Temporal Refinements for Guarded Recursive Types

Guilhem Jaber, Colin Riba

To cite this version:

Guilhem Jaber, Colin Riba. Temporal Refinements for Guarded Recursive Types. 2020. hal02512655 v 2

HAL Id: hal-02512655
 https://hal.science/hal-02512655v2

Preprint submitted on 16 Jul 2020 (v2), last revised 14 Mar 2021 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Temporal Refinements for Guarded Recursive Types

GUILHEM JABER, Université de Nantes, LS2N CNRS, Inria, France
COLIN RIBA, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

We propose a logic to reason on temporal properties of higher-order programs that handle infinite objects like streams or infinite trees, represented via coinductive types. Specifications of programs are defined using safety and liveness properties. A given program can then be proven to satisfy its specification, in a compositional way, our logic being based on a type system.

The logic is presented as a refinement type system over the guarded lambda-calculus, a λ-calculus with guarded recursive types. The refinements are formulae of a modal μ-calculus which embeds usual temporal modal logics such as LTL and CTL.
The semantics of our system is given within a rich structure, the topos of trees, in which we build a realizability model of the temporal refinement type system. We use in a crucial way the connection with set-theoretic semantics to handle liveness properties.
Additional Key Words and Phrases: coinductive types, guarded recursive types, μ-calculus, refinement types, topos of trees.

1 INTRODUCTION

Functional programming is by now well established to handle infinite data, thanks to declarative definitions and equational reasoning on high-level abstractions, in particular when infinite objects are represented with coinductive types. In such settings, programs in general do not terminate, but are expected to compute a part of their output in a finite amount of time. For example, a program expected to generate a stream should produce the next element in finite time: it is productive.

The goal of this paper is to be able to specify temporal properties of higher-order programs that handle coinductive types. Temporal logics like LTL, CTL or the modal μ-calculus are widely used to formulate, on infinite objects, safety and liveness properties (see e.g. [Baier and Katoen 2008]). Typically, modalities like \square ("always") or \diamond ("eventually") are used to write properties of streams or infinite trees and specifications of programs over such data.

We consider temporal refinement types $\{A \mid \varphi\}$, where A is a standard type of our programming language, and φ is a formula of the (alternation-free) modal μ-calculus. Using refinement types [Freeman and Pfenning 1991], temporal connectives are not reflected in the programming language, and programs are formally independent from the shape of their temporal specifications. One can thus give different refinement types to the same program. For example, the following two types can be given to the same map function on streams:

$$
\begin{align*}
& \text { map }:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid \square \diamond[\mathrm{hd}] \psi\} \\
& \text { map }:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} A \mid \square \diamond[\mathrm{hd}] \varphi\} \tag{1}\\
& \hline \operatorname{Str} B \mid \diamond \square[\mathrm{hd}] \psi\} \quad \longrightarrow \quad\{\operatorname{Str} A \mid \diamond \square[\mathrm{hd}] \varphi\}
\end{align*}
$$

These types are intended to mean that given $f: B \rightarrow A$ s.t. $f(b)$ satisfies φ whenever b satisfies ψ, the function $(\operatorname{map} f)$ takes a stream with infinitely many (resp. ultimately all) elements satisfying ψ to one with infinitely many (resp. ultimately all) elements satisfying φ.

Having a type system enables to reason compositionally on programs, by decomposing a specification to the various components of a program and picking the right temporal refinements for each component in order to prove the global specification.

[^0] Riba, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France, colin.riba@ens-lyon.fr.
\[

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & :=\lambda x . \lambda s . \text { fold }(\langle x, s\rangle) \quad: A \rightarrow \operatorname{Str}^{\mathrm{g}} A \rightarrow \operatorname{Str}^{\mathrm{g}} A \\
\mathrm{hd}^{\mathrm{g}} & :=\lambda s . \pi_{0}(\text { unfold } s) \quad: \operatorname{Str}^{\mathrm{g}} A \rightarrow A \\
\mathrm{tl}^{\mathrm{g}} & :=\lambda s . \pi_{1}(\text { unfold } s) \quad: \operatorname{Str}^{\mathrm{g}} A \rightarrow \operatorname{Str}^{\mathrm{g}} A \\
\mathrm{map}^{\mathrm{g}} & :=\lambda f . \mathrm{fix}(g) . \lambda s . \text { Cons }^{\mathrm{g}}\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right)\left(g \circledast\left(\mathrm{tl}^{\mathrm{g}} s\right)\right) \\
& :(B \rightarrow A) \rightarrow \operatorname{Str}^{\mathrm{g}} B \rightarrow \operatorname{Str}^{\mathrm{g}} A
\end{aligned}
$$
\]

Fig. 1. Constructor, Destructors and Map on Guarded Streams.

Our system is built on top of guarded recursion [Nakano 2000], a simple device to control and reason about unfoldings of fixpoints, and which provides a syntactic compositional productivity check [Atkey and McBride 2013]. Coinductive types can be represented as guarded recursive types [Møgelberg 2014]. See also [Birkedal et al. 2012; Bizjak et al. 2016; Clouston et al. 2016].

Our main challenge is that guarded fixpoints tend to have unique solutions. In particular, safety properties (e.g. $\square[h d] \varphi$) can be correctly represented with guarded fixpoints, but not liveness properties (e.g. $\diamond[\mathrm{hd}] \varphi, \diamond \square[\mathrm{hd}] \varphi, \square \diamond[\mathrm{hd}] \varphi$). As a result, naively incorporating \diamond in our refinement types leads to unwanted behaviours.

Our system is based on the guarded λ-calculus of [Clouston et al. 2016], a higher-order programming language with guarded recursion. It is equipped with a type modality $\mathbf{\square}$, which allows for typing productive but not causal functions, and that we use to import the standard set-theoretic semantics of liveness properties into the type system. This leads to a two level system, with the lower or internal level, which interacts with guarded recursion and at which only safety properties are correctly represented, and the higher or external one, at which liveness properties are correctly handled, but without direct access to guarded recursion. By restricting to the alternation-free modal μ-calculus, in which fixpoints can always be computed in ω-steps, one can syntactically reason on finite unfoldings of liveness properties, thus allowing for crossing down the safety barrier.

We provide example programs involving linear structures (colists, streams, fair streams [Bahr et al. 2020; Cave et al. 2014]) and branching structures (resumptions à la [Krishnaswami 2013]), for which we prove liveness properties similar to (1). Our system also handles safety properties on breadth-first (infinite) tree traversals à la [Jones and Gibbons 1993] and [Berger et al. 2019].

Organization of the paper. We give an overview of our approach in §2. Then §3 presents the syntax of the guarded λ-calculus. Our base temporal logic (without liveness) is introduced in $\S 4$, and is used to define our refinement type system in §5. Liveness properties are handled in §6, and §7 provides some details on examples, The semantics is given in §8. Finally, we discuss related work in $\S 9$ and future work in $\S 10$. Table 2 ($\S 2$) gathers the main refinement types we can give to example functions, most of them defined in Table 4 (§7). Omitted material is available in the Appendices.

2 OUTLINE

An Overview of the Guarded λ-Calculus. Guarded recursion enforces productivity of programs using a type system equipped with a type modality \downarrow, in order to indicate that one has access to a value not right now but only "later". One can then define guarded streams $\operatorname{Str}^{\mathrm{g}} A$ over a type A via the guarded recursive definition $\operatorname{Str}^{\mathrm{g}} A=A \times \operatorname{Str}^{\mathrm{g}} A$. Streams that inhabit this type have their head available now, but their tail only one step in the future. The type modality is reflected in the term language with the next operation. One also has a fixpoint constructor on terms fix $(x) . M$ for guarded recursive definitions. They are typed with the rules:

$$
\frac{\Gamma \vdash M: A}{\Gamma \vdash \operatorname{next}(M): A} \quad \frac{\Gamma, x: \neg A \vdash M: A}{\Gamma \vdash \mathrm{fix}(x) \cdot M: A}
$$

Typed Formulae	Provability	Refinement Types	Subtyping	Typing
$\Sigma \vdash \varphi: A$	$\vdash^{A} \varphi$	$\{A \mid \varphi\}$	$T \leq U$	$\Gamma \vdash M: T$
$(\S 4)$	$($ where $\vdash \varphi: A, \S 4)$	(where $\vdash \varphi: A, \S 5)$	$(T, U$ refinement types, §5)	

Table 1. Syntactic Classes and Judgments.

This allows for the constructor and basic destructors on guarded streams to be defined as in Fig. 1, where fold $(-)$ and unfold $(-)$ are explicit operations for folding and unfolding guarded recursive types. In the following, we use the infix notation $a::^{\mathrm{g}} s$ for Cons a. Using the fact that the type modality is an applicative functor [McBride and Paterson 2008], we can distribute over the arrow type. This is represented in the programming language by the infix applicative operator \circledast. With it, one can define the usual map function on guarded streams as in Fig. 1.

Compositional Safety Reasoning on Streams. Given a property φ on a type A, we would like to consider a subtype of $\operatorname{Str}^{\mathrm{g}} A$ that selects those streams whose elements all satisfy φ. To do so, we introduce a temporal modality $\square[\mathrm{hd}] \varphi$, and consider the refinement type $\left\{\operatorname{Str}^{g} A \mid \square[\mathrm{hd}] \varphi\right\}$. Suppose for now that we can give the following refinement types to the basic stream operations:

$$
\begin{aligned}
\mathrm{hd}^{\mathrm{g}} & :\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\{A \mid \varphi\} \\
\mathrm{t}^{\mathrm{g}} & :\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\{\mathrm{Str} \mathrm{G} A \mid \square[\mathrm{hd}] \varphi\} \\
\text { Cons }^{\mathrm{g}} & :\{A \mid \varphi\} \longrightarrow \square\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

By using the standard typing rule for λ-abstraction and application, together with the rules to type fix $(x) . M$ and \circledast, we can type the function map ${ }^{5}$ with

$$
(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \quad \longrightarrow \quad\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \quad \longrightarrow \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

A Manysorted Temporal Logic. Our logical language, taken with minor adaptations from [Jacobs 2001b], is manysorted: for each type A we have formulae of type A (notation $\vdash \varphi: A$), where φ selects inhabitants of A.

We use basic modalities ([π_{i}], [fold], [next], ...) in refinements to navigate between types. For instance, a formula φ of type A_{0}, specifying a property over the inhabitants of A_{0}, can be lifted to the formula $\left[\pi_{0}\right] \varphi$ of type $A_{0} \times A_{1}$, which intuitively describes those inhabitants of $A_{0} \times A_{1}$ whose first component satisfy φ. Given a formula φ of type A, one can define its "head lift" [hd $] \varphi$ of type $\operatorname{Str}^{\mathrm{g}} A$, that enforces φ to be satisfied on the head of the provided stream. Also, one can define a modality \bigcirc such that given a formula $\psi: \operatorname{Str}^{g} A$, the formula $\bigcirc \psi: \operatorname{Str}^{g} A$ enforces ψ to be satisfied on the tail of the provided stream. These modalities are obtained as follows:

$$
[\mathrm{hd}] \varphi:=\quad[\text { fold }]\left[\pi_{0}\right] \varphi \quad \bigcirc \varphi \quad:=\quad[\text { fold }]\left[\pi_{1}\right][\text { next }] \varphi
$$

We similarly have basic modalities [in_{0}], $\left[\mathrm{in}_{1}\right]$ on sum types. For instance, on the type of guarded colists defined as $\operatorname{CoList}^{\mathrm{g}} A:=\mathrm{Fix}(X) .1+A \times \backslash$, we can express the fact that a colist is empty (resp. non-empty) with the formula [nil] :=[fold][in $\left.{ }_{0}\right] \top$ (resp. [\neg nil] $:=[$ fold $\left.]\left[\mathrm{in}_{1}\right] T\right)$.

We also provide a deduction system $\vdash^{A} \varphi$ on temporal modal formulae. This deduction system is used to define a subtyping relation $T \leq U$ between refinement types, with $\{A \mid \varphi\} \leq\{A \mid \psi\}$ when $\vdash^{A} \varphi \Rightarrow \psi$. The subtyping relation thus incorporates logical reasoning in the type system.

In addition, we have greatest fixpoints formulae $v \alpha \varphi$ (so that formulae can have free typed propositional variables), equipped with the reasoning principles of [Kozen 1983]. In particular, we
can form an "always" modality \square as

$$
\square \varphi:=\quad v \alpha \cdot \varphi \wedge \bigcirc \alpha \quad: \quad \operatorname{Str}^{\mathrm{g}} A
$$

(where $\varphi: \operatorname{Str}^{\mathrm{g}} A$)
which intuitively holds on a stream $s=\left(s_{i} \mid i \geq 0\right)$ iff φ holds on every substream $\left(s_{i} \mid i \geq n\right)$ for $n \geq 0$. If we rather start with $\psi: A$, one first need to lift it to $[\mathrm{hd}] \psi: \operatorname{Str}^{\mathrm{g}} A$. Then $\square[$ hd $] \psi$ means that all the elements of the stream satisfies ψ, since all its suffixes satisfy [hd] ψ.

Table 1 summarizes the different judgments used in this paper.
Beyond Safety. In order to handle liveness properties, we also need to have least fixpoints formulae $\mu \alpha . \varphi$. For example, this would give the "eventually" modality $\diamond \varphi:=\mu \alpha . \varphi \vee \bigcirc \alpha$. With Kozen-style rules, one could then give the following two types to the guarded stream constructor:

- Cons ${ }^{\mathrm{g}}:\{A \mid \varphi\} \rightarrow \operatorname{Str}^{\mathrm{g}} A \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond[\mathrm{hd}] \varphi\right\} ;$
- $\mathrm{Cons}^{\mathrm{g}}: A \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond[\mathrm{hd}] \varphi\right\} \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond[\mathrm{hd}] \varphi\right\}$.

But consider a finite base type B with two distinguished elements a, b, and suppose that we have access to a modality $[b]$ on B so that terms inhabiting $\{B \mid[b]\}$ must be equal to b. Using the above types for Cons ${ }^{g}$, we could type the stream with constant value a, defined as fix $(s) . a:: 8$, with the type $\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{B} \mid \diamond[\mathrm{hd}] \mathrm{b}\right\}$ that is supposed to enforce the existence of an occurrence of b in the stream. Similarly, on colists we would have fix(s).a :: ${ }^{g} s$ of type $\left\{\right.$ CoList $^{g} B \mid \diamond[$ nil $\left.]\right\}$, while $\diamond[$ nil $]$ expresses that a colist will eventually contains a nil, and is thus finite. Hence, liveness properties may interact quite badly with guarded recursion. Let us look at this in a semantic model of guarded recursion.
"Internal" Semantics in the Topos of Trees. The types of the guarded λ-calculus can be interpreted as sequences of indexed sets $(X(n))_{n>0}$ where $X(n)$ represents the values available "at time n ". In order to interpret guarded recursion, one also needs to have access to functions $r_{n}^{X}: X(n+1) \rightarrow X(n)$. This means that the objects used to represent types are in fact presheaves over the poset $(\mathbb{N} \backslash\{0\}, \leq)$, the functions r_{n}^{X} being the so-called restriction morphisms. The category \mathcal{S} of such presheaves is called the topos of trees [Birkedal et al. 2012]. For instance, the type Strg B of guarded streams over a finite base type B is interpreted in \mathcal{S} as the indexed sequence of sets $\left(\mathrm{B}^{n}\right)_{n>0}$ with restriction maps r_{n} taking $\left(\mathrm{b}_{0}, \ldots, \mathrm{~b}_{n-1}, \mathrm{~b}_{n}\right)$ to $\left(\mathrm{b}_{0}, \ldots, \mathrm{~b}_{n-1}\right)$. We write $\llbracket A \rrbracket$ for the interpretation of a type A in \mathcal{S}.

The Necessity of an "External" Semantics. The topos of trees cannot correctly handle liveness properties. For instance, the formula $\diamond[h d][b]$ should describe the set of streams that contain at least one occurrence of b. But this is not possible in \mathcal{S}. Indeed, the interpretation of \diamond [hd][b] in \mathcal{S} is a collection $\left(C_{n}\right)_{n>0}$ with $C_{n} \subseteq \mathrm{~B}^{n}$. Now, any element of B^{n} can be extended to a stream which contains an occurrence of a. Hence C_{n} should be equal to B^{n}, and the interpretation of $\diamond[\mathrm{hd}][\mathrm{b}]$ is the whole $\llbracket \operatorname{Str}^{\mathrm{g}} \mathrm{B} \rrbracket$. More generally, guarded fixpoints have unique solutions in the topos of trees [Birkedal et al. 2012], and $\diamond \varphi=\mu \alpha . \varphi \vee \bigcirc \varphi$ gets the same interpretation as $v \alpha . \varphi \vee \bigcirc \alpha$.

We thus have a formal system with least and greatest fixpoints, that has a semantics inside the topos of trees, but which does not correctly handle least fixpoints. On the other hand, it was shown by [Møgelberg 2014] that the interpretation of guarded polynomial (i.e. first-order) recursive types in the topos of trees induces final coalgebras for the corresponding polynomial functors on Set. This applies e.g. to streams and colists. Hence, it makes sense to think of interpreting least fixpoint formulae over such types "externally", in the category Set of usual sets and functions.

The Constant Type Modality. Figure 2 represents adjoint functors $\Gamma: \mathcal{S} \rightarrow$ Set and $\Delta:$ Set $\rightarrow \mathcal{S}$. To correctly handle least fixpoints $\mu \alpha \varphi: A$, we would like to see them as subsets of $\Gamma \llbracket A \rrbracket$ in Set rather than subobjects of $\llbracket A \rrbracket$ in \mathcal{S}. On the other hand, the internal semantics in \mathcal{S} is still necessary to handle definitions by guarded recursion. We navigate between the internal semantics in \mathcal{S} and the external semantics in Set via the adjunction $\Delta \dashv \Gamma$. This adjunction induces a comonad $\Delta \Gamma$ on

Fig. 2. Internal and External Semantics
\mathcal{S}, which is represented in the guarded λ-calculus of [Clouston et al. 2016] by the constant type modality $■$. This gives "coinductive" versions of guarded recursive types, e.g. $\operatorname{Str} A:=\square \operatorname{Str}^{\mathrm{g}} A$ for streams and CoList $A:=\square$ CoList $^{\mathrm{g}} A$ for colists, which allow for productive but not causal programs [Clouston et al. 2016, Ex. 1.10.(3)].

