB

∣∣ 3k+12[hd]ψ
}
` N :

{
Strg A

∣∣ 3k+12[hd]ϕ
}

We only detail the latter since the former can be dealt-with as in §E.1. Using

` 3k+12[hd]ψ ⇔ (2[hd]ψ ∨©3k2[hd]ψ)

we do a case analysis on the refinement type of s.

(Sub)Case of 2[hd]ψ.

We show

E , s : {StrgB | 2[hd]ψ} ` N :
{

Strg A
∣∣ 3k+12[hd]ϕ

}
Note that ` 2[hd]ϕ⇒ 3k+12[hd]ϕ. We can therefore reduce to

E , s : {StrgB | 2[hd]ψ} ` N : {Strg A | 2[hd]ϕ}

and we can conclude as in §E.1.

(Sub)Case of ©3k2[hd]ψ.

Since ` ©3k2[hd]ϕ⇒ 3k+12[hd]ϕ, we reduce to showing

E , s :
{

StrgB
∣∣ ©3k2[hd]ψ

}
` N :

{
Strg A

∣∣ ©3k2[hd]ϕ
}

By §E.1 we have

E , s :
{

StrgB
∣∣ ©3k2[hd]ψ

}
` tlg s : I

{
StrgB

∣∣ 3k2[hd]ψ
}

Since

E ` g : ∀k ·I
({

StrgB
∣∣ 3k2[hd]ψ

}
−→

{
Strg A

∣∣ 3k2[hd]ϕ
})

we have

E ` g : I
({

StrgB
∣∣ 3k2[hd]ψ

}
−→

{
Strg A

∣∣ 3k2[hd]ϕ
})

Since moreover by §E.1 we have

Consg : A −→ I
{

Strg A
∣∣ 3k2[hd]ϕ

}
−→

{
Strg A

∣∣ ©3k2[hd]ϕ
}

we deduce that

E , s :
{

StrgB
∣∣ ©3k2[hd]ψ

}
` N :

{
StrgB

∣∣ ©3k2[hd]ψ
}

ut

60 Guilhem Jaber and Colin Riba

The Case of Always Eventually (23[hd]ϕ)

Example E.9. We have the following, for safe and smooth ϕ and ψ:

map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]23[hd]ψ} −→ {StrA | [box]23[hd]ϕ}
:= λf.λs.boxι

(
mapg f (unbox s)

)
Note E.10. We let

3tϕ := µtα.ϕ ∨©α
2tϕ := νtα.ϕ ∧©α

Proof. We start in the same spirit as in §E.3 and §E.3. Using that 23[hd]ϕ and
23[hd]ψ are both smooth, we first unfold the 2 using the rules (ν-I) and (ν-E).
Then, since 3[hd]ϕ and 3[hd]ψ are both smooth, we can unfold the 3 using the
rules (µ-E) and (µ-I) with the non-trivial smooth context

γ(β) := 2`β

We are thus led to deriving

Ef , s :
{

StrB
∣∣ [box]2`3k[hd]ψ

}
` boxι(mapg f (unbox s)) :

{
StrA

∣∣ [box]2`3k[hd]ϕ
}

where

Ef := f : {B | ψ} → {A | ϕ}

Since the formulae 2`3k[hd]ψ and 2`3k[hd]ϕ are safe, we are done if we show

mapg : ({B | ψ} → {A | ϕ}) −→ ∀k · ∀` ·
({

StrgB
∣∣ 2`3k[hd]ψ

}
−→

{
Strg A

∣∣ 2`3k[hd]ϕ
})

= λf.fix(g).λs.(f(hdg s)) ::g (g ~ (tlg s))

Let
N := (f(hdg s)) ::g (g ~ (tlg s))
M := λs.N
T (k, `) :=

{
StrgB

∣∣ 2`3k[hd]ψ
}
−→

{
Strg A

∣∣ 2`3k[hd]ϕ
}

E := Ef , g : I∀k · ∀` · T (k, `)

We show

E `M : ∀k · ∀` · T (k, `)

We reason by cases on k and `. This amounts to the derived rule

E `M : T (0, 0) E `M : T (0, `+1) E `M : T (k+1, 0) E `M : T (k+1, `+1)

E `M : ∀k · ∀` · T (k, `)

Cases of T (u, 0).

We have ` 20θ ⇔ >, and we are done since

E , s : {StrgB | >} ` N : {Strg A | >}

Temporal Refinements for Guarded Recursive Types 61

Case of T (0, `+1).
We have ` 30[θ]⇔ ⊥, and we reduce to showing

E , s :
{

StrgB
∣∣ 2`+1⊥

}
` N :

{
Strg A

∣∣ 2`+1⊥
}

But since ` 2`+1⊥ ⇒ ⊥, we have

E , s :
{

StrgB
∣∣ 2`+1⊥

}
` s : {StrgB | ⊥}

and we conclude with the (ExF) rule

E , s :
{

StrgB
∣∣ 2`+1⊥

}
` s : {StrgB | ⊥} E , s :

{
StrgB

∣∣ 2`+1⊥
}
` N : Strg A

E , s : {StrgB | 2`+1⊥} ` N : {Strg A | 2`+1⊥}

Case of T (k+1, `+1).
Using `Strg A 2`+1θ ⇔ (θ ∧©2`θ), we show

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` N :

{
Strg A

∣∣ 3k+1[hd]ϕ ∧ ©2`3k+1[hd]ϕ
}

We consider each conjunct separately.
(Sub)Case of 3k+1[hd]ϕ.

We show

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` N :

{
Strg A

∣∣ 3k+1[hd]ϕ
}

Using

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` s :

{
StrgB

∣∣ 3k+1[hd]ψ
}

and ` 3k+1[hd]ψ ⇔ ([hd]ψ ∨©3k[hd]ψ) we do a case analysis on the
refinement type of s.
(SubSub)Case of [hd]ψ.

Since (by §E.1)

E , s : {StrgB | [hd]ψ} ` hdg s : {StrgB | [hd]ψ}

we easily deduce that

E , s : {StrgB | [hd]ψ} ` N : {Strg A | [hd]ϕ}

and we are done since ` [hd]ϕ⇒ 3k+1[hd]ϕ.
(SubSub)Case of ©3k[hd]ψ.

By §E.1 we have

E , s :
{

StrgB
∣∣ ©3k[hd]ψ

}
` tlg s : I

{
StrgB

∣∣ 3k[hd]ψ
}

Since

E ` g : ∀k · ∀` ·I
({

StrgB
∣∣ 2`3k[hd]ψ

}
−→

{
Strg A

∣∣ 2`3k[hd]ϕ
})

62 Guilhem Jaber and Colin Riba

we have

E ` g : I
({

StrgB
∣∣ 213k[hd]ψ

}
−→

{
Strg A

∣∣ 213k[hd]ϕ
})

But ` (θ ∧©>)⇔ θ, so that ` 21θ ⇔ θ, and thus

E ` g : I
({

StrgB
∣∣ 3k[hd]ψ

}
−→

{
Strg A

∣∣ 3k[hd]ϕ
})

Since moreover by §E.1 we have

Consg : A −→ I
{

Strg A
∣∣ 3k[hd]ϕ

}
−→

{
Strg A

∣∣ ©3k[hd]ϕ
}

we deduce that

E , s :
{

StrgB
∣∣ ©3k[hd]ψ

}
` N :

{
StrgB

∣∣ ©3k[hd]ψ
}

and we are done since ` ©3k[hd]ϕ⇒ 3k+1[hd]ϕ.
(Sub)Case of ©2`3k+1[hd]ϕ.

We show

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` N :

{
Strg A

∣∣ ©2`3k+1[hd]ϕ
}

Since

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` s :

{
StrgB

∣∣ ©2`3k+1[hd]ψ
}

by §E.1 we have

E , s :
{

StrgB
∣∣ 2`+13k+1[hd]ψ

}
` tlg s : I

{
StrgB

∣∣ 2`3k+1[hd]ψ
}

But now since

E ` g : ∀k · ∀` ·I
({

StrgB
∣∣ 2`3k[hd]ψ

}
−→

{
Strg A

∣∣ 2`3k[hd]ϕ
})

we have

E ` g : I
({

StrgB
∣∣ 2`3k+1[hd]ψ

}
−→

{
Strg A

∣∣ 2`3k+1[hd]ϕ
})

and we conclude with §E.1, namely

Consg : A −→ I
{

Strg A
∣∣ 2`3k+1[hd]ϕ

}
−→

{
Strg A

∣∣ ©2`3k+1[hd]ϕ
}

ut

E.4 The Diagonal Function

Consider a stream of streams s. We have s = (si | i ≥ 0) where each si is itself a
stream si = (si,j | j ≥ 0). The diagonal of s is then the stream (si,i | i ≥ 0). Note
that si,i = hd(tli(hd(tli(s))). Indeed, tli(s) is the stream of streams (sk | k ≥ i),

Temporal Refinements for Guarded Recursive Types 63

so that hd(tli(s)) is the stream si and tli(hd(tli(s))) is the stream (si,k | k ≥ i).
Taking its the head thus gives si,i.

We implement the diagonal function as follows:

diag := λs.boxι
(
diagg (unbox s)

)
: Str(StrA) −→ StrA

diagg := diagauxg id : Strg(StrA) −→ Strg A

diagauxg : (StrA→ StrA) −→ Strg(StrA) −→ Strg A
:= fix(g).λt.λs. Consg

(
(hd ◦ t)(hdg s)

) (
g ~ next(t ◦ tl)~ (tlg s)

)
The auxiliary higher-order function diagauxg iterates the coinductive tl over the
head of the stream of streams s. We write ◦ for function composition, so that
assuming s : Strg(StrA) and t : StrA→ StrA, we have

(hdg s) : StrA (hd ◦ t) : StrA→ A
(hd ◦ t)(hdg s) : A (t ◦ tl) : StrA→ StrA

This requires the coinductive type StrA. In Ex. E.11 (§E.4) below, for a safe ϕ
we obtain

diagg : {Strg(StrA) | 2[hd][box]2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

This easily follows from the fact that using Ex. 5.3 and Ex. 5.4, we can type
diagauxg with(
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

In Ex. E.12 (§E.4) we show that for a safe and smooth ϕ, we have

diag : {Str(StrA) | [box]32[hd][box]2[hd]ϕ} −→ {StrA | [box]32[hd]ϕ}

Similarly as for map in §E.3, we reduce to

diagauxg : ∀k ·
((
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→ U(k)

)
where U(k) := {Strg(StrA)→ Strg A | ψ0(k) ∧ ψ1}

ψ0(k) := 3k2[hd][box]2[hd]ϕ ‖→ 3k2[hd]ϕ
ψ1 := 2[hd][box]2[hd]ϕ ‖→ 2[hd]ϕ

The Guarded Diagonal Function

Example E.11 (The Guarded Diagonal Function). For a safe ϕ, we have

diagg : {Strg(StrA) | 2[hd][box]2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

Recall that

diagg : Strg(StrA) −→ Strg A
:= diagauxg id

diagauxg : (StrA→ StrA) −→ Strg(StrA) −→ Strg A
:= fix(g).λt.λs.Consg

(
(hd ◦ t)(hdg s)

) (
g ~ next(t ◦ tl)~ (tlg s)

)

64 Guilhem Jaber and Colin Riba

Proof. We reduce to

diagauxg :
(
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

Let E be the context

g : IT ,
t : {StrA | [box]2[hd]ϕ} −→ {StrA | [box]2[hd]ϕ} ,
s : {Strg(StrA) | 2[hd][box]2[hd]ϕ}

where T is the type(
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]ϕ} −→ {Strg A | 2[hd]ϕ}

The result directly follows from the following typings, which are themselves given
by §E.1, §E.1 and §E.2:

E ` hd ◦ t : {StrA | [box]2[hd]ϕ} −→ {A | ϕ}
E ` hdg s : {StrA | [box]2[hd]ϕ}
E ` t ◦ tl : {StrA | [box]2[hd]ϕ} −→ {StrA | [box]2[hd]ϕ}
E ` tlg s : I {Strg(StrA) | 2[hd][box]2[hd]ϕ}

ut

The Coinductive Diagonal Function

Example E.12 (The Coinductive Diagonal Function). For a safe and smooth ϕ,
we have

diag : {Str(StrA) | [box]32[hd][box]2[hd]ϕ} −→ {StrA | [box]32[hd]ϕ}
:= λs.boxι(diagg (unbox s))

Proof. Using that 3k2[hd][box]2[hd]ϕ and 3k2[hd]ϕ are both smooth, we can
first reduce to

s :
{

Str(StrA)
∣∣ [box]3k2[hd][box]2[hd]ϕ

}
` boxι(diagg (unbox s)) :

{
StrA

∣∣ [box]3k2[hd]ϕ
}

Since the formulae 3k2[hd][box]2[hd]ϕ and 3k2[hd]ϕ are safe, we are done if
we show

diagg : ∀k ·
({

Strg(StrA)
∣∣ 3k2[hd][box]2[hd]ϕ

}
−→

{
Strg A

∣∣ 3k2[hd]ϕ
})

Consider the types

U(k) := {Strg(StrA)→ Strg A | ψ0 ∧ ψ1}
T (k) :=

(
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→ U(k)

Temporal Refinements for Guarded Recursive Types 65

where
ψ0 := 3k2[hd][box]2[hd]ϕ ‖→ 3k2[hd]ϕ
ψ1 := 2[hd][box]2[hd]ϕ ‖→ 2[hd]ϕ

We show
diagauxg : ∀k · T (k)

Let
N := Consg

(
(hd ◦ t)(hdg s)

) (
g ~ next(t ◦ tl)~ (tlg s)

)
M := λg.λs.N
E := g : I∀k · T (k)

We reason by cases on k with the rule

E `M : T (0) E `M : T (k+1)

E `M : ∀k · T (k)

Let
E ′ := E , t : {StrA | [box]2[hd]ϕ} −→ {StrA | [box]2[hd]ϕ}

We omit the proof of

E ′ ` λs.N : {Strg(StrA)→ Strg A | [ev(2[hd][box]2[hd]ϕ)]2[hd]ϕ}

since it follows that of §E.4.

Case of T (0).
Since ` 30θ ⇔ ⊥, we reduce to showing

E ` λt.λs.N :
(
{StrA | [box]2[hd]ϕ} → {StrA | [box]2[hd]ϕ}

)
−→ {Strg(StrA) | ⊥}

−→ {Strg A | 302[hd]ϕ}

and we conclude using the (ExF) rule.
Case of T (k+1).

We show

E ′, s :
{

Strg(StrA)
∣∣ 3k+12[hd][box]2[hd]ϕ

}
` N :

{
Strg A

∣∣ 3k+12[hd]ϕ
}

Using
` 3k+1θ ⇐⇒ θ ∨ ©3kθ

we reason by cases on the refinement of s. This leads to two subcases.
(Sub)Case of 2[hd][box]2[hd]ϕ.

We show

E ′, s : {Strg(StrA) | 2[hd][box]2[hd]ϕ} ` N :
{

Strg A
∣∣ 3k+12[hd]ϕ

}
Since ` 2[hd]ϕ⇒ 3k+12[hd]ϕ, we can reduce to

E ′, s : {Strg(StrA) | 2[hd][box]2[hd]ϕ} ` N : {Strg A | 2[hd]ϕ}

which is proved as in §E.4.

66 Guilhem Jaber and Colin Riba

(Sub)Case of ©3k2[hd][box]2[hd]ϕ.
We show

E ′, s :
{

Strg(StrA)
∣∣ ©3k2[hd][box]2[hd]ϕ

}
` N :

{
Strg A

∣∣ ©3k2[hd]ϕ
}

Let
E ′′ := E ′, s :

{
Strg(StrA)

∣∣ ©3k2[hd][box]2[hd]ϕ
}

Note that E ′′ ` g : IT (k), so that by §E.2 we have

E ′′ ` g ~ next(t ◦ tl) : I
({

Strg(StrA)
∣∣ 3k2[hd][box]2[hd]ϕ

}
→
{

Strg A
∣∣ 3k2[hd]ϕ

})
Using §E.1, we derive

E ′′ ` s :
{

Strg(StrA)
∣∣ ©3k2[hd][box]2[hd]ϕ

}
E ′′ ` tlg s : I

{
Strg(StrA)

∣∣ 3k2[hd][box]2[hd]ϕ
}

E ′′ ` g ~ next(t ◦ tl)~ (tlg s) : I
{

Strg A
∣∣ 3k2[hd]ϕ

}
E ′′ ` Consg

(
(hd ◦ t)(hdg s)

) (
g ~ next(t ◦ tl)~ (tlg s)

)
:
{

Strg A
∣∣ ©3k2[hd]ϕ

}
ut

E.5 Fair Streams

We discuss here an adaptation of the fair streams of [18,8]. We rely on the basic
datatypes presented in §E.5. In §E.5 we discuss a function

fb : CoNat −→ CoNat −→ Str Bool

such that, writing 0 for Z and 1 for (S Z) (see Ex. E.15), the non-regular stream
(fb 0 1), adapted from [18,8], is of the form

ff tt ff tt tt ff tt tt tt ff tt tt tt tt ff . . .

This stream thus contains infinitely many tt’s and infinitely many ff’s. This is
expressed with the formula [box]23[hd][tt] ∧ [box]23[hd][ff] where [tt], [ff]
represent the value of a Boolean, as in

tt : {Bool | [tt]} and ff : {Bool | [ff]}

Examples E.20 and E.22 show that we indeed have

(fb 0 1) : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}

The key are the following refinement typings for the guarded fbg, discussed in
Ex. E.19 and Ex. E.21:

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ © [hd][tt])}
fbg : ∀k · ∀` ·

({
CoNatg

∣∣ 3`[Z]
}
→
{

CoNatg
∣∣ 3`+1[Z]

}
→
{

Strg Bool
∣∣ 2k3k+`[hd][ff]

})

Temporal Refinements for Guarded Recursive Types 67

where, as in Not. E.10 (§E.3), we let

2tϕ := νtα.ϕ ∧©α

Finally, in §E.5 we discuss a stream scheduler

sched : Str Bool −→ StrA −→ StrB −→ Str(A+B)

such that sched can be typed as follows (Ex. E.25):

{Str Bool | [box]23[hd][tt]} −→ StrA −→ StrB −→ {Str(A+B) | [box]23[hd][in0]>}
{Str Bool | [box]23[hd][ff]} −→ StrA −→ StrB −→ {Str(A+B) | [box]23[hd][in1]>}

and thus

sched (fb 0 1) : {Str(A+B) | [box]23[hd][in0]> ∧ [box]23[hd][in1]>}

Basic Datatypes

Example E.13 (Booleans). Let

Bool := 1 + 1

with constructors
tt := in0(〈〉) : Bool
ff := in1(〈〉) : Bool

Example E.14 (Formulae on Booleans).

[tt] := [in0]> : Bool
[ff] := [in1]> : Bool

Example E.15 (CoNatural Numbers). Let

CoNat := �CoNatg

CoNatg := Fix(X).1 +IX

with constructors

Z := boxι(Zg) : CoNat S := λn.boxι(Sg (unbox n)) : CoNat→ CoNat
Zg := fold(in0〈〉) : CoNatg Sg := λn.fold(in1 n) : ICoNatg → CoNatg

Example E.16 (Formulae on CoNatural Numbers).

[Z] := [fold][in0] : CoNatg

[S] := [fold][in1] : CoNatg

©ϕ := [fold][in1][next]ϕ : CoNatg

3ϕ := µα. ϕ ∨©α : CoNatg

3tϕ := µtα. ϕ ∨©α : CoNatg

where ϕ : CoNatg.

68 Guilhem Jaber and Colin Riba

A Fair Stream of Booleans

Example E.17.

fb : CoNat −→ CoNat −→ Str Bool
:= λc.λm. boxι(fbg (unbox c) (unbox m))

fbg : CoNatg −→ CoNatg −→ Strg Bool
:= fix(g).λc.λm. case c of
| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sgn 7→ tt ::g g ~ n~ (next m)

Example E.18.

fb : {CoNat | [box]3[Z]} −→ CoNat −→ {Str Bool | [box]3[hd][ff]}
fbg : ∀k ·

({
CoNatg

∣∣ 3k[Z]
}
−→ CoNatg −→

{
Strg Bool

∣∣ 3k[hd][ff]
})

Proof. Let

T (k) :=
{

CoNatg
∣∣ 3k[Z]

}
−→ CoNatg −→

{
Strg Bool

∣∣ 3k[hd][ff]
}

and assume

g : I∀k · T (k)

Let
M(g, c,m) := case c of

| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sg n 7→ tt ::g g ~ n~ (next m)

We show

λc.λm.M(g, c,m) : ∀k · T (k)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

Case of T (0). We get the result from the (ExF) rule since

30[Z]⇔ ⊥

Case of T (k+1). We show

M(g, c,m) :
{

Strg Bool
∣∣ 3k+1[hd][ff]

}
assuming

c :
{

CoNatg
∣∣ 3k+1[Z]

}
m : CoNatg

Using

3k+1[Z]⇔ [Z] ∨©3k[Z]

we reason by cases on the refinement type of c. This leads to two subcases.