Each formula now gets two interpretations: $\llbracket \varphi \rrbracket$ in \mathcal{S} and $\{|\varphi|\}$ in Set. The external semantics $\{|\varphi|\}$ handles least fixpoints in the standard set-theoretic way, thus the two interpretations differ in general. But we do have $\{|\varphi|\}=\Gamma \llbracket \varphi \rrbracket$ when φ is "safe", that is, when φ describes a safety property. We have a modality [box $] \varphi$ which lifts $\varphi: A$ to $■ A$. By defining $\llbracket[$ box $] \varphi \rrbracket:=\Delta\{|\varphi|\}$, we correctly handle the least fixpoints which are guarded by a [box] modality. When φ is safe, we can navigate between $\{\square A \mid[\operatorname{box}] \varphi\}$ and $■\{A \mid \varphi\}$, thus making available the comonad structure of \square on [box $] \varphi$.

Approximating Least Fixpoints. In order to prove liveness properties on functions defined by guarded recursion, one needs to navigate between say [box] $\diamond \varphi$ and $\diamond \varphi$, while $\diamond \varphi$ is in general unsafe. The fixpoint $\diamond \varphi=\mu \alpha . \varphi \vee \bigcirc \alpha$ is alternation-free (see e.g. [Bradfield and Walukiewicz 2018, $\S 4.1]$). This implies that $\diamond \varphi$ can be seen as the supremum of

$$
\varphi, \bigcirc \varphi, \quad \bigcirc \varphi, \quad \ldots \quad \bigcirc^{n} \varphi, \quad \bigcirc^{n+1} \varphi, \quad \ldots
$$

Note that each $\bigcirc^{n} \varphi$ is safe when φ is safe. More generally, we can approximate alternation-free $\mu \alpha \varphi$ by their finite unfoldings $\varphi^{n}(\perp)$, à la Kleene. We extend the logic with finite iterations $\mu^{k} \alpha \varphi$, where k is an "iteration variable", and where $\mu^{k} \alpha \varphi$ is seen as $\varphi^{k}(\perp)$. We have for instance

$$
\diamond^{k} \varphi:=\quad \mu^{k} \alpha . \varphi \vee \bigcirc \alpha
$$

If φ is safe then so is $\diamond^{k} \varphi$. For safe φ, ψ, the guarded recursive map ${ }^{\mathrm{g}}$ can be safely typed as

$$
\operatorname{map}^{\mathrm{g}}:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \longrightarrow \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

which gives the following type for is lift to coinductive streams:

$$
\text { map }:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow \quad\{\operatorname{Str} B \mid[\text { box }] \diamond[\text { hd }] \psi\} \quad \longrightarrow \quad\{\operatorname{Str} A \mid[\text { box }] \diamond[\text { hd }] \varphi\}
$$

Overview of Some Examples. Table 2 recaps our main examples of refinement typings. We touch on it here, more details are given in $\S 7$. The composite modalities $\square \diamond$ and $\diamond \square$ over streams are read resp. as "infinitely often" and "eventually always". Provided with a function $\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$, the map function on coinductive streams returns a stream which infinitely often (resp. eventually always) satisfies φ whenever its stream argument infinitely often (resp. eventually always) satisfies ψ.

We can express that append ${ }^{g}$ returns a non-empty colist if one of its argument is non-empty. With the formula $\diamond[$ nil $]$ (which says that a colist is finite), we can express that the coinductive append returns a finite colist if its arguments are both finite. In addition, if the first argument of append has an element which satisfies φ, then the result has an element which satisfies φ. The same holds true if the first argument is finite while the second one has an element which satisfies φ.

```
Map over coinductive streams (with \(\Delta\) either \(\square, \diamond, \diamond \square\) or \(\square \diamond\) )
    map \(:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\) box \(] \Delta[\mathrm{hd}] \psi\} \quad \longrightarrow \quad\{\operatorname{Str} A \mid[\) box \(] \Delta[\mathrm{hd}] \varphi\}\)
Diagonal of coinductive streams of streams (with \(\Delta\) either \(\square\) or \(\diamond \square\) )
    diag : \(\{\operatorname{Str}(\operatorname{Str} A) \mid[\) box \(] \Delta[\) hd \(][\) box \(] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\operatorname{Str} A \mid[\) box \(] \Delta[\) hd \(] \varphi\}\)
A fair stream of Booleans (adapted from [Bahr et al. 2020; Cave et al. 2014])
    \(\mathrm{fb} \quad: \mathrm{CoNat} \longrightarrow \mathrm{CoNat} \longrightarrow\) Str Bool
    \(\mathrm{fb} 01:\{\mathrm{Str}\) Bool \(\mid[\mathrm{box}] \square \diamond[\mathrm{hd}][\mathrm{tt}] \wedge[\mathrm{box}] \square \diamond[\mathrm{hd}][\mathrm{ff}]\}\)
```

Append on guarded recursive colists
append $^{\mathrm{g}}: \quad\left\{\right.$ CoList $^{\mathrm{g}} A \mid[\neg$ nil $\left.]\right\} \longrightarrow$ CoList $^{\mathrm{g}} A \longrightarrow\left\{\right.$ CoList $^{\mathrm{g}} A \mid[\neg$ nil $\left.]\right\}$
append $^{\mathrm{g}}:$ CoList $^{\mathrm{g}} A \longrightarrow\left\{\right.$ CoList $^{\mathrm{g}} A \mid\left[\neg\right.$ nil $\left.\left.^{\mathrm{g}}\right]\right\} \longrightarrow\left\{\right.$ CoList $^{\mathrm{g}} A \mid[\neg$ nil $\left.]\right\}$
Append on coinductive colists
$\begin{array}{lllllll}\begin{array}{l}\text { append } \\ \text { append }\end{array}: & \{\text { CoList } A \mid[\text { box }] \diamond[\text { hd }] \varphi\} & \longrightarrow & \operatorname{CoList} A & \{\operatorname{CoList} A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \\ \text { append }: & : \operatorname{CoList} A \mid[\text { box }] \diamond[\text { nil }]\}[\text { nil }]\} & \longrightarrow & \{\text { CoList } A \mid[\text { box }] \diamond[\text { hd }] \varphi\} & \longrightarrow & \{\text { CoList } A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \\ \end{array}$
Breadth-first tree traversal
$\mathrm{bft}^{\mathrm{g}}:\left\{\right.$ Tree $\left.^{\mathrm{g}} \mathrm{C} \mid \forall \square[\mathrm{lb\mid}] \vartheta\right\} \rightarrow\left\{\right.$ CoList $\left.^{\mathrm{g}} \mathrm{C} \mid \square[\mathrm{hd}] \vartheta\right\}$
(à la [Jones and Gibbons 1993] or with Hofmann's algorithm (see e.g. [Berger et al. 2019]))

```
A scheduler of resumptions (adapted from [Krishnaswami 2013])
    sched : {Res A|[box]}\diamond[\operatorname{Ret}]}\longrightarrow{\operatorname{Res}A|[box]\diamond[\operatorname{Ret}]}\longrightarrow{\operatorname{Res}A|[box]\diamond[\operatorname{Ret}]
    sched : {Res A|[box]\diamond[now]\varphi} \longrightarrow {Res A|[box]\diamond[now]\varphi} \longrightarrow {Res A|[box]\diamond[now]\varphi}
    sched : {Res A|[box]\square\diamond[Ret]} \longrightarrow {Res A|[box]\square\diamond[Ret]} \longrightarrow {Res A|[box]\square\diamond[Ret]}
    sched : {Res A|[box]\square\diamond[out]\varphi} \longrightarrow {Res A|[box]\square\diamond[out]\varphi} \longrightarrow {Res A|[box]\square\diamond[out]\varphi}
(where }\diamond\mathrm{ is either }\forall\diamond\mathrm{ or }\exists\diamond,\square\mathrm{ is either }\forall\square\mathrm{ or }\exists\square\mathrm{ , and [out] is either [^out] or [Vout])
```

Table 2. Some Refinement Typings (functions defined in Table 4).

Our next example is about resumptions, introduced originally in [Milner 1975] to represent interactions in a concurrent setting. We adapt here the version of [Krishnaswami 2013]. Our resumptions consist of a type $\operatorname{Res}^{8} A$, parametrized by an "input" type I and an "output" type 0 , and with constructors:

$$
\operatorname{Ret}^{g}: A \rightarrow \operatorname{Res}^{g} A \quad \text { and } \quad \operatorname{Cont}^{\mathrm{g}} \quad: \quad\left(\mathrm{I} \rightarrow\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)\right) \rightarrow \operatorname{Res}^{g} A
$$

Here, $\operatorname{Ret}^{\mathrm{g}}(a)$ represents a computation which returns the value $a: A$, while $\operatorname{Cont}^{\mathrm{g}}\langle f, k\rangle$ (with $\left.\langle f, k\rangle: \mathrm{I} \rightarrow\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)\right)$ represents a computation which on input i : I outputs f i : 0 and continues with the computation $k i: \operatorname{Res}^{9} A$. Provided with resumptions $p, q: \operatorname{Res}^{g} A$, the scheduler (sched ${ }^{\mathrm{g}} p q$), adapted from [Krishnaswami 2013], first evaluates p. If p returns, then the whole computation returns, with the same value. Otherwise, p evaluates to say Cont ${ }^{\mathrm{g}}\langle f, k\rangle$. Then (sched ${ }^{\mathrm{g}} p q$) produces a computation which on input i : I outputs f i and continues with the computation (sched ${ }^{\mathrm{g}} q(\mathrm{ki})$), thus switching arguments.

Consider now formulae $\varphi: 0$ and $\psi: \operatorname{Res}^{g} A$. For each fixed i:I, we have a formula [out $\left.{ }_{\mathrm{i}}\right] \varphi$: $\operatorname{Res}^{g} A$ which is satisfied by $\operatorname{Cont}^{\mathrm{g}}\langle f, k\rangle$ if $f \mathrm{i}$ satisfies φ, and a formula $\bigcirc_{i} \psi: \operatorname{Res}^{g} A$ which is satisfied by $\operatorname{Cont}^{\mathrm{g}}\langle f, k\rangle$ if k i satisfies [next] ψ. This is expressed by the typings

$$
\left.\begin{array}{l}
\text { Cont }^{\mathrm{g}}:\left\{\mathrm{I} \rightarrow\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right) \mid \mathrm{i} \| \rightarrow\left[\pi_{0}\right] \varphi\right\} \\
\text { Cont }^{\mathrm{g}}:
\end{array}:\left\{\mathrm{I} \rightarrow\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right) \mid \mathrm{i} \| \mapsto\left[\pi_{1}\right][\text { next }] \psi\right\} \quad \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid\left[\text { out }_{\mathrm{i}}\right] \varphi\right\}\right\}
$$

If I is a finite base type, it is possible to quantify over its inhabitants:

$$
\begin{array}{lllllllll}
{[\wedge \text { out }] \varphi} & := & \wedge_{\mathrm{i} \in \mathrm{I}}\left[\text { out }_{\mathrm{i}}\right] \varphi & : & \operatorname{Res}^{\mathrm{g}} A & \otimes \psi & := & \wedge_{\mathrm{i} \in \mathrm{I}} \bigcirc_{\mathrm{i}} \psi & : \operatorname{Res}^{\mathrm{g}} A \\
\text { [Vout] }] \varphi & := & \vee_{\mathrm{i} \in \mathrm{I}}\left[\text { out }_{\mathrm{i}}\right] \varphi & : & \operatorname{Res}^{\mathrm{g}} A & \otimes \psi & := & \vee_{\mathrm{i} \in \mathrm{I}} \bigcirc_{\mathrm{i}} \psi & \operatorname{Res}^{\mathrm{g}} A
\end{array}
$$

Fig. 3. Syntax and Operational Semantics of the Pure Calculus.

We thus obtain the following CTL-like variants of \square and \diamond (where $\psi: \operatorname{Res}^{\mathrm{g}} A$):

$$
\begin{array}{lllll}
\forall \square \psi & :=v \alpha \cdot \psi \wedge \otimes \alpha & : & \operatorname{Res}^{\mathrm{g}} A & \forall \diamond \psi:=\mu \alpha \cdot \psi \vee \otimes \alpha \\
\exists \square \psi & :=v \alpha \cdot \psi \wedge \otimes \alpha & : & \operatorname{Res}^{\mathrm{g}} A & \exists \diamond \psi
\end{array}
$$

The formula $\exists \diamond \varphi$ holds on a resumption if there is a finite sequence of inputs which leads to a resumption satisfying φ, while $\forall \diamond \varphi$ holds on a resumption if φ holds at some point for any finite sequence of inputs. Moreover, $\exists \square \varphi$ expresses that there is an infinite sequence of inputs in which the resumption never returns and along which φ always holds, while $\forall \square \varphi$ expresses that for all infinite sequence of inputs, the resumption never returns and φ always holds. For instance, the composite formula $\exists \square \exists \diamond[\operatorname{Ret}]$ says that there is an infinite sequence of inputs along which (1) the resumption does not return and (2), at any point, there is a finite sequence of inputs which leads to a return. Our system can express that the coinductive (sched $p q$) returns in finite time if both p and q return in finite time, both along some or along any sequence of inputs. We moreover have expected $\square \diamond$ properties for all possible (consistent) combinations of \exists / \forall and $[\operatorname{Ret}] /[\vee$ out $] /[\wedge$ out $]$.

3 THE PURE CALCULUS

Our system lies on top of the guarded λ-calculus of [Clouston et al. 2016]. We briefly discuss it here.
Terms. We consider values and terms from the grammar given in Fig. 3 (left). In both box ${ }_{\sigma}(M)$ and $\operatorname{prev}_{\sigma}(M), \sigma$ is a delayed substitution of the form $\sigma=\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]$ and such that $\operatorname{box}_{\sigma}(M)$ and $\operatorname{prev}_{\sigma}(M)$ bind x_{1}, \ldots, x_{k} in M. We use the following conventions of [Clouston et al. 2016]: $\operatorname{box}(M)$ and $\operatorname{prev}(M)$ (without indicated substitution) stand resp. for box ${ }_{[]}(M)$ and $\operatorname{prev}_{[]}(M)$ i.e. bind no variable of M. Moreover, $\operatorname{box}_{l}(M)$ stands for $\operatorname{box}_{\left[x_{1} \mapsto x_{1}, \ldots, x_{k} \mapsto x_{k}\right]}(M)$ where x_{1}, \ldots, x_{k} is a list of all free variables of M, and similarly for $\operatorname{prev}_{\iota}(M)$.

We consider the weak call-by-name reduction of [Clouston et al. 2016], recalled in Fig. 3 (right). Productivity of the operational semantics is ensured by the insertion of next in the reduction of fix.

Pure Types. Pure types (notation A, B, etc.) are the closed types over the grammar

$$
A::=1|A+A| A \times A|A \rightarrow A|>A|X| \operatorname{Fix}(X) . A \mid ■ A
$$

where, (1) in the case $\operatorname{Fix}(X) . A$, each occurrence of X in A must be guarded by a \downarrow, and (2) in the case of $\lfloor A$, the type A is closed (i.e. has no free type variable). Guarded recursive types are built with the fixpoint constructor Fix (X). A, which allows for X to appear in A both at positive and negative positions, but only under a \downarrow. In this paper we shall only consider positive types. We could have included primitive infinite base types (say a type of natural numbers as in [Clouston et al. 2016]), but we refrain to do so in order to keep the system simpler.

$$
\begin{aligned}
& \frac{(x: A) \in \Gamma}{\Gamma \vdash x: A} \quad \frac{\Gamma, x: B \vdash M: A}{\Gamma \vdash \lambda x \cdot M: B \rightarrow A} \quad \frac{\Gamma \vdash M: B \rightarrow A \quad \Gamma \vdash N: B}{\Gamma \vdash M N: A} \quad \frac{\Gamma \vdash M_{0}: A_{0} \quad \Gamma \vdash M_{1}: A_{1}}{\Gamma \vdash\rangle: 1} \quad \frac{}{\Gamma \vdash\left\langle M_{0}, M_{1}\right\rangle: A_{0} \times A_{1}} \\
& \text { for } i \in\{0,1\} \text {, } \\
& \frac{\Gamma \vdash M: A_{i}}{\Gamma \vdash \operatorname{in}_{i}(M): A_{0}+A_{1}} \quad \frac{\Gamma \vdash M: A_{0}+A_{1} \quad \Gamma, x: A_{i} \vdash N_{i}: B}{\Gamma \vdash \operatorname{case} M \text { of }\left(x \cdot N_{0} \mid x \cdot N_{1}\right): B} \quad \frac{\Gamma \vdash M: A_{0} \times A_{1}}{\Gamma \vdash \pi_{i}(M): A_{i}} \quad \frac{\Gamma, x: \rightarrow A \vdash M: A}{\Gamma \vdash \operatorname{fix}(x) \cdot M: A} \\
& \frac{\Gamma \vdash M: A[\operatorname{Fix}(X) \cdot A / X]}{\Gamma \vdash \operatorname{fold}(M): \operatorname{Fix}(X) \cdot A} \quad \frac{\Gamma \vdash M: \operatorname{Fix}(X) \cdot A}{\Gamma \vdash \operatorname{unfold}(M): A[\operatorname{Fix}(X) \cdot A / X]} \quad \frac{\Gamma \vdash M: \triangleright(B \rightarrow A) \quad \Gamma \vdash N: \triangleright B}{\Gamma \vdash M * N: \neg A} \\
& \frac{\Gamma \vdash M: A}{\Gamma \vdash \operatorname{next}(M): \triangleright A} \quad \frac{x_{1}: A_{1}, \ldots, x_{k}: A_{k} \vdash M: A \quad \Gamma \vdash M_{i}: A_{i} \text { with } A_{i} \text { constant for } 1 \leq i \leq k}{\Gamma \vdash \operatorname{prev}_{\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]}(M): A} \\
& \frac{x_{1}: A_{1}, \ldots, x_{k}: A_{k} \vdash M: A \quad \Gamma \vdash M_{i}: A_{i} \text { with } A_{i} \text { constant for } 1 \leq i \leq k}{\Gamma \vdash \operatorname{box}_{\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]}(M): \boldsymbol{\square} A} \quad \frac{\Gamma \vdash M: ■ A}{\Gamma \vdash \operatorname{unbox}(M): A}
\end{aligned}
$$

Fig. 4. Typing Rules of the Pure Calculus.

Example 3.1. We can code a finite base type $\mathrm{B}=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}\right\}$ as a sum of unit types $\sum_{i=1}^{n} \mathbf{1}=$ $1+(\cdots+1)$, where the i th component of the sum is intended to represent the element b_{i} of B . At the term level, the elements of B are represented as compositions of injections in $\mathrm{j}_{j_{1}}\left(\mathrm{in}_{j_{2}}\left(\ldots \mathrm{in}_{j_{i}}\langle \rangle\right)\right)$.

For instance, Booleans are represented by Bool $:=1+1$, with $\mathrm{tt}:=\mathrm{in}_{0}(\langle \rangle)$ and $\mathrm{ff}:=\mathrm{in}_{1}(\langle \rangle)$.
Example 3.2 (Guarded Recursive Types). Besides streams (Str $^{\mathrm{g}} A$), colists (CoList ${ }^{\mathrm{g}} A$), conatural numbers ($\mathrm{CoNat}^{\mathrm{g}}$) and infinite binary trees ($\mathrm{Tree}^{\mathrm{g}} A$), we consider a type $\mathrm{Res}^{g} A$ of resumptions (parametrized by I, 0) adapted from [Krishnaswami 2013], and an higher-order recursive type Rou ${ }^{\text {g }} A$, used in Martin Hofmann's breadth-first tree traversal (see e.g. [Berger et al. 2019]):

```
\(\operatorname{Str}^{\mathrm{g}} A:=\operatorname{Fix}(X) . A \times X\)
CoList \({ }^{\text {g }} A\) := \(\operatorname{Fix}(X) .1+A \times>\)
\(\operatorname{Tree}^{\mathrm{g}} A:=\mathrm{Fix}(X) . A \times(\bullet X \times X)\)
    \(\mathrm{CoNat}^{\mathrm{g}}:=\mathrm{Fix}(X) .1+\perp X\)
\(\operatorname{Res}^{\mathrm{g}} A:=\mathrm{Fix}(X) . A+(\mathrm{I} \rightarrow(0 \times X))\)
    \(\operatorname{Rou}^{\mathrm{g}} A:=\mathrm{Fix}(X) .1+((\rightarrow X \rightarrow A) \rightarrow A)\)
```

Definition 3.3. A pure type A is constant if each occurrence of \bullet in A is guarded by a modality. The typing rules of the pure calculus are given in Fig. 4. Intuitively, \square behaves as a \times-preserving comonad, and constant types allow for relaxing syntactic constraints on the shape of types which are semantically under a $■$ (see e.g. [Clouston et al. 2016, Lem. 2.6]).

Example 3.4 (Operations on Guarded Recursive Types). Figure 1 defines some operations on guarded streams. On other types of Ex. 3.2, we have e.g. the constructors of colists

$$
\begin{array}{lll}
\mathrm{Nil}^{\mathrm{g}} & :=\text { fold }\left(\mathrm{in}_{0}\langle \rangle\right) & : \text { CoList }^{\mathrm{g}} A \\
\text { Cons }^{\mathrm{g}} & :=\lambda x . \lambda x s .{\text { fold }\left(\mathrm{in}_{1}\langle x, x s\rangle\right)} \quad: A \rightarrow \text { CoList }^{\mathrm{g}} A \rightarrow \text { CoList }^{\mathrm{g}} A
\end{array}
$$

Also, infinite binary trees Tree ${ }^{\mathrm{g}} A$ have operations

$$
\begin{aligned}
& \text { Node }^{\mathrm{g}} \quad: A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \\
& \text { label }^{\mathrm{g}} \quad: \quad \operatorname{Tree}^{\mathrm{g}} A \rightarrow A
\end{aligned} \quad \begin{aligned}
& \operatorname{son}_{\ell}^{\mathrm{g}}: \\
& \text { son }_{r}^{\mathrm{g}}: \operatorname{Tree}^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \\
& \text { Tree }^{\mathrm{g}} A \rightarrow \text { Tree }^{\mathrm{g}} A
\end{aligned}
$$

Example 3.5. Coinductive types are guarded recursive types under a $■$. For instance

$$
\operatorname{Str} A:=\llbracket \operatorname{Str}^{\mathrm{g}} A \quad \text { CoList } A:=\Pi \operatorname{CoList}^{g} A \quad \text { CoNat }:=\Pi \operatorname{CoNatg}^{g} \quad \operatorname{Res} A:=\llbracket \operatorname{Res}^{g} A
$$

with $A, \mathrm{I}, 0$ constant. Basic operations on guarded types lift to coinductive ones. For instance

$$
\left.\begin{array}{rl}
\text { Cons } & :=\lambda x \cdot \lambda s \cdot \text { box }_{l}\left(\text { Cons }^{g} x \text { next }(\text { unbox } s)\right)
\end{array}\right): A \rightarrow \operatorname{Str} A \rightarrow \operatorname{Str} A
$$

These definitions follow a general pattern to lift a function over a guarded recursive type into one over its coinductive version, by performing an η-expansion with some box and unbox inserted in the right places. For example, one can define the map function on coinductive streams as:

$$
\operatorname{map}:=\lambda f \cdot \lambda s . \text { box }_{l}\left(\text { map }^{\mathrm{g}} f(\text { unbox } s)\right):(B \rightarrow A) \longrightarrow \operatorname{Str} B \longrightarrow \operatorname{Str} A
$$

4 A TEMPORAL MODAL LOGIC

We present here a logic of (modal) temporal specifications. We focus on syntactic aspects. The semantics is discussed in $\S 8$. For the moment the logic has only one form fixpoints ($v \alpha \varphi$). Its extension with least fixpoints $(\mu \alpha \varphi)$ is presented in $\S 6$.

Manysorted Modal Temporal Formulae. The main ingredient of this paper is the logical language we use to annotate pure types when forming refinement types. This language, that we took with minor adaptations from [Jacobs 2001b], is manysorted: for each pure type A we have formulae φ of type A (notation $\vdash \varphi: A$) as defined in Fig. 5. The idea is that a closed formula φ of type A expresses a property over the inhabitants of A, so that the refinement type

$$
\{A \mid \varphi\}
$$

may be thought about as a representing a subset of the inhabitants of A. For every pure type A, formulae of type A are closed under usual propositional connectives. Moreover (and that is the key ingredient we took from [Jacobs 2001b]), formulae of compound types (say $A_{0} \times A_{1}$ or $A_{0}+A_{1}$) may be obtained from formulae of the component types. For instance a formula φ of type A_{0}, specifying a property over the inhabitants of A_{0}, can be lifted to the formula [π_{0}] φ of type $A_{0} \times A_{1}$, which selects those inhabitants of $A_{0} \times A_{1}$ whose first component satisfies φ.

Example 4.1. Given a finite base type $\mathrm{B}=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}\right\}$ as in Ex. 3.1, with element b_{i} represented by $\mathrm{in}_{j_{1}}\left(\mathrm{in}_{j_{2}}\left(\ldots \mathrm{in}_{j_{i}}\langle \rangle\right)\right.$), the formula $\left[\mathrm{in}_{\left.j_{1}\right]}\right]\left[\mathrm{in}_{j_{2}}\right] \ldots\left[\mathrm{in}_{j_{i}}\right](\mathrm{T})$ represents the singleton subset $\left\{\mathrm{b}_{k}\right\}$ of B .

On Bool, we have the formulae $[\mathrm{tt}]:=\left[\mathrm{in}_{0}\right] \top$ and $[\mathrm{ff}]:=\left[\mathrm{in}_{1}\right] \top$ representing resp. tt and ff .
Example 4.2. (a) On guarded streams, we have $[\mathrm{hd}] \varphi:=[$ fold $]\left[\pi_{0}\right] \varphi$ and $\bigcirc \psi:=[$ fold $]\left[\pi_{1}\right][$ next $] \psi$, with [hd] $\varphi: \operatorname{Str}^{\mathrm{g}} A$ and $\bigcirc \psi: \operatorname{Str}^{\mathrm{g}} A$ provided $\varphi: A$ and $\psi: \operatorname{Str}^{g} A$.
(b) On colists, let $[\mathrm{hd}] \varphi:=[$ fold $]\left[\mathrm{in}_{1}\right]\left[\pi_{0}\right] \varphi$ and $\bigcirc \psi:=[$ fold $]\left[\mathrm{in}_{1}\right]\left[\pi_{1}\right][$ next $] \psi$. Also, [nil] $:=$ [fold][in $\left.{ }_{0}\right] \top$ (resp. $[\neg$ nil $]:=[$ fold $]\left[\mathrm{in}_{1}\right] \top$), expresses that a colist is empty (resp. non-empty).
(c) The formula $[\mathrm{hd}][\mathrm{a}] \Rightarrow \mathrm{O}[\mathrm{hd}][\mathrm{b}]$ intuitively means that if the head of a stream is a, then its second element (the head of its tail) should be b.
(d) On (guarded) infinite binary trees over A, we also have a modality $[\mathrm{lbl}] \varphi:=[$ fold $]\left[\pi_{0}\right] \varphi: \operatorname{Tree}^{\mathrm{g}} A$ (provided $\varphi: A$). Moreover, we have modalities \bigcirc_{ℓ} and \bigcirc_{r} defined on formulae $\varphi: \operatorname{Tree}^{\mathrm{g}} A$ as $\bigcirc_{\ell} \varphi:=[$ fold $]\left[\pi_{1}\right]\left[\pi_{0}\right][$ next $] \varphi$ and $\bigcirc_{r} \varphi:=[$ fold $]\left[\pi_{1}\right]\left[\pi_{1}\right][$ next $] \varphi$. Intuitively, [lbl] φ should hold on a tree t over A iff the root label of t satisfies φ, and $\bigcirc_{\ell} \varphi\left(\right.$ resp. $\bigcirc_{r} \varphi$) should hold on t iff φ holds on the left (resp. right) son of t.

Formulae have fixpoints $v \alpha \varphi$. The rules of Fig. 5 thus allow for the formation of formulae with free typed propositional variables (ranged over by α, β, \ldots), and involve contexts Σ of the form $\alpha_{1}: A_{1}, \ldots, \alpha_{n}: A_{n}$. In the formation of a fixpoint, the side condition " α guarded in φ " asks that each occurrence of α is beneath a [next] modality. We assume a usual positivity condition of α in φ. It is defined as with relations $\alpha \operatorname{Pos} \varphi$ and $\alpha \operatorname{Neg} \varphi$. The rules are the usual ones (see App. A). We just note here that $[\operatorname{ev}(-)](-)$ is contravariant in its first argument.

Remark 4.3. Note that [box] φ can only be formed for closed φ.

$$
\begin{aligned}
& \frac{(\alpha: A) \in \Sigma}{\sum \vdash \alpha: A} \quad \overline{\sum \vdash \vdash: A} \quad \frac{\sum \vdash \varphi: A}{\sum \vdash \mathrm{~T}: A} \quad \frac{}{\sum, \alpha: B \vdash \varphi: A} \\
& \frac{\Sigma \vdash \varphi: A \quad \Sigma \vdash \psi: A}{\Sigma \vdash \varphi \Rightarrow \psi: A} \quad \frac{\Sigma \vdash \varphi: A \quad \Sigma \vdash \psi: A}{\Sigma \vdash \varphi \wedge \psi: A} \quad \frac{\Sigma \vdash \varphi: A \quad \Sigma \vdash \psi: A}{\Sigma \vdash \varphi \vee \psi: A} \\
& \frac{\Sigma \vdash \varphi: A_{i}}{\sum \vdash\left[\pi_{i}\right] \varphi: A_{0} \times A_{1}} \quad \frac{\Sigma \vdash \varphi: A_{i}}{\sum \vdash\left[\operatorname{in}_{i}\right] \varphi: A_{0}+A_{1}} \quad \frac{\Sigma \vdash \psi: B \quad \Sigma \vdash \varphi: A}{\sum \vdash[\operatorname{ev}(\psi)] \varphi: B \rightarrow A} \quad \frac{\sum \vdash \varphi: A[\operatorname{Fix}(X) \cdot A / X]}{\sum \vdash[\mathrm{fold}] \varphi: \operatorname{Fix}(X) \cdot A} \\
& \frac{\Sigma \vdash \varphi: A}{\sum \vdash[\mathrm{next}] \varphi: \neg A} \quad \frac{\vdash \varphi: A}{\vdash[\operatorname{box}] \varphi: ■ A} \quad(v-\mathrm{F}) \frac{\Sigma, \alpha: A \vdash \varphi: A \quad \alpha \operatorname{Pos} \varphi}{\sum \vdash v \alpha \varphi: A}(\alpha \text { guarded in } \varphi)
\end{aligned}
$$

Fig. 5. Formation Rules of Formulae (where A, B are pure types).

Example 4.4. (a) The modality \square makes it possible to express a range of safety properties. For instance, assuming $\varphi, \psi: \operatorname{Str}^{\mathrm{g}} A$, the formula $\square(\psi \Rightarrow \bigcirc \varphi)$ is intended to hold on a stream $s=\left(s_{i} \mid i \geq 0\right)$ iff, for all $n \in \mathbb{N}$, if $\left(s_{i} \mid i \geq n\right)$ satisfies ψ, then $\left(s_{i} \mid i \geq n+1\right)$ satisfies φ.
(b) The modality \square has its two CTL-like variants on Tree ${ }^{\mathrm{g}} A$, namely $\forall \square \varphi:=v \alpha . \varphi \wedge\left(\bigcirc_{\ell} \alpha \wedge \bigcirc_{r} \alpha\right)$ and $\exists \square \varphi:=v \alpha . \varphi \wedge\left(\bigcirc_{\ell} \alpha \vee \bigcirc_{r} \alpha\right)$. Assuming $\psi: A, \forall \square[\mid \mathrm{bl}] \psi$ is intended to hold on a tree t : Tree ${ }^{g} A$ iff all node-labels of t satisfy ψ, while $\exists \square[\mid \mathrm{lbl}] \psi$ holds on t iff ψ holds on all nodes of some infinite path from the root of t.

Modal Theories. Formulae are equipped with a modal deduction system which enters the type system via a subtyping relation (§5). For each pure type A, we have an intuitionistic theory \vdash^{A} (the general case) and a classical theory \vdash_{c}^{A} (which is only assumed under $■ /[$ box]), summarized in Fig. 6 and Table 3. The atomic modalities [π_{i}], [fold], [next], [in_{i}] and [box] have deterministic branching (see Fig. 12, §8). In any case, $\vdash_{(\mathrm{c})}^{A} \varphi$ is only defined when $\vdash \varphi: A$ (and so when φ has no free propositional variable).

Fixpoints $v \alpha \varphi$ are equipped with their usual axioms from [Kozen 1983]. We can get the axioms of the intuitionistic (normal) modal logic IK [Plotkin and Stirling 1986] (see also e.g. [Marin 2018; Simpson 1994]) for [π_{i}], [fold] and [box] but not for [in ${ }_{i}$] nor for the intuitionistic [next]. For [next], in the intuitionistic case this is due to semantic issues with step indexing (discussed in §8) which are absent from the classical case. As for [in_{i}], we have a logical theory allowing for a coding of finite base types as finite sum types, which in particular allows to derive, for a finite base type B

$$
\left.\vdash^{B} \quad \vee_{a \in B}\left([a] \wedge \bigwedge_{\substack{b \in B \\ b \neq a}}\right\urcorner[b]\right)
$$

This implies that the necessitation rule does not hold for $\left[\mathrm{in}_{i}\right]$ (see Rem. 4.6).
Definition 4.5 (Modal Theories). For each pure type A, the intuitionistic and classical modal theories \vdash^{A} and \vdash_{c}^{A} are defined by mutual induction as follows:

- The theory \vdash^{A} is deduction for intuitionistic propositional logic augmented with the checkmarked (\checkmark) axioms and rules of Table 3 and the axioms and rules of Fig. 6 (for \vdash^{A}).
- The theory \vdash_{c}^{A} is \vdash^{A} augmented with the axioms (P) and $\left(\mathrm{C}_{\Rightarrow}\right)$ for [next] and with the axiom (CL) (Fig. 6).

In any case, $\vdash^{A} \varphi$ and $\vdash_{c}^{A} \varphi$ are only defined when $\vdash \varphi: A$.
Remark 4.6. All modalities ([π_{i}], [fold], [next$],\left[\mathrm{in}_{i}\right],[\operatorname{ev}(\psi)]$ and [box]) satisfy the monotonicity rule (RM) and are thus monotone in the sense of [Chellas 1980] (from which we borrowed the

Name Formulation	[π_{i}]	[fold]	[next]	[in ${ }_{i}$]	[$\mathrm{ev}(\psi)$]	[box]	[hd] \bigcirc
$(\mathrm{RM}) \frac{\vdash \psi \Rightarrow \varphi}{\vdash[\Delta] \psi \Rightarrow[\Delta] \varphi}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \checkmark$
(C) $[\Delta] \varphi \wedge[\Delta] \psi \Longrightarrow[\Delta](\varphi \wedge \psi)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \checkmark$
(N) $[\Delta] T$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	$\checkmark \checkmark$
(P) $[\Delta] \perp \sim \perp$	\checkmark	\checkmark	(C)	\checkmark		\checkmark	\checkmark (C)
$\left(\mathrm{C}_{\vee}\right)[\Delta](\varphi \vee \psi) \Longrightarrow[\Delta] \varphi \vee[\Delta] \psi$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	$\checkmark \checkmark$
$\left(\mathrm{C}_{\Rightarrow}\right)([\Delta] \psi \Rightarrow[\Delta] \varphi) \Rightarrow[\Delta](\psi \Rightarrow \varphi)$	\checkmark	\checkmark	(C)			\checkmark	\checkmark (C)

Table 3. Modal Axioms and Rules (types omitted in \vdash and (C) marks axioms assumed for \vdash_{c} but not for \vdash).

$$
\begin{aligned}
& \overline{\vdash_{\mathrm{c}}^{A}((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi}(\mathrm{CL}) \quad \frac{\vdash_{\mathrm{c}}^{A} \varphi}{\mathrm{r}^{A}[\operatorname{box}] \varphi} \quad \frac{\vdash^{B} \psi \Rightarrow \phi}{\vdash^{B \rightarrow A}[\operatorname{ev}(\phi)] \varphi \Rightarrow[\operatorname{ev}(\psi)] \varphi} \\
& \overline{\vdash^{B \rightarrow A}\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right) \Rightarrow\left[\operatorname{ev}\left(\psi_{0} \vee \psi_{1}\right)\right] \varphi} \\
& \overline{\vdash^{A_{0}+A_{1}}\left(\left[\mathrm{in}_{i}\right] T\right) \Rightarrow\left(\neg\left[\mathrm{in}_{i}\right] \varphi \Leftrightarrow\left[\mathrm{in}_{i}\right] \neg \varphi\right)} \quad \overline{\vdash^{A} v \alpha \varphi \Rightarrow \varphi[v \alpha \varphi / \alpha]} \quad \frac{\vdash^{A} \psi \Rightarrow \varphi[\psi / \alpha]}{\vdash^{A} \psi \Rightarrow v \alpha \varphi}
\end{aligned}
$$

Fig. 6. Modal Axioms and Rules.
terminology used in Table 3, see also [Frittella 2014; Hansen 2003]). In our context, the normal intuitionistic modal logic IK of [Plotkin and Stirling 1986] is $(\mathrm{RM})+(\mathrm{C})+(\mathrm{N})+(\mathrm{P})+\left(\mathrm{C}_{\mathrm{V}}\right)+\left(\mathrm{C}_{\Rightarrow}\right)$, while the normal modal logic \mathbf{K} is $\mathbf{I K}+(\mathrm{CL})$ (see e.g. [Blackburn et al. 2002]).
Example 4.7. Using the rules to reason on fixpoints, we can derive the following in $\vdash^{\operatorname{Str}^{5} A}$:

$$
\square \psi \Rightarrow(\psi \wedge \bigcirc \square \psi) \quad \text { and } \quad(\psi \wedge \bigcirc \square \psi) \Rightarrow \square \psi
$$

Remark 4.8. The modalities [ev(-)] (denoted $\| \rightarrow$ in §2 and §7) provide a mean to incorporate properties of functions (see §7). They are a form of internalized logical predicates in the sense of [Jacobs 2001a, §9.2] (see §8).