Temporal Refinements for Guarded Recursive Types 69

(Sub)Case of [Z]. We apply the (Inj0-E) rule on the refinement type of
(unfold c). Since

[hd][ff]⇒ 3k+1[hd][ff]

the result follows from the fact that

ff ::g g ~ (next m)~ next(S (next m)) : {Strg Bool | [hd][ff]}

(Sub)Case of ©3k[Z]. We have

unfold c :
{
1 +ICoNatg

∣∣ [in1][next]3k[Z]
}

By applying the (Inj1-E) rule on the refinement type of (unfold c), we
are left with showing

tt ::g g ~ n~ (next m) :
{

Strg Bool
∣∣ 3k+1[hd][ff]

}
assuming

n : I
{

CoNatg
∣∣ 3k[Z]

}
Using

©3k[hd][ff]⇒ 3k+1[hd][ff]

we are done since

g ~ n~ (next m) : I
{

Strg Bool
∣∣ 3k[hd][ff]

}
ut

Example E.19. Consider a function

f : N× N −→ N

such that

– 1 ≤ f(k + 1, `+ 1)
– f(k, `+ 2) ≤ f(k + 1, `+ 1)
– `+ 1 ≤ f(k + 1, `+ 1)
– f(k, `+ 1) ≤ f(k + 1, `+ 1)

for instance f(k, `) = k + `. Then we can give the following refined type to fbg:

∀k·∀`·
({

CoNatg
∣∣ 3`[Z]

}
−→

{
CoNatg

∣∣ 3`+1[Z]
}
−→

{
Strg Bool

∣∣∣ 2k3f(k,`)[hd][ff]
})

Proof. Let

U(k, `) := {CoNatg → CoNatg → Strg Bool | ϕ(k, `) ∧ ψ(`)}
ϕ(k, `) := 3`[Z] ‖→ 3`+1[Z] ‖→ 2k3f(k,`)[hd][ff]
ψ(`) := 3`[Z] ‖→ > ‖→ 3`[hd][ff]

and assume
g : I∀k · ∀` · U(k)

70 Guilhem Jaber and Colin Riba

Let
M(g, c,m) := case c of

| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sgn 7→ tt ::g g ~ n~ (next m)

We show
λc.λm.M(g, c,m) : ∀k · ∀` · U(k)

First, proceeding similarly as in Ex. E.18,

λc.λm.M(g, c,m) : ∀` ·
{

CoNatg → CoNatg → Strg Bool
∣∣ 3`[Z] ‖→ > ‖→ 3`[hd][ff]

}
Let

T (k, `) :=
{

CoNatg
∣∣ 3`[Z]

}
−→

{
CoNatg

∣∣ 3`+1[Z]
}
−→

{
Strg Bool

∣∣ 2k3f(k,`)[hd][ff]
}

We show
λc.λm.M(g, c,m) : ∀k · ∀` · T (k)

We apply the (∀-CI) rule on ∀k. In the case of ∀` · T (0, `), the result is trivial
since

203f(0,`)[hd][ff]⇔ >

In the case of ∀` ·T (k+1, `), we apply the (∀-CI) rule, this time on ∀`. The case
of T (k+1, 0) is dealt-with using the (ExF) rule since

30[Z]⇔ ⊥

In the case of T (k+1, `+1), we show

M(g, c,m) :
{

Strg Bool
∣∣ 2k+13f(k+1,`+1)[hd][ff]

}
assuming

c :
{

CoNatg
∣∣ 3`+1[Z]

}
m :

{
CoNatg

∣∣ 3`+2[Z]
}

We apply the typing rule for case (Fig. 4). This leads to two branches, one
for (unfold c) = fold(in0〈)〉 (denoted Zg), and one for (unfold c) = fold(in1 n)
(denoted Sgn).

Case of Zg.
We have to show

ff ::g g ~ (next m)~ next(S (next m)) :
{

Strg Bool
∣∣ 2k+13f(k+1,`+1)[hd][ff]

}
We have

2k+13f(k+1,`+1)[hd][ff]⇔ 3f(k+1,`+1)[hd][ff] ∧ ©2k3f(k+1,`+1)[hd][ff]

and we consider each conjunct separately.

Temporal Refinements for Guarded Recursive Types 71

(Sub)Case of 3f(k+1,`+1)[hd][ff].
We have

ff ::g g ~ (next m)~ next(S (next m)) : {Strg Bool | [hd][ff]}

and as f(k + 1, `+ 1) ≥ 1 we are done with

[hd][ff]⇒ 3f(k+1,`+1)[hd][ff]

(Sub)Case of ©2k3f(k+1,`+1)[hd][ff].
Since

m :
{

CoNatg
∣∣ 3`+2[Z]

}
Sg (next m) :

{
CoNatg

∣∣ 3`+3[Z]
}

we have

g ~ (next m)~ next(S (next m)) : I
{

Strg Bool
∣∣ 2k3f(k,`+2)[hd][ff]

}
so that

ff ::g g ~ (next m)~ next(S (next m)) :
{

Strg Bool
∣∣ ©2k3f(k,`+2)[hd][ff]

}
But since f(k, `+ 2) ≤ f(k + 1, `+ 1), we have

3f(k,`+2)[hd][ff]⇒ 3f(k+1,`+1)[hd][ff]

and we obtain

ff ::g g ~ (next m)~ next(S (next m)) :
{

Strg Bool
∣∣ ©2k3f(k+1,`+1)[hd][ff]

}
Case of Sgn.

We have to show

tt ::g g ~ n~ (next m) :
{

Strg Bool
∣∣ 2k+13f(k+1,`+1)[hd][ff]

}
assuming

n :
{

CoNatg
∣∣ 3`[Z]

}
We have

2k+13f(k+1,`+1)[hd][ff]⇔ 3f(k+1,`+1)[hd][ff] ∧ ©2k3f(k+1,`+1)[hd][ff]

and we consider each conjunct separately.
(Sub)Case of 3f(k+1,`+1)[hd][ff].

Using

g : I
{

CoNatg → CoNatg → Strg Bool
∣∣ 3`[Z] ‖→ > ‖→ 3`[hd][ff]

}
we get

tt ::g g ~ n~ (next m) :
{

Strg Bool
∣∣ 3`+1[hd][ff]

}
and the result follows from the fact that

`+ 1 ≤ f(k + 1, `+ 1)

72 Guilhem Jaber and Colin Riba

(Sub)Case of ©2k3f(k+1,`+1)[hd][ff].
Since ` ≤ `+ 1, we have

n :
{

CoNatg
∣∣ 3`+1[Z]

}
and thus

g ~ n~ (next m) : I
{

Strg Bool
∣∣ 2k3f(k,`+1)[hd][ff]

}
so that

tt ::g g ~ n~ (next m) :
{

Strg Bool
∣∣ ©2k3f(k,`+1)[hd][ff]

}
But since f(k, `+ 1) ≤ f(k + 1, `+ 1) we have

3f(k,`+1)[hd][ff]⇒ 3f(k+1,`+1)[hd][ff]

and we obtain

tt ::g g ~ n~ (next m) :
{

Strg Bool
∣∣ ©2k3f(k+1,`+1)[hd][ff]

}
ut

Example E.20. We have

fb Z (S Z) : {Str Bool | [box]23[hd][ff]}

Proof. Recall that

fb : CoNat −→ CoNat −→ Str Bool
:= λc.λm. boxι(fbg (unbox c) (unbox m))

We show

fb : ∀` ·
({

CoNat
∣∣ [box]3`[Z]

}
−→

{
CoNat

∣∣ [box]3`+1[Z]
}
−→ {Str Bool | [box]23[hd][ff]}

)
We apply the (∀-I) rule. Assume

c :
{

CoNat
∣∣ [box]3`[Z]

}
m :

{
CoNat

∣∣ [box]3`+1[Z]
}

Since the formulae 3`[Z] and 3`+1[Z] are safe we have

c : �
{

CoNatg
∣∣ 3`[Z]

}
m : �

{
CoNatg

∣∣ 3`+1[Z]
}

and thus
(unbox c) :

{
CoNatg

∣∣ 3`[Z]
}

(unbox m) :
{

CoNatg
∣∣ 3`+1[Z]

}

Temporal Refinements for Guarded Recursive Types 73

Now, it follows from Ex. E.19 that

fbg (unbox c) (unbox m) :
{

Strg Bool
∣∣ 2k3f(k,`)[hd][ff]

}
so that

boxι(fbg (unbox c) (unbox m)) : �
{

Strg Bool
∣∣ 2k3f(k,`)[hd][ff]

}
Since the formula 2k3f(k,`)[hd][ff] is safe we have

boxι(fbg (unbox c) (unbox m)) :
{

Str Bool
∣∣ [box]2k3f(k,`)[hd][ff]

}
The (µ-I) rule then gives

boxι(fbg (unbox c) (unbox m)) :
{

Str Bool
∣∣ [box]2k3[hd][ff]

}
and the (ν-I) rule gives

boxι(fbg (unbox c) (unbox m)) : {Str Bool | [box]23[hd][ff]}

The result then follows from the fact that

Z : {CoNat | [box]31[Z]}
S Z : {CoNat | [box]©31[Z]}

ut

Example E.21. We have

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ © [hd][tt])}

Proof. Let
T := {CoNatg → CoNatg → Strg Bool | ϕ ∧ ψ}
ϕ := [S] ‖→ > ‖→ [hd][tt]
ψ := > ‖→ [S] ‖→ 2 ([hd][tt] ∨©[hd][tt])

and assume

g : IT

Let
M(g, c,m) := case c of

| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sgn 7→ tt ::g g ~ n~ (next m)

We show

λc.λm.M(g, c,m) : T

First, by using the (Inj1-E) rule we easily get

λc.λm.M(g, c,m) : {CoNatg → CoNatg → Strg Bool | [S] ‖→ > ‖→ [hd][tt]}

74 Guilhem Jaber and Colin Riba

It remains to show

λc.λm.M(g, c,m) : {CoNatg → CoNatg → Strg Bool | > ‖→ [S] ‖→ 2 ([hd][tt] ∨©[hd][tt])}

Assume
c : CoNatg

m : {CoNatg | [S]}
We apply the typing rule for case (Fig. 4). This leads to two branches, one
for (unfold c) = fold(in0〈)〉 (denoted Zg), and one for (unfold c) = fold(in1 n)
(denoted Sgn).

Case of Zg.
We have to show

ff ::g g ~ (next m)~ next(S (next m)) : {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])}

We have

2 ([hd][tt] ∨©[hd][tt])⇔ ([hd][tt] ∨©[hd][tt]) ∧ ©2 ([hd][tt] ∨©[hd][tt])

and we consider each conjunct separately.
(Sub)Case of ([hd][tt] ∨©[hd][tt]).

Since

m : {CoNatg | [S]}
g : I ({CoNatg | [S]} −→ CoNatg −→ {Strg Bool | [hd][tt]})

we get

g ~ (next m)~ next(S (next m)) : I {Strg Bool | [hd][tt]}

and the result follows.
(Sub)Case of ©2 ([hd][tt] ∨©[hd][tt]).

Since

Sg(next m) : {CoNatg | [S]}
g : I (CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])})

we get

g ~ (next m)~ next(S (next m)) : I {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])}

and the result follows.
Case of Sgn.

We have to show

tt ::g g ~ n~ (next m) : {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])}

assuming
n : CoNatg

We have

2 ([hd][tt] ∨©[hd][tt])⇔ ([hd][tt] ∨©[hd][tt]) ∧ ©2 ([hd][tt] ∨©[hd][tt])

and we consider each conjunct separately.

Temporal Refinements for Guarded Recursive Types 75

(Sub)Case of ([hd][tt] ∨©[hd][tt]).
We have

tt ::g g ~ n~ (next m) : {Strg Bool | [hd][tt]}

(Sub)Case of ©2 ([hd][tt] ∨©[hd][tt]).
Since

m : {CoNatg | [S]}
g : I (CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])})

we get

g ~ (next m)~ next(S (next m)) : I {Strg Bool | 2 ([hd][tt] ∨©[hd][tt])}

and the result follows. ut

Example E.22. We have

fb Z (S Z) : {Str Bool | [box]23[hd][tt]}

Proof. By Ex. E.21 we have

fbg (unbox Z) (unbox (S Z)) : {Strg Bool | 2 ([hd][tt] ∨ © [hd][tt])}

so that
fb Z (S Z) : � {Strg Bool | 2 ([hd][tt] ∨ © [hd][tt])}

Since the formula 2 ([hd][tt] ∨ © [hd][tt]) is safe we get

fb Z (S Z) : {Str Bool | [box]2 ([hd][tt] ∨ © [hd][tt])}

Now, the result follows from the fact that

([hd][tt] ∨ © [hd][tt])⇒ 3[hd][tt]

ut

The following uses the rule

`B→A ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ)⇒ [ev(ψ0 ∨ ψ1)]ϕ

Example E.23. We have

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | [hd][tt] ∨ © [hd][tt]}

Proof. Let T be the type

{CoNatg → CoNatg → Strg Bool | [S] ‖→ > ‖→ [hd][tt] ∧ [Z] ‖→ [S] ‖→ ©[hd][tt]}

Note that

T ≤ CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | [hd][tt] ∨ © [hd][tt]}

76 Guilhem Jaber and Colin Riba

Assume
g : IT

Let
M(g, c,m) := case c of

| Zg 7→ ff ::g g ~ (next m)~ next(Sg (next m))
| Sgn 7→ tt ::g g ~ n~ (next m)

We show
λc.λm.M(g, c,m) : T

We consider each conjunct separately.

Case of [S] ‖→ > ‖→ [hd][tt].
Assume

c : {CoNatg | [S]}

Applying the (Inj1-E) rule, we are done since

tt ::g g ~ n~ (next m) : {Strg Bool | [hd][tt]}

assuming
n : CoNatg

Case of [Z] ‖→ [S] ‖→ ©[hd][tt].
Assume

c : {CoNatg | [Z]}
m : {CoNatg | [S]}

Applying the (Inj0-E) rule, we are left with showing

ff ::g g ~ (next m)~ next(S (next m)) : {Strg Bool | ©[hd][tt]}

But the result is trivial since

g : I {CoNatg → CoNatg → Strg Bool | [S] ‖→ > ‖→ [hd]tt}

ut

A Scheduler

Example E.24.

sched : Str Bool −→ StrA −→ StrB −→ Str(A+B)
:= λb.λs.λt. boxι(schedg (unbox b) (unbox s) (unbox t))

schedg : Strg Bool −→ Strg A −→ StrgB −→ Strg(A+B)
:= fix(g).λb.λs.λt. case (hdg b) of
| tt 7→ (in0 (hdg s)) ::g g ~ (tlg b)~ (tlg s)~ (tlg t)
| ff 7→ (in1 (hdg t)) ::g g ~ (tlg b)~ (tlg s)~ (tlg t)

Temporal Refinements for Guarded Recursive Types 77

Example E.25. We can give the following refinement types to sched :

{Str Bool | [box]23[hd][tt]} −→ StrA −→ StrB −→ {Str(A+B) | [box]23[hd][in0]>}
{Str Bool | [box]23[hd][ff]} −→ StrA −→ StrB −→ {Str(A+B) | [box]23[hd][in1]>}

Proof. Direct, using the following Ex. E.26. ut

Example E.26. We can give the following refinement types to schedg :

∀k · ∀` ·
({

Strg Bool
∣∣ 2k3`[hd][tt]

}
−→ Strg A −→ StrgB −→

{
Strg(A+B)

∣∣ 2k3`[hd][in0]>
})

∀k · ∀` ·
({

Strg Bool
∣∣ 2k3`[hd][ff]

}
−→ Strg A −→ StrgB −→

{
Strg(A+B)

∣∣ 2k3`[hd][in1]>
})

Proof. We only discuss the first type, since the second one is completely similar.
Let T (k, `) be the type{

Strg Bool
∣∣ 2k3`[hd][tt]

}
−→ Strg A −→ StrgB −→

{
Strg(A+B)

∣∣ 2k3`[hd][in0]>
}

and assume
g : I∀k · ∀` · T (k, `)

Let

M(g, b, s, t) := case (hdg b) of
| tt 7→ (in0 (hdg s)) ::g g ~ (tlg b)~ (tlg s)~ (tlg t)
| ff 7→ (in1 (hdg t)) ::g g ~ (tlg b)~ (tlg s)~ (tlg t)

We show
λb.λs.λt.M(g, b, s, t) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. In the case of ∀` · T (0, `), the result is trivial
since

203`[hd][in0]> ⇔ >
As for ∀` · T (k+1, `), we apply the (∀-CI) rule, this time on ∀`. In the case of
T (k+1, 0), since

2k+130[hd][tt]⇔ 30[hd][tt] ∧ ©2k30[hd][tt]
and 30[hd][tt]⇔ ⊥

we get
2k+130[hd][tt]⇔ ⊥

and we can conclude using the (ExF) rule. It remains to deal with the case of
T (k+1, `+1). We have to show

M(g, b, s, t) :
{

Strg(A+B)
∣∣ 2k+13`+1[hd][in0]>

}
assuming

b :
{

Strg Bool
∣∣ 2k+13`+1[hd][tt]

}
s : Strg A
t : StrgB

We have

2k+13`+1[hd][in0]> ⇔ 3`+1[hd][in0]> ∧ ©2k3`+1[hd][in0]>

and we consider each conjunct separately.

78 Guilhem Jaber and Colin Riba

Case of 3`+1[hd][in0]>.
Since

2k+13`+1[hd][tt]⇔ 3`+1[hd][tt] ∧ ©2k3`+1[hd][tt]

we have
b :
{

Strg Bool
∣∣ 3`+1[hd][tt]

}
Using

3`+1[hd][tt]⇔ [hd][tt] ∨ ©3`[hd][tt]

we reason by cases on the refinement type of b.
(Sub)Case of [hd][tt].

We apply the (Inj0-E) rule on b and we are done since

(in0 (hdg s)) ::g g ~ (tlg b)~ (tlg s)~ (tlg t) : {Strg(A+B) | [hd][in0]>}

(Sub)Case of ©3`[hd][tt].
We have

tlg b : I
{

Strg Bool
∣∣ 3`[hd][tt]

}
We apply the case-elimination rule on b. In both branches, since (by
subtyping) g has type

I
({

Strg Bool
∣∣ 213`[hd][tt]

}
−→ Strg A −→ StrgB −→

{
Strg(A+B)

∣∣ 213`[hd][in0]>
})

and since, according to Table 2,

21θ ⇔ θ

we get

g ~ (tlg b)~ (tlg s)~ (tlg t) : I
{

Strg(A+B)
∣∣ 3`[hd][in0]>

}
so that

(−) ::g g ~ (tlg b)~ (tlg s)~ (tlg t) :
{

Strg(A+B)
∣∣ ©3`[hd][in0]>

}
and we are done since

©3`[hd][in0]> ⇒ 3`+1[hd][in0]>

Case of ©2k3`+1[hd][in0]>.
Since

2k+13`+1[hd][tt]⇔ 3`+1[hd][tt] ∧ ©2k3`+1[hd][tt]

we have
b :
{

Strg Bool
∣∣ ©2k3`+1[hd][tt]

}
so that

tlg b : I
{

Strg Bool
∣∣ 2k3`+1[hd][tt]

}

Temporal Refinements for Guarded Recursive Types 79

We apply the case-elimination rule on b. In both branches, since (by subtyp-
ing) g has type

I
({

Strg Bool
∣∣ 2k3`+1[hd][tt]

}
−→ Strg A −→ StrgB −→

{
Strg(A+B)

∣∣ 2k3`+1[hd][in0]>
})

we get

g ~ (tlg b)~ (tlg s)~ (tlg t) : I
{

Strg(A+B)
∣∣ 2k3`+1[hd][in0]>

}
so that

(−) ::g g ~ (tlg b)~ (tlg s)~ (tlg t) :
{

Strg(A+B)
∣∣ ©2k3`+1[hd][in0]>

}
ut

E.6 Colists

We detail here the refinement types given to the guarded and coinductive append
functions on colists in Table 4. We present some basic material in §E.6. The
append function itself is detailed in §E.6, and we give sharper refinements with
iteration terms in §E.6. We begin in §E.6 with an overview of the main examples
on colists.

Overview The cases of

appendg : {CoListg A | [¬nil]} −→ CoListg A −→ {CoListg A | [¬nil]}
appendg : CoListg A −→ {CoListg A | [¬nil]} −→ {CoListg A | [¬nil]}

are detailed in Ex. E.33.
We now discuss

append : {CoListA | [box][fin]} −→ {CoListA | [box][fin]} −→ {CoListA | [box][fin]}

which says that append takes finite colists to a finite colist. Recall that [fin] =
3[nil]. Details are given in Ex. E.35. The other refinement types for append are
detailed in Ex. E.36 and Ex. E.37.