5 A TEMPORALLY REFINED TYPE SYSTEM

Temporal Refinement Types. Temporal refinement types (or simply types), notation T, U, V, etc., are defined by the grammar:

$$
T::=A|\{A \mid \varphi\}| T+T|T \times T| T \rightarrow T|>T| \mathbf{\bullet} T
$$

So types are built from (closed) pure types A and temporal refinements $\{A \mid \varphi\}$, where $\vdash \varphi: A$. They allow all the type constructors of pure types (where T has no free type variables in $\llbracket T$).

Subtyping. As a refinement type $\{A \mid \varphi\}$ intuitively represents a subset of the inhabitants of A, it is natural to equip our system with a notion of subtyping. In addition to the usual rules for product, arrow and sum types, our subtyping relation is made of two more ingredients. The first follows the

$$
\overline{T \leq|T|} \quad \overline{A \leq\{A \mid T\}} \quad \frac{\vdash^{A} \varphi \Rightarrow \psi}{\{A \mid \varphi\} \leq\{A \mid \psi\}} \quad \frac{\vdash_{\mathrm{c}}^{A} \varphi \Rightarrow \psi}{\{■ A \mid[\mathrm{box}] \varphi\} \leq\{\mathbf{\square} A \mid[\mathrm{box}] \psi\}}
$$

$$
\overline{\{\triangleright A \mid[\text { next }] \varphi\} \equiv\{A \mid \varphi\}} \quad \overline{\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\} \equiv\{B \mid \psi\} \rightarrow\{A \mid \varphi\}}
$$

Fig. 7. Subtyping Rules (excerpt).

Fig. 8. Typing Rules for Refined Modal Types.
principle that our refinement type system is meant to prove properties of programs, and not to type more programs, so that (say) a type of the form $\{A \mid \varphi\} \rightarrow\{B \mid \psi\}$ is a subtype of $A \rightarrow B$. We formalize this with the notion of underlying pure type $|T|$ of a type T. The second ingredient is the modal theory $\vdash^{A} \varphi$ of $\S 4$. The subtyping rules concerning refinements are given in Fig. 7, where $T \equiv U$ enforces both $T \leq U$ and $U \leq T$. The full set of rules is given in Fig. 15 in \S B. Notice that we do not incorporate folding and unfolding of guarded recursive types in subtyping.

Typing with Temporal Refinement Types. Typing for refinement types is given by the rules of Fig. 8, together with the rules of Fig. 4 extended to refinement types, where T is constant if $|T|$ is constant. Modalities $\left[\pi_{i}\right]$, [in ${ }_{i}$], [fold] and [ev(-)] (but [next]) have introduction rules extending those of the corresponding term formers.

Example 5.1. Since $\varphi \Rightarrow \psi \Rightarrow(\varphi \wedge \psi)$ and using two times the rule (MP), we get the first derived rule below, from which we can deduce the second one:

$$
\frac{\Gamma \vdash M:\{A \mid \varphi\} \quad \Gamma \vdash M:\{A \mid \psi\}}{\Gamma \vdash M:\{A \mid \varphi \wedge \psi\}} \quad \frac{\Gamma \vdash M:\{A \mid \varphi\}}{\Gamma \vdash\langle M, N\rangle:\left\{A \times B \mid\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right] \psi\right\}}
$$

Example 5.2. Using the implications of Ex. 4.7 in subtyping, we get the following derived rules:

$$
\frac{\Gamma \vdash M:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square \varphi\right\}}{\Gamma \vdash M:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi \wedge \bigcirc \square \varphi\right\}} \quad \text { and } \quad \frac{\Gamma \vdash M:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi \wedge \bigcirc \square \varphi\right\}}{\Gamma \vdash M:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square \varphi\right\}}
$$

$$
\begin{aligned}
& \left(\mathrm{P}_{i}-\mathrm{I}\right) \frac{\Gamma \vdash M_{i}:\left\{A_{i} \mid \varphi\right\} \quad \Gamma \vdash M_{1-i}: A_{1-i}}{\Gamma \vdash\left\langle M_{0}, M_{1}\right\rangle:\left\{A_{0} \times A_{1} \mid\left[\pi_{i}\right] \varphi\right\}} \quad\left(\mathrm{PI}_{i}-\mathrm{E}\right) \frac{\Gamma \vdash M:\left\{A_{0} \times A_{1} \mid\left[\pi_{i}\right] \varphi\right\}}{\Gamma \vdash \pi_{i}(M):\left\{A_{i} \mid \varphi\right\}} \\
& (\mathrm{Ev}-\mathrm{I}) \frac{\Gamma, x:\{B \mid \psi\} \vdash M:\{A \mid \varphi\}}{\Gamma \vdash \lambda x \cdot M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}} \quad(\mathrm{Ev}-\mathrm{E}) \frac{\Gamma \vdash M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\} \quad \Gamma \vdash N:\{B \mid \psi\}}{\Gamma \vdash M N:\{A \mid \varphi\}} \\
& (\operatorname{Fd}-\mathrm{I}) \frac{\Gamma \vdash M:\{A[\operatorname{Fix}(X) \cdot A / X] \mid \varphi\}}{\Gamma \vdash \operatorname{fold}(M):\{\operatorname{Fix}(X) \cdot A \mid[\operatorname{fold}] \varphi\}} \quad(\operatorname{FD}-\mathrm{E}) \frac{\Gamma \vdash M:\{\operatorname{Fix}(X) \cdot A \mid[\text { fold }] \varphi\}}{\Gamma \vdash \operatorname{unfold}(M):\{A[\operatorname{Fix}(X) \cdot A / X] \mid \varphi\}} \\
& \left(\mathrm{INJ}_{i}-\mathrm{E}\right) \frac{\Gamma \vdash M:\left\{A_{0}+A_{1} \mid\left[\mathrm{in}_{i}\right] \varphi\right\} \quad \Gamma, x:\left\{A_{i} \mid \varphi\right\} \vdash N_{i}: U \quad \Gamma, x: A_{1-i} \vdash N_{1-i}: U}{\Gamma \vdash \operatorname{case} M \text { of }\left(x . N_{0} \mid x \cdot N_{1}\right): U} \\
& \text { for } i \in\{0,1\} \text {, } \\
& (\vee-\mathrm{E}) \frac{\Gamma \vdash M:\left\{A \mid \varphi_{0} \vee \varphi_{1}\right\} \quad \Gamma, x:\left\{A \mid \varphi_{i}\right\} \vdash N: U}{\Gamma \vdash N[M / x]: U} \quad\left(\operatorname{INJ}_{i}-\mathrm{I}\right) \frac{\Gamma \vdash M:\left\{A_{i} \mid \varphi\right\}}{\Gamma \vdash \operatorname{in}_{i}(M):\left\{A_{0}+A_{1} \mid\left[\operatorname{in}_{i}\right] \varphi\right\}} \\
& \text { (SUB) } \frac{\Gamma \vdash M: T \quad T \leq U}{\Gamma \vdash M: U} \quad(\mathrm{MP}) \frac{\Gamma \vdash M:\{A \mid \psi \Rightarrow \varphi\} \quad \Gamma \vdash M:\{A \mid \psi\}}{\Gamma \vdash M:\{A \mid \varphi\}} \quad(\operatorname{ExF}) \frac{\Gamma \vdash M:\{A \mid \perp\} \quad \Gamma \vdash N:|U|}{\Gamma \vdash N: U}
\end{aligned}
$$

$$
\left(\mu \text {-F) } \frac{\Sigma, \alpha: A \vdash \varphi: A}{\sum \vdash \mu \alpha \varphi: A} \quad \frac{\Sigma, \alpha: A \vdash \varphi: A}{\sum \vdash \mu^{\mathrm{t}} \alpha \varphi: A} \quad \frac{\Sigma, \alpha: A \vdash \varphi: A}{\sum \vdash v^{\mathrm{t}} \alpha \varphi: A}\right.
$$

Fig. 9. Extended Formation Rules of Formulae (where $\alpha \operatorname{Pos} \varphi$ and α is guarded in φ).

Example 5.3 ("Next-Step" (\bigcirc) on Guarded Streams). We have the following for Cons ${ }^{\mathrm{g}}$ and tl^{g} :

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & =\lambda x \cdot \lambda s . \text { fold }(\langle x, s\rangle) \\
\mathrm{t}^{\mathrm{g}} & =\lambda s \cdot \pi_{1}(\text { unfold } s)
\end{aligned}:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\}
$$

Example 5.4 ("Always" (\square) on Guarded Streams). The following are easy to derive:

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & :\{A \mid \varphi\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
\mathrm{hd}^{\mathrm{g}} & :\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\{A \mid \varphi\} \\
\mathrm{tl}^{\mathrm{g}} & :\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
\mathrm{map}^{\mathrm{g}} & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
\operatorname{merge}^{\mathrm{g}} & \left.:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi_{0}\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi_{1}\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square(\mathrm{hd}] \varphi_{0} \vee[\mathrm{hd}] \varphi_{1}\right)\right\}
\end{aligned}
$$

where merge ${ }^{g}$ takes two guarded streams and interleaves them:

$$
\begin{aligned}
\text { merge }^{\mathrm{g}} & : \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) \cdot \lambda s_{0} \cdot \lambda s_{1} \cdot\left(\operatorname{hd}^{\mathrm{g}} s_{0}\right):::^{\mathrm{S}} \operatorname{next}\left(\left(\mathrm{hd}^{\mathrm{g}} s_{1}\right):::^{\mathrm{g}}\left(g \circledast\left(\mathrm{tt}^{\mathrm{g}} s_{0}\right) \circledast\left(\mathrm{tl}^{\mathrm{g}} s_{1}\right)\right)\right)
\end{aligned}
$$

6 POLYNOMIAL TYPES, LIVENESS PROPERTIES AND THE SAFE FRAGMENT

The system presented so far has only one form of fixpoints in formulae ($v \alpha \varphi$). We now present our full system, which also handles least fixpoints ($\mu \alpha \varphi)$ and thus liveness properties. A key role is played by polynomial guarded recursive types, that we discuss first.

Strictly Positive and Polynomial Types. Strictly positive types (notation P^{+}, Q^{+}, etc.) are given by

$$
P^{+} \quad::=A|X|>P^{+}\left|P^{+}+P^{+}\right| P^{+} \times P^{+}\left|\operatorname{Fix}(X) \cdot P^{+}\right| B \rightarrow P^{+}
$$

where A, B are (closed) constant pure types. Strictly positive types are a convenient generalization of polynomial types. A guarded recursive type Fix $(X) . P(X)$ is polynomial if $P(X)$ is induced by

$$
P(X) \quad::=A|>X| P(X)+P(X)|P(X) \times P(X)| B \rightarrow P(X)
$$

where A, B are (closed) constant pure types. Note that if $\operatorname{Fix}(X) \cdot P(X)$ is polynomial, X cannot occur on the left of an arrow (\rightarrow) in $P(X)$. We say that Fix $(X) . P(X)$ (resp. P^{+}) is finitary polynomial (resp. finitary strictly positive) if B is a finite base type (see Ex. 3.1) in the above grammars.
Example 6.1. For A a constant pure type, e.g. $\operatorname{Str}^{g} A$, CoList $^{g} A$ and $\operatorname{Tree}^{g} A$ as well as $\operatorname{Str}{ }^{\mathrm{g}}(\operatorname{Str} A)$, CoList ${ }^{\mathrm{g}}(\operatorname{Str} A)$ and $\operatorname{Res}^{\mathrm{g}} A$ (with I, 0 constant) are polynomial. More generally, polynomial types include all recursive types $\operatorname{Fix}(X) . P(X)$ where $P(X)$ is of the form

$$
\begin{equation*}
\sum_{i=0}^{n} A_{i} \times(\triangleright X)^{B_{i}} \tag{2}
\end{equation*}
$$

with A_{i}, B_{i} constant. On the other hand, the non-strictly positive recursive type Rou ${ }^{\mathrm{g}} A$ of Ex. 3.2, used in Hofmann's breadth-first traversal (see e.g. [Berger et al. 2019]), is not polynomial.

The set-theoretic counterpart of our polynomial recursive types are the exponent polynomial functors of [Jacobs 2016], which all have final Set-coalgebras (see e.g. [Jacobs 2016, Cor. 4.6.3]).

$$
\begin{gathered}
\overline{\vdash^{A} \varphi[\mu \alpha \varphi / \alpha] \Rightarrow \mu \alpha \varphi} \quad \frac{\vdash^{A} \varphi[\psi / \alpha] \Rightarrow \psi}{r^{A} \mu \alpha \varphi \Rightarrow \psi} \quad \overline{r^{A} \theta^{\mathrm{t}+1} \alpha \varphi \Leftrightarrow \varphi\left[\theta^{\mathrm{t}} \alpha \varphi / \alpha\right]} \quad \overline{r^{A} \mu^{\theta} \alpha \varphi \Leftrightarrow \perp} \\
\frac{\llbracket \mathrm{t} \rrbracket \leq \llbracket \mathrm{u} \rrbracket}{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi \Rightarrow \mu^{\mathrm{u}} \alpha \varphi} \quad \frac{\llbracket \mathrm{t} \rrbracket \geq \llbracket \mathrm{u} \rrbracket}{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi \Rightarrow \mu \alpha \varphi} \quad \frac{\llbracket \mathrm{t}}{\vdash^{A} v^{\mathrm{t}} \alpha \varphi \Rightarrow v^{\mathrm{u}} \alpha \varphi} \quad \overline{\vdash^{A} v \alpha \varphi \Rightarrow v^{\mathrm{t}} \alpha \varphi} \quad \overline{r^{A} v^{0} \alpha \varphi \Leftrightarrow{ }^{\top}}
\end{gathered}
$$

Fig. 10. Extended Modal Axioms and Rules (where A is a pure type and θ is either μ or v).

The Full Temporal Modal Logic. We assume given a first-order signature of iteration terms (notation t, u, etc.), with iteration variables k, ℓ, etc., and for each iteration term $\mathrm{t}\left(k_{1}, \ldots, k_{m}\right)$ with variables as shown, a given primitive recursive function $\llbracket t \rrbracket: \mathbb{N}^{m} \rightarrow \mathbb{N}$. We assume a term 0 for $0 \in \mathbb{N}$ and a term $k+1$ for the successor function $n \in \mathbb{N} \mapsto n+1 \in \mathbb{N}$.

The formulae of the full temporal modal logic extend those of Fig. 5 with least fixpoints $\mu \alpha \varphi$ and with approximated fixpoints $\mu^{\mathrm{t}} \alpha \varphi$ and $v^{\mathrm{t}} \alpha \varphi$ where t is an iteration term (see Fig. 9). Least fixpoints $\mu \alpha \varphi$ are equipped with their usual Kozen axioms. In addition, iteration formulae $\nu^{\mathrm{t}} \alpha \varphi(\alpha)$ and $\mu^{\mathrm{t}} \alpha \varphi(\alpha)$ have axioms expressing that they are indeed iterations of $\varphi(\alpha)$ from resp. T and $\perp . \mathrm{A}$ fixpoint logic with iteration variables was already considered in [Sprenger and Dam 2003].

Definition 6.2 (Full Modal Theories). The full intuitionistic and classical modal theories (still denoted \vdash^{A} and \vdash_{c}^{A}) are defined by extending Def. 4.5 with the axioms and rules of Fig. 10.

Example 6.3. Least fixpoints allow us to define liveness properties. On streams and colists, we have $\diamond \varphi:=\mu \alpha . \varphi \vee \bigcirc \alpha$ and $\varphi \cup \psi:=\mu \alpha . \psi \vee(\varphi \wedge \bigcirc \alpha)$. On trees, we have the CTL-like $\exists \diamond \varphi:=\mu \alpha . \varphi \vee\left(\bigcirc_{\ell} \alpha \vee \bigcirc_{r} \alpha\right)$ and $\forall \diamond \varphi:=\mu \alpha . \varphi \vee\left(\bigcirc_{\ell} \alpha \wedge \bigcirc_{r} \alpha\right)$.

Remark 6.4. On finitary trees (as in (2) but with A_{i}, B_{i} finite base types), we have all formulae of the modal μ-calculus. For this fragment, satisfiability is decidable (see e.g. [Bradfield and Walukiewicz 2018]), as well as the classical theory \vdash_{c} by completeness of Kozen's axiomatization [Walukiewicz 2000] (see [Santocanale and Venema 2010] for completeness results on fragments of the μ-calculus).

The Safe and Smooth Fragments. We now discuss two related but distinct fragments of the temporal modal logic. Both fragments directly impact the refinement type system by allowing for more typing rules. The safe fragment plays a crucial role, because it reconciles the internal and external semantics of our system (see §8). It gives the subtying rule for $■$ (Fig. 11), which makes available the comonad structure of \square on [box] φ when φ is safe.

Definition 6.5 (Safe Formula). A formula $\alpha_{1}: A_{1}, \ldots, \alpha_{n}: A_{n} \vdash \varphi: A$ is safe if
(i) the types A_{1}, \ldots, A_{n}, A are strictly positive, and
(ii) for each occurrence in φ of a modality $[\operatorname{ev}(\psi)]$, the formula ψ is closed, and
(iii) each occurrence in φ of a least fixpoint $(\mu \alpha(-))$ and of an implication (\Rightarrow) is guarded by a [box].

Note that the safe restriction imposes no condition on approximated fixpoints $\mu^{\mathrm{t}} \alpha$. Recalling that the theory under a [box] is \vdash_{c}^{A}, the only propositional connectives accessible to \vdash^{A} in safe formulae are those on which \vdash^{A} and \vdash_{c}^{A} coincide. The formula $[\neg$ nil $]=[$ fold $]\left[\mathrm{in}_{1}\right] T$ is safe. Moreover:

Example 6.6. Any formula without fixpoint nor $[\operatorname{ev}(-)]$ is equivalent in \vdash_{c} to a safe one. It φ is safe, then so are $[\mathrm{hd}] \varphi,[\mathrm{lbl}] \varphi$, as well as $\Delta \varphi($ for $\Delta \in\{\square, \forall \square, \exists \square\})$ and $[$ box $] \Delta \varphi($ for $\Delta \in\{\diamond, \exists \diamond, \forall \diamond\})$.

Definition 6.7 (Smooth Formula). A formula $\alpha_{1}: A_{1}, \ldots, \alpha_{n}: A_{n} \vdash \varphi: A$ is smooth if
(i) the types A_{1}, \ldots, A_{n}, A are finitary strictly positive, and
(ii) for each occurrence in φ of a modality $[\operatorname{ev}(\psi)]$, the formula ψ is closed, and

$$
\begin{aligned}
& \frac{\varphi \text { safe }}{\{\boldsymbol{\square} A \mid[\mathrm{box}] \varphi\} \equiv \boldsymbol{\square}\{A \mid \varphi\}} \quad \overline{\forall k \cdot T \equiv \vee k \cdot T} \quad(\forall-\mathrm{I}) \frac{\Gamma \vdash M: T}{\Gamma \vdash M: \forall k \cdot T} \quad(\forall-\mathrm{E}) \frac{\Gamma \vdash M: \forall k \cdot T}{\Gamma \vdash M: T[\mathrm{t} / k]}
\end{aligned}
$$

$$
\begin{aligned}
& (\mu-\mathrm{E}) \frac{\Gamma \vdash M:\{\mathbf{\square} A \mid[\operatorname{box}] \gamma[\mu \alpha \psi / \beta]\} \quad \Gamma, x:\left\{\boldsymbol{\square} A \mid[\operatorname{box}] \gamma\left[\mu^{k} \alpha \psi / \beta\right]\right\} \vdash N: U}{\Gamma \vdash N[M / x]: U}
\end{aligned}
$$

Fig. 11. Extended (Sub)Typing Rules for Refinement Types (with k fresh, $\theta \alpha \psi, \gamma$ smooth and β Pos γ).
(iii) φ is alternation-free: it can be formed using the rules of Fig. 5 and Fig. 9, but where Σ is the empty context in $(v-F)$ and $(\mu-F)$.

In an alternation-free formula, fixpoints $\theta \alpha \varphi$ are only allowed when φ has at most α free (so that $\theta \alpha \varphi$ has no free propositional variable). Note that the smooth restriction imposes no further conditions on approximated fixpoints $\theta^{\mathrm{t}} \alpha$. In the smooth fragment, greatest and least fixpoints can be thought about respectively as

$$
\bigwedge_{m \in \mathbb{N}} \varphi^{m}(\top) \quad \text { and } \quad \bigvee_{m \in \mathbb{N}} \varphi^{m}(\perp)
$$

Iteration terms allow for formal reasoning about such unfoldings. Assuming $\llbracket t \rrbracket=m \in \mathbb{N}$, the formula $\nu^{\mathrm{t}} \alpha \varphi(\alpha)\left(\right.$ resp. $\left.\mu^{\mathrm{t}} \alpha \varphi(\alpha)\right)$ can be read as $\varphi^{m}(\mathrm{~T})\left(\right.$ resp. $\varphi^{m}(\perp)$). This gives the rules $(v-\mathrm{I})$ and (μ-E) (Fig. 11), which allow for reductions to the safe case (see examples in §7).

Remark 6.8. It is well-known (see e.g. [Bradfield and Walukiewicz 2018, §4.1]) that on finitary trees (see Rem. 6.4) the alternation-free fragment is equivalent to Weak MSO (MSO with second-order variables restricted to finite sets). In the case of streams Str B (for a finite base type B), Weak MSO is in turn equivalent to the full modal μ-calculus. In particular, the alternation-free fragment contains all the flat fixpoints of [Santocanale and Venema 2010] and thus LTL on Str B and CTL on Tree B and on Res B with I, O, B finite base types. A typical property on Tree B which cannot be expressed with alternation-free formulae is "there is an infinite path with infinitely many occurrences of b" for a fixed b: B (see e.g. [Bradfield and Walukiewicz 2018, §2.2]).

Example 6.9. Any formula without fixpoint nor $[\operatorname{ev}(-)]$ is smooth. It φ is smooth, then so are $[\mathrm{hd}] \varphi$, $[\mathrm{lbl}] \varphi$ and $\Delta \varphi$ for $\Delta \in\{\square, \forall \square, \exists \square, \diamond, \exists \diamond, \forall \diamond\}$.

The Full System. We extend the types of $\S 5$ with universal quantification over iteration variables $(\forall k \cdot T)$. The type system of $\S 5$ is extended with the rules of Fig. 11. The assumption that γ is smooth (applicable to the rules $(v-\mathrm{I})$ and $(\mu-\mathrm{E})$) implies that the β cannot occur in subformula of the form $\theta \alpha(-)$. On the other hand, β can occur in a subformula of the form $\theta^{\mathrm{t}} \alpha(-)$.
Example 6.10. The logical rules of Fig. 10 give the following derived typing rules (where β Pos γ):

$$
(\mu-\mathrm{I}) \frac{\Gamma \vdash M:\left\{\boldsymbol{\square} A \mid[\mathrm{box}] \gamma\left[\mu^{\mathrm{t}} \alpha \varphi / \beta\right]\right\}}{\Gamma \vdash M:\{\boldsymbol{\square} A \mid[\operatorname{box}] \gamma[\mu \alpha \varphi / \beta]\}} \quad(v-\mathrm{E}) \frac{\Gamma \vdash M:\{\mathbf{\square} A \mid[\mathrm{box}] \gamma[v \alpha \varphi / \beta]\}}{\Gamma \vdash M:\left\{\mathbf{\square} A \mid[\mathrm{box}] \gamma\left[v^{\mathrm{t}} \alpha \varphi / \beta\right]\right\}}
$$

7 EXAMPLES

We exemplified basic manipulations of our system over §3-5. We give further examples here, in particular illustrating how to handle liveness properties with the full system presented in $\S 6$. The functions used in our main examples are gathered in Table 4, with the following conventions.

Table 4. Code of the Examples.

Notation 7.1. In view of Rem. 4.8, we often write $\psi \| \mapsto \varphi$ for the formula $[\operatorname{ev}(\psi)] \varphi$. We also use the infix notation $a::^{\mathrm{g}} s$ for Cons ${ }^{\mathrm{g}}$ a s and write []$^{\mathrm{g}}$ for the empty colist $\mathrm{Nil}^{\mathrm{g}}$. Moreover, we use some syntactic sugar for pattern matching. For instance, assuming $s: \mathrm{CoList}^{\mathrm{g}} A$ we write

case s of		case (unfold s) of
$\mid[]^{\mathrm{g}} \mapsto \mathrm{N}$	for	\| $y . N[\langle \rangle / y]$
$x:: \mathrm{S}^{\text {x }}$ (${ }^{\text {a }}$		$y . M\left[\pi_{0}(y) / x, \pi_{1}(y) / x s\right]$

Most of the functions of Table 4 are obtained from usual recursive definitions by inserting \circledast and next at the right places. All the typings of Table 2 (for $A, B, 0$ constant, I finite and φ, ψ safe and smooth) can be derived for the functions of Table 4 . We review the main cases. See $\S D$ for details.

Example 7.2 (The Append Function on Coinductive CoLists). We discuss
append $:\{\operatorname{CoList} A \mid[$ box $][$ fin $]\} \longrightarrow\{\operatorname{CoList} A \mid[$ box $][$ fin $]\} \longrightarrow\{\operatorname{CoList} A \mid[$ box $][$ fin $]\}$
(where [fin] $=\diamond[$ nil $]$), which says that append takes finite colists to a finite colist. The strategy is to reduce to the following refinement type for the guarded append ${ }^{\text {g }}$:

$$
\begin{equation*}
\forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{nil}]\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \diamond^{\ell}[\mathrm{nil}]\right\} \rightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \diamond^{k+\ell}[\mathrm{nil}]\right\}\right) \tag{3}
\end{equation*}
$$

First, since $\diamond[$ nil $]$ is smooth, we can apply the rule ($\mu-\mathrm{E}$) (Fig. 11) twice and reduce to

$$
\Gamma \vdash \text { box }_{l}\left(\text { append }^{\mathrm{g}}(\text { unbox } s)(\text { unbox } t)\right):\{\text { CoList } A \mid[\text { box }] \diamond[\text { nil }]\}
$$

where Γ assumes s of type $\left\{\operatorname{CoList} A \mid[\right.$ box $] \diamond^{k}[$ nil $\left.]\right\}$ and t of type $\left\{\right.$ CoList $A \mid[$ box $] \diamond^{\ell}[$ nil $\left.]\right\}$. Using the derived rule ($\mu-\mathrm{I}$) (Ex. 6.10), we further reduce to

$$
\Gamma \vdash \operatorname{box}_{\iota}\left(\text { append }^{\mathrm{g}}(\text { unbox } s)(\text { unbox } t)\right):\left\{\text { CoList } A \mid[\text { box }] \diamond^{k+\ell}[\text { nil }]\right\}
$$

Now, since the formulae $\diamond^{k}[$ nil $], \diamond^{\ell}[$ nil $]$ are safe, by subtyping (Fig. 11) we have

$$
\Gamma \vdash s: \llbracket\left\{\operatorname{CoList} A \mid \diamond^{k}[\text { nil }]\right\} \quad \text { and } \quad \Gamma \vdash t: \llbracket\left\{\text { CoList } A \mid \diamond^{\ell}[\text { nil }]\right\}
$$

and we can reduce to showing the type (3) for append ${ }^{\mathrm{g}}$. The method is then to assume the type (3) under for the recursion variable g and to apply the (\forall-CI) rule (Fig. 11). Since $\diamond^{\theta}[$ nil $] \Leftrightarrow \perp$, the branch of 0 trivially follows by (ExF) (Fig. 8). In the branch of $k+1$, we reason by cases by applying (V-E) (Fig. 8) to $\diamond^{k+1} \psi \Leftrightarrow \psi \vee \bigcirc \diamond^{k} \psi$. See §D. 6 for details, but let us just mention that the type of append ${ }^{\mathrm{g}}$ can be sharpened to

$$
\forall k \cdot \forall \ell \cdot\left(\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{\ell+1}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell}[\text { nil }]\right\}\right)
$$

expressing that on finite colists, append ${ }^{\mathrm{g}}$ removes one constructor $\mathrm{Nil}^{\mathrm{g}}$ from its arguments.
Example 7.2 is representative of the general strategy to obtain refinement typings of the form

$$
\{\mathbf{\bullet} \mid[\text { box }] \diamond \psi\} \quad \longrightarrow \quad\{■ P \mid[\text { box }] \diamond \varphi\}
$$

with Q, P finitary polynomial and ψ, φ safe and smooth (in our cases, if φ is safe then so is $\diamond^{\mathrm{t}} \varphi$). Properties of the form $\diamond \square$ or $\square \diamond$ are more involved, but follow similar patterns.
Example 7.3 (The Map Function on Coinductive Streams). We have

$$
\text { map }:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\text { box }] \Delta[\text { hd }] \psi\} \longrightarrow\{\operatorname{Str} A \mid[\text { box }] \Delta[\text { hd }] \varphi\}
$$

where ψ, φ are safe and smooth and where $\Delta \in\{\square, \diamond, \diamond \square, \square \diamond\}$. In the case of $\diamond \square$, since $\diamond \square[h d] \varphi$, $\diamond \square[\mathrm{hd}] \psi$ are smooth and $\diamond^{k} \square[\mathrm{hd}] \varphi, \diamond^{k} \square[\mathrm{hd}] \psi$ are safe, we reduce to showing

$$
\left(\operatorname{map}^{\mathrm{g}} f\right): \quad \forall k \cdot\left(\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right)
$$

assuming f of type $\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$. But this is unfortunately too weak. Similarly as in Ex. 7.2, it is natural to first assume the type (put under \bullet) for the recursion variable g and to apply ($\forall-C I)$. In the case of $k+1$, we unfold $\diamond^{k+1} \square[\mathrm{hd}] \psi \Leftrightarrow \square[\mathrm{hd}] \psi \vee \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi$ and apply (V-E). But in the branch of $\square[\mathrm{hd}] \psi$, giving g the type, say,

$$
\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond^{1} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{1} \square[\mathrm{hd}] \varphi\right\}
$$

is not sufficient to derive $g \circledast\left(\mathrm{t}^{\mathrm{g}} s\right):\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}$ assuming $s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\}$. The reason is that [next] (and thus \bigcirc) does not satisfy axiom (P) of Table 3 (see §8), so that $\diamond^{1} \vartheta \Leftrightarrow \vartheta$. The solution is to use the $[\operatorname{ev}(-)] / \| \rightarrow$ modality to strengthen the type of (mapg f) and to show

$$
\left(\operatorname{map}^{g} f\right): \quad \forall k \cdot\left\{\operatorname{Str}^{g} B \rightarrow \operatorname{Str}^{g} A \mid\left(\diamond^{k} \square[\mathrm{hd}] \psi \| \rightarrow \diamond^{k} \square[\mathrm{hd}] \varphi\right) \wedge(\square[\mathrm{hd}] \psi \| \rightarrow \square[\mathrm{hd}] \varphi)\right\}
$$

We turn to $\square \diamond$. Let $\square^{\mathrm{t}} \vartheta:=\nu^{\mathrm{t}} \alpha . \vartheta \wedge \bigcirc \alpha$. Using that $\square \diamond[\mathrm{hd}] \varphi$ and $\square \diamond[$ hd $] \psi$ are both smooth, we first unfold the \square 's using the rules (v-I) (Fig. 11) and then (v-E) (Ex. 6.10), thus reducing to

$$
\operatorname{box}_{\iota}\left(\operatorname{map}^{g} f(\text { unbox } s)\right) \quad: \quad\left\{\operatorname{Str} A \mid[\text { box }] \square^{\ell} \diamond[\text { hd }] \varphi\right\}
$$

assuming $f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$ and $s:\left\{\operatorname{Str} B \mid[\operatorname{box}] \square^{\ell} \diamond[\mathrm{hd}] \psi\right\}$. Then, since $\diamond[\mathrm{hd}] \varphi, \diamond[\mathrm{hd}] \psi$ are smooth, we can unfold the \diamond 's using the rules $(\mu-\mathrm{E})$ and $(\mu-\mathrm{I})$ with the non-trivial smooth context

$$
\gamma(\beta):=\square^{\ell} \beta
$$

Since the formulae $\square^{\ell} \diamond^{k}[\mathrm{hd}] \psi$ and $\square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi$ are safe, we can thus reduce to showing

$$
\left(\operatorname{map}^{\mathrm{g}} f\right): \quad \forall \ell \cdot \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

assuming $f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$. The result then follows using $(\forall-C I)$ and unfolding $\square^{\ell+1}, \diamond^{k+1}$. Note that the problem encountered above with \diamond^{1} is avoided since $\square^{1} \vartheta \Leftrightarrow \vartheta$. See §D.3.
Example 7.4 (The Diagonal Function). Consider a stream of streams s. We have $s=\left(s_{i} \mid i \geq 0\right)$ where each s_{i} is itself a stream $s_{i}=\left(s_{i, j} \mid j \geq 0\right)$. The diagonal of s is then the stream $\left(s_{i, i} \mid i \geq 0\right)$. Note that $s_{i, i}=\operatorname{hd}\left(\mathrm{tl}^{i}\left(\operatorname{hd}\left(\mathrm{tl}^{i}(s)\right)\right)\right.$. Indeed, $\mathrm{tl}^{i}(s)$ is the stream of streams $\left(s_{k} \mid k \geq i\right)$, so that $\left.\mathrm{hd}^{\mathrm{t}} \mathrm{tl}^{i}(s)\right)$ is the stream s_{i} and $\mathrm{tl}^{i}\left(\mathrm{hd}\left(\mathrm{tl}^{i}(s)\right)\right)$ is the stream $\left(s_{i, k} \mid k \geq i\right)$. Taking its the head thus gives $s_{i, i}$. In the diag function of Table 4, the auxiliary higher-order function diagaux ${ }^{g}$ iterates the coinductive tl over the head of the stream of streams s. We write \circ for function composition, so that assuming $s: \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A)$ and $t: \operatorname{Str} A \rightarrow \operatorname{Str} A$, we have the following (on the coinductive type $\operatorname{Str} A$):

$$
\begin{array}{rllrl}
\left(\mathrm{hd}^{\mathrm{g}} s\right) & : & \mathrm{Str} A & (\mathrm{hd} \circ t) & : \\
(\mathrm{Str} A \rightarrow A \\
(\mathrm{hd} \circ t)\left(\mathrm{hd}^{\mathrm{g}} s\right) & : & A & (t \circ \mathrm{tl}) & :
\end{array}
$$

The expected refinement types for diag (obtained similarly as in Ex. 7.3) say that if its argument is a stream whose component streams all satisfy $\square \varphi$, then diag returns a stream whose elements all satisfy φ. Also, if the argument of diag is a stream such that eventually all its component streams satisfy $\square \varphi$, then it returns a stream which eventually always satisfies φ. See §D. 4 for details.