We refer here to the code of the append function as defined in Table 3 and
Ex. E.32. First, since 3[nil] is smooth, we can apply the rule (µ-E) (Fig. 11)
twice and reduce to

E ` boxι(appendg (unbox s) (unbox t)) : {CoListA | [box]3[nil]}

where E assumes s of type
{

CoListA
∣∣ [box]3k[nil]

}
and t of type

{
CoListA

∣∣ [box]3`[nil]
}

.
Using the derived rule (µ-I) (Ex. 6.10), we further reduce to

E ` boxι(appendg (unbox s) (unbox t)) :
{

CoListA
∣∣ [box]3k+`[nil]

}
Now, since the formulae 3t[nil] are safe, by subtyping (Fig. 11) we have

E ` s : �
{

CoListA
∣∣ 3k[nil]

}
and E ` t : �

{
CoListA

∣∣ 3`[nil]
}

80 Guilhem Jaber and Colin Riba

and we can reduce to showing that the guarded appendg has type ∀k · ∀` ·T (k, `),
where

T (k, `) :=
{

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
}

Let N(g, s, t) be such that appendg = fix(g).λs.λt.N(g, s, t). We show

λs.λt.N(g, s, t) : ∀k · ∀` · T (k, `)

in a typing context (leaved implicit) which assumes g of type I∀k · ∀` · T (k, `).
We apply the (∀-CI) rule on ∀k · ∀` · T (k, `). Since 30[nil] ⇔ ⊥, the branch of
∀`·T (0, `) can be dealt with using the (ExF) rule. In the branch of ∀`·T (k+1, `),
we apply the (∀-I) rule. We are thus left with showing

N(g, s, t) :
{

CoListg A
∣∣ 3k+`+1[nil]

}
assuming further s :

{
CoListg A

∣∣ 3k+1[nil]
}

and t :
{

CoListg A
∣∣ 3`[nil]

}
. We

unfold 3k+1[nil] as
3k+1[nil]⇔ [nil] ∨ ©3k[nil]

Using the (∨-E) rule, we have two cases for the refinement type of s. In the case
of {CoListA | [nil]}, since [nil] = [fold][in0]>, we have (unfold s) : [in0]>. Thanks
to the (Inj0) rule, we are left with showing

t :
{

CoListA
∣∣ 3`[nil]

}
` t :

{
CoListA

∣∣ 3k+1+`[nil]
}

But we are done since J`K ≤ Jk+`+1K so that

3`[nil]⇒ 3k+1+`[nil]

Assume now that s has type
{

CoListA
∣∣ ©3k[nil]

}
. By unfolding 3k+`+1[nil] we

reduce to showing

N(g, s, t) :
{

CoListg A
∣∣ ©3k+`[nil]

}
Since, on colists, ©(−) = [fold][in1][π1][next](−), we can apply the (Inj1-E) rule
on (unfold s). This amounts to showing

Consg x (g ~ xs~ (next t)) :
{

CoListA
∣∣ ©3k+`[nil]

}
where, since

(unfold s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[nil]
}

we can assume xs : I
{

CoListg A
∣∣ 3k[nil]

}
. By subtyping and (∀-E) we have

g : IT (k, `), so that

g ~ xs~ (next t) : I
{

CoListA
∣∣ 3k+`[nil]

}
and we conclude by the analogue of Ex. 5.3 for colists. The other typings for
append are dealt with similarly. Let us finally just mention that the type of
appendg can be sharpened to

∀k·∀`·
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`+1[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
})

reflecting that on finite colists, appendg removes one constructor Nilg from its
arguments (see Ex. E.38).

Temporal Refinements for Guarded Recursive Types 81

The Type of CoLists The type of colists is

CoListA := �CoListg A
CoListg A := Fix(X).1 +A×IX

Its usual guarded constructors are represented as

Nilg := fold(in0〈〉) : CoListg A
Consg := λx.λxs.fold(in1〈x, xs〉) : A→ ICoListg A→ CoListg A

Their coinductive (for A a constant type) variants are

Nil := boxι(Nilg) : CoListA
Cons := λx.λxs.boxι(Consg x (next (unbox xs))) : A→ CoListA→ CoListA

Note E.27. Extending the notation for (guarded) streams, we often write

(x ::g xs) := Consg x xs []g := Nilg [x0, x1, . . . , xn]g := x0 ::g [x1, . . . , xn]g

(x :: xs) := Cons x xs [] := Nil [x0, x1, . . . , xn] := x0 :: [x1, . . . , xn]

Note E.28 (Syntactic Sugar for Pattern Matching). Assuming s : CoListg A, we
often write

case s of
| Nilg 7→ N
| Consg x xs 7→ M

for
case (unfold s) of
| y. N [〈〉/y]
| y. M [π0(y)/x , π1(y)/xs]

Example E.29 (Formulae over CoListg). Assuming ψ : A and ϕ : CoListg A,

[nil] := [fold][in0]> : CoListg A
[¬nil] := [fold][in1]> : CoListg A
[hd]ψ := [fold][in1][π0]ϕ : CoListg A
©ϕ := [fold][in1][π1][next]ϕ : CoListg A
3ϕ := µα. ϕ ∨©α : CoListg A
3tϕ := µtα. ϕ ∨©α : CoListg A
2ϕ := να. ϕ ∧©α : CoListg A
2finϕ := να. [nil] ∨ (ϕ ∧©α) : CoListg A
[inf] := 2[¬nil] : CoListg A
[fin] := 3[nil] : CoListg A

Example E.30.

Consg : A −→ ICoListg A −→ {CoListg A | [¬nil]}
Consg : A −→ I {CoListg A | [inf]} −→ {CoListg A | [inf]}

Nilg : {CoListg A | [nil]}

82 Guilhem Jaber and Colin Riba

Note that

`CoListg A [nil]⇒ 2finϕ

Example E.31. Similarly as in §E.1 and §E.1, assuming ϕ : A we have

Consg : {A | ϕ} −→ I
{

CoListg A
∣∣ 2fin[hd]ϕ

}
−→

{
CoListg A

∣∣ 2fin[hd]ϕ
}

Consg : {A | ϕ} −→ I {CoListg A | [nil]} −→
{

CoListg A
∣∣ 2fin[hd]ϕ

}
Nilg :

{
CoListg A

∣∣ 2fin[hd]ϕ
}

Consg : {A | ϕ} −→ I {CoListg A | 2[hd]ϕ} −→ {CoListg A | 2[hd]ϕ}

The Append Function on Colists

Example E.32 (The Append Function on Colists).

appendg : CoListg A→ CoListg A→ CoListg A
:= fix(g).λs.λt.case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

append : CoListA→ CoListA→ CoListA
:= λs.λt.boxι(appendg (unbox s) (unbox t))

Example E.33 (Properties of Append).

appendg : {CoListg A | [¬nil]} −→ CoListg A −→ {CoListg A | [¬nil]}
appendg : CoListg A −→ {CoListg A | [¬nil]} −→ {CoListg A | [¬nil]}

Example E.34. Assuming ϕ : A,

appendg :
{

CoListg A
∣∣ 2fin[hd]ϕ

}
−→

{
CoListg A

∣∣ 2fin[hd]ϕ
}
−→

{
CoListg A

∣∣ 2fin[hd]ϕ
}

Proof. Let

T :=
{

CoListg A
∣∣ 2fin[hd]ϕ

}
−→

{
CoListg A

∣∣ 2fin[hd]ϕ
}
−→

{
CoListg A

∣∣ 2fin[hd]ϕ
}

and assume
g : IT
s :
{

CoListg A
∣∣ 2fin[hd]ϕ

}
t :
{

CoListg A
∣∣ 2fin[hd]ϕ

}
Note that

2fin[hd]ϕ⇔ [nil] ∨
(
[hd]ϕ ∧©2fin[hd]ϕ

)
We reason by cases on the refinement type of s, applying the (∨-E) rule

(Fig. 8).

Temporal Refinements for Guarded Recursive Types 83

Case of [nil].
We thus have

unfold(s) : {1 +A×ICoListg A | [in0]>}

We apply the (Inj0-E) rule and get the result by

t :
{

CoListg A
∣∣ 2fin[hd]ϕ

}
Case of [hd]ϕ ∧©2fin[hd]ϕ.

We thus have
s :
{

CoListg A
∣∣ [hd]ϕ ∧©2fin[hd]ϕ

}
Since the modalities [fold] and [in1] preserve ∧ this gives

s :
{

CoListg A
∣∣ [fold][in1]

(
[π0]ϕ ∧ [π1][next]2fin[hd]ϕ

)}
so that

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1]
(
[π0]ϕ ∧ [π1][next]2fin[hd]ϕ

)}
We then apply the (Inj1-E) rule. Assume

y :
{
A×ICoListg A

∣∣ [π0]ϕ ∧ [π1][next]2fin[hd]ϕ
}

and let
x := π0(y) : {A | ϕ}
xs := π1(y) : I

{
CoListg A

∣∣ 2fin[hd]ϕ
}

Then Ex. E.31 easily gives

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 2fin[hd]ϕ

}
ut

Example E.35.

append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]}
appendg : ∀k · ∀` ·

({
CoListg A

∣∣ 3k[nil]
}
−→

{
CoListg A

∣∣ 3`[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
})

Proof. Let

T (k, `) :=
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
})

and assume
g : I∀k · ∀` · T (k, `)

Let
M(g, s, t) := case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

We show
λs.λt.M(g, s, t) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

84 Guilhem Jaber and Colin Riba

Case of ∀` · T (0, `).
Apply the (∀-I) rule on ∀` and assume

s : {CoListg A | 30[nil]}

Since
30[nil]⇔ ⊥

the result follows using the rule (ExF).
Case of ∀` · T (k+1, `).

Apply the (∀-I) rule on ∀` and assume

s :
{

CoListg A
∣∣ 3k+1[nil]

}
t :
{

CoListg A
∣∣ 3`[nil]

}
We have to show

M(g, s, t) :
{

CoListg A
∣∣ 3k+1+`[nil]

}
Using

3k+1[nil]⇔ [nil] ∨©3k[nil]

we apply the (∨-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].

We have
unfold(s) : {1 +A×ICoListg A | [in0]>}

Since J`K ≤ Jk+1 + `K, the result then follows by applying the (Inj0-E)
rule.

(Sub)Case of ©3k[nil].
We have

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3(k+`)+1[nil]

}
where

x := π0(y) : A
xs := π1(y) : I

{
CoListg A

∣∣ 3k[nil]
}

assuming
y :
{
A×ICoListg A

∣∣ [π1][next]3k[nil]
}

We have
g ~ xs~ (next t) : I

{
CoListg A

∣∣ 3k+`[nil]
}

It follows that

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ ©3k+`[nil]

}
and we are done since

©3k+`[nil]⇒ 3(k+`)+1[nil]

ut

Temporal Refinements for Guarded Recursive Types 85

Example E.36. Assuming ϕ : A,

append : {CoListA | [box]3[hd]ϕ} −→ CoListA −→ {CoListA | [box]3[hd]ϕ}

appendg : ∀k ·
({

CoListg A
∣∣ 3k[hd]ϕ

}
−→ CoListg A −→

{
CoListg A

∣∣ 3k[hd]ϕ
})

where, in the case of append, ϕ : A is safe and smooth.

Proof. Let

T (k) :=
{

CoListg A
∣∣ 3k[hd]ϕ

}
−→ CoListg A −→

{
CoListg A

∣∣ 3k[hd]ϕ
}

and assume
g : I∀k · T (k)

Let
M(g, s, t) := case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

We show
λs.λt.M(g, s, t) : ∀k · T (k)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

Case of T (0).
Assume

s : {CoListg A | 30[hd]ϕ}

Since
30[hd]ϕ⇔ ⊥

the result follows using the rule (ExF).
Case of T (k+1).

Assume
s :
{

CoListg A
∣∣ 3k+1[hd]ϕ

}
t : CoListg A

Using
3k+1[hd]ϕ⇔ [hd]ϕ ∨©3k[hd]ϕ

we apply the (∨-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [hd]ϕ.

We have
unfold(s) : {1 +A×ICoListg A | [in1][π0]ϕ}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3k+1[hd]ϕ

}
where

x := π0(y) : {A | ϕ}
xs := π1(y) : ICoListg A

86 Guilhem Jaber and Colin Riba

assuming

y : {A×ICoListg A | [π0]ϕ}

We have

Consg x (g ~ xs~ (next t)) : {CoListg A | [hd]ϕ}

and we are done since

[hd]ϕ⇒ 3k+1[hd]ϕ

(Sub)Case of ©3k[hd]ϕ.

We have

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[hd]ϕ
}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3k+1[hd]ϕ

}
where

x := π0(y) : A
xs := π1(y) : I

{
CoListg A

∣∣ 3k[hd]ϕ
}

assuming

y :
{
A×ICoListg A

∣∣ [π1][next]3k[hd]ϕ
}

We have

g ~ xs~ (next t) : I
{

CoListg A
∣∣ 3k[hd]ϕ

}
It follows that

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ ©3k[hd]ϕ

}
and we are done since

©3k[hd]ϕ⇒ 3k+1[hd]ϕ

ut

Example E.37. Assuming ϕ : A, we have

append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[hd]ϕ} −→ {CoListA | [box]3[hd]ϕ}

appendg : ∀k · ∀` ·
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`[hd]ϕ
}
−→

{
CoListg A

∣∣ 3k+`[hd]ϕ
})

where, in the case of append, ϕ : A is safe and smooth.

Temporal Refinements for Guarded Recursive Types 87

Proof. Let

T (k, `) :=
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`[hd]ϕ
}
−→

{
CoListg A

∣∣ 3k+`[hd]ϕ
})

and assume
g : I∀k · ∀` · T (k, `)

Let
M(g, s, t) := case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

We show
λs.λt.M(g, s, t) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

Case of ∀` · T (0, `).
We apply the (∀-I) rule on ∀` and assume

s : {CoListg A | 30[nil]}

Since
30[nil]⇔ ⊥

the result follows using the rule (ExF).
Case of ∀` · T (k+1, `).

We apply the (∀-I) rule on ∀` and assume

s :
{

CoListg A
∣∣ 3k+1[nil]

}
t :
{

CoListg A
∣∣ 3`[hd]ϕ

}
Using

3k+1[nil]⇔ [nil] ∨©3k[nil]

we apply the (∨-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].

We have
unfold(s) : {1 +A×ICoListg A | [in0]>}

Since J`K ≤ Jk+ 1+ `K, the result then follows by applying the (Inj0-E)
rule.

(Sub)Case of ©3k[nil].
We have

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3(k+`)+1[hd]ϕ

}

88 Guilhem Jaber and Colin Riba

where
x := π0(y) : A
xs := π1(y) : I

{
CoListg A

∣∣ 3k[nil]
}

assuming
y :
{
A×ICoListg A

∣∣ [π1][next]3k[nil]
}

We have

g ~ xs~ (next t) : I
{

CoListg A
∣∣ 3k+`[hd]ϕ

}
It follows that

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ ©3k+`[hd]ϕ

}
and we are done since

©3k+`[hd]ϕ⇒ 3(k+`)+1[hd]ϕ

ut

Sharper Refinements for the Append Function on Colists

Example E.38.

appendg : ∀k · ∀` ·
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`+1[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
})

Proof. Let

T (k, `) :=
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`+1[nil]
}
−→

{
CoListg A

∣∣ 3k+`[nil]
})

and assume
g : I∀k · ∀` · T (k, `)

Let
M(g, s, t) := case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

We show
λs.λt.M(g, s, t) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

Case of ∀` · T (0, `).
Apply the (∀-I) rule on ∀` and assume

s : {CoListg A | 30[nil]}

Since
30[nil]⇔ ⊥

the result follows using the rule (ExF).

Temporal Refinements for Guarded Recursive Types 89

Case of ∀` · T (k+1, `).
Apply the (∀-I) rule on ∀` and assume

s :
{

CoListg A
∣∣ 3k+1[nil]

}
t :
{

CoListg A
∣∣ 3`+1[nil]

}
We have to show

M(g, s, t) :
{

CoListg A
∣∣ 3k+1+`[nil]

}
Using

3k+1[nil]⇔ [nil] ∨©3k[nil]

we apply the (∨-E) rule on the refinement type of s. This leads to two
subcases.
(Sub)Case of [nil].

We have
unfold(s) : {1 +A×ICoListg A | [in0]>}

Since J`+1K ≤ Jk+1+`K, the result then follows by applying the (Inj0-E)
rule.

(Sub)Case of ©3k[nil].
We have

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3k+1+`[nil]

}
where

x := π0(y) : A
xs := π1(y) : I

{
CoListg A

∣∣ 3k[nil]
}

assuming
y :
{
A×ICoListg A

∣∣ [π1][next]3k[nil]
}

We have
g ~ xs~ (next t) : I

{
CoListg A

∣∣ 3k+`[nil]
}

It follows that

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ ©3k+`[nil]

}
and we are done since

©3k+`[nil]⇒ 3k+1+`[nil]

ut

Example E.39. Assuming ϕ : A, we have

appendg : ∀k · ∀` ·
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`+1[hd]ϕ
}
−→

{
CoListg A

∣∣ 3k+`[hd]ϕ
})

90 Guilhem Jaber and Colin Riba

Proof. Let

T (k, `) :=
({

CoListg A
∣∣ 3k[nil]

}
−→

{
CoListg A

∣∣ 3`+1[hd]ϕ
}
−→

{
CoListg A

∣∣ 3k+`[hd]ϕ
})

and assume

g : I∀k · ∀` · T (k, `)

Let
M(g, s, t) := case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (g ~ xs~ (next t))

We show

λs.λt.M(g, s, t) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. This leads to two cases.

Case of ∀` · T (0, `).

We apply the (∀-I) rule on ∀` and assume

s : {CoListg A | 30[nil]}

Since

30[nil]⇔ ⊥

the result follows using the rule (ExF).

Case of ∀` · T (k+1, `).

We apply the (∀-I) rule on ∀` and assume

s :
{

CoListg A
∣∣ 3k+1[nil]

}
t :
{

CoListg A
∣∣ 3`+1[hd]ϕ

}
We have to show

M(g, s, t) : {CoListg A | 3k + 1 + `[hd]ϕ}

Using

3k+1[nil]⇔ [nil] ∨©3k[nil]

we apply the (∨-E) rule on the refinement type of s. This leads to two
subcases.

(Sub)Case of [nil].

We have

unfold(s) : {1 +A×ICoListg A | [in0]>}

Since J`+1K ≤ Jk+1+`K, the result then follows by applying the (Inj0-E)
rule.

Temporal Refinements for Guarded Recursive Types 91

(Sub)Case of ©3k[nil].
We have

unfold(s) :
{
1 +A×ICoListg A

∣∣ [in1][π1][next]3k[nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ 3k+1+`[hd]ϕ

}
where

x := π0(y) : A
xs := π1(y) : I

{
CoListg A

∣∣ 3k[nil]
}

assuming
y :
{
A×ICoListg A

∣∣ [π1][next]3k[nil]
}

We have

g ~ xs~ (next t) : I
{

CoListg A
∣∣ 3k+`[hd]ϕ

}
It follows that

Consg x (g ~ xs~ (next t)) :
{

CoListg A
∣∣ ©3k+`[hd]ϕ

}
and we are done since

©3k+`[hd]ϕ⇒ 3k+1+`[hd]ϕ

ut

E.7 Resumptions

This example is adapted from [48]. Fix a constant type O and a finite base type
I. Let

ResA := �Resg A
Resg A := Fix(X).A+ (O×IX)I

and
Retg := λa. fold(in0 a) : A −→ Resg A
Contg := λk. fold(in1 k) : (O×IResg A)I −→ Resg A

Example E.40 (A Scheduler on Resumptions).

sched : ResA −→ ResA −→ ResA
:= λp.λq. boxι(schedg (unbox p) (unbox q))

schedg : Resg A −→ Resg A −→ Resg A
:= fix(g).λp.λq. case p of
| Retg a 7→ Retg a
| Contg k 7→

let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

92 Guilhem Jaber and Colin Riba

Here, Retg(a) represents a computation which returns the value a : A, while
Contg〈f, k〉 (with 〈f, k〉 : I → (O × IResg A)) represents a computation which
on input i : I outputs fi : O and continues with the computation ki : IResg A.

Provided with resumptions p, q : Resg A, the scheduler (schedg p q), adapted
from [48], first evaluates p. If p returns, then the whole computation returns,
with the same value. Otherwise, p evaluates to say Contg〈f, k〉. Then (schedg p q)
produces a computation which on input i : I outputs fi and continues with the
computation (schedg q (ki)), thus switching arguments.

Example E.41 (Formulae on Resg A). Assuming ψ : A, ϕ : Resg A, ϑ : O and
i ∈ I,

[Ret] := [fold][in0]> : Resg A
[Cont] := [fold][in1]> : Resg A

[now]ψ := [fold][in0]ψ : Resg A
[outi]ϑ := [fold][in1] ([i] ‖→ [π0]ϑ) : Resg A
[∧out]ϑ := ∧i∈I[outi]ϑ : Resg A
[∨out]ϑ := ∨i∈I[outi]ϑ : Resg A

©iϕ := [fold][in1] ([i] ‖→ [π1][next]ϕ) : Resg A
T ϕ := ∧i∈I©i ϕ : Resg A
U ϕ := ∨i∈I©i ϕ : Resg A

∃2ϕ := να. ϕ∧ U α : Resg A
∀2ϕ := να. ϕ∧ T α : Resg A

∃3ϕ := µα. ϕ∨ U α : Resg A
∀3ϕ := µα. ϕ∨ T α : Resg A

We moreover let

∀2tψ := νtα. ψ∧ T α : Resg A ∀3tψ := µtα. ψ∨ T α : Resg A
∃2tψ := νtα. ψ∧ U α : Resg A ∃3tψ := µtα. ψ∨ U α : Resg A

The formula ∃3ϕ holds on a resumption if there is a finite sequence of inputs
which leads to a resumption satisfying ϕ, while ∀3ϕ holds on a resumption if ϕ
holds at some point for any finite sequence of inputs. Moreover, ∃2ϕ expresses
that there is an infinite sequence of inputs in which the resumption never returns
and along which ϕ always holds, while ∀2ϕ expresses that for all infinite sequence
of inputs, the resumption never returns and ϕ always holds. For instance, the
composite formula ∃2∃3[Ret] says that there is an infinite sequence of inputs
along which (1) the resumption does not return and (2), at any point, there is a
finite sequence of inputs which leads to a return.

Temporal Refinements for Guarded Recursive Types 93

Example E.42. Let ψ : A be a safe and smooth formula and let ϕ ∈ {[Ret], [now]ψ}.
We have

sched : {ResA | [box]∃3ϕ} −→ {ResA | [box]∃3ϕ} −→ {ResA | [box]∃3ϕ}
sched : {ResA | [box]∀3ϕ} −→ {ResA | [box]∀3ϕ} −→ {ResA | [box]∀3ϕ}

schedg : ∀k · ∀` ·
({

Resg A
∣∣ ∃3kϕ

}
−→

{
Resg A

∣∣ ∃3`ϕ
}
−→

{
Resg A

∣∣ ∃3k+`ϕ
})

schedg : ∀k · ∀` ·
({

Resg A
∣∣ ∀3kϕ

}
−→

{
Resg A

∣∣ ∀3`ϕ
}
−→

{
Resg A

∣∣ ∀3k+`ϕ
})

Proof. Let 3 ∈ {∃3,∀3} and

T (k, `) :=
{

Resg A
∣∣ 3kϕ

}
−→

{
Resg A

∣∣ 3`ϕ
}
−→

{
Resg A

∣∣ 3k+`ϕ
}

and assume
g : I∀k · ∀` · T (k, `)

Let
M(g, p, q) := case p of

| Retg a 7→ Retg a
| Contg k 7→

let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

We show
λp.λq.M(g, p, q) : ∀k · ∀` · T (k, `)

We apply the (∀-CI) rule on ∀k. In the case of ∀` · T (0, `), we get the result
using the (ExF) rule since

30ϕ⇔ ⊥
As for ∀` · T (k+1, `), we apply the (∀-I) rule on ∀`. We have to show

M(g, p, q) :
{

Resg A
∣∣ 3k+`+1ϕ

}
assuming

p :
{

Resg A
∣∣ 3k+1ϕ

}
q :
{

Resg A
∣∣ 3`ϕ

}
Using

∃3k+1ϕ⇔ ϕ ∨ U ∃3kϕ
∀3k+1ϕ⇔ ϕ ∨ T ∀3kϕ

we reason by cases on the refinement type of p.

Case of [Ret].
We have

unfold p : {A+ (O×IResg A)I | [in0]>}
We apply the (Inj0-E) rule on p and we are done since

Retg a : {Resg A | [Ret]}

assuming
a : A

94 Guilhem Jaber and Colin Riba

Case of [now]ψ.
We have

unfold p : {A+ (O×IResg A)I | [in0]ψ}

We apply the (Inj0-E) rule on p and we are done since

Retg a : {Resg A | [now]ψ}

assuming

a : {A | ψ}

Case of U ∃3kϕ.
We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p :
{

Resg A
∣∣ ©i∃3kϕ

}
We have

unfold p :
{
A+ (O×IResg A)I

∣∣ [in1]
(
[i] ‖→ [π1][next]∃3kϕ

)}
We apply the (Inj1-E) rule on the refinement type of p. Let

N(g, k, q) := let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

We show

N(g, k, q) :
{

Resg A
∣∣ ©i∃3k+`ϕ

}
assuming

k :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∃3kϕ

}
Assuming

i : {I | [i]}

we thus have

ki :
{
O×IResg A

∣∣ [π1][next]∃3kϕ
}

It follows that

〈π0(ki) , g ~ (next q)~ (π1(ki))〉 :
{
O×IResg A

∣∣ [π1][next]∃3k+`ϕ
}

and thus

λi. 〈π0(ki) , g ~ (next q)~ (π1(ki))〉 :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∃3k+`ϕ

}
Now we are done since

©i∃3k+`ϕ = [fold][in1]
(
[i] ‖→ [π1][next]∃3k+`ϕ

)
and Contg = λh. fold(in1 h)

Temporal Refinements for Guarded Recursive Types 95

Case of T ∀3kϕ.
Using

∀3k+`+1ϕ⇔ ϕ ∨ T ∀3k+`ϕ

for each i ∈ I we show

M(g, p, q) :
{

Resg A
∣∣ ©i∀3k+`ϕ

}
So let i ∈ I. Since

p :
{

Resg A
∣∣ T ∃3kϕ

}
We have

unfold p :
{
A+ (O×IResg A)I

∣∣ [in1]
(
[i] ‖→ [π1][next]∃3kϕ

)}
and we conclude similarly as in the case of U ∃3kϕ. ut

Example E.43. Let ϑ : O be a safe and smooth formula. Furthermore, let 2 ∈
{∀2,∃2}, 3 ∈ {∀3,∃3} and [out] ∈ {[∧out], [∨out]}. We have

sched : {ResA | [box]23[out]ϑ} −→ {ResA | [box]23[out]ϑ} −→ {ResA | [box]23[out]ϑ}

Proof. We show that we can give the following refinement type to schedg:

∀k·∀`0·∀`1·
({

Resg A
∣∣ 2k3`0 [out]ϑ

}
−→

{
Resg A

∣∣ 2k3`1 [out]ϑ
}
−→

{
Resg A

∣∣ 2k3`0+`1 [out]ϑ
})

Let T (k, `0, `1) be the type{
Resg A

∣∣ 2k3`0 [out]ϑ
}
−→

{
Resg A

∣∣ 2k3`1 [out]ϑ
}
−→

{
Resg A

∣∣ 2k3`0+`1 [out]ϑ
}

and assume
g : I∀k · ∀`0 · ∀`1 · T (k, `0, `1)

Let
M(g, p, q) := case p of

| Retg a 7→ Retg a
| Contg k 7→

let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

We show
λp.λq.M(g, p, q) : ∀k · ∀`0 · ∀`1 · T (k, `0, `1)

We apply the (∀-CI) rule on ∀k. The case of ∀`0 · ∀`1 ·T (0, `0, `1) is trivial since

203`0+`1 [out]ϑ⇔ >

As for ∀`0 · ∀`1 · T (k+1, `0, `1), we apply the (∀-CI) rule, this time on ∀`0. In
the case of ∀`1 · T (k+1, 0, `1), since 2k+130[out]ϑ is of the form

30[out]ϑ ∧ ψ

96 Guilhem Jaber and Colin Riba

while
30[out]ϑ⇔ ⊥

we can conclude using the (ExF) rule. It remains to deal with the case of ∀`1 ·
T (k+1, `0+1, `1). We apply the (∀-I) rule on ∀`1. We show

M(g, p, q) :
{

Resg A
∣∣ 2k+13`0+`1+1[out]ϑ

}
assuming

p :
{

Resg A
∣∣ 2k+13`0+1[out]ϑ

}
q :
{

Resg A
∣∣ 2k+13`1 [out]ϑ

}
We will apply the (Inj1-E) rule on (unfold p) and show

N(g, k, q) :
{

Resg A
∣∣ 2k+13`0+`1+1[out]ϑ

}
where

N(g, k, q) := let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

and under suitable assumption on the refinement type of k. We have

∀2k+13`0+`1+1[out]ϑ⇔ 3`0+`1+1[out]ϑ ∧ T ∀2k3`0+`1+1[out]ϑ
∃2k+13`0+`1+1[out]ϑ⇔ 3`0+`1+1[out]ϑ ∧ U ∃2k3`0+`1+1[out]ϑ

and we consider each conjunct separately.

Cases of 3`0+`1+1[out]ϑ.
We have

p :
{

Resg A
∣∣ 3`0+1[out]ϑ

}
Using

∃3`0+1[out]ϑ⇔ [out]ϑ ∨ U ∃3`0 [out]ϑ
∀3`0+1[out]ϑ⇔ [out]ϑ ∨ T ∀3`0 [out]ϑ

we reason by cases on the refinement type of p.
(Sub)Cases of [out]ϑ.

We show
N(g, k, q) : {Resg A | [out]ϑ}

We handle the cases of [∨out] and [∧out] separately.
(SubSub)Case of [∨out].

We apply the (∨-E) rule on the refinement type of p. So let i ∈ I

and assume
p : {Resg A | [outi]ϑ}

This amounts to

k : {(O×IResg A)I | [i] ‖→ [π0]ϑ}

Hence assuming
i : {A | [i]}

Temporal Refinements for Guarded Recursive Types 97

we have

〈π0(ki) , g ~ (next q)~ (π1(ki))〉 : {O×IResg A | [π0]ϑ}

It follows that

λi. 〈π0(ki) , g ~ (next q)~ (π1(ki))〉 : {(O×IResg A)I | [i] ‖→ [π0]ϑ}

and we are done since

Contg = λh. fold(in1 h)

(SubSub)Case of [∧out].
For each i ∈ I we have to show

N(g, k, q) : {Resg A | [outi]ϑ}

So let i ∈ I. Since
p : {Resg A | [outi]ϑ}

we have
k : {(O×IResg A)I | [i] ‖→ [π0]ϑ}

and we conclude similarly as in the case of [∨out].

(Sub)Case of U ∃3`0 [out]ϑ.
We show

N(g, k, q) :
{

Resg A
∣∣ U ∃3`0+`1 [out]ϑ

}
We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and
assume

p :
{

Resg A
∣∣ ©i∃3`0 [out]ϑ

}
This amounts to

k :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∃3`0 [out]ϑ

}
Assuming

i : {I | [i]}

we thus have

ki :
{
O×IResg A

∣∣ [π1][next]∃3`0 [out]ϑ
}

since (by subtyping) g has type

I
({

Resg A
∣∣ 21∃3`0 [out]ϑ

}
−→

{
Resg A

∣∣ 21∃3`1 [out]ϑ
}
−→

{
Resg A

∣∣ 21∃3`0+`1 [out]ϑ
})

and since, according to Table 2,

21θ ⇔ θ

98 Guilhem Jaber and Colin Riba

it follows that

〈π0(ki) , g ~ (next q)~ (π1(ki))〉 :
{
O×IResg A

∣∣ [π1][next]∃3`0+`1 [out]ϑ
}

We thus get

λi. 〈π0(ki) , g ~ (next q)~ (π1(ki))〉 :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∃3`0+`1 [out]ϑ

}
Now we are done since

©i∃3`0+`1 [out]ϑ = [fold][in1]
(
[i] ‖→ [π1][next]∃3`0+`1 [out]ϑ

)
and Contg = λh. fold(in1 h)

(Sub)Case of T ∀3`0 [out]ϑ.
We show

N(g, k, q) :
{

Resg A
∣∣ T ∀3`0+`1 [out]ϑ

}
Hence, for each i ∈ I we have to show

N(g, k, q) :
{

Resg A
∣∣ ©i∀3`0+`1 [out]ϑ

}
So let i ∈ I. Since

p :
{

Resg A
∣∣ ©i∀3`0 [out]ϑ

}
we have

k :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∀3`0 [out]ϑ

}
and we conclude similarly as in the case of U ∃3`0 [out]ϑ.

Case of T ∀2k3`0+`1+1[out]ϑ.
For each i ∈ I we have to show

N(g, k, q) :
{

Resg A
∣∣ ©i∀2k3`0+`1+1[out]ϑ

}
So let i ∈ I. Since

p :
{

Resg A
∣∣ ©i∀2k3`0+1[out]ϑ

}
we have

k :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∀2k3`0+1[out]ϑ

}
Assuming

i : {I | [i]}
we thus have

ki :
{
O×IResg A

∣∣ [π1][next]∀2k3`0+1[out]ϑ
}

and it follows that

λi. 〈π0(ki) , g ~ (next q)~ (π1(ki))〉 :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∀2k3`0+`1+1[out]ϑ

}
Now we are done since

©i∀2k∃3`0+`1+1[out]ϑ = [fold][in1]
(
[i] ‖→ [π1][next]∀2k∃3`0+`1+1[out]ϑ

)
and Contg = λh. fold(in1 h)

Temporal Refinements for Guarded Recursive Types 99

Case of U ∃2k3`0+`1+1[out]ϑ.
We have to show

N(g, k, q) :
{

Resg A
∣∣ U ∃2k3`0+`1+1[out]ϑ

}
We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p :
{

Resg A
∣∣ ©i∃2k3`0+1[out]ϑ

}
We have

k :
{

(O×IResg A)I
∣∣ [i] ‖→ [π1][next]∃2k3`0+1[out]ϑ

}
and we conclude similarly as in the case of T ∀2k3`0+`1+1[out]ϑ. ut

Example E.44. Let 2 ∈ {∀2,∃2} and 3 ∈ {∀3,∃3}. We have

sched : {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]}

Proof. We show that we can give the following refinement type to schedg:

∀k·∀`0·∀`1·
({

Resg A
∣∣ 2k3`0 [Ret]

}
−→

{
Resg A

∣∣ 2k3`1 [Ret]
}
−→

{
Resg A

∣∣ 2k3`0+`1 [Ret]
})

Let T (k, `0, `1) be the type{
Resg A

∣∣ 2k3`0 [Ret]
}
−→

{
Resg A

∣∣ 2k3`1 [Ret]
}
−→

{
Resg A

∣∣ 2k3`0+`1 [Ret]
}

and assume
g : I∀k · ∀`0 · ∀`1 · T (k, `0, `1)

Let
M(g, p, q) := case p of

| Retg a 7→ Retg a
| Contg k 7→

let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

We show
λp.λq.M(g, p, q) : ∀k · ∀`0 · ∀`1 · T (k, `0, `1)

We apply the (∀-CI) rule on ∀k. The case of ∀`0 · ∀`1 ·T (0, `0, `1) is trivial since

203`0+`1 [Ret]⇔ >

As for ∀`0 · ∀`1 · T (k+1, `0, `1), we apply the (∀-CI) rule, this time on ∀`0. In
the case of ∀`1 · T (k+1, 0, `1), since 2k+130[Ret] is of the form

30[Ret] ∧ ψ

while
30[Ret]⇔ ⊥

100 Guilhem Jaber and Colin Riba

we can conclude using the (ExF) rule. It remains to deal with the case of ∀`1 ·
T (k+1, `0+1, `1). We apply the (∀-I) rule on ∀`1. We show

M(g, p, q) :
{

Resg A
∣∣ 2k+13`0+`1+1[Ret]

}
assuming

p :
{

Resg A
∣∣ 2k+13`0+1[Ret]

}
q :
{

Resg A
∣∣ 2k+13`1 [Ret]

}
We have

∀2k+13`0+`1+1[Ret]⇔ 3`0+`1+1[Ret] ∧ T ∀2k3`0+`1+1[Ret]
∃2k+13`0+`1+1[Ret]⇔ 3`0+`1+1[Ret] ∧ U ∃2k3`0+`1+1[Ret]

and we consider each conjunct separately.

Cases of 3`0+`1+1[Ret].
We have

p :
{

Resg A
∣∣ 3`0+1[out]ϑ

}
Using

∃3`0+1[Ret]⇔ [Ret] ∨ U ∃3`0 [Ret]
∀3`0+1[Ret]⇔ [Ret] ∨ T ∀3`0 [Ret]

we reason by cases on the refinement type of p. In the case of [Ret], apply
the (Inj0-E) rule on (unfold p), and we conclude similarly as in Ex. E.42. In
the other cases, we apply the (Inj1-E) rule on (unfold p) and show

N(g, k, q) :
{

Resg A
∣∣ 3`0+`1+1[Ret]

}
where

N(g, k, q) := let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

and under suitable assumption on the refinement type of k. We can then
conclude similarly as in Ex. E.43.

Cases of ©2k3`0+`1+1[Ret].
We apply the (Inj1-E) rule on (unfold p) and show

N(g, k, q) :
{

Resg A
∣∣ 2k+13`0+`1+1[Ret]

}
where

N(g, k, q) := let h = λi. let 〈o, t〉 = ki
in 〈o, g ~ (next q)~ t〉

in Contg h

and under suitable assumption on the refinement type of k. We can then
conclude similarly as in Ex. E.43. ut

Temporal Refinements for Guarded Recursive Types 101

E.8 Breadth-First Tree Traversal

Infinite Binary Trees The guarded recursive type of binary trees is

Treeg A := Fix(X).A× (IX ×IX)
TreeA := �Treeg A

The usual guarded constructors and destructors on Treeg A are represented as

Nodeg := λv.λ`.λr.fold(〈v, 〈`, r〉〉) : A→ ITreeg A→ ITreeg A→ Treeg A
labelg := λt.π0(unfold t) : Treeg A→ A
song

` := λt.π0(π1(unfold t)) : Treeg A→ ITreeg A
song

r := λt.π1(π1(unfold t)) : Treeg A→ ITreeg A

Their coinductive (for A a constant type) variants are

Node := λv.λ`.λr. : A→ TreeA→ TreeA→ TreeA
boxι(Nodeg v (next (unbox `)) (next (unbox `)))

label := λt.labelg (unbox t) : TreeA→ A
son` := λt.song

` (unbox t) : TreeA→ Treeg A
sonr := λt.song

r (unbox t) : TreeA→ TreeA

Example E.45 (Tree Formulae). Assuming ϕ : Treeg A,

∀2ϕ : Treeg A
:= να. ϕ ∧ (©`α ∧©rα)

∃3ϕ : Treeg A
:= µα. ϕ ∨ (©`α ∨©rα)

Example E.46. Assuming ϕ : A, we have

Nodeg : {A | ϕ} → I {Treeg A | ∀2[lbl]ϕ} → I {Treeg A | ∀2[lbl]ϕ} → {Treeg A | ∀2[lbl]ϕ}

labelg : {Treeg A | ∀2[lbl]ϕ} −→ {A | ϕ}

song
` : {Treeg A | ∀2[lbl]ϕ} −→ I {Treeg A | ∀2[lbl]ϕ}

song
r : {Treeg A | ∀2[lbl]ϕ} −→ I {Treeg A | ∀2[lbl]ϕ}

Breadth-First Traversal of Guarded Trees Using Forests

102 Guilhem Jaber and Colin Riba

Example E.47.

bft : TreeA→ CoListA
:= λt. boxι(bftg (unbox t))

bftg : Treeg A→ CoListg A
:= λt.bftauxg [t]g

bftauxg : CoListg(Treeg A)→ CoListg A
:= fix(g).λs. case s of
| Nilg 7→ Nilg

| Consg x xs 7→ (labelg x) ::g g ~
(

next(appendg)~ xs~ [(song
` x), (song

r x)]g
I
)

where
[]g
I

:= next([]g)
[y0, y1, . . . , yn]g

I
:= next(Consg)~ y0 ~ next[y1, . . . , yn]g

I

Example E.48.

bftg : Treeg A −→ {CoListg A | [¬nil]}

bftauxg : {CoListg(Treeg A) | [¬nil]} −→ {CoListg A | [¬nil]}

Example E.49.

bftg : TreeA −→ {CoListg A | [inf]}

bftauxg : {CoListg(TreeA) | [¬nil]} −→ {CoListg A | [inf]}

Example E.50. Assuming ϕ : A,

bftg : {Treeg A | ∀2[lbl]ϕ} −→ {CoListg A | 2[hd]ϕ}

Proof. Thanks to Ex. E.30 and Ex. E.31, we can reduce to showing

bftauxg :
{

CoListg(Treeg A)
∣∣ [¬nil] ∧2fin[hd]∀2[lbl]ϕ

}
−→ {CoListg A | 2[hd]ϕ}

Let

T :=
{

CoListg(Treeg A)
∣∣ [¬nil] ∧2fin[hd]∀2[lbl]ϕ

}
−→ {CoListg A | 2[hd]ϕ}

and assume

g : IT
s :
{

CoListg(Treeg A)
∣∣ [¬nil] ∧2fin[hd]∀2[lbl]ϕ

}
Note that we have, at type CoListg(Treeg A),

[¬nil] ∧2fin[hd]∀2[lbl]ϕ⇔ [¬nil] ∧
(
[nil] ∨

(
[hd]∀2[lbl]ϕ ∧©2fin[hd]∀2[lbl]ϕ

))
⇔
(
[¬nil] ∧ [nil]

)
∨
(
[¬nil] ∧ [hd]∀2[lbl]ϕ ∧©2fin[hd]∀2[lbl]ϕ

)

Temporal Refinements for Guarded Recursive Types 103

Since the modality [fold] preserves ∧ and ⊥ (Table 2), we have(
[¬nil] ∧ [nil]

)
⇒ ⊥

We apply the (∨-E) rule on the refinement type of s. The branch of [¬nil]∧ [nil]
is dealt-with using the rule (ExF). It remains to handle the case of

s :
{

CoListg(Treeg A)
∣∣ [¬nil] ∧ [hd]∀2[lbl]ϕ ∧©2fin[hd]∀2[lbl]ϕ

}
Since the modalities [fold] and [in1] preserve ∧ we have

unfold(s) :
{
1 + Treeg A×ICoListg(Treeg A)

∣∣ [in1]
(
[π0]ϕ ∧ [π1][next]2fin[hd]∀2[lbl]ϕ

)}
Using the typing rule (Inj1-E) (Fig. 8) and Ex. E.46 we are left with showing

v ::g g ~
(
next(appendg)~ xs~ [`, r]g

I)
: {CoListg A | 2[hd]ϕ}

where

xs := π1 y : I
{

CoListg(Treeg A)
∣∣ 2fin[hd]∀2[lbl]ϕ

}
v := labelg (π0 y) : {A | ϕ}
` := song

` (π0 y) : I {Treeg A | ∀2[lbl]ϕ}
r := song

r (π0 y) : I {Treeg A | ∀2[lbl]ϕ}

assuming

y :
{

Treeg A×ICoListg(Treeg A)
∣∣ [π0]ϕ ∧ [π1][next]2fin[hd]∀2[lbl]ϕ

}
It follows from Ex. E.30 and Ex. E.31 that

[`, r]g
I

: I
{

CoListg(TreeA)
∣∣ [¬nil] ∧2fin[hd]∀2[lbl]ϕ

}
Hence, by Ex. E.33 and Ex. E.34 we obtain

next(appendg)~ xs~ [`, r]g
I

: I
{

CoListg(TreeA)
∣∣ [¬nil] ∧2fin[hd]∀2[lbl]ϕ

}
and the result follows. ut

Martin Hofmann’s Algorithm We follow the presentation of [10] with some
slight changes in terminology and notation. Consider the non-strictly positive
type

Roug A := Fix(X). 1 + ((IX → IA)→ A)

so that

Roug(CoListg A) := Fix(X). 1 + ((IX → ICoListg A)→ CoListg A)

The constructors of Roug A are

Overg := fold(in0〈〉) : Roug A
Contg := λf.fold(in1f) :

(
(IRoug A→ IA)→ A

)
→ Roug A

104 Guilhem Jaber and Colin Riba

The following are two basic important functions on Roug:

unfold : Roug A −→ (IRoug A→ IA) −→ IA
:= λc. case c of
| Overg 7→ λk. k (next Overg)
| Contgf 7→ λk. next(fk)

extract : Roug(CoListg A) −→ CoListg A
:= fix(g).λc. case c of
| Overg 7→ Nilg

| Contgf 7→ fg~

where
g~ := λx.g ~ x

We then let

bftg : Treeg A −→ CoListg A
:= λt. extract (bftaux t Overg)

bftaux : Treeg A −→ Roug(CoListg A) −→ Roug(CoListg A)
:= fix(g).λt.λc.