Example 7.5 (A Fair Stream of Booleans). The non-regular stream (fb 0 1), adapted from [Bahr et al. 2020; Cave et al. 2014], is of the form

$$
\text { ff } \mathrm{tt} \text { ff } \mathrm{tt} \text { tt ff } \mathrm{tt} \text { tt } \mathrm{tt} \text { ff } \mathrm{tt} \text { tt } \mathrm{tt} \text { tt } \begin{array}{llll}
& \ldots
\end{array}
$$

It thus contains infinitely many tt's and infinitely many ff's. We indeed have (see §D. 5 for details):

$$
(\text { fb } 0 \text { 1) }): \quad\{\operatorname{Str} \text { Bool } \mid[b o x] \square \diamond[h d][t t] \wedge[b o x] \square \diamond[h d][f f]\}
$$

Example 7.6 (Resumptions). The type of resumptions $\operatorname{Res}^{g} A:=\operatorname{Fix}(X) . A+(\mathrm{I} \rightarrow(0 \times \wedge))$, is adapted from [Krishnaswami 2013]. Its guarded constructors are

$$
\begin{aligned}
& \operatorname{Ret}^{\mathrm{g}} \\
& \operatorname{Cont}^{\mathrm{g}}
\end{aligned}:=\lambda a . \mathrm{fold}\left(\mathrm{in}_{0} a\right) \quad: \quad A \longrightarrow \operatorname{Res}^{\mathrm{g}} A, \text { fold }\left(\mathrm{in}_{1} k\right) \quad:\left(\mathrm{I} \longrightarrow\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)\right) \longrightarrow \operatorname{Res}^{\mathrm{g}} A
$$

The formulae left undefined from §2 are the following (where $\psi: A, \vartheta: 0, \varphi: \operatorname{Res}^{\mathrm{g}} A$ and $\mathrm{i}: \mathrm{I}$):

$$
\begin{aligned}
& {[\text { Ret }]:=[\text { fold }]\left[\mathrm{in}_{0}\right] T \quad\left[\text { out }_{\mathrm{i}}\right] \vartheta:=[\text { fold }]\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \| \rightarrow\left[\pi_{0}\right] \vartheta\right)} \\
& {[\text { now }] \psi:=[\text { fold }]\left[\mathrm{in}_{0}\right] \psi \quad \bigcirc_{\mathrm{i}} \varphi:=[\text { fold }]\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \varphi\right)}
\end{aligned}
$$

The formula [Ret] (resp. [now] ψ) holds on a resumption which immediately returns (resp. with a value satisfying ψ) and we have $\operatorname{Ret}^{g}: A \rightarrow\left\{\operatorname{Res}^{g} A \mid[\operatorname{Ret}]\right\}$, $\operatorname{Ret}^{g}:\{A \mid \psi\} \rightarrow\left\{\operatorname{Res}^{g} A \mid[\right.$ now $\left.] \psi\right\}$. Assuming that I is a finite base type (so that $\operatorname{Res}^{g} A$ is finitary polynomial), and that $\psi: A, \vartheta: 0$ are safe and smooth, the expected refinement typings for sched are obtained similarly as in the case of map (Ex. 7.3), using approximations of $\forall \square, \exists \square, \forall \diamond$ and $\exists \diamond$ (see §D. 7 for details).

Example 7.7 (Breadth-First Tree Travsersal). The function bft ${ }^{9}$ of Table 4 (where g^{\circledast} stands for $\lambda x . g \circledast x)$ implements Martin Hofmann's algorithm for breadth-first tree traversal. This algorithm involves the higher-order type $\operatorname{Rou}^{\mathrm{g}} A=\operatorname{Fix}(X) .1+((\rightarrow X \rightarrow A) \rightarrow A)$ with constructors

$$
\begin{array}{ll}
\text { Over }^{\mathrm{g}} & :=\text { fold }\left(\mathrm{in}_{0}\langle \rangle\right) \\
\text { Cont }^{\mathrm{g}} & :=\lambda f . \operatorname{Rou}^{\mathrm{g}} A \\
\text { fold }\left(\mathrm{in}_{1} f\right) & :\left(\left(\neg \operatorname{Rou}^{\mathrm{g}} A \rightarrow \Delta A\right) \rightarrow A\right) \rightarrow \operatorname{Rou}^{\mathrm{g}} A
\end{array}
$$

We refer to [Berger et al. 2019] for explanations. Consider now a formula $\varphi: A$. We can lift φ to

$$
[\operatorname{Rou}] \varphi:=\quad v \alpha .[\text { fold }]\left[\mathrm{in}_{1}\right](([\text { next }] \alpha \| \rightarrow[\text { next }] \varphi) \| \mapsto \varphi): \operatorname{Rou}^{\mathrm{g}} A
$$

We have, for $\varphi: A$ and $\psi:$ CoList $^{\mathrm{g}} A$,

```
extract : \(\left\{\operatorname{Rou}^{\mathrm{g}}\left(\right.\right.\) CoList \(\left.^{\mathrm{g}} A\right) \mid\left[\mathrm{Rou}^{2} \psi\right\} \longrightarrow\left\{\right.\) CoList \(\left.^{\mathrm{g}} A \mid \psi\right\}\)
unfold : Rou \({ }^{\mathrm{g}} A \longrightarrow\left(\operatorname{Rou}^{\mathrm{g}} A \longrightarrow\{A \mid \varphi\}\right) \longrightarrow\{A \mid \varphi\}\)
bftaux : \(\left\{\right.\) Tree \(\left.^{g} A \mid \forall \square[\mathrm{Ibl}] \varphi\right\} \longrightarrow \operatorname{Rou}^{\mathrm{g}}\left(\mathrm{CoList}^{\mathrm{g}} A\right) \longrightarrow\left\{\operatorname{Rou}^{\mathrm{g}}\left(\mathrm{CoList}^{\mathrm{g}} A\right) \mid[\mathrm{Rou}] \square[\mathrm{hd}] \varphi\right\}\)
    \(\mathrm{bft}^{\mathrm{g}}: \quad\left\{\right.\) Tree \(\left.^{\mathrm{g}} A \mid \forall \square[\mathrm{Ibl}] \varphi\right\} \longrightarrow\left\{\right.\) CoList \(\left.^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}\)
```

Assume that $\varphi: A$ is safe. Note that on the one hand it is not clear what the meaning of $[\operatorname{Rou}] \varphi$ is, because it is an unsafe formula operating on a non-polynomial type. On the other hand, the above type of $\mathrm{bft}^{\mathrm{g}}$ has its standard expected meaning (namely: if all nodes of a tree satisfy φ then so do all elements of its traversal) because the types Tree $^{\mathrm{g}} A$, CoList $^{\mathrm{g}} A$ are polynomial and the formulae $\forall \square[\mathrm{lbl}] \varphi, \square[\mathrm{hd}] \varphi$ are safe. Hence, our system can prove standard statements via detours through non-standard ones, which illustrates its compositionality. We have the same typing for a usual breadth-first tree traversal with forests (à la [Jones and Gibbons 1993]). See §D.8.

8 SEMANTICS

We progressively present the main ingredients of the semantics of our type system. We take as base the denotational semantics of guarded recursion in the topos of trees, that we briefly sketch.

Denotational Semantics in the Topos of Trees. The topos of trees [Birkedal et al. 2012] provides a natural model of guarded recursion.

Definition 8.1 (Topos of Trees). The topos of trees \mathcal{S} is the category of presheaves over $(\mathbb{N} \backslash\{0\}, \leq)$.
In words, the objects of \mathcal{S} are indexed sets $X=(X(n))_{n>0}$ equipped with restriction maps r_{n}^{X} : $X(n+1) \rightarrow X(n)$. Intuitively, $X(n)$ represents the values available "at time n ", and r_{n}^{X} tells how values "at $n+1$ " can be restricted (actually most often truncated) to values "at n ". Excluding 0 from the indexes is a customary notational convenience ([Birkedal et al. 2012]). The morphisms from X to Y are families of functions $f=\left(f_{n}: X(n) \rightarrow Y(n)\right)_{n>0}$ which commute with restriction:

As any presheaf category, \mathcal{S} has (pointwise) limits and colimits, and is Cartesian closed (see e.g. [Mac Lane and Moerdijk 1992, §I.6]). We write $\Gamma: \mathcal{S} \rightarrow$ Set for the global section functor, which takes X to $\mathcal{S}[1, X]$, the set of morphisms $1 \longrightarrow X$ in \mathcal{S}, where $1=(\{\bullet\})_{n>0}$ is terminal in \mathcal{S}.

A typed term $\Gamma \vdash M: T$ is to be interpreted in \mathcal{S} as a morphism

$$
\llbracket M \rrbracket: \llbracket|\Gamma| \rrbracket \quad \longrightarrow \quad \llbracket|T| \rrbracket
$$

where $\llbracket|\Gamma| \rrbracket=\llbracket\left|T_{1}\right| \rrbracket \times \cdots \times \llbracket\left|T_{n}\right| \rrbracket$ for $\Gamma=x_{1}: T_{1}, \ldots, x_{n}: T_{n}$. In particular, a closed term $M: T$ is to be interpreted as a global section $\llbracket M \rrbracket \in \Gamma \llbracket|T| \rrbracket$. The $\times /+/ \rightarrow$ fragment of the calculus is interpreted by the corresponding structure in \mathcal{S}. The modality is interpreted by the functor $\downarrow \mathcal{S} \rightarrow \mathcal{S}$ of [Birkedal et al. 2012]. This functor shifts indexes by 1 and inserts a singleton set 1 at index 1 . The
term constructor next is interpreted by the natural map with component next ${ }^{X}: X \rightarrow X$ as in:

The guarded fixpoint combinator fix is interpreted by the morphism fix ${ }^{X}: X^{\triangleright} \rightarrow X$, natural in X, such that given $f: \triangleright X \times Y \rightarrow X$ with exponential transpose $f^{t}: Y \rightarrow X^{\triangleright}$, the morphism $\mathrm{fix}^{X} \circ f^{t}: Y \rightarrow X$ is unique such that fix ${ }^{X} \circ f^{t}=f \circ\left\langle\mathrm{next}^{X} \circ \mathrm{fix}^{X} \circ f^{T}\right.$, $\left.\mathrm{id}^{X}\right\rangle$ ([Birkedal et al. 2012, Thm. 2.4]). Together with an interpretation of guarded recursive types, this gives a denotational semantics of the whole calculus but for the $\mathbf{\square}$ modality. See [Birkedal et al. 2012; Clouston et al. 2016] for details. We write fold : $\llbracket A[\operatorname{Fix}(X) . A / X] \rrbracket \rightarrow \llbracket \operatorname{Fix}(X) . A \rrbracket$ and unfold : $\llbracket \operatorname{Fix}(X) . A \rrbracket \rightarrow$ $\llbracket A[\operatorname{Fix}(X) \cdot A / X] \rrbracket$ for the two components of the iso $\llbracket \operatorname{Fix}(X) \cdot A \rrbracket \simeq \llbracket A[\operatorname{Fix}(X) \cdot A / X] \rrbracket$.

Internal Semantics of Formulae. Each formula φ over A has an interpretation in \mathcal{S}, in the form of a subobject $\llbracket \varphi \rrbracket$ of $\llbracket A \rrbracket$.

A subobject S of an object X of \mathcal{S}, notation $S \hookrightarrow X$, is a family of subsets $S(n) \subseteq X(n)$ such that $r_{n}^{X}(t) \in S(n)$ whenever $t \in S(n+1)$. The set of subobjects of X, denoted $\operatorname{Sub}(X)$, is a complete lattice w.r.t. pointwise inclusions (see e.g. [Mac Lane and Moerdijk 1992, Prop. I.8.5]), and in particular a (complete) Heyting algebra. Following e.g. [Lambek and Scott 1986; Mac Lane and Moerdijk 1992], we say that $x \in \Gamma X$ satisfies a property $S \in \operatorname{Sub}(X)$ if x factors through S, as in

$$
\text { that is: } \quad \forall n>0, \quad x_{n}(\bullet) \in S(n)
$$

By adequacy of the \mathcal{S} semantics, we mean that for each closed term $M:\{A \mid \varphi\}$, the global section $\llbracket M \rrbracket \in \Gamma \llbracket A \rrbracket$ satisfies the property $\llbracket \varphi \rrbracket \in \operatorname{Sub}(\llbracket A \rrbracket)$.

Formulae without free iteration variables are interpreted by induction as expected. The propositional connectives are interpreted by the Heyting algebra structure on subobjects. This validates the rules of intuitionistic logic.

We now turn to the interpretation of modalities. Let [Δ] be a modality of the form $\left[\pi_{i}\right]$, $\left[\mathrm{in}_{i}\right]$, [next] or [fold], and assume [Δ] $\varphi: B$ whenever $\varphi: A$. Standard topos theoretic constructions give posets morphisms

$$
\llbracket[\Delta] \rrbracket: \operatorname{Sub}(\llbracket A \rrbracket) \quad \longrightarrow \quad \operatorname{Sub}(\llbracket B \rrbracket)
$$

such that:

- $\llbracket\left[\pi_{i}\right] \rrbracket$ and $\llbracket[$ fold $] \rrbracket$ are maps of Heyting algebras,
- $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket$ preserves \vee, \perp and \wedge,
- $\llbracket[n e x t] \rrbracket$ preserves \wedge, \top and \vee.

With $\llbracket[\Delta] \varphi \rrbracket:=\llbracket[\Delta] \rrbracket(\llbracket \varphi \rrbracket)$, all the axioms and rules of Table 3 are validated for these modalities. To handle guarded recursion, it is crucial to have

$$
\llbracket[\text { next }] \varphi \rrbracket:=>(\llbracket \varphi \rrbracket)
$$

with $\llbracket[$ next $] \varphi \rrbracket$ true at time 1 , independently from φ. As consequence, [next] and \bigcirc do not validate axiom (P) (Table 3), and $\diamond[\mathrm{hd}] \varphi$ can "lie" about the next time step.

The modality $[\operatorname{ev}(\psi)]$ is a bit more complex. For $\psi: B$ and $\varphi: A$, the formula $[\operatorname{ev}(\psi)] \varphi$ is interpreted as a logical predicate in the sense of [Jacobs 2001a, §9.2 \& Prop. 9.2.4]. The idea is that for

$$
\begin{aligned}
\left\{\left|\left[\pi_{i}\right] \varphi\right|\right\} & :=\left\{x \in \Gamma \llbracket A_{0} \times A_{1} \rrbracket \mid \pi_{i} \circ x \in\{|\varphi|\}\right\} \\
\{\mid[\text { next }] \varphi \mid\} & :=\{\text { next } \circ x \in \Gamma \llbracket A \rrbracket \mid x \in\{|\varphi|\}\} \\
\{\mid[\text { fold }] \varphi \mid\} & :=\{x \in \Gamma \llbracket \operatorname{Fix}(X) . A \rrbracket \mid \text { unfold } \circ x \in\{|\varphi|\}\} \\
\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\} & :=\left\{x \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \mid \exists y \in \Gamma \llbracket A_{i} \rrbracket\left(x=\mathrm{in}_{i} \circ y \text { and } y \in\{|\varphi|\}\right)\right\} \\
\{[[\mathrm{ev}(\psi)] \varphi \mid\} & :=\{x \in \Gamma \llbracket B \rightarrow A \rrbracket \mid \forall y \in \Gamma \llbracket B \rrbracket, y \in\{|\psi|\} \Longrightarrow \operatorname{ev} \circ\langle x, y\rangle \in\{|\varphi|\}\}
\end{aligned}
$$

Fig. 12. External Semantics (for closed and $■$-free formulae).
a term $M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}$, the global section ev $\circ\langle\llbracket M \rrbracket, x\rangle \in \Gamma \llbracket A \rrbracket$ should satisfy φ whenever $x \in \Gamma \llbracket B \rrbracket$ satisfies ψ. We refer to §C for details.

The interpretations of $\nu^{\mathrm{t}} \alpha \varphi(\alpha)$ and $\mu^{\mathrm{t}} \alpha \varphi(\alpha)$ (for t closed) are defined to be the interpretations resp. of $\varphi^{\llbracket t \rrbracket}(T)$ and $\varphi^{\llbracket t \rrbracket}(\perp)$, where e.g. $\varphi^{0}(T):=T$ and $\varphi^{n+1}(T):=\varphi\left(\varphi^{n}(T)\right)$.

We turn to fixpoints $v \alpha \varphi(\alpha)$ and $\mu \alpha \varphi(\alpha)$. A first possibility is to rely on Knaster-Tarski Fixpoint Theorem and the fact that when α is positive in φ (i.e. $\alpha \operatorname{Pos} \varphi$), the typing $\alpha: A \vdash \varphi: A$ induces a (monotone) poset morphism $\llbracket \varphi \rrbracket: \operatorname{Sub}(\llbracket A \rrbracket) \rightarrow \operatorname{Sub}(\llbracket A \rrbracket)$. This, however, is to some extent meaningless in our setting, because \mathcal{S} has unique guarded fixpoints [Birkedal et al. 2012, §2.5].

Proposition 8.2. Given $\alpha: A \vdash \varphi(\alpha): A$ with α positive and guarded by in φ, there is a unique $\llbracket v \alpha \varphi(\alpha) \rrbracket \in \operatorname{Sub}(\llbracket A \rrbracket)$ such that $\llbracket v \alpha \varphi(\alpha) \rrbracket=\llbracket \varphi(v \alpha \varphi(\alpha)) \rrbracket$.

In particular, the typing fix (s).Cons ${ }^{\mathrm{g}}$ as $:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond[\varphi]\right\}$ for arbitrary $a: A$ and $\varphi: \operatorname{Str}^{\mathrm{g}} A$ of $\S 2$ is not problematic w.r.t. the \mathcal{S} semantics $\llbracket-\rrbracket$!

The External Semantics. The above issue suggests to look for semantics closer to the intended meaning of the logic. Møgelberg [Møgelberg 2014] has shown that for polynomial types such as $\operatorname{Str}^{8} \mathrm{~B}$ with B a finite base type, the set of global sections $\Gamma \llbracket \operatorname{Str}^{\mathrm{g}} \mathrm{B} \rrbracket$ is equipped with the usual final coalgebra structure of streams over B in Set.

We devise a proper Set interpretation $\{|\varphi|\} \in \mathcal{P}(\Gamma \llbracket A \rrbracket)$ of formulae φ : A. For propositional connectives and fixpoints, this interpretation is defined similarly as the \mathcal{S} interpretation, but using (complete) Boolean algebras of subsets rather than (complete) Heyting algebras of subobjects. We give the cases of $\left[\pi_{i}\right],\left[\mathrm{in}_{i}\right],[\mathrm{next}]$ and [fold] in Fig. 12 (where for simplicity we assume formulae to be closed).