Cont
(
λk. (labelg t) ::g unfold c

(
k ◦ (g ~ (song

`t))
~ ◦ (g ~ (song

rt))
~
))

Example E.51 ((Non) Emptiness).

[ov] := [fold][in0]> : Roug A
[ct] := [fold][in1]> : Roug A

Example E.52. Assuming ϕ : A, we let

[Rou]ϕ := να. [fold][in1](([next]α ‖→ [next]ϕ) ‖→ ϕ) : Roug A

Then for ϕ : CoListg A we have

extract : {Roug(CoListg A) | [Rou]ϕ} −→ {CoListg A | ϕ}

Proof. Assume

g : I ({Roug(CoListg A) | [Rou]ϕ} −→ {CoListg A | ϕ})
c : {Roug(CoListg A) | [Rou]ϕ}

and let
B := CoListg A

Since
[Rou]ϕ = να. [fold][in1](([next]α ‖→ [next]ϕ) ‖→ ϕ)

we have

(unfold c) : {1 + (IRougB → IB)→ B | [in1](([next][Rou]ϕ ‖→ [next]ϕ) ‖→ ϕ)}

Temporal Refinements for Guarded Recursive Types 105

We can thus apply the (Inj1-E) rule, which leads us to showing

f (λx. g ~ x) : {B | ϕ}

assuming

f : {(IRougB → IB)→ B | ([next][Rou]ϕ ‖→ [next]ϕ) ‖→ ϕ}

that is
f : (I {RougB | [Rou]ϕ} → I {B | ϕ}) −→ {B | ϕ}

But this is trivial, by assumption on the type of g. ut

Example E.53. Assuming ϕ : A we have

unfold : Roug A −→
(
IRoug A −→ I {A | ϕ}

)
−→ I {A | ϕ}

Proof. Assume

c : Roug A
k : IRoug A −→ I {A | ϕ}
f :
(
I {Roug A | [Rou]ϕ} −→ I {A | ϕ}

)
−→ {A | ϕ}

Then we have
k (next Overg) : I {A | ϕ}

Moreover, by subtyping we have

k : I {Roug A | [Rou]ϕ} −→ I {A | ϕ}

so that
next(fk) : I {A | ϕ}

ut

Example E.54. Assuming ϕ : A we have

bftg : {Treeg A | ∀2[lbl]ϕ} −→ {CoListg A | 2[hd]ϕ}

Proof. It follows from the type of extract in Ex. E.52 that we are done if we show

bftaux : {Treeg A | ∀2[lbl]ψ} −→ Roug(CoListg A) −→ {Roug(CoListg A) | [Rou]2[hd]ψ}

Let

T := {Treeg A | ∀2[lbl]ψ} −→ Roug(CoListg A) −→ {Roug(CoListg A) | [Rou]2[hd]ψ}

and assume
g : IT
t : {Treeg A | ∀2[lbl]ϕ}
c : Roug(CoListg A)

106 Guilhem Jaber and Colin Riba

Using Ex. E.46, let

` := song
` t : I {Treeg A | ∀2[lbl]ϕ}

r := song
r t : I {Treeg A | ∀2[lbl]ϕ}

Since (labelg t) : {A | ϕ}, it follows from Ex. E.31 that we are done if we show

unfold c
(
k ◦ (g ~ `)~ ◦ (g ~ r)~

)
: I {CoListg A | 2[hd]ϕ}

assuming

k : I {Roug (CoListg A) | [Rou]2[hd]ϕ} −→ I {CoListg A | 2[hd]ϕ}

But by Ex. E.53 we are done since

k ◦ (g ~ `)~ ◦ (g ~ r)~ : IRoug (CoListA) −→ I {CoListg A | 2[hd]ϕ}

ut

F Proofs of §7

Note F.1. In §F.1–F.3 we assume formulae to have no free iteration variables.
Free iteration variables in types are then always instantiated in the Adequacy
Theorem F.16 (Thm. D.29, Thm. 7.7).

F.1 Correctness of the External and Internal Semantics

Proof of Lem. D.13.(1) (Lem. 7.2)

Lemma F.2. If `Ac ϕ in full modal theory of Def. 6.2, then {|ϕ|} = Γ JAK.

Lemma D.19 gives almost all the axioms and rules of Table 2 and Fig. 6, but
for the [ev(−)] modality that we treat separately. We first treat the axioms of
Table 2.

Lemma F.3. If ϕ : A is an axiom of Table 2, then {|ϕ|}A = JAK.

Proof. Most of the axioms follow from Lem. D.19. Following Def. 4.4, we include
the axioms marked (C) in Table 2. The cases of [box] are trivial and omitted.

Case of (C). Since in each case, the map {|[4]|} preserves ∧.
The case of [ev(−)] is treated directly:

`B→A
(
[ev(φ)]ψ ∧ [ev(φ)]ϕ

)
=⇒ [ev(φ)](ψ ∧ ϕ)

Let x ∈ Γ JB → AK and assume that x ∈ {|[ev(φ)]ψ|} ∩ {|[ev(φ)]ϕ|}. Let now
y ∈ Γ JBK such that y ∈ {|φ|}. We then have ev ◦ 〈x, y〉 ∈ {|ψ|} ∩ {|ϕ|}.

Temporal Refinements for Guarded Recursive Types 107

Case of (N). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting algebras.

The case of [ev(−)] is treated directly:

`B→A [ev(φ)]>

Let x ∈ Γ JB → AK. Given y ∈ Γ JBK such that y ∈ {|φ|}, we have ev◦〈x, y〉 ∈
Γ JAK = {|>|}.

Case of (P). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting algebras.
As for [ini], this follows from Lem. D.19.

Case of (C∨). By Lem. D.19.

Case of (C⇒). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting alge-
bras. ut

In order to handle fixpoints, we have the usual monotonicity lemma w.r.t. set
inclusion.

Lemma F.4. Consider, for a formula α1 : A1, . . . , αk : Ak ` ϕ, the map

{|ϕ|} : P(Γ JA1K)× · · · × P(Γ JAkK) −→ P(Γ JAK), v 7−→ {|ϕ|}v

For i ∈ {1, . . . , k}, if αi Pos ϕ (resp. αi Neg ϕ), then w.r.t. set inclusion, {|ϕ|}
is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma F.2.

Proof (Proof of Lemma F.2). By induction on `A ϕ. The rules of intuitionistic
propositional logic (Fig. 16) as well as of (CL) are trivial and omitted.

Case of

(RM)
` ψ ⇒ ϕ

` [4]ψ ⇒ [4]ϕ

By Lem. D.19, this holds for [πi], [next] and [fold] since {|[πi]|}, {|[next]|} and
{|[fold]|} are maps of Heyting algebras. As for [ini], this follows from the fact
that {|[ini]|} preserves implications as it preserves ∨.

The case of [ev(−)] is treated directly:

`A ψ ⇒ ϕ

`B→A [ev(φ)]ψ ⇒ [ev(φ)]ϕ

Let x ∈ Γ JB → AK. Given y ∈ Γ JBK such that y ∈ {|φ|}, we have ev◦〈x, y〉 ∈
{|ψ|}, so that ev ◦ 〈x, y〉 ∈ {|ϕ|} since {|ψ|} ⊆ {|ϕ|}.

Case of
`Ac ϕ

`�A [box]ϕ

Trivial.

108 Guilhem Jaber and Colin Riba

Case of
`B ψ ⇒ φ ` ϕ : A

`B→A [ev(φ)]ϕ⇒ [ev(ψ)]ϕ

Let x ∈ Γ JB → AK and assume that x ∈ {|[ev(φ)]ϕ|}. Let furthermore
y ∈ Γ JBK such that y ∈ {|ψ|}. We have to show ev ◦ 〈x, y〉 ∈ {|ϕ|}. By
induction hypothesis we have y ∈ {|ψ ⇒ φ|}, so that y ∈ {|φ|}. But this
implies ev ◦ 〈x, y〉 ∈ {|ϕ|} since x ∈ {|[ev(φ)]ϕ|}.

Case of

`B→A ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ)⇒ [ev(ψ0 ∨ ψ1)]ϕ

Let x ∈ Γ JB → AK and assume that x ∈ {|([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ)|}. Let
furthermore y ∈ Γ JBK such that y ∈ {|ψ0 ∨ ψ1|}. We have to show ev◦〈x, y〉 ∈
{|ϕ|}. But if y ∈ {|ψ0|} then we are done since x ∈ {|[ev(ψ0)]ϕ|}, and similarly
if y ∈ {|ψ1|}.

Case of

`A0+A1
(
[in0]> ∨ [in1]>

)
∧ ¬

(
[in0]> ∧ [in1]>

)
Consider x ∈ Γ JA0 + A1K ' Γ JA0K + Γ JA1K (via Lem. D.2). Hence x =
ini(y) for some y ∈ Γ JAiK and we have x ∈ {|[ini]>|}. Moreover, since the
injections in0 and in1 have disjoint images, we have {|[in0]> ∧ [in1]>|} = ∅ so
x ∈ {|¬([in0]> ∧ [in1]>)|}.

Case of

`A0+A1 [ini]> ⇒ (¬[ini]ϕ⇔ [ini]¬ϕ)

Let x ∈ Γ JA0 + A1K ' Γ JA0K + Γ JA1K, and assume x ∈ {|[ini]>|}, so that
x = ini(y) for some (unique) y ∈ Γ JAiK. We show

x ∈ {|¬[ini]ϕ ⇒ [ini]¬ϕ|} and x ∈ {|[ini]¬ϕ ⇒ ¬[ini]ϕ|}

For the former, assume x /∈ {|[ini]ϕ|}. Since y is unique such that x = ini(y),
we have y /∈ {|ϕ|}. But this implies y ∈ {|¬ϕ|} and we are done.
For the latter, assume x ∈ {|[ini]¬ϕ|}. Assume toward a contradiction that
x ∈ {|[ini]ϕ|}. Since y is unique such that x = ini(y), we have both y /∈ {|ϕ|}
and y ∈ {|ϕ|}, a contradiction.

Cases of

`A ν0αϕ ⇔ > `A νt+1αϕ ⇔ ϕ[νtαϕ/α] `A µ0αϕ ⇔ ⊥ `A µt+1αϕ ⇔ ϕ[µtαϕ/α]

By definition of {|θtαϕ|}.
Cases of

JtK ≥ JuK
`A νtαϕ ⇒ νuαϕ

JtK ≤ JuK
`A µtαϕ ⇒ µuαϕ

These cases follows from Lem. F.4 (in θtαϕ we assume that α is positive in
ϕ) and the definition of {|θtαϕ|}.

Temporal Refinements for Guarded Recursive Types 109

Cases of

`A ναϕ ⇒ ϕ[ναϕ/α]

`A ψ ⇒ ϕ[ψ/α]

`A ψ ⇒ ναϕ `A ϕ[µαϕ/α]⇒ µαϕ

`A ϕ[ψ/α]⇒ ψ

`A µαϕ⇒ ψ

By Lem. F.4 and the Knaster-Tarski Theorem.
Cases of

`A µtαϕ(α) ⇒ µαϕ(α) `A ναϕ(α) ⇒ νtαϕ(α)

We show by induction on m ∈ N that

{|µmαϕ(α)|} ⊆ {|µαϕ(α)|} and {|ναϕ(α)|} ⊆ {|νmαϕ(α)|}

The base case m = 0 is trivial since

{|µ0αϕ(α)|} = {|⊥|} and {|ν0αϕ(α)|} = {|>|}

For the induction step we have

{|µm+1αϕ(α)|} = {|ϕ(µmαϕ(α))|} and {|νm+1αϕ(α)|} = {|ϕ(νmαϕ(α)|}

So the induction hypothesis together with Lem. F.4 gives

{|µm+1αϕ(α)|} ⊆ {|ϕ(µαϕ(α))|} and {|ϕ(ναϕ(α))|} ⊆ {|ϕ(νmαϕ(α))|}

and we are done since by the Knaster-Tarski Theorem, we have

{|ϕ(µαϕ(α))|} = {|µαϕ(α)|} and {|ϕ(ναϕ(α))|} = {|ναϕ(α)|}

ut

Proof of Lem. D.13.(2) (Lem. 7.2)

Lemma F.5. If `A ϕ in full modal theory of Def. 6.2, then JϕK = JAK.

Corollary D.17 gives almost everything we need for the semantic correctness
of the modal theory. We begin with the axioms of Table 2.

Lemma F.6. If ϕ : A is an axiom of Table 2, then JϕKA = JAK.

Proof. Most of the axioms follow from Cor. D.17.

Case of (C). Since in each case, the map J[4]K preserves ∧.
Case of (N). Since in each case, the map J[4]K preserves > (recall that axiom

is not assumed for [ini]).
Case of (P). The result for [πi], [fold] and [box] follows from the fact that J[πi]K,

J[fold]K and J[box]K are maps of Heyting algebras.
As for [ini], it follows from the fact that J[ini]K preserves ⊥ (Cor. D.17).

Case of (C∨). By Cor. D.17.

110 Guilhem Jaber and Colin Riba

Case of (C⇒). Since J[πi]K, J[fold]K and J[box]K are maps of Heyting algebras.
ut

In order to handle fixpoints, we have the usual monotonicity property w.r.t.
subobject posets.

Lemma F.7. Consider, for a formula α1 : A1, . . . , αk : Ak ` ϕ, the map

JϕK : Sub(JA1K)× · · · × Sub(JAkK) −→ Sub(JAK), v 7−→ JϕKv

For i ∈ {1, . . . , k}, if αi Pos ϕ (resp. αi Neg ϕ), then w.r.t. subobjects posets,
JϕK is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma F.5.

Proof (Proof of Lemma F.5). By induction on `A ϕ. The rules of Fig. 16 follow
from the fact that in a topos, the subobjects of a given object form a Heyting
algebra.

Case of

(RM)
` ψ ⇒ ϕ

` [4]ψ ⇒ [4]ϕ

The result holds for [πi], [fold] and [box] since J[πi]K, J[fold]K and J[box]K are
maps of Heyting algebras.
As for [ini], [next] and [ev(−)], this follows from the fact that the maps J[ini]K,
J[next]K and J[ev(−)]K preserve implications since they preserve ∧.

Case of
`Ac ϕ

`�A [box]ϕ

By Cor. D.17.
Case of

`B ψ ⇒ φ ` ϕ : A

`B→A [ev(φ)]ϕ⇒ [ev(ψ)]ϕ

This case can be seen as following (via Lem. D.15) from the definition of
J[ev(−)]K. A direct argument is nevertheless possible. Let t ∈ JB → AK(n).
Let k ≤ n such that t↑k k [ev(φ)]ϕ. Let furthermore ` ≤ k and u ∈
JBK(`) such that u B` ψ. We have to show ev ◦ 〈t↑`, u〉 A` ϕ. By induction
hypothesis we have u B` ψ ⇒ φ, so that u B` φ. But this implies ev ◦
〈t↑`, u〉 A` ϕ since t↑k k [ev(φ)]ϕ.

Case of

`B→A ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ)⇒ [ev(ψ0 ∨ ψ1)]ϕ

Let t ∈ JB → AK(n). Let k ≤ n such that t↑k k ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ).
Let furthermore ` ≤ k and u ∈ JBK(`) such that u B` ψ0 ∨ ψ1. We have to
show ev ◦ 〈t↑`, u〉 A` ϕ. If u B` ψ0, then we are done since t k [ev(ψ0)]ϕ,
and similarly if u B` ψ1.

Temporal Refinements for Guarded Recursive Types 111

Case of

`A0+A1
(
[in0]> ∨ [in1]>

)
∧ ¬

(
[in0]> ∧ [in1]>

)
Write A = A0 +A1 and consider t ∈ JA0 +A1K(n). Hence t = ini(u) for some
u ∈ JAiK(n) and we have t n [ini]>. Moreover, since the injections in0 and
in1 have disjoint images, we have J[in0]> ∧ [in1]>K(k) = ∅ for all k > 0 so
t n ¬([in0]> ∧ [in1]>).

Case of

`A0+A1 [ini]> ⇒ (¬[ini]ϕ⇔ [ini]¬ϕ)

Write A = A0 + A1. Let t ∈ JA0 + A1K(n), and let k ≤ n such that t↑k k
[ini]>, so that we have t↑k = ini(u) for some (unique) u ∈ JAiK(k). We show

t A0+A1

k ¬[ini]ϕ ⇒ [ini]¬ϕ and t A0+A1

k [ini]¬ϕ ⇒ ¬[ini]ϕ

For the former, let ` ≤ k such that t↑` = (t↑k)↑` ` ¬[ini]ϕ, that is such
that t↑m 6m [ini]ϕ for all m ≤ `. We show t↑` ` [ini]¬ϕ. Hence we are
done if u↑m 6m ϕ for all m ≤ `. But if u↑m m ϕ, then we would have
t↑m = ini(u↑m) m [ini]ϕ, a contradiction.
For the latter, let ` ≤ k such that t↑` ` [ini]¬ϕ. We have to show t↑` `
¬[ini]ϕ, that is t↑m 6m [ini]ϕ for all m ≤ `. So assume t↑m̃ m̃ [ini]ϕ for
some m̃ ≤ `. Hence, there is u′ ∈ JAiK(m̃) such that t↑m̃ = ini(u

′) and
u′ m̃ ϕ. But we have u′ = u↑m̃. On the other hand, since t↑` ` [ini]¬ϕ,
there is some u′′ ∈ JAiK(`) such that t↑` = ini(u

′′) and u′′↑m 6m ϕ for all
m ≤ `. But we also have u′′↑m̃ = u↑m̃, thus contradicting u↑m̃ m̃ ϕ.

Cases of

`A ν0αϕ ⇔ > `A νt+1αϕ ⇔ ϕ[νtαϕ/α] `A µ0αϕ ⇔ ⊥ `A µt+1αϕ ⇔ ϕ[µtαϕ/α]

By definition of JθtαϕK.
Cases of

JtK ≥ JuK
`A νtαϕ ⇒ νuαϕ

JtK ≤ JuK
`A µtαϕ ⇒ µuαϕ

These cases follows from Lem. F.7 (in θtαϕ we assume that α is positive in
ϕ) and the definition of JθtαϕK.

Cases of

`A ναϕ ⇒ ϕ[ναϕ/α]

`A ψ ⇒ ϕ[ψ/α]

`A ψ ⇒ ναϕ `A ϕ[µαϕ/α]⇒ µαϕ

`A ϕ[ψ/α]⇒ ψ

`A µαϕ⇒ ψ

By Lem. F.7 and the Knaster-Tarski Theorem, since subobject lattices of S
are complete ([52, Prop. I.8.5]).

Cases of

`A µtαϕ(α) ⇒ µαϕ(α) `A ναϕ(α) ⇒ νtαϕ(α)

Similar to the same case in the proof of Lem. F.2. ut

112 Guilhem Jaber and Colin Riba

F.2 The Safe Fragment

Lemma F.8 (Lem. D.21). The greatest fixpoint of a Scott cocontinuous func-
tion f : L→ L is given by

ν(f) :=
∧
n∈N f

n(>)

Proof. That ν(f) is a fixpoint of f follows from the continuity of f and the fact
that the set {fn(>) | ∈ N} is codirected, which in turn follows from the fact
that f is monotone. In order to show that ν(f) is the greatest fixpoint of f ,
recall that the greatest fixpoint of f is in any case given by

b :=
∨
{a ∈ L | a ≤ f(a)}

We trivially have ν(f) ≤ b as ν(f) is a fixpoint of f . For the revere inequality,
for all a such that a ≤ f(a), it follows by induction on n ∈ N and from the
monotony of f that we have a ≤ fn(>) for all n ∈ N. Hence a ≤ ν(f) for all a
such that a ≤ f(a), which in turn gives b ≤ ν(f). ut

Lemma F.9 (Lem. D.22). Consider a safe formula α1 : P+
1 , . . . , αk : P+

k `
ϕ : P+. The following two functions are Scott-cocontinuous:

JϕK : Sub(JP+
1 K)× · · · × Sub(JP+

k K) −→ Sub(JP+K), v 7−→ JϕKv
{|ϕ|} : P(Γ JP+

1 K)× · · · × P(Γ JP+
k K) −→ P(Γ JP+K), v 7−→ {|ϕ|}v

Proof. In both cases, monotony w.r.t. lattice order follows by an easy induction
from the positivity of safe formulae. We now turn to preservation of codirected
meets. We first consider the case of {|ϕ|}. We reason by induction on ϕ.

Cases of α, >, ⊥.
Trivial.

Case of ϕ ∧ ψ.
Let D1 ⊆ P(Γ JP+

1 K), . . . , Dk ⊆ P(Γ JP+
k K) be codirected. By induction hy-

pothesis we obtain

{|ϕ ∧ ψ|} (
⋂
D1, . . . ,

⋂
Dk) =

⋂
{|ϕ|} (D1, . . . , Dk) ∩

⋂
{|ψ|} (D1, . . . , Dk)

and the result is trivial.
Case of ϕ ∨ ψ.

This is the interesting case. Let D1 ⊆ P(Γ JP+
1 K), . . . , Dk ⊆ P(Γ JP+

k K) be
codirected. By induction hypothesis we obtain

{|ϕ ∧ ψ|} (
⋂
D1, . . . ,

⋂
Dk) =

⋂
{|ϕ|} (D1, . . . , Dk) ∪

⋂
{|ψ|} (D1, . . . , Dk)

We then trivially get⋂
{|ϕ|} (D1, . . . , Dk) ∪

⋂
{|ψ|} (D1, . . . , Dk) ⊆

⋂
{|ϕ ∨ ψ|} (D1, . . . , Dk)

Temporal Refinements for Guarded Recursive Types 113

It remains to show the converse direction⋂
{|ϕ ∨ ψ|} (D1, . . . , Dk) ⊆

⋂
{|ϕ|} (D1, . . . , Dk) ∪

⋂
{|ψ|} (D1, . . . , Dk)

So let x ∈ Γ JP+K such that x ∈ {|ϕ ∨ ψ|} (S1, . . . , Sk) for every S1 ∈
D1, . . . , Sk ∈ Dk. Assume toward a contradiction that there are S1 ∈ D1, . . . , Sk ∈
Dk such that x /∈ {|ϕ|} (S1, . . . , Sk) and that there are S′1 ∈ D1, . . . , S

′
k ∈ Dk

such that x /∈ {|ψ|} (S′1, . . . , S
′
k). Since the Di’s are codirected for inclusion,

there are S′′1 ∈ D1, . . . , S
′′
k ∈ Dk such that S′′i ⊆ Si ∩ S′i for i = 1, . . . , k.

By monotonicity w.r.t. inclusion, we have x /∈ {|ϕ|} (S′′1 , . . . , S
′′
k) and x /∈

{|ψ|} (S′′1 , . . . , S
′′
k). But this implies x /∈ {|ϕ ∨ ψ|} (S′′1 , . . . , S

′′
k), a contradic-

tion.
Case of [πi]ϕ.

Let D1 ⊆ P(Γ JP+
1 K), . . . , Dk ⊆ P(Γ JP+

k K) be codirected. Let x ∈ Γ JP+K
and write P+ = Q+

0 ×Q
+
1 . Then we are done since by induction hypothesis

x ∈ {|[πi]ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff πi ◦ x ∈ {|ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff πi ◦ x ∈
⋂
{|ϕ|} (D1, . . . , Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, πi ◦ x ∈ {|ϕ|} (D1, . . . , Dk)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, x ∈ {|[πi]ϕ|} (D1, . . . , Dk)
iff x ∈

⋂
{|[πi]ϕ|} (D1, . . . , Dk)

Case of [ini]ϕ.
Let D1 ⊆ P(Γ JP+

1 K), . . . , Dk ⊆ P(Γ JP+
k K) be codirected. Let x ∈ Γ JP+K

and write P+ = Q+
0 +Q+

1 . By Lem. D.2, we have x = inj ◦y for some unique
j ∈ {0, 1} and y ∈ Γ JQ+

j K. Then we are done since by induction hypothesis
we have x ∈ {|[ini]ϕ|} (

⋂
D1, . . . ,

⋂
Dk)

iff j = i and y ∈ {|ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff j = i and y ∈
⋂
{|ϕ|} (D1, . . . , Dk)

iff j = i and ∀S1 ∈ D1, . . . , Sk ∈ Dk, y ∈ {|ϕ|} (D1, . . . , Dk)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, x ∈ {|[ini]ϕ|} (D1, . . . , Dk)
iff x ∈

⋂
{|[ini]ϕ|} (D1, . . . , Dk)

Case of [next]ϕ.
Let D1 ⊆ P(Γ JP+

1 K), . . . , Dk ⊆ P(Γ JP+
k K) be codirected. Let x ∈ Γ JP+K

and write P+ = IQ+. By Lem. D.2, we have x = next ◦ y for some unique
y ∈ Γ JQ+K. Then we are done since by induction hypothesis we have

x ∈ {|[next]ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff y ∈ {|ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff y ∈
⋂
{|ϕ|} (D1, . . . , Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, y ∈ {|ϕ|} (D1, . . . , Dk)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, x ∈ {|[next]ϕ|} (D1, . . . , Dk)
iff x ∈

⋂
{|[next]ϕ|} (D1, . . . , Dk)

Case of [fold]ϕ.
This case is dealt-with similarly as that of [πi].

114 Guilhem Jaber and Colin Riba

Case of [box]ϕ.
Trivial since ϕ is required to be closed.

Case of [ev(ψ)]ϕ.
Note that ψ is assumed to be closed since [ev(ψ)]ϕ is safe. LetD1 ⊆ P(Γ JP+

1 K), . . . , Dk ⊆
P(Γ JP+

k K) be codirected. Let x ∈ Γ JP+K and write P+ = R+ → Q+. Then
we are done since by induction hypothesis we have

x ∈ {|[ev(ψ)]ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff ∀y ∈ {|ψ|} , ev ◦ 〈x, y〉 ∈ {|ϕ|} (
⋂
D1, . . . ,

⋂
Dk)

iff ∀y ∈ {|ψ|} , ev ◦ 〈x, y〉 ∈
⋂
{|ϕ|} (D1, . . . , Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, ∀y ∈ {|ψ|} , ev ◦ 〈x, y〉 ∈ {|ϕ|} (S1, . . . , Sk)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, x ∈ {|[ev(ψ)]ϕ|} (S1, . . . , Sk)
iff x ∈

⋂
{|[ev(ψ)]ϕ|} (D1, . . . , Dk)

Cases of θtαϕ.
By induction hypothesis, the function

{|ϕ|} : P(Γ JP+
1 K)×· · ·×P(Γ JP+

k K)×P(Γ JP+K) −→ P(Γ JP+K), v, S 7−→ {|ϕ|}v[S/α]

is Scott-cocontinuous. Hence by Lem. F.8, for S1 ∈ P(Γ JP+
1 K), . . . , Sk ∈

P(Γ JP+
k K) we have

{|νmαϕ|} (S1, . . . , Sk) = ({|ϕ|} (S1, . . . , Sk))m(>)

where

({|ϕ|} (S1, . . . , Sk))m+1(>) := {|ϕ|}
(
S1, . . . , Sk, ({|ϕ|} (S1, . . . , Sk))m(>)

)
and where ({|ϕ|} (S1, . . . , Sk))0(>) := > and ({|ϕ|} (S1, . . . , Sk))0(⊥) := ⊥.
An easy induction on m ∈ N then shows that each function

({|ϕ|} (−, . . . ,−))m(>) : P(Γ JP+
1 K)× · · · × P(Γ JP+

k K) −→ P(Γ JP+K)

is Scott-cocontinuous.
Case of ναϕ.

By induction hypothesis, the function

{|ϕ|} : P(Γ JP+
1 K)×· · ·×P(Γ JP+

k K)×P(Γ JP+K) −→ P(Γ JP+K), v, S 7−→ {|ϕ|}v[S/α]

is Scott-cocontinuous. Hence by Lem. F.8, for S1 ∈ P(Γ JP+
1 K), . . . , Sk ∈

P(Γ JP+
k K) we have

{|να.ϕ|} (S1, . . . , Sk) =
⋂
n∈N

({|ϕ|} (S1, . . . , Sk))n(>)

where ({|ϕ|} (S1, . . . , Sk))0(>) := > and

({|ϕ|} (S1, . . . , Sk))n+1(>) := {|ϕ|}
(
S1, . . . , Sk, ({|ϕ|} (S1, . . . , Sk))n(>)

)

Temporal Refinements for Guarded Recursive Types 115

An easy induction on n shows that each function

({|ϕ|} (−, . . . ,−))n(>) : P(Γ JP+
1 K)× · · · × P(Γ JP+

k K) −→ P(Γ JP+K)

is Scott-cocontinuous.
Consider now codirected D1 ⊆ P(Γ JP+

1 K), . . . , Dk ⊆ P(Γ JP+
k K). Then we

are done since

{|να.ϕ|} (
⋂
D1, . . . ,

⋂
Dk) =

⋂
n∈N({|ϕ|} (

⋂
D1, . . . ,

⋂
Dk))n(>)

=
⋂
n∈N

⋂
({|ϕ|} (D1, . . . , Dk))n(>)

=
⋂⋂

n∈N({|ϕ|} (D1, . . . , Dk))n(>)
=
⋂
{|να.ϕ|} (D1, . . . , Dk)

Case of µαϕ.
This case cannot occur since µαϕ is not safe.

We now turn to the case of JϕK. Most of cases are similar to those for {|ϕ|}. Also,
note that

JϕK : Sub(JP+
1 K)× · · · × Sub(JP+

k K) −→ Sub(JP+K)

being Scott-continuous means that for D1 ⊆ Sub(JP+
1 K), . . . , Dk ⊆ Sub(JP+

k K)
codirected w.r.t. subobject lattice orders, we have

JϕK(
∧
D1, . . . ,

∧
Dk) =

∧
JϕK(D1, . . . , Dk)

But since meets in subobject lattices of S are pointwise, the above is equivalent
to have, for all n > 0 that

JϕK(
∧
D1, . . . ,

∧
Dk)(n) =

⋂
JϕK(D1, . . . , Dk)(n)

Cases of α, >, ⊥.
Trivial.

Case of ϕ ∧ ψ.
Let D1 ⊆ Sub(JP+

1 K), . . . , Dk ⊆ Sub(JP+
k K) be codirected. By induction

hypothesis we obtain

Jϕ∧ψK(
∧
D1, . . . ,

∧
Dk) =

∧
JϕK(D1, . . . , Dk) ∧

∧
JψK(D1, . . . , Dk)

and the result is trivial.
Case of ϕ ∨ ψ.

Let D1 ⊆ Sub(JP+
1 K), . . . , Dk ⊆ Sub(JP+

k K) be codirected. By induction
hypothesis we obtain

Jϕ∧ψK(
∧
D1, . . . ,

∧
Dk) =

∧
JϕK(D1, . . . , Dk) ∨

∧
JψK(D1, . . . , Dk)

By monotonicity w.r.t. subobject lattice orders, we trivially get∧
JϕK(D1, . . . , Dk) ∨

∧
JψK(D1, . . . , Dk) ⊆

∧
Jϕ ∨ ψK(D1, . . . , Dk)

116 Guilhem Jaber and Colin Riba

It remains to show the converse direction∧
Jϕ ∨ ψK(D1, . . . , Dk) ⊆

∧
JϕK(D1, . . . , Dk) ∨

∧
JψK(D1, . . . , Dk)

Since meets and joins are computed pointwise in subobject lattices, we are
done if for each n > 0 we show⋂

Jϕ∨ψK(D1, . . . , Dk)(n) ⊆
⋂

JϕK(D1, . . . , Dk)(n) ∪
⋂

JψK(D1, . . . , Dk)(n)

We can then conclude as in the case of {|−|}. Fix n > 0 and let t ∈ JP+K such
that t ∈ Jϕ ∨ ψK(A1, . . . , Ak)(n) for every A1 ∈ D1, . . . , Ak ∈ Dk. Assume
toward a contradiction that there are A1 ∈ D1, . . . , Ak ∈ Dk such that
t /∈ JϕK(A1, . . . , Ak)(n) and that there are A′1 ∈ D1, . . . , A

′
k ∈ Dk such that

t /∈ JψK(A′1, . . . , A′k)(n). Since the Di’s are codirected for inclusion, there
are A′′1 ∈ D1, . . . , A

′′
k ∈ Dk such that A′′i ≤ Ai ∧ A′1 for i = 1, . . . , k. By

monotonicity w.r.t. subobject lattice orders, we have t /∈ JϕK(A′′1 , . . . , A′′k)(n)
and t /∈ JψK(A′′1 , . . . , A′′k)(n). But this implies t /∈ Jϕ ∨ ψK(A′′1 , . . . , A′′k)(n), a
contradiction.

Case of [πi]ϕ.
Let D1 ⊆ Sub(JP+

1 K), . . . , Dk ⊆ Sub(JP+
k K) be codirected. We show that for

all n > 0 we have

J[πi]ϕK(
∧
D1, . . . ,

∧
Dk)(n) =

⋂
J[πi]ϕK(D1, . . . , Dk)(n)

and this goes similarly as for {|−|}.
Case of [ini]ϕ.

Let D1 ⊆ Sub(JP+
1 K), . . . , Dk ⊆ Sub(JP+

k K) be codirected. We show that for
all n > 0 we have

J[ini]ϕK(
∧
D1, . . . ,

∧
Dk)(n) =

⋂
J[ini]ϕK(D1, . . . , Dk)(n)

and this goes similarly as for {|−|} since the pointwise maps (inj)n : JQ+
j K(n)→

JQ+
0 K(n) + JQ+

1 K(n) are injective.
Case of [next]ϕ.

Let D1 ⊆ Sub(JP+
1 K), . . . , Dk ⊆ Sub(JP+

k K) be codirected. Write P+ = IQ+.
We show that for all n > 0 we have

J[next]ϕK(
∧
D1, . . . ,

∧
Dk)(n) =

⋂
J[next]ϕK(D1, . . . , Dk)(n)

The result is trivial if n = 1. For n > 1, it reduces to

JϕK(
∧
D1, . . . ,

∧
Dk)(n− 1) =

⋂
JϕK(D1, . . . , Dk)(n− 1)

which follows from the induction hypothesis.
Case of [fold]ϕ.

This case is handled similarly as that of [πi].
Case of [box]ϕ.

Trivial since ϕ is required to be closed.

Temporal Refinements for Guarded Recursive Types 117

Case of [ev(ψ)]ϕ.
Note that ψ is assumed to be closed since [ev(ψ)]ϕ is safe. LetD1 ⊆ Sub(JP+

1 K), . . . , Dk ⊆
Sub(JP+

k K) be codirected. Write P+ = R+ → Q+. We show that for all n > 0
we have

J[ev(ψ)]ϕK(
∧
D1, . . . ,

∧
Dk)(n) =

⋂
J[ev(ψ)]ϕK(D1, . . . , Dk)(n)

Let n > 0 and t ∈ JP+K(n). Then we are done since by induction hypothesis
we have:

t ∈ J[ev(ψ)]ϕK(
∧
D1, . . . ,

∧
Dk)(n)

iff ∀` ≤ n, ∀u ∈ JψK(`), ev ◦ 〈t↑`, u〉 ∈ JϕK(
∧
D1, . . . ,

∧
Dk)(`)

iff ∀` ≤ n, ∀u ∈ JψK(`), ev ◦ 〈t↑`, u〉 ∈
⋂

JϕK(D1, . . . , Dk)(`)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, ∀` ≤ n, ∀u ∈ JψK(`), ev ◦ 〈t↑`, u〉 ∈ JϕK(S1, . . . , Sk)(`)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk, t ∈ J[ev(ψ)]ϕK(S1, . . . , Sk)(n)
iff t ∈

⋂
J[ev(ψ)]ϕK(D1, . . . , Dk)(n)

Cases of θtαϕ and ναϕ.
These cases are handled exactly as for {|−|}.

Case of µαϕ.
This case cannot occur since µαϕ is not safe. ut

Proposition F.10 (Prop. 7.3). Let α1 : P+
1 , . . . , αk : P+

k ` ϕ : P+ be a safe
formula. Given S1 ∈ Sub(JP+

1 K), . . . , Sk ∈ Sub(JP+
k K), we have

{|ϕ|} (Γ (S1), . . . ,Γ (Sk)) = Γ
(
JϕK(S1, . . . , Sk)

)
Proof. We reason by induction on the derivation of α1 : P+

1 , . . . , αk : P+
k ` ϕ :

P+. In all cases but θtαϕ and ναϕ, the parameters are irrelevant and we omit
them.

Cases of α, > and ⊥.
Trivial.

Case of ϕ ∧ ψ.
Let x ∈ Γ JP+K. Then we are done since by induction hypothesis we have

x ∈ {|ϕ ∧ ψ|} iff x ∈ {|ϕ|} and x ∈ {|ψ|}
iff (∀n > 0, xn(•) ∈ JϕK(n)) and (∀n > 0, xn(•) ∈ JψK(n))
iff ∀n > 0, xn(•) ∈ JϕK(n) and xn(•) ∈ JψK(n)
iff ∀n > 0, xn(•) ∈ Jϕ ∧ ψK(n)

Case of ϕ ∨ ψ.
Let x ∈ Γ JP+K. Assume first that x ∈ {|ϕ ∨ ψ|}. If (say) x ∈ {|ϕ|}, then
by induction hypothesis we get xn(•) ∈ JϕK(n) for all n > 0, which implies
xn(•) ∈ Jϕ ∨ ψK(n) for all n > 0.
Conversely, assume that xn(•) ∈ Jϕ ∨ ψK(n) for all n > 0. Assume toward
a contradiction that there are k, ` > 0 with (say) k ≤ ` such that xk(•) /∈
JϕK(n) and x`(•) /∈ JψK(n). Since k ≤ `, by Lem. D.16 we have xk(•) /∈
JψK(n), but this contradicts xk(•) ∈ Jϕ∨ψK(n). Hence, we have either xn(•) ∈
JϕK(n) for all n > 0 or xn(•) ∈ JψK(n) for all n > 0, and the result follows
by induction hypothesis.

118 Guilhem Jaber and Colin Riba

Case of ψ ⇒ ϕ.
This case cannot occur since ψ ⇒ ϕ is not safe.

Case of [πi]ϕ.
Let x ∈ Γ JP+K and write P+ = Q+

0 × Q
+
1 . Then we are done since (πi ◦

x)n(•) = πi(xn(•)) so that by induction hypothesis we have

x ∈ {|[πi]ϕ|} iff πi ◦ x ∈ {|ϕ|}
iff ∀n > 0, (πi ◦ x)n(•) ∈ JϕK(n)
iff ∀n > 0, xn(•) ∈ J[πi]ϕK(n)

Case of [ini]ϕ.
Let x ∈ Γ JP+K and write P+ = Q+

0 +Q+
1 . By Lem. D.2, we have x = inj ◦ y

for some unique j ∈ {0, 1} and y ∈ Γ JQ+
j K. Then we are done since xn(•) =

(inj ◦ y)n(•) = inj(yn(•)) so that by induction hypothesis we have

x ∈ {|[ini]ϕ|} iff j = i and y ∈ {|ϕ|}
iff j = i and ∀n > 0, yn(•) ∈ JϕK(n)
iff ∀n > 0, xn(•) ∈ J[ini]ϕK(n)

Case of [next]ϕ.
Let x ∈ Γ JP+K and write P+ = IQ+. By Lem. D.2, we have x = next ◦ y
for some unique y ∈ Γ JQ+K. Assume first x ∈ {|[next]ϕ|}. Hence we have
y ∈ {|ϕ|}, which by induction hypothesis implies yn(•) ∈ JϕK(n) for all
n > 0. Now, we trivially have x1(•) ∈ J[next]ϕK(1). Moreover, for n > 1, we
have xn(•) = yn−1(•), so that xn(•) ∈ J[next]ϕK(n) = JϕK(n− 1).
Assume conversely that xn(•) ∈ J[next]ϕK(n) for all n > 0. This implies
xn(•) ∈ JϕK(n− 1) for all n > 1, which in turn implies yn−1(•) ∈ JϕK(n− 1)
for all n > 1. But by induction hypothesis this implies y ∈ {|ϕ|} so that
x ∈ {|[next]ϕ|}.