The Safe Fragment. We would like to have adequacy w.r.t. the Set semantics, namely that given $M:\{A \mid \varphi\}$, the global section $\llbracket M \rrbracket \in \Gamma \llbracket A \rrbracket$ satisfies $\{|\varphi|\} \in \mathcal{P}(\Gamma \llbracket A \rrbracket)$ in the sense that $\llbracket M \rrbracket \in\{|\varphi|\}$. The odd typing of $\S 2$ tells us that this is impossible in general. But this is possible for safe formulae since in this case we have:

$$
\{|\varphi|\}=\Gamma \llbracket \varphi \rrbracket
$$

Let us sketch the key ingredients for this property. First note that on $■$-free types, safe formulae do not contain implications (\Rightarrow). For this fragment, intuitionistic and classical logic coincide, making $\{|\varphi|\}=\Gamma \llbracket \varphi \rrbracket$ plausible. Second, for a safe formula $\alpha: A \vdash \varphi: A$, the poset morphisms

$$
\llbracket \varphi \rrbracket: \operatorname{Sub}(\llbracket A \rrbracket) \quad \longrightarrow \quad \operatorname{Sub}(\llbracket A \rrbracket) \quad \text { and } \quad\{|\varphi|\} \quad: \mathcal{P}(\Gamma \llbracket A \rrbracket) \longrightarrow \mathcal{P}(\Gamma \llbracket A \rrbracket)
$$

are Scott cocontinuous, in the sense that they preserve codirected infs. As a consequence, greatest fixpoints $v \alpha \varphi(\alpha)$ can be interpreted, both in Set and \mathcal{S}, as the infs of the interpretations of

$$
\mathrm{T}, \quad \varphi(\mathrm{~T}), \quad \varphi(\varphi(\mathrm{T})), \quad \ldots \quad \varphi^{n}(\mathrm{~T}), \quad \varphi^{n+1}(\mathrm{~T}), \quad \ldots
$$

This leads to the expected coincidence of the two semantics. In particular, the Set semantics is adequate for safe formulae. Let us step back to the cases of $\square[h d] \varphi$ and $\diamond[\mathrm{hd}] \varphi$ on guarded streams $\operatorname{Str}^{5} \mathrm{~B}$. Assume that φ is safe. The equality $\{|\square[\mathrm{hd}] \varphi|\}=\Gamma \llbracket \square[\mathrm{hd}] \varphi \rrbracket$ implies that the usual Set semantics of $\square[\mathrm{hd}] \varphi$ is in the image of Γ. But a subset of $\Gamma \llbracket \mathrm{Str}^{g} \mathrm{~B} \rrbracket$ which is in the image of Γ is necessarily a closed set w.r.t. the usual product topology on streams in Set, i.e. a safety property (see $\S C .11)$. Formulae of the form $\square[h d] \varphi$ define safety properties on streams, but liveness properties of the form $\diamond[h d] \varphi$ are not closed (for non-trivial φ), and thus cannot be in the image of Γ.

The Constant Modality. In order to safely handle unsafe formulae, we rely on the constant type modality \llbracket of [Clouston et al. 2016]. At the semantic level, \llbracket is interpreted as the composite functor $\Delta \Gamma: \mathcal{S} \rightarrow \mathcal{S}$, where the constant object functor $\Delta:$ Set $\rightarrow \mathcal{S}$ takes a set S to the constant family $(S)_{n>0}$. In words, all components $\llbracket \llbracket A \rrbracket(n)$ are equal to $\Gamma \llbracket A \rrbracket$, and the restriction maps of $\llbracket \llbracket A \rrbracket$ are identities. In particular, a global section $x \in \Gamma \llbracket \llbracket A \rrbracket$ is a constant family $\left(x_{n}\right)_{n}$ describing a unique global section $x_{n+1}(\bullet)=x_{n}(\bullet) \in \Gamma \llbracket A \rrbracket$. We refer to [Clouston et al. 2016] and §C for the interpretation of prev, box and unbox. Just note that the unit $\eta: \mathrm{Id}_{\mathrm{Set}} \rightarrow \Gamma \Delta$ is an iso.

Consider now an arbitrary formula φ over A. In order to accommodate its Set semantics $\{|\varphi|\}$ within \mathcal{S}, we can syntactically lift φ to the formula $[\operatorname{box}] \varphi$ over $\llbracket A$ and impose

$$
\llbracket[\text { box }] \varphi \rrbracket:=\Delta(\{|\varphi|\})
$$

This definition is justified by standard facts of topos theory, namely that for each set S, the functor Δ induces a map of (complete) Heyting algebras

$$
A \in \mathcal{P}(S) \longmapsto \Delta A \in \operatorname{Sub}(\Delta S)
$$

This means that the Set interpretation $\{|\varphi|\} \in \mathcal{P}(\Gamma \llbracket A \rrbracket)$ can be taken to the subobject $\Delta\{|\varphi|\} \in$ $\operatorname{Sub}(\Delta \Gamma \llbracket A \rrbracket)=\operatorname{Sub}(\llbracket ■ A \rrbracket)$ in \mathcal{S} while respecting the usual Set semantics of logical connectives. In particular, we can allow the logical theory under a [box] to be classical, while the \mathcal{S} semantics imposes the ambient logical theory to be intuitionistic. For the interpretation of [box] in the external semantics we can trivially let $\{[$ box $] \varphi \mid\}:=\left\{x \in \Gamma \llbracket \llbracket A \rrbracket \mid x_{1}(\bullet) \in\{|\varphi|\}\right\}$.

We can now state the correctness of our semantics w.r.t. the full modal theories of Def. 6.2.
Lemma 8.3. If $\vdash_{c}^{A} \varphi$ then $\{|\varphi|\}=\{|T|\}$. If $\vdash^{A} \varphi$ then $\llbracket \varphi \rrbracket=\llbracket \tau \rrbracket$.
Safe Formulae: The General Case. The property we use on safe formulae is the following.
Definition 8.4 (Scott Cocontinuity). Let L be a complete lattice. A set $S \subseteq L$ is codirected if it is non-empty and for all $a, b \in S$, there is some $c \in S$ such that $c \leq a, b$. A function $f: L \rightarrow L$ is Scott cocontinuous if it is monotone and preserves infs of codirected sets (for $S \subseteq L$ codirected, we have $f(\wedge S)=\wedge f(S))$.
In other words, a Scott cocontinuous function $L \rightarrow L$ is a Scott continuous function $L^{\mathrm{op}} \rightarrow L^{\mathrm{op}}$.
Lemma 8.5. The greatest fixpoint of a Scott cocontinuous $f: L \rightarrow L$ is given by $\wedge_{m \in \mathbb{N}} f^{m}(T)$.
Lemma 8.6. Given a safe formula $\alpha: A \vdash \varphi(\alpha): A$, the following functions are Scott cocontinuous:

$$
\llbracket \varphi \rrbracket: \operatorname{Sub}(\llbracket A \rrbracket) \longrightarrow \operatorname{Sub}(\llbracket A \rrbracket) \quad\{|\varphi|\} \quad: \mathcal{P}(\Gamma \llbracket A \rrbracket) \longrightarrow \mathcal{P}(\Gamma \llbracket A \rrbracket)
$$

The key for Lem. 8.6 is the usual fact that codirected infs commute with infs and finite sups.
Proposition 8.7. If φ : A is safe then $\{|\varphi|\}=\Gamma \llbracket \varphi \rrbracket$.
Proposition 8.7 gives the subtyping rule $\{\mathbf{■} \mid[\mathrm{box}] \varphi\} \equiv \llbracket\{A \mid \varphi\}$ (Fig. 11), which makes available the comonad structure of $■$ on [box] φ when φ is safe. Recall that in safe formulae, implications can only occur under a [box] modality and thus in closed subformulae. It is crucial for Prop. 8.7 that
infs and sups are pointwise in the subobject lattices of \mathcal{S}, so that conjunctions and disjunctions are interpreted as with the usual classical Kripke semantics (see e.g. [Mac Lane and Moerdijk 1992, §VI.7]). This of course does not hold for implications!

The Smooth Fragment. The smooth restriction allows for continuity properties which are stronger than in the safe case. A Scott continuous function $L \rightarrow L$ is a Scott cocontinuous function $L^{\mathrm{op}} \rightarrow L^{\mathrm{op}}$.
Lemma 8.8. Given $\alpha: A \vdash \varphi(\alpha): A$ with φ smooth and $\alpha \operatorname{Pos} \varphi$, the function $\{|\varphi|\}: \mathcal{P}(\Gamma \llbracket A \rrbracket) \longrightarrow$ $\mathcal{P}(\Gamma \llbracket A \rrbracket)$ is Scott continuous as well as cocontinuous.
The least fixpoint of a Scott continuous $f: L \rightarrow L$ is $\bigvee_{m \in \mathbb{N}} f^{m}(\perp)$. The following implies the correctness of the typing rules ($v-\mathrm{I})$ and ($\mu-\mathrm{E}$) of Fig. 11.
Corollary 8.9. Given smooth $v \alpha \varphi(\alpha): A$ and $\mu \alpha \varphi(\alpha): A$ we have

$$
\{|v \alpha \varphi(\alpha)|\}=\bigcap_{n \in \mathbb{N}}\left\{\left|\varphi^{n}(\mathrm{~T})\right|\right\} \quad \text { and } \quad\{|\mu \alpha \varphi(\alpha)|\}=\bigcup_{n \in \mathbb{N}}\left\{\left|\varphi^{n}(\perp)\right|\right\}
$$

The Realizability Semantics. The correctness of the type system w.r.t. its semantics in \mathcal{S} is proved with a realizability relation. This relation is formulated with global sections.
Definition 8.10 (Realizability). Given a type T without free iteration variable, a global section $x \in \Gamma \llbracket|T| \rrbracket$ and $n>0$, we define the realizability relation $x \Vdash_{n} T$ by induction on lexicographicaly ordered pairs (n, T) as follows:

- $x \mathbb{F}_{n}\{A \mid \varphi\}$ iff $x_{n}(\bullet) \in \llbracket \varphi \rrbracket^{A}(n)$.
- $x \|_{n} 1$.
- $x \mathbb{\Vdash}_{n} T_{0}+T_{1}$ iff there are some $i \in\{0,1\}$ and $y \in \Gamma \llbracket\left|T_{i}\right| \rrbracket$ s.t. $x=\operatorname{in}_{i} \circ y$ and $y \mathbb{\Vdash}_{n} T_{i}$.
- $x \mathbb{H}_{n} T_{0} \times T_{1}$ iff $\pi_{0} \circ x \mathbb{F}_{n} T_{0}$ and $\pi_{1} \circ x \mathbb{H}_{n} T_{1}$.
- $x \|_{\vdash_{n}} U \rightarrow T$ iff for all $k \leq n$ and for all $y \in \Gamma \llbracket|U| \rrbracket$ such that $y \|_{k} U$, we have $\mathrm{ev} \circ\langle x, y\rangle \mathbb{r}_{k} T$.
- $x \|_{1}>T$.
- $x \Vdash_{n+1} \triangleright T$ iff there is $y \in \Gamma \llbracket|T| \rrbracket$ such that $x=$ next $\circ y$ and $y \Vdash_{n} T$.
- $x \| \vdash_{n} \operatorname{Fix}(X)$. A iff unfold $\circ x \Vdash_{n} A[\operatorname{Fix}(X) . A / A]$.
$\bullet x \|_{n} ■ T$ iff $x_{n}(\bullet) \|_{m}$ T for all $m>0$ (where $\left.x \in \Gamma \llbracket|\llbracket T| \rrbracket\right)$.
- $x \mathbb{H}_{n} \forall k \cdot T$ iff $x \mathbb{F}_{n} T[\mathrm{t} / k$] for all closed iteration terms t .

Note that we have $x \mathbb{F}_{n} A$ for $x \in \Gamma$. It is easy to see that if $x \Vdash_{n} T$, then $x \mathbb{r}_{k} T$ for all $k \leq n$. We can now state the correctness of subtyping and of typing.
Lemma 8.11. Given types T, U without free iteration variable, if $x \Vdash_{n} U$ and $U \leq T$ then $x \Vdash_{n} T$.
Theorem 8.12 (Adequacy). If $\perp M: T, T$ with no free iteration variable, then $\llbracket M \rrbracket \| \vdash_{n} T$ for all $n>0$. A program $\vdash M:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$ with ψ, φ safe induces by composition a Set-function $\Gamma \llbracket M \rrbracket:$ $\Gamma \llbracket B \rrbracket \rightarrow \Gamma \llbracket A \rrbracket, x \mapsto \llbracket M \rrbracket \circ x$ such that $\Gamma \llbracket M \rrbracket(x)$ satisfies $\{|\varphi|\}$ if x satisfies $\{|\psi|\}$. To each polynomial recursive type Fix $(X) \cdot P(X)$, we associate a polynomial functor $P_{\text {Set }}$ in the obvious way.
Theorem 8.13 ([Møgelberg 2014] (see also [Clouston et al. 2016])). If Fix $(X) . P(X)$ is polynomial, then $\Gamma \llbracket \operatorname{Fix}(X) . P(X) \rrbracket$ carries a final Set-coalgebra structure for the polynomial Set functor $P_{\text {Set }}$.
For arbitrary φ, ψ, a program $\vdash M:\{■ B \mid[\mathrm{box}] \psi\} \rightarrow\{■ A \mid[\mathrm{box}] \varphi\}$ induces a Set-function

$$
\Gamma \llbracket M \rrbracket: \Gamma \llbracket B \rrbracket \longrightarrow \Gamma \llbracket A \rrbracket, \quad x \longmapsto \llbracket M \rrbracket \circ x
$$

(where the isos $\Gamma \llbracket C \rrbracket \simeq \Gamma \Delta \Gamma \llbracket C \rrbracket=\Gamma \llbracket \square C \rrbracket$ are left implicit) such that if $x \in \Gamma \llbracket B \rrbracket$ satisfies ψ in the standard sense (i.e. $x \in\{|\varphi|\}$), then $\Gamma \llbracket M \rrbracket(x) \in \Gamma \llbracket A \rrbracket$ satisfies φ in the standard sense (i.e. $\Gamma \llbracket M \rrbracket(x) \in\{|\varphi|\})$. In view of Thm. 8.13, $\Gamma \llbracket A \rrbracket, \Gamma \llbracket B \rrbracket$ are usual Set final coalgebras when A, B are polynomial. This applies to all the typings of Table 2 (which require $A, B, 0$ to be constant, I to be finite and φ, ψ to be safe and smooth, see $\S 7$).

9 RELATED WORK

Type systems based on guarded recursion have been designed to enforce properties of programs handling coinductive types, like causality [Krishnaswami and Benton 2011], productivity [Atkey and McBride 2013; Clouston et al. 2016; Guatto 2018; Møgelberg 2014]. These properties are captured by the type system, meaning that all well-typed programs satisfy these properties.

In an initially different line of work, temporal logics have been used as type systems for functional reactive programming (FRP), starting from LTL [Jeffrey 2012; Jeltsch 2014] to the intuitionistic modal μ-calculus [Cave et al. 2014]. These works follow the Curry-Howard "proof-as-programs" paradigm, and reflect in the programming languages the constructions of the temporal logic.

The FRP approach has been adapted to guarded recursion, e.g. for the absence of space leaks [$\mathrm{Kr}-$ ishnaswami 2013], or the absence of time leaks, with the Fitch-style system of [Bahr et al. 2019]. This more recently lead [Bahr et al. 2020] to consider liveness properties with an FRP approach based on guarded recursion. In this system, the guarded λ-calculus (presented in a Fitch-style type system) is extended with a delay modality (written \bigcirc) together with a "until type" A Until B. Following the Curry-Howard correspondence, A Until B is eliminated with a specific recross, based on the usual unfolding of Until in LTL, and distinct from the guarded fixpoint operator.

In these Curry-Howard approaches, temporal operators are wired into the structure of types. This means that there is no separation between the program and the proof that it satisfies a given temporal property. Different type formers having different program constructs, different temporal specifications for the same program may lead to different actual code.

We have chosen a different approach, based on refinement types, with which the structure of formulae is not reflected in the structure of types. This allows for our examples to be mostly written in a usual guarded recursive fashion (see Table 4). Of course, we indeed use the modality \square at the type level as a separation between safety and liveness properties. But different liveness properties (e.g. $\diamond, \diamond \square, \square \diamond$) are uniformly handled with the same \square-type, which is moreover the expected one in the guarded λ-calculus [Clouston et al. 2016].

Higher-order model checking (HOMC) [Kobayashi and Ong 2009; Ong 2006] has been introduced to check automatically that higher-order recursion schemes, a simple form of higher-order programs with finite data-types, satisfy a μ-calculus formula. Automatic verification of higher-order programs with infinite data-types (integers) has been explored for safety [Kobayashi et al. 2011], termination [Kuwahara et al. 2014], and more generally ω-regular [Murase et al. 2016] properties. In presence of infinite datatypes, semi-automatic extensions of HOMC have recently been proposed [Watanabe et al. 2019]. While HOMC automatically checks properties on coinductive structures, the major difference with our approach is that we consider input-output behaviors of functions operating on coalgebraic data.

Event-driven approaches consider effects as generating streams of events, which can be checked for temporal properties with algorithms based on (HO)MC [Hofmann and Chen 2014; Hofmann and Ledent 2017], or, in presence of infinite datatypes, with refinement type systems [Koskinen and Terauchi 2014; Nanjo et al. 2018]. Our iteration terms can be seen as oracles, as required by [Koskinen and Terauchi 2014] to handle liveness properties, but we do not know if they allow for the non-regular specifications of [Nanjo et al. 2018]. While such approaches can handle infinite data types with good levels of automation, they do not have coinductive types nor branching time properties, such as the temporal specification of the scheduler sched on resumptions (Table 2).

Along similar lines, branching was approached via non-determinism in [Unno et al. 2018], which also handles universal and existential properties on traces. This framework can handle CTL-like properties of the form $\exists / \forall-\square / \diamond$ (with our notation of Table 2, §2), but not nested combinations of these (as e.g. $\exists \square \forall \diamond$ for sched in Table 2). It moreover does not handle coinductive types.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

10 CONCLUSION AND FUTURE WORK

We have presented a refinement type system for the guarded λ-calculus, with refinements expressing temporal properties stated as (alternation-free) μ-calculus formulae. As we have seen, the system is general enough to prove precise behavioral input/output properties of coinductively-typed programs. Our main contribution is to handle liveness properties in presence of guarded recursive types. As seen in §2, this comes with inherent difficulties. In general, once guarded recursive functions are packed into coinductive ones using \llbracket, the logical reasoning is made in our system directly on top of programs, following their shape, but requiring no further modification. We thus believe to have achieved some separation between programs and proofs.

We provided several examples. While they demonstrate the flexibility of our system, they also show that more abstraction would be welcomed when proving liveness properties. In addition, our system lacks expressiveness to prove e.g. liveness properties on breadth-first tree traversals.

Extensions of the guarded λ-calculus with dependent types have been explored, namely Guarded (Cubical) Dependent Type Theory [Birkedal et al. 2019; Bizjak et al. 2016]. It may be possible to extend our work to these systems. This would require to work in a Fitch-style presentation of the modality, as in [Bahr et al. 2019], as it is not known how to extend delayed substitutions to dependent types. Also, it is appealing to investigate the generalization of our approach to sized types [Abel and Pientka 2016], in which guarded recursive types are representable [Veltri and van der Weide 2019].
We plan to investigate type checking. For instance, in a decidable fragment like the μ-calculus on streams, one can check that a function of type $\left\{\operatorname{Str}^{\mathrm{g}} C \mid \diamond \square[\mathrm{hd}] \vartheta\right\} \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond \square[\mathrm{hd}] \psi\right\}$ can be postcomposed with one of type $\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square \diamond[\mathrm{hd}] \psi\right\} \rightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square \diamond[\mathrm{hd}] \varphi\right\}$ (since $\diamond \square[\mathrm{hd}] \psi \Rightarrow$ $\square \diamond[h d] \psi)$. Hence, we expect that some automation is possible for fragments of our logic. In presence of iteration terms, arithmetic extensions of the μ-calculus [Kobayashi et al. 2019, 2020] may provide interesting backends. An other direction is the interaction with HOMC. If (say) a stream over A is representable in a suitable format, one may use HOMC to check whether it can be argument of a function expecting e.g. a stream of $\operatorname{type}\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square \diamond[\mathrm{hd}] \varphi\right\}$. This might provide automation for fragments of the guarded λ-calculus. Besides, the combination of refinement types with automatic techniques like predicate abstraction [Rondon et al. 2008], abstract interpretation [Jhala et al. 2011], or SMT solvers [Vazou 2016; Vazou et al. 2014] has been particularly successful. More recently, the combination of refinement types inference with HOMC has been investigated [Sato et al. 2019].