Case of [fold]ϕ.
This case is handled similarly as that of [πi].

Case of [box]ϕ.
Recall that ϕ is required to be closed. Also, by definition we have

J[box]ϕK�A(n) :=
{
t ∈ J�AK(n) = Γ JAK

∣∣∣ t ∈ {|ϕ|}A}
{|[box]ϕ|}�A :=

{
x ∈ Γ J�AK

∣∣∣ x1(•) ∈ {|ϕ|}A
}

It follows that given x ∈ Γ J�AK, we have

x ∈ {|[box]ϕ|}�A iff x1(•) ∈ {|ϕ|}A

iff ∀n > 0, xn(•) ∈ {|ϕ|}A

iff ∀n > 0, xn(•) ∈ J[box]ϕK�A(n)

Case of [ev(ψ)]ϕ.
This case cannot occur since P+ is assumed to be strictly positive.

Temporal Refinements for Guarded Recursive Types 119

Case of [ev(ψ)]ϕ.
Since [ev(ψ)]ϕ is smooth, the formula ψ is closed and we have Q+ = B → R+

where B is constant. Since B is constant, by Lem. D.4 there is a set A such
that JBK ' ∆A, so that Γ JBK ' A by Lem. D.2. Moreover, it follows from
Lem. D.24 that JψK is also constant, so there is a set S such that JψK '∆S.
Now, by induction hypothesis we have Γ JψK = {|ψ|}. Since Γ∆ ' IdSet

(Lem. D.2), it follows that JψK '∆ {|ψ|}. We then have

x ∈ {|[ev(ψ)]ϕ|} iff ∀y ∈ Γ JBK (y ∈ {|ψ|} =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|})

and

t ∈ J[ev(ψ)]ϕK(n) iff ∀k ≤ n, ∀u ∈ A (u ∈ {|ψ|} =⇒ (t↑k)(u) ∈ JϕK(k))
iff ∀u ∈ A (u ∈ {|ψ|} =⇒ ∀k ≤ n, (t↑k)(u) ∈ JϕK(k))

Given x ∈ Γ JB → R+K and y ∈ Γ JBK, for all 0 < k ≤ n we have

(ev ◦ 〈x, y〉)n(•)↑k = (xn(•)↑k)(yk(•))

Since {|ϕ|} ' Γ JϕK by induction hypothesis, we are done with

x ∈ {|[ev(ψ)]ϕ|} iff ∀y ∈ Γ JBK (y ∈ {|ψ|} =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|})
iff ∀y ∈ Γ JBK (y ∈ {|ψ|} =⇒ ∀n > 0, (ev ◦ 〈x, y〉)n(•) ∈ JϕK(n))
iff ∀y ∈ Γ JBK (y ∈ {|ψ|} =⇒ ∀n > 0, ∀k ≤ n, ((ev ◦ 〈x, y〉)n(•))↑k ∈ JϕK(k))
iff ∀y ∈ Γ JBK (y ∈ {|ψ|} =⇒ ∀n > 0, ∀k ≤ n, (xn(•)↑k)(yk(•)) ∈ JϕK(k))
iff ∀u ∈ A (u ∈ {|ψ|} =⇒ ∀n > 0, ∀k ≤ n, (xn(•)↑k)(u) ∈ JϕK(k))
iff ∀n > 0, ∀u ∈ A (u ∈ {|ψ|} =⇒ ∀k ≤ n, (xn(•)↑k)(u) ∈ JϕK(k))
iff ∀n > 0, xn(•) ∈ J[ev(ψ)]ϕK

Cases of θtαϕ(α).
Assume α1 : P+

1 , . . . , αk : P+
k , α : P+ ` ϕ(α) : P+, and let S1 ∈ Sub(JP+

1 K), . . . , Sk ∈
Sub(JP+

k K). Using the induction hypothesis on ϕ, an easy induction on m ∈ N
shows that

{|ϕm|} (Γ (S1), . . . ,Γ (Sk),>) = Γ
(
JϕKm(S1, . . . , Sk,>)

)
and {|ϕm|} (Γ (S1), . . . ,Γ (Sk),⊥) = Γ

(
JϕKm(S1, . . . , Sk,⊥)

)
Case of ναϕ.

Assume α1 : P+
1 , . . . , αk : P+

k , α : P+ ` ϕ(α) : P+, and let S1 ∈ Sub(JP+
1 K), . . . , Sk ∈

Sub(JP+
k K). Similarly as above, for all m ∈ N we have

{|ϕm|} (Γ (S1), . . . ,Γ (Sk),>) = Γ
(
JϕKm(S1, . . . , Sk,>)

)
It then directly follows that for all x ∈ Γ JP+K, we have

x ∈
⋂
m∈N {|ϕm|} (Γ (S1), . . . ,Γ (Sk),>)

iff ∀n > 0, xn(•) ∈
⋂
m∈NJϕKm(S1, . . . , Sk,>)(n)

and we conclude by Lem. F.9 and Lem. F.8.
Case of µαϕ.

This case cannot occur since µαϕ is not safe. ut

120 Guilhem Jaber and Colin Riba

F.3 The Smooth Fragment

Assume for this §F.3 that the set of propositional variables is partitionned into
two infinite sets {αν , βν , . . . } and {αµ, βµ, . . . } of respectively gfp (or ν) and
lfp (or µ) propositional variables. Write Σν (resp. Σµ) if the context Σ only
declares gfp (resp. lfp) propositional variables.

Lemma F.11. If ϕ is alternation-free, then ϕ can be formed with the rules of
Fig. 5 and Fig. 9, but with the rules (ν-F) and (µ-F) replaced respectively by

Σν , αν : A ` ϕ : A

Σν ` νανϕ : A

Σµ, αµ : A ` ϕ : A

Σµ ` µαµϕ : A

where in both cases αθ is guarded in ϕ, and αθ as well as all variables of Σθ are
positive in ϕ.

Proof. By induction on ϕ. The only relevant cases are θαϕ. Since the two cases
are similar, we only discuss that of Σ ` ναϕ : A. First, since ναϕ is alternation-
free, we can assume that all variables declared in Σ are positive in ϕ. Moreover,
since ναϕ is alternation-free, then so is ϕ. By induction hypothesis Σ can be
split into Σµ, Σν and we have

Σµ, Σν , α : A ` ϕ : A

Assume toward a contradiction that Σµ cannot be made empty. This means that
there is some variable βµ which does occur in ϕ, and such that βµ must occur
in the context of a µ rule for some subformula of ϕ. But then βµ occurs free
in ναϕ under two fixpoints of different kinds, a contradiction. It follows that
we can assume Σµ empty. Similarly, α can be assumed to be gfp variable, since
otherwise it would occur free under a lfp in ναϕ. ut

Lemma F.12 (Lem. 7.4). Let α1 : P+
1 , . . . , αk : P+

k , α : Q+ ` ϕ : P+ be a
smooth formula and let v be a valuation taking each propositional variable αi for
i = 1, . . . , k to a set v(αi) ∈ P(Γ JP+

i K). Consider the function

{|ϕ|} : P(Γ JQ+K) −→ P(Γ JP+K), S 7−→ {|ϕ|}v[S/α]

Then,

– if α is positive in ϕ (i.e. α Pos ϕ):
• if α is a gfp variable, then {|ϕ|} is Scott-cocontinuous,
• if α is a lfp variable, then {|ϕ|} is Scott-continuous,

– if α is negative in ϕ (i.e. α Neg ϕ), then {|ϕ|} is antimonotone and
• takes meets of codirected sets to joins of directed sets if α is a gfp variable,
• takes joins of directed sets to meets of codirected sets if α is a lfp variable.

Proof. The proof is by induction on formation of formulae α1 : P+
1 , . . . , αk :

P+
k , α : Q+ ` ϕ : P+. Monotonicity and antimonotonicity follow from Lem. F.4.

Note that since formulae of the form [box]ϕ are necessarily closed, nothing has
to be proved for these. Some cases are already handled by Lem. D.22 (Lem. F.9),
and we do not repeat them. We omit the valuation v when possible.

Temporal Refinements for Guarded Recursive Types 121

Cases of α,>,⊥.
Trivial.

Case of ϕ ∧ ψ (monotone).
Preservation of codirected meets is trivial (see Lem. D.22 (Lem. F.9)). As
for the preservation of directed joins, let D ⊆ P(Γ JQ+K) be directed. Then
by induction hypothesis we have

{|ϕ ∧ ψ|} (
⋃
D) =

⋃
{|ϕ|} (D) ∩

⋃
{|ψ|} (D) ⊇

⋃
{|ϕ ∧ ψ|} (D)

For the converse inclusion, consider some x both in
⋃
{|ϕ|} (D) and

⋃
{|ψ|} (D).

Hence there are S, S′ ∈ D such that x ∈ {|ϕ|} (S) and x ∈ {|ψ|} (S′). Now
since D is directed and by monotonicity, there is some S′′ ∈ D such that
x ∈ {|ϕ|} (S′′) ∩ {|ψ|} (S′′).

Case of ϕ ∧ ψ (antimonotone).
That {|ϕ ∧ ψ|} turns directed joins into codirected meets is trivial (as codi-
rected meets commute over binary meets) and omitted. Let us show that
{|ϕ ∧ ψ|} turns codirected meets into directed joins. So let D ⊆ P(Γ JQ+K)
be codirected. Then by induction hypothesis we have

{|ϕ ∧ ψ|} (
⋂
D) =

⋃
{|ϕ|} (D) ∩

⋃
{|ψ|} (D) ⊇

⋃
{|ϕ ∧ ψ|} (D)

We then conclude as for preservation of directed joins in the monotone case.
Given x both in

⋃
{|ϕ|} (D) and

⋃
{|ψ|} (D), there are S, S′ ∈ D such that

x ∈ {|ϕ|} (S) and x ∈ {|ψ|} (S′). Now since D is codirected there is some
S′′ ∈ D such that S′′ ⊆ S ∩ S′, and by antimonotonicity we have x ∈
{|ϕ|} (S′′) ∩ {|ψ|} (S′′).

Case of ϕ ∨ ψ (monotone).
Preservation of codirected meets is handled in Lem. D.22 (Lem. F.9) while
preservation of directed join is trivial.

Case of ϕ ∨ ψ (antimonotone).
That {|ϕ ∨ ψ|} turns codirected meets into directed joins is trivial (as directed
joins commute over binary joins) and omitted. Let us show that {|ϕ ∨ ψ|}
turns directed joins into codirected meets. So let D ⊆ P(Γ JQ+K) be directed.
By induction hypothesis we have

{|ϕ ∨ ψ|} (
⋃
D) =

⋂
{|ϕ|} (D) ∪

⋂
{|ψ|} (D) ⊆

⋂
{|ϕ ∨ ψ|} (D)

We can then conclude similarly as in Lem. D.22 (Lem. F.9). Let x ∈
⋂
{|ϕ ∨ ψ|} (D)

and assume toward a contradiction that there are S, S′ ∈ D such that x /∈
{|ϕ|} (S) and x /∈ {|ψ|} (S′). Then since D is directed, there is some S′′ ∈ D
such that S ∪S′ ⊆ S′′, and by antimonotonicity we get x /∈ {|ϕ ∨ ψ|} (S′′), a
contradiction.

Case of ψ ⇒ ϕ.
With the classical semantics, the interpretation of ⇒ can be decomposed
into ∨ and ¬, where {|¬ϕ|} is the complement of {|ϕ|} (at the appropriate
type). Let α be positive in ϕ and negative in ψ, with α : Q+ ` ϕ,ψ : P+,

122 Guilhem Jaber and Colin Riba

and let furthermore by D and D′ (of the appropriate type) be resp. directed
and codirected. We then trivially have

{|¬ϕ|} (
⋃
D) = P(Γ JP+K) \ {|ϕ|} (

⋃
D)

= P(Γ JP+K) \
⋃
{|ϕ|} (D)

=
⋂

(P(Γ JP+K) \ {|ϕ|} (D))

{|¬ϕ|} (
⋂
D′) = P(Γ JP+K) \ {|ϕ|} (

⋂
D′)

= P(Γ JP+K) \
⋂
{|ϕ|} (D′)

=
⋃

(P(Γ JP+K) \ {|ϕ|} (D′))

{|¬ψ|} (
⋃
D) = P(Γ JP+K) \ {|ψ|} (

⋃
D)

= P(Γ JP+K) \
⋂
{|ψ|} (D)

=
⋃

(P(Γ JP+K) \ {|ψ|} (D))

{|¬ψ|} (
⋂
D′) = P(Γ JP+K) \ {|ψ|} (

⋂
D′)

= P(Γ JP+K) \
⋃
{|ψ|} (D′)

=
⋂

(P(Γ JP+K) \ {|ψ|} (D′))

Cases of [πi]ϕ, [ini]ϕ, [next]ϕ and [fold]ϕ.
These modalities are handled similarly as in Lem. D.22 (Lem. F.9).

Case of [ev(ψ)]ϕ.
Since [ev(ψ)]ϕ is smooth, the formula ψ is closed and we have Q+ = B → R+

with B a finite base type. Since B is constant, by Lem. D.4 there is a finite
set A such that JBK ' ∆A, so that Γ JBK ' A by Lem. D.2. Now, given
x ∈ Γ JP+K and S ⊆ Γ JQ+K we have

x ∈ {|[ev(ψ)]ϕ|} (S) iff ∀y ∈ A (y ∈ {|ψ|} =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|} (S))

Since A is finite, we can then reason similarly as in the cases of conjunction
(∧) above.

Cases of θtβϕ.
We have α1 : P+

1 , . . . , αk : P+
k , α : Q+, β : P+ ` ϕ : P+ with β Pos ϕ. Let v

be a valuation. Since for S ⊆ Γ JQ+K and m ∈ N we have

{|θm+1βϕ|}v (S) = {|ϕ[θmβϕ/β]|}v (S)

it follows from Lem. D.22 (Lem. F.9), that the function {|θtβϕ|}v is monotone
(resp. antimonotone) if α Pos ϕ (resp. α Neg ϕ). We can then reason as in
Lem. D.22 (Lem. F.9).

Case of νβϕ.
We have α1 : P+

1 , . . . , αk : P+
k , α : Q+, β : P+ ` ϕ : P+ where the involved

variables are gfp variables and are positive in ϕ. The result is then proved
exactly the same way as in Lem. D.22 (Lem. F.9).

Case of µβϕ.
The result is proved the same way as in Lem. F.9 (replacing codirected meets
by directed joins and Scott cocontinuity by Scott continuity). ut

F.4 Realizability

Lemma F.13 (Monotonicity of Realizability (Lem. D.25)). Let T be a
type without free iteration variables. If x �n T then x �k T for all k ≤ n.

Proof. By induction on the definition of �.

Temporal Refinements for Guarded Recursive Types 123

Case of a refinement type {A | ϕ}.
The result follows from monotony of forcing (i.e. that JϕK is a subobject of
JAK) .

Case of 1.
The result is trivial as x �n 1 for all n > 0.

Case of T0 + T1.
Assume x �n T0 + T1 and let k ≤ n. Then we have x = ini ◦ y for some
i = 0, 1 and some y ∈ Γ J|Ti|K such that y �n Ti. By induction hypothesis
we get y �k Ti, so that x �k T0 + T1.

Case of T0 × T1.
Assume x �n T0 × T1 and let k ≤ n. Then for each i = 0, 1 we have
πi ◦ x �n Ti, so that πi ◦ x �k Ti by induction hypothesis, and it follows
that x �k T0 × T1.

Case of U → T .
Assume x �n U → T and let k ≤ n. But given ` ≤ k and y ∈ Γ J|U |K such
that y �` U we have ev ◦ 〈x, y〉 �` T since ` ≤ n.

Case of IT .
Assume x �n IT and let k ≤ n. If k = 1 then we are done since always
x �1 IT . Otherwise, k = ` + 1, so that n = m + 1 with ` ≤ m. Moreover,
there is y ∈ Γ JT K such that x = next ◦ y and y �m T . We get y �` T by
induction hypothesis, so that x �k IT .

Case of Fix(X).A .
Assume x �n Fix(X).A and let k ≤ n. We have unfold◦x �n A[Fix(X).A/X],
so that unfold◦x �k A[Fix(X).A/X] by induction hypothesis and thus x �k
Fix(X).A.

Case of �T .
Trivial. ut

Lemma F.14 (Lem. D.26). For a pure type A and x ∈ Γ JAK, we have x �n A
for all n > 0.

Proof. The proof is by induction on pairs (n,A), using implicitly Lem. D.2 when-
ever required.

Case of 1.
Trivial.

Case of A0 +A1.
Given x ∈ Γ JA0 + A1K ' Γ JA0K + Γ JA1K, we have x = ini ◦ y for some
y ∈ Γ JAiK. Then we are done since y �n Ai by induction hypothesis.

Case of A0 ×A1.
Given x ∈ Γ JA0 × A1K ' Γ JA0K × Γ JA1K, we have π0 ◦ x �n A0 and
π1 ◦ x �n A1 by induction hypothesis, and the result follows.

Case of B → A.
Fix x ∈ Γ JB → AK. Given y ∈ Γ JBK and k ≤ n, we have y �k B by
induction hypothesis, so that ev ◦ 〈x, y〉 �k A. Hence x �n B → A.

Case of IA.
The result is trivial if n = 1, so assume n > 1. Given x ∈ Γ JIAK, we have

124 Guilhem Jaber and Colin Riba

x = next◦y for some y ∈ Γ JAK. But then y �n−1 A by induction hypothesis,
so that x �n IA.

Case of Fix(X).A.
Let x ∈ Γ JFix(X).AK. It follows by induction on A from the induction hy-
pothesis on n and the guardedness ofX inA that unfold◦x �n A[Fix(X).A/X],
and we are done.

Case of �T .
Let x ∈ Γ J�T K. Given n > 0, we have xn(•) ∈ Γ JT K, so that xn(•) �m T
for all m > 0 by induction hypothesis. But this implies x �n �T . ut

Lemma F.15 (Correctness of Subtyping (Lem. D.28)). Given types T,U
without free iteration variable, if x �n U and U ≤ T then x �n T .

Proof. By induction on U ≤ T .

Cases of

T ≤ T
T ≤ U U ≤ V

T ≤ V
Trivial.

Cases of

T0 ≤ U0 T1 ≤ U1

T0 × T1 ≤ U0 × U1

T0 ≤ U0 T1 ≤ U1

T0 + T1 ≤ U0 + U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ U
IT ≤ IU

Trivial
Case of

U ≤ T
�U ≤ �T

Let x : 1 →S ∆Γ JUK such that x �n �U , so that xn(•) �m U for all
m > 0. By induction hypothesis we get xn(•) �m T for all m > 0 and we
are done.

Case of

T ≤ |T |

By Lem. D.26.
Case of

A ≤ {A | >}

Trivial
Case of

`A ϕ⇒ ψ

{A | ϕ} ≤ {A | ψ}

By Lem. F.5 (Lem. D.13.(2)).

Temporal Refinements for Guarded Recursive Types 125

Case of

{B → A | [ev(ψ)]ϕ} ≤ {B | ψ} → {A | ϕ}

Let x ∈ Γ JB → AK and n > 0. Assume x �n {B → A | [ev(ψ)]ϕ}, that is
xn(•) ∈ J[ev(ψ)]ϕK(n). Let further y ∈ Γ JBK and k ≤ n such that y �k
{B | ψ}, that is yk(•) ∈ JψK(k). Then by monotonicity of J−K (Lem. D.16)
we have xk(•) ∈ J[ev(ψ)]ϕK(k), from which it follows that (xk(•))(yk(•)) ∈
JϕK(k). But this means ev ◦ 〈x, y〉 �k {A | ϕ} and we are done.

Case of

{B | ψ} → {A | ϕ} ≤ {B → A | [ev(ψ)]ϕ}

Let x ∈ Γ JBK→ A and n > 0. Assume x �n {B | ψ} → {A | ϕ}. Let
furthermore k ≤ n and u ∈ JψK(k). By Lem. D.27 ([20, Cor. 3.8]) there is
some y ∈ Γ JBK such that yk(•) = u. We thus have y �k {B | ψ}, and it
follows that ev ◦ 〈x, y〉 �k {A | ϕ}, that is xk(•)(yk(•)) ∈ JϕK(k), and we are
done.

Case of

I {A | ϕ} ≡ {IA | [next]ϕ}

Let x ∈ Γ JIAK. First, we always have x �1 IA, as well as x1 ∈ J[next]ϕKIA.
Let now n > 1. By Lem. D.2 we have x = next ◦ y for some y ∈ Γ JAK. Since
xn(•) = yn−1(•), we have

x �n I {A | ϕ} iff y �n−1 {A | ϕ}
iff yn−1(•) ∈ JϕKA(n− 1)
iff xn(•) = yn−1(•) ∈ J[next]ϕKIA(n)
iff x �n {IA | [next]ϕ} .

Case of

∀k ·IT ≡ I∀k · T

Let x ∈ Γ JI|T |K.
Assume first that x �n ∀k ·IT . We have to show x �n I∀k ·T . The result is
trivial if n = 1. So assume n > 1. By Lem. D.2, there some unique y ∈ Γ J|T |K
such that x = next ◦ y. We have to show y �n−1 T [m/k] for all m ∈ N. But
by assumption we have x �n IT [m/k], so that by uniqueness of y we get
y �n−1 T [m/k].

Conversely, assume that x �n I∀k · T . We have to show x �n ∀k · IT .
Let m ∈ N. If n = 1, then we trivially have x �n IT [m/k]. Otherwise, by
Lem. D.2 let y ∈ Γ J|T |K such that x = next ◦ y. But since x �n I∀k · T , we
get y �n−1 T [m/k], so that x �n IT [m/k] and we are done.

Case of
ϕ safe

� {A | ϕ} ≡ {�A | [box]ϕ}

126 Guilhem Jaber and Colin Riba

Let x : 1 →S ∆Γ JAK. Since ϕ is safe we have {|ϕ|}A = Clos(JϕKA) by
Prop. F.10 (Prop. 7.3). Then we are done since:

x �n � {A | ϕ} iff xn(•) �m {A | ϕ} for all m > 0
iff (xn(•))m(•) ∈ JϕKA(m) for all m > 0

iff xn(•) ∈ {|ϕ|}A

iff xn(•) ∈ J[box]ϕK�A(n)
iff x �n {�A | [box]ϕ}

Case of
`Ac ϕ⇒ ψ

{�A | [box]ϕ} ≤ {�A | [box]ψ}

By Lem. F.2 (Lem. D.13.(1)). ut

Theorem F.16 (Adequacy (Thm. D.29)). Let E , T have free iteration vari-
ables among `, and let m ∈ N. If E `M : T and ρ |= E, then

∀n > 0, ρ �n E [`/m] =⇒ JMKρ �n T [`/m]

Proof. The proof is by induction on typing derivations. We implicitly use Lem. D.2
whenever required. We omit iteration variables when possible.

Case of
E , x : IT `M : T

E ` fix(x).M : T

Let ρ |= E and write y := Jfix(x).MKρ ∈ Γ JT K. Note that

y = JM [next(fix(x).M)/x]Kρ = JMKρ[next◦y/x]

We show by induction on n > 0 that ρ �n E implies y �n T . In the base case
n = 1, since next ◦ y �1 IT , we have ρ[next ◦ y/x] �1 E , x : IT , so that the
induction hypothesis on typing derivations gives y = JMKρ[next◦y/x] �1 T .
As for induction step, assume ρ �n+1 E . By Monotonicity of Realizability
(Lem. F.13), we have ρ �n E , and the induction hypothesis on n gives y �n
T . It follows that next◦y �n+1 IT , so that ρ[next◦y/x] �n+1 E , x : IT and
the induction hypothesis on typing derivations gives y = JMKρ[next◦y/x] �n+1

T .
Case of

E `M : T

E ` next(M) : IT

Let ρ |= E and write x := Jnext(M)Kρ ∈ Γ JIT K. Let n > 0 such that ρ �n T .
If n = 1 then we trivially have x �1 IT . Assume n > 1. Write y := JMKρ,
so that x = next ◦ y. By Monotonicity of Realizability (Lem. F.13), we
have ρ �n−1 E , so that the induction hypothesis on typing derivations gives
y �n−1 T and we are done.

Temporal Refinements for Guarded Recursive Types 127

Case of

x1 : T1, . . . , xk : Tk `M : T E `M1 : T1 . . . E `Mk : Tk
E ` box[x1 7→M1,...,xk 7→Mk](M) : �T

(T1, . . . , Tk constant)

Let ρ |= E and write x := Jboxσ(M)Kρ where σ = [x1 7→ M1, . . . , xk 7→ Mk].
Let n > 0 such that ρ �n E . We show x �n �T , i.e. that xm(•) �m T for
all m > 0. Fix m > 0. We have by definition

xm(•) : ` 7−→ JMK`
(
JM1Km(ρm(•)) , . . . , JMkKm(ρm(•))

))
For i = 1, . . . , k, since the type Ti is constant, we have by Lem. D.24 that
JMiKm(ρm(•)) = JMiK`(ρ`(•)) for all ` > 0, so that

xm(•) = ` 7−→ JMK`
(
JM1K`(ρ`(•)) , . . . , JMkK`(ρ`(•))

))
Now, by induction hypothesis, since ρ �n E by assumption, for each i =
1, . . . , k we have JMiKρ �n Ti and since Ti is constant, by Lem. D.24 this
implies JMiKρ �` Ti for all ` > 0. By induction hypothesis again, this in
turn gives JMK ◦ 〈JM1Kρ, . . . , JMkKρ〉 �` T for each ` > 0. But then we are
done since

xm(•) = ` 7−→ JMK`
(
JM1K`(ρ`(•)) , . . . , JMkK`(ρ`(•))

))
= JMK ◦ 〈JM1Kρ, . . . , JMkKρ〉

Case of
E `M : �T

E ` unbox(M) : T

Let ρ |= E and write x := Junbox(M)Kρ. Let n > 0 such that ρ �n E . By
induction hypothesis we get JMKρ �n �T , that is (JMKρ)m(•) �m T for
all m > 0, so in particular (JMKρ)n(•) �n T . But now we are done since
xm(•) = (JMKρ)n(•)m(•) for each m > 0.

Case of

x1 : T1, . . . , xk : Tk `M : IT E `M1 : T1 . . . E `Mk : Tk
E ` prev[x1 7→M1,...,xk 7→Mk](M) : T

(T1, . . . , Tk constant)

Let ρ |= E and write x := Jboxσ(M)Kρ where σ = [x1 7→ M1, . . . , xk 7→ Mk].
Let n > 0 such that ρ �n E . We show x �n IT . If n = 1 then the result
trivially holds. Assume n > 1. For each m > 0, we have by definition

xm(•) = JMKm+1

(
JM1Km(ρm(•)) , . . . , JMkKm(ρm(•))

))
For i = 1, . . . , k, since the type Ti is constant, we have by Lem. D.24 that
JMiKm(ρm(•)) = JMiKm+1(ρm+1(•)), so that

xm(•) = JMKm+1

(
JM1Km+1(ρm+1(•)) , . . . , JMkKm+1(ρm+1(•))

))

128 Guilhem Jaber and Colin Riba

and it follows that

x = next ◦ JMK ◦ 〈JM1Kρ, . . . , JMkKρ〉

Now, by induction hypothesis, since ρ �n E by assumption, for each i =
1, . . . , k we have JMiKρ �n Ti and since Ti is constant, by Lem. D.24 this
implies JMiKρ �n−1 Ti. By induction hypothesis again, this in turn gives
JMK ◦ 〈JM1Kρ, . . . , JMkKρ〉 �n−1 T and we are done.

Case of
E `M : T T ≤ U

E `M : U

By Lem. D.28 (Lem. F.15).
Case of

E `M : {A | ψ ⇒ ϕ} E `M : {A | ψ}
E `M : {A | ϕ}

Let ρ |= E and write x := JMKρ ∈ Γ JAK. Let n > 0 such that ρ �n E . By
induction hypothesis, the right premise gives xn(•) ∈ JψKA(n) and the left
premise implies xn(•) ∈ JϕKA(n).

Case of
for i ∈ {0, 1},

E `M : {A | ϕ0 ∨ ϕ1} E , x : {A | ϕi} ` N : U

E ` N [M/x] : U

Let ρ |= E and write y := JMKρ ∈ Γ JAK and z := JNKρ[y/x] ∈ Γ J|U |K. Let
n > 0 and assume ρ �n E . By induction hypothesis we have y ∈ JϕiK for
some i ∈ {0, 1}. It follows that ρ[y/x] �n E , x : {A | ϕi}, from which we get
z �n B by induction hypothesis.

Case of
E `M : {A | ⊥} E ` N : |U |

E ` N : U

Let ρ |= E and write x := JMKρ ∈ Γ JAK. Let n > 0 such that ρ �n
E . By induction hypothesis, the left premise gives xn(•) ∈ J⊥K(n) = ∅, a
contradiction. Hence ρ 6�n E , and the result follows.

Case of
E `Mi : {Ai | ϕ} E `M1−i : A1−i

E ` 〈M0,M1〉 : {A0 ×A1 | [πi]ϕ}
Let ρ |= E . Write y0 := JM0Kρ ∈ Γ JA0K, y1 := JM1Kρ ∈ Γ JA1K, and x :=
J〈M0,M1〉Kρ = 〈y0, y1〉. Let n > 0 such that ρ �n E . By induction hypothesis
on typing derivations we have (yi)n(•) ∈ JϕK. But since πi(xn(•)) = (yi)n(•),
this gives xn(•) ∈ J[πi]ϕK.

Case of
E `M : {A0 ×A1 | [πi]ϕ}
E ` πi(M) : {Ai | ϕ}

Let ρ |= E . Write y := JMKρ ∈ Γ JA0 ×A1K and x := Jπi(M)Kρ = πi ◦ y. Let
n > 0 such that ρ �n E . By induction hypothesis on typing derivations we
have yn(•) ∈ J[πi]ϕK, so that πi(yn(•)) ∈ JϕK. But then we are done since
xn(•) = πi(yn(•)).

Temporal Refinements for Guarded Recursive Types 129

Case of
E `M : {Ai | ϕ}

E ` ini(M) : {A0 +A1 | [ini]ϕ}
Let ρ |= E . Write y := JMKρ ∈ Γ JAiK, and x := Jini(M)Kρ = ini◦y. Let n > 0
such that ρ �n E . Hence by induction hypothesis on typing derivations we
have yn(•) ∈ JϕK. But since xn(•) = ini(yn(•)), this implies xn(•) ∈ J[ini]ϕK.

Case of

E `M : {A0 +A1 | [ini]ϕ} E , x : {Ai | ϕ} ` Ni : U E , x : A1−i ` N1−i : U

E ` caseM of (x.N0|x.N1) : U

Let ρ |= E . Write y := JMKρ ∈ Γ JA0 + A1K ' Γ JA0K + Γ JA1K. Hence
y = inj ◦ z for some (unique) j ∈ {0, 1} and z ∈ Γ JAjK. Let n > 0 such that
ρ �n E . By induction hypothesis, the left premise gives yn(•) ∈ J[ini]ϕK(n),
so that yn(•) = ini(u) for some u ∈ JϕK(n). But this implies j = i and
u = zn(•), so that z �n {Ai | ϕ}. It follows that ρ[z/x] �n E , x : {Ai | ϕ},
and the induction hypothesis on typing derivations gives JNiKρ[z/x] �n U .
But then we are done since

JcaseM of (x.N0|x.N1)Kρ = JNiKρ[z/x]

Case of
E , x : {B | ψ} `M : {A | ϕ}
E ` λx.M : {B → A | [ev(ψ)]ϕ}

Let ρ |= E . Write y := Jλx.MKρ ∈ Γ JB → AK. Let n > 0 such that ρ �n E .
We show yn(•) ∈ J[ev(ψ)]ϕK(n). So let k ≤ n and u ∈ Γ JBK(k) such that
u ∈ JψK(k). By [20, Cor. 3.8] there is some z ∈ Γ JBK such that zk(•) = t.
By Monotonicity of Realizability (Lem. F.13), we have ρ �k E , so that
ρ[z/x] �k E , x : {B | ψ}. The induction hypothesis on typing derivations
thus gives (JMKρ[z/x])k(•) ∈ JϕK, and we are done since (yk(•))(zk(•)) =
(JMKρ[z/x])k(•).

Case of
E `M : {B → A | [ev(ψ)]ϕ} E ` N : {B | ψ}

E `MN : {A | ϕ}
Let ρ |= E . Write y := JMKρ ∈ Γ JB → AK, z := JNKρ ∈ Γ JBK and
x := JMNKρ = ev ◦ 〈y, z〉. Let n > 0 such that ρ �n E . By induc-
tion on typing derivations, the right premise gives zn(•) ∈ JψK(n), so that
the left premise gives (yn(•))(zn(•)) ∈ JϕK(n). But then we are done since
xn(•) = (yn(•))(zn(•)).

Case of
E `M : {A[Fix(X).A/X] | ϕ}
E ` fold(M) : {Fix(X).A | [fold]ϕ}

Let ρ |= E . Write y := JMKρ ∈ Γ JA[Fix(X).A/X]K and x := Jfold(M)Kρ =
fold ◦ y. Let n > 0 such that ρ �n E . By induction hypothesis on typing
derivations we have yn(•) ∈ JϕK. But then we are done since unfoldn(xn(•)) =
yn(•).

130 Guilhem Jaber and Colin Riba

Case of
E `M : {Fix(X).A | [fold]ϕ}

E ` unfold(M) : {A[Fix(X).A/X] | ϕ}
Let ρ |= E . Write y := JMKρ ∈ Γ JFix(X).AK and x := Junfold(M)Kρ =
unfold ◦ y. Let n > 0 such that ρ �n E . By induction hypothesis on typing
derivations we have yn(•) ∈ J[fold]ϕK. Hence unfoldn(yn(•)) ∈ JϕK and we
are done since xn(•) = unfoldn(yn(•)).

Cases of

E `M : T [0/`] E `M : T [`+1/`]

E `M : ∀` · T
(` not free in E)

E `M : T

E `M : ∀` · T
(` not free in E)

Let ρ |= E and write x := JMKρ ∈ Γ J|T |K. Let n > 0 and assume ρ �n E .
Let m ∈ N. We have to show M �n T [m/`]. Since ` does not occur free in
E , we have ρ �n E [m′/`] for all m′ ∈ N. For both rules we can conclude from
the induction hypothesis.

Case of
E `M : ∀` · T
E `M : T [t/`]

Let ρ |= E and write x := JMKρ ∈ Γ J|T |K. Let n > 0 and assume ρ �n E .
By induction hypothesis we have x �n T [m/`] for m = JtK and the result
follows.

Cases of

E `M :
{
�A

∣∣ [box]γ[ν`αϕ/β]
}

β Pos γ

E `M : {�A | [box]γ[ναϕ/β]}

E `M : {�A | [box]γ[µαϕ/β]} E , x :
{
�A

∣∣ [box]γ[µ`αϕ/β]
}
` N : U β Pos γ

E ` N [M/x] : U

where ` is not free in E , U, γ, and γ, ϕ are smooth. First, since ϕ is smooth
by Lem. 7.4 we have

{|ναϕ(α)|} =
⋂
m∈N {|ϕm(>)|}

and {|µαϕ(α)|} =
⋃
m∈N {|ϕm(>)|}

Moreover, since β is positive in γ and γ is smooth, it follows from Lem. F.12
(Lem. 7.4) that {|γ|} is continuous and cocontinuous in β. We thus get

{|γ[ναϕ(α)/β]|} =
⋂
m∈N {|γ[ϕm(>)/β]|}

and {|γ[µαϕ(α)/β]|} =
⋃
m∈N {|γ[ϕm(>)/β]|}

and the result follows. ut

Table of Contents

Temporal Refinements for Guarded Recursive Types 1
Guilhem Jaber and Colin Riba

1 Introduction . 1
Organization of the paper. 3

2 Outline . 3
Overview of the Guarded λ-Calculus. 3
Compositional Safety Reasoning on Streams. 3
A Manysorted Temporal Logic. 4
Beyond Safety. 5
Internal Semantics in the Topos of Trees. 5
The Necessity of an External Semantics. 5
The Constant Type Modality. 6
Approximating Least Fixpoints. 6

3 The Pure Calculus . 6
4 A Temporal Modal Logic . 8

Manysorted Modal Temporal Formulae. 8
Modal Theories. 10

5 A Temporally Refined Type System . 11
6 The Full System . 12

Strictly Positive and Polynomial Types. 13
The Full Temporal Modal Logic. 13
The Safe and Smooth Fragments. 14
The Full System. 15

7 Semantics . 16
Denotational Semantics in the Topos of Trees. 16
External Semantics. 17
Internal Semantics of Formulae. 17
The Safe Fragment. 18
The Smooth Fragment. 19
The Realizability Semantics. 19

8 Examples . 19
9 Related Work . 23
10 Conclusion and Future Work . 24
A Additional Material for §3 (The Pure Calculus) . 32
B Additional Material for §4 (A Temporal Modal Logic) 32
C Additional Material for §5 (A Temporally Refined Type System) 33
D Additional Material for §7 (Semantics) . 34

D.1 The Topos of Trees (Basic Structure) . 35
D.2 Global Sections and Constant Objects . 35
D.3 External and Internal Semantics: Global Definitions 37
D.4 An Open Geometric Morphism . 39

132 Guilhem Jaber and Colin Riba

D.5 Abstract Modalities . 40
D.6 External and Internal Semantics: Local Definitions 40

Internal Semantics . 41
External Semantics . 43

D.7 The Safe Fragment . 44
D.8 The Smooth Fragment . 45
D.9 Constant Objects, Again . 45
D.10 Realizability . 47
D.11 A Galois Connection . 48

E Details of the Examples . 51
E.1 Guarded Streams . 51

The Later Modality on Guarded Streams . 51
Destructors of Guarded Streams . 51
Constructor of Guarded Streams . 52
Map over Guarded Streams . 53
Merge over Guarded Streams . 53

E.2 Operations on Coinductive Streams . 54
E.3 Map over Coinductive Streams . 55

The Case of Eventually (3[hd]ϕ) . 56
The Case of Eventually Always (32[hd]ϕ) . 58
The Case of Always Eventually (23[hd]ϕ) . 60

E.4 The Diagonal Function . 62
The Guarded Diagonal Function . 63
The Coinductive Diagonal Function . 64

E.5 Fair Streams . 66
Basic Datatypes . 67
A Fair Stream of Booleans . 68
A Scheduler . 76

E.6 Colists . 79
Overview . 79
The Type of CoLists . 81
The Append Function on Colists . 82
Sharper Refinements for the Append Function on Colists 88

E.7 Resumptions . 91
E.8 Breadth-First Tree Traversal . 101

Infinite Binary Trees . 101
Breadth-First Traversal of Guarded Trees Using Forests 101
Martin Hofmann’s Algorithm . 103

F Proofs of §7 . 106
F.1 Correctness of the External and Internal Semantics 106

Proof of Lem. D.13.(1) (Lem. 7.2) . 106
Proof of Lem. D.13.(2) (Lem. 7.2) . 109

F.2 The Safe Fragment . 112
F.3 The Smooth Fragment . 120
F.4 Realizability . 122

	Temporal Refinements for Guarded Recursive Types
	Introduction
	Organization of the paper.

	Outline
	Overview of the Guarded -Calculus.
	Compositional Safety Reasoning on Streams.
	A Manysorted Temporal Logic.
	Beyond Safety.
	Internal Semantics in the Topos of Trees.
	The Necessity of an External Semantics.
	The Constant Type Modality.
	Approximating Least Fixpoints.

	The Pure Calculus
	A Temporal Modal Logic
	Manysorted Modal Temporal Formulae.
	Modal Theories.

	A Temporally Refined Type System
	The Full System
	Strictly Positive and Polynomial Types.
	The Full Temporal Modal Logic.
	The Safe and Smooth Fragments.
	The Full System.

	Semantics
	Denotational Semantics in the Topos of Trees.
	External Semantics.
	Internal Semantics of Formulae.
	The Safe Fragment.
	The Smooth Fragment.
	The Realizability Semantics.

	Examples
	Related Work
	Conclusion and Future Work
	Additional Material for §3 (The Pure Calculus)
	Additional Material for §4 (A Temporal Modal Logic)
	Additional Material for §5 (A Temporally Refined Type System)
	Additional Material for §7 (Semantics)
	The Topos of Trees (Basic Structure)
	Global Sections and Constant Objects
	External and Internal Semantics: Global Definitions
	An Open Geometric Morphism
	Abstract Modalities
	External and Internal Semantics: Local Definitions
	Internal Semantics
	External Semantics

	The Safe Fragment
	The Smooth Fragment
	Constant Objects, Again
	Realizability
	A Galois Connection

	Details of the Examples
	Guarded Streams
	The Later Modality on Guarded Streams
	Destructors of Guarded Streams
	Constructor of Guarded Streams
	Map over Guarded Streams
	Merge over Guarded Streams

	Operations on Coinductive Streams
	Map over Coinductive Streams
	The Case of Eventually ([hd])
	The Case of Eventually Always ([hd])
	The Case of Always Eventually ([hd])

	The Diagonal Function
	The Guarded Diagonal Function
	The Coinductive Diagonal Function

	Fair Streams
	Basic Datatypes
	A Fair Stream of Booleans
	A Scheduler

	Colists
	Overview
	The Type of CoLists
	The Append Function on Colists
	Sharper Refinements for the Append Function on Colists

	Resumptions
	Breadth-First Tree Traversal
	Infinite Binary Trees
	Breadth-First Traversal of Guarded Trees Using Forests
	Martin Hofmann's Algorithm

	Proofs of §7
	Correctness of the External and Internal Semantics
	Proof of Lem. D.13.(1) (Lem. 7.2)
	Proof of Lem. D.13.(2) (Lem. 7.2)

	The Safe Fragment
	The Smooth Fragment
	Realizability