We would like to explore temporal specification of general, effectful programs. To do so, we wish to develop the treatment of the coinductive resumptions monad [Piróg and Gibbons 2014], that provides a general framework to reason on effectful computations, as shown by interaction trees [Xia et al. 2019]. It would be interesting to study temporal specifications we could give to effectful programs encoded in this setting. To formalize reasoning on such examples, we would like to design an embedding of our system in a proof assistant like Coo.

Following [Appel et al. 2007], guarded recursion has been used to abstract the reasoning over the step-indexing technique [Appel and McAllester 2001], that has been used to design Kripke Logical Relations [Ahmed 2006] for typed higher-order effectful programming languages. Program logics for reasoning on such logical relations [Dreyer et al. 2011, 2010] uses this representation of step-indexing via guarded recursion. It is also found in Iris [Jung et al. 2018], a framework for higher-order concurrent separation logic. It would be interesting to explore the incorporation of temporal reasoning, especially liveness properties, in such logics.

Acknowledgments. We would like to thank anonymous referees of previous versions of this paper for stimulating comments.

REFERENCES

A. Abel and B. Pientka. 2016. Well-founded recursion with copatterns and sized types. 7. Funct. Program. 26 (2016), e2. https://doi.org/10.1017/S0956796816000022
A. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the 15th European Conference on Programming Languages and Systems (ESOP'06). Springer-Verlag, Berlin, Heidelberg, 69-83. https://doi.org/10.1007/11693024_6
A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. 2007. A Very Modal Model of a Modern, Major, General Type System. SIGPLAN Not. 42, 1 (2007), 109-122. https://doi.org/10.1145/1190215.1190235
A. W. Appel and D. McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying Code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657-683. https://doi.org/10.1145/504709.504712
R. Atkey and C. McBride. 2013. Productive Coprogramming with Guarded Recursion. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP '13). ACM, New York, NY, USA, 197-208. https: //doi.org/10.1145/2500365.2500597
P. Bahr, C. Graulund, and R. Møgelberg. 2019. Simply RaTT: A Fitch-Style Modal Calculus for Reactive Programming without Space Leaks. Proc. ACM Program. Lang. 3, ICFP (2019), 109:1-109:27. https://doi.org/10.1145/3341713
P. Bahr, C. Graulund, and R. Møgelberg. 2020. Diamonds are not forever: Liveness in reactive programming with guarded recursion. arXiv:cs.PL/2003.03170
C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. The MIT Press.
U. Berger, R. Matthes, and A. Setzer. 2019. Martin Hofmann's Case for Non-Strictly Positive Data Types. In 24th International Conference on Types for Proofs and Programs (TYPES 2018), P. Dybjer, J. Espírito Santo, and L. Pinto (Eds.). Leibniz International Proceedings in Informatics (LIPIcs), Vol. 130. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 1:1-1:22. https://doi.org/10.4230/LIPIcs.TYPES.2018.1
L. Birkedal, A. Bizjak, R. Clouston, H. B. Grathwohl, B. Spitters, and A. Vezzosi. 2019. Guarded Cubical Type Theory. fournal of Automated Reasoning 63, 2 (2019), 211-253. https://doi.org/10.1007/s10817-018-9471-7
L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. 2012. First steps in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science 8, 4 (2012).
A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal. 2016. Guarded Dependent Type Theory with Coinductive Types. In Foundations of Software Science and Computation Structures, B. Jacobs and C. Löding (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 20-35.
P. Blackburn, M. de Rijke, and Y. Venema. 2002. Modal Logic. Cambridge University Press.
J. C. Bradfield and I. Walukiewicz. 2018. The mu-calculus and Model Checking. In Handbook of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem (Eds.). Springer, 871-919.
A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. 2014. Fair Reactive Programming. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '14). ACM, New York, NY, USA, 361-372.
B. F. Chellas. 1980. Modal Logic: An Introduction. Cambridge University Press.
R. Clouston, A. Bizjak, H. Bugge Grathwohl, and L. Birkedal. 2016. The Guarded Lambda-Calculus: Programming and Reasoning with Guarded Recursion for Coinductive Types. Logical Methods in Computer Science 12, 3 (2016).
D. Dreyer, A. Ahmed, and L Birkedal. 2011. Logical Step-Indexed Logical Relations. Logical Methods in Computer Science Volume 7, Issue 2 (2011). https://doi.org/10.2168/LMCS-7(2:16)2011
D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. 2010. A Relational Modal Logic for Higher-order Stateful ADTs. In Proceedings POPL'10. ACM, 185-198.
T. Freeman and F. Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation (PLDI'91). Association for Computing Machinery, New York, NY, USA, 268-277. https://doi.org/10.1145/113445.113468
S. Frittella. 2014. Monotone Modal Logics \& Friends. Ph.D. Dissertation. Aix-Marseille Univ.
A. Guatto. 2018. A Generalized Modality for Recursion. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '18). ACM, New York, NY, USA, 482-491. https://doi.org/10.1145/3209108.3209148
H. H. Hansen. 2003. Monotonic Modal Logics. Master's thesis. ILLC, Amsterdam.
M. Hofmann and W. Chen. 2014. Abstract interpretation from Büchi automata. In foint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, fuly 14-18, 2014, T. A. Henzinger and D. Miller (Eds.). ACM, 51:1-51:10. https://doi.org/10.1145/2603088.2603127
M. Hofmann and J. Ledent. 2017. A cartesian-closed category for higher-order model checking. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, fune 20-23, 2017. IEEE Computer Society, 1-12. https://doi.org/10.1109/LICS.2017.8005120
B. Jacobs. 2001a. Categorical Logic and Type Theory. Elsevier.
B. Jacobs. 2001b. Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study. ITA 35, 1 (2001), 31-59.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.
B. Jacobs. 2016. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge University Press.
A. Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic Propositions As Types, Proofs As Functional Reactive Programs. In Proceedings of the Sixth Workshop on Programming Languages Meets Program Verification (PLPV'12). ACM, New York, NY, USA, 49-60. https://doi.org/10.1145/2103776.2103783
W. Jeltsch. 2014. An Abstract Categorical Semantics for Functional Reactive Programming with Processes. In Proceedings of the ACM SIGPLAN 2014 Workshop on Programming Languages Meets Program Verification (PLPV'14). ACM, New York, NY, USA, 47-58. https://doi.org/10.1145/2541568.2541573
R. Jhala, R. Majumdar, and A. Rybalchenko. 2011. HMC: Verifying functional programs using abstract interpreters. In International Conference on Computer Aided Verification. Springer, 470-485.
P.T. Johnstone. 2002. Sketches of an Elephant: A Topos Theory Compendium. Clarendon Press.
G. Jones and J. Gibbons. 1993. Linear-time Breadth-first Tree Algorithms: An Exercise in the Arithmetic of Folds and Zips. Technical Report. University of Auckland.
R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018).
K. Kobayashi, T. Nishikawa, A. Igarashi, and H. Unno. 2019. Temporal Verification of Programs via First-Order Fixpoint Logic. In Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings (Lecture Notes in Computer Science), Bor-Yuh Evan Chang (Ed.), Vol. 11822. Springer, 413-436. https://doi.org/10.1007/978-3-030-32304-2_ 20
N Kobayashi, G. Fedyukovich, and A. Gupta. 2020. Fold/Unfold Transformations for Fixpoint Logic. In Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European Foint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II (Lecture Notes in Computer Science), A. Biere and D. Parker (Eds.), Vol. 12079. Springer, 195-214. https://doi.org/10.1007/ 978-3-030-45237-7_12
N. Kobayashi and C-H L. Ong. 2009. A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes. In 2009 24th Annual IEEE Symposium on Logic In Computer Science. IEEE, 179-188.
N. Kobayashi, R. Sato, and H. Unno. 2011. Predicate abstraction and CEGAR for higher-order model checking. SIGPLAN Not. 46, 6 (2011), 222-233. https://doi.org/10.1145/1993316.1993525
E. Koskinen and T. Terauchi. 2014. Local Temporal Reasoning. In Proceedings of the foint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (CSL-LICS'14). Association for Computing Machinery, New York, NY, USA. https: //doi.org/10.1145/2603088.2603138
D. Kozen. 1983. Results on the propositional μ-calculus. Theoretical Computer Science 27, 3 (1983), 333-354. Special Issue Ninth International Colloquium on Automata, Languages and Programming (ICALP) Aarhus, Summer 1982.
N. R. Krishnaswami. 2013. Higher-order Functional Reactive Programming Without Spacetime Leaks. In Proceedings of ICFP'13. ACM, New York, NY, USA, 221-232.
N. R. Krishnaswami and N. Benton. 2011. Ultrametric Semantics of Reactive Programs. In 2011 IEEE 26th Annual Symposium on Logic in Computer Science. 257-266. https://doi.org/10.1109/LICS.2011.38
T. Kuwahara, T. Terauchi, H. Unno, and N. Kobayashi. 2014. Automatic Termination Verification for Higher-Order Functional Programs. In Programming Languages and Systems (ESOP'14), Z. Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 392-411.
J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic. CUP.
S. Mac Lane and I. Moerdijk. 1992. Sheaves in geometry and logic: A first introduction to topos theory. Springer.
S. Marin. 2018. Modal proof theory through a focused telescope. PhD Thesis. Université Paris Saclay. https://hal. archives-ouvertes.fr/tel-01951291
C. McBride and R. Paterson. 2008. Applicative programming with effects. Journal of Functional Programming 18, 1 (2008). https://doi.org/10.1017/S0956796807006326
R. Milner. 1975. Processes: a mathematical model of computing agents. In Studies in Logic and the Foundations of Mathematics. Vol. 80. Elsevier, 157-173.
R. E. Møgelberg. 2014. A Type Theory for Productive Coprogramming via Guarded Recursion. In Proceedings of CSL-LICS 2014 (CSL-LICS '14). ACM.
A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno. 2016. Temporal Verification of Higher-Order Functional Programs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'16). Association for Computing Machinery, New York, NY, USA, 57-68. https://doi.org/10.1145/2837614.2837667
H. Nakano. 2000. A Modality for Recursion. In Proceedings of LICS'00. IEEE Computer Society, 255-266.
Y. Nanjo, H. Unno, E. Koskinen, and T. Terauchi. 2018. A Fixpoint Logic and Dependent Effects for Temporal Property Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ?18). Association for Computing Machinery, New York, NY, USA, 759?768. https://doi.org/10.1145/3209108.3209204
C.-H. L. Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In Proceedings of LICS 2006. IEEE Computer Society, 81-90.
M. Piróg and J. Gibbons. 2014. The coinductive resumption monad. Electronic Notes in Theoretical Computer Science 308 (2014), 273-288.
G. Plotkin and C. Stirling. 1986. A Framework for Intuitionistic Modal Logics: Extended Abstract. In Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge (TARK '86). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 399-406.
P. M. Rondon, M. Kawaguci, and R. Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'08). Association for Computing Machinery, New York, NY, USA, 159-169. https://doi.org/10.1145/1375581.1375602
L. Santocanale and Y. Venema. 2010. Completeness for flat modal fixpoint logics. Ann. Pure Appl. Logic 162, 1 (2010), 55-82.
R. Sato, N. Iwayama, and N. Kobayashi. 2019. Combining higher-order model checking with refinement type inference. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019, M. V. Hermenegildo and A. Igarashi (Eds.). ACM, 47-53. https://doi.org/10.1145/ 3294032.3294081
A. K. Simpson. 1994. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD Thesis. University of Edinburgh. https://www.era.lib.ed.ac.uk/handle/1842/407
C. Sprenger and M. Dam. 2003. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the μ Calculus. In Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of the foint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), A. D. Gordon (Ed.), Vol. 2620. Springer, 425-440. https: //doi.org/10.1007/3-540-36576-1_27
H. Unno, Y. Satake, and T. Terauchi. 2018. Relatively complete refinement type system for verification of higher-order non-deterministic programs. Proc. ACM Program. Lang. 2, POPL (2018), 12:1-12:29. https://doi.org/10.1145/3158100
N. Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D. Dissertation. UC San Diego.
N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. 2014. Refinement Types for Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP'14). Association for Computing Machinery, New York, NY, USA, 269-282. https://doi.org/10.1145/2628136.2628161
N. Veltri and N. van der Weide. 2019. Guarded Recursion in Agda via Sized Types. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019) (Leibniz International Proceedings in Informatics (LIPIcs)), H. Geuvers (Ed.), Vol. 131. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 32:1-32:19. https: //doi.org/10.4230/LIPIcs.FSCD. 2019.32
I. Walukiewicz. 2000. Completeness of Kozen's Axiomatisation of the Propositional μ-Calculus. Information and Computation 157, 1-2 (2000), 142-182.
K. Watanabe, T. Tsukada, H. Oshikawa, and N. Kobayashi. 2019. Reduction from Branching-Time Property Verification of Higher-Order Programs to HFL Validity Checking. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM 2019). Association for Computing Machinery, New York, NY, USA, 22 ? 34. https://doi.org/10.1145/3294032.3294077
L.-Y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and S. Zdancewic. 2019. Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL (2019). https://doi.org/10.1145/3371119

A ADDITIONAL MATERIAL FOR §4

Figure 13 presents the definition of the variance predicates $\alpha \operatorname{Pos} \varphi$ and $\alpha \operatorname{Neg} \varphi$ for the full logical language ($\S 4$ and $\S 6$). The intuitionistic propositional deduction rules are given in Fig. 14.

Remark A. 1 (Rem. 4.6). All modalities ([$\left.\pi_{i}\right]$, [fold], [next], $\left[\mathrm{in}_{i}\right],[\mathrm{ev}(\psi)]$ and $\left.[\mathrm{box}]\right)$ satisfy the monotonicity rule (RM) and are thus monotone in the sense of [Chellas 1980], from which we borrowed the terminology used in Table 3 (see also [Frittella 2014; Hansen 2003]). Assuming the rule (RM), we easily get the following:
(a) Axiom (N) implies the usual necessitation rule:

$$
\frac{\vdash \varphi}{\vdash[\Delta] \varphi}(\mathrm{RN})
$$

Proof. Indeed, one can derive
(b) Axiom (C) implies the usual axiom (K):

$$
[\Delta](\varphi \Rightarrow \psi) \Longrightarrow([\Delta] \varphi \Rightarrow[\Delta] \psi)
$$

Proof. Indeed, one has

$$
\begin{aligned}
& (\mathrm{RM}) \frac{\overline{((\varphi \Rightarrow \psi) \wedge \varphi)} \Longrightarrow \psi}{[\Delta]((\varphi \Rightarrow \psi) \wedge \varphi) \Longrightarrow[\Delta] \psi} \\
& \text { (C) }============= \\
& {[\Delta](\varphi \Rightarrow \psi) \Longrightarrow([\Delta] \varphi \Rightarrow[\Delta] \psi)}
\end{aligned}
$$

(c) We have the monotonicity axioms

$$
\begin{aligned}
& {[\Delta](\varphi \wedge \psi) \Longrightarrow[\Delta] \varphi \wedge[\Delta] \psi} \\
& {[\Delta] \varphi \vee[\Delta] \psi \Longrightarrow[\Delta](\varphi \vee \psi)}
\end{aligned}
$$

Hence, with our adaptation to unbounded linear branching, the normal intuitionistic modal logic IK of [Plotkin and Stirling 1986] is $(\mathrm{RM})+(\mathrm{C})+(\mathrm{N})+(\mathrm{P})+\left(\mathrm{C}_{\mathrm{V}}\right)+\left(\mathrm{C}_{\Rightarrow}\right)$, while the normal modal logic \mathbf{K} is $\mathbf{I K}+(C L)$ (see e.g. [Blackburn et al. 2002]).

B ADDITIONAL MATERIAL FOR §5

The definition of the subtyping relation \leq for the full system (§5 and §6) is given in Fig. 15.

$$
\begin{aligned}
& \overline{\alpha \operatorname{Pos} \alpha} \quad \frac{\alpha \neq \beta}{\alpha \operatorname{Pos} \beta} \quad \overline{\alpha \operatorname{Pos} \mathrm{T}} \quad \overline{\alpha \operatorname{Pos} \perp} \\
& \frac{\alpha \operatorname{Pos} \varphi \quad \alpha \operatorname{Pos} \psi}{\alpha \operatorname{Pos} \varphi \vee \psi} \quad \frac{\alpha \operatorname{Pos} \varphi \quad \alpha \operatorname{Pos} \psi}{\alpha \operatorname{Pos} \varphi \wedge \psi} \quad \frac{\alpha \operatorname{Neg} \psi \quad \alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos} \psi \Rightarrow \varphi} \\
& \frac{\alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos}\left[\pi_{i}\right] \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos}\left[\mathrm{in}_{i}\right] \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos}[\mathrm{fold}] \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos}[\mathrm{next}] \varphi} \quad \frac{\alpha \operatorname{Neg} \psi \quad \alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos}[\operatorname{ev}(\psi)] \varphi} \\
& \frac{\alpha \operatorname{Pos} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Pos} v \beta \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Pos} \mu \beta \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Pos} v^{\mathrm{t}} \beta \varphi} \quad \frac{\alpha \operatorname{Pos} \varphi}{\alpha \operatorname{Pos} \mu^{\mathrm{t}} \beta \varphi} \\
& \frac{\alpha \neq \beta}{\alpha \operatorname{Neg} \beta} \quad \overline{\alpha \operatorname{Neg~T}} \quad \overline{\alpha \operatorname{Neg} \perp} \\
& \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \operatorname{Neg} \psi}{\alpha \operatorname{Neg} \varphi \vee \psi} \quad \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \operatorname{Neg} \psi}{\alpha \operatorname{Neg} \varphi \wedge \psi} \quad \frac{\alpha \operatorname{Pos} \psi \quad \alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg} \psi \Rightarrow \varphi} \\
& \frac{\alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg}\left[\pi_{i}\right] \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg}\left[\operatorname{in}_{i}\right] \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg}[\mathrm{fold}] \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg}[\operatorname{next}] \varphi} \quad \frac{\alpha \operatorname{Pos} \psi \quad \alpha \operatorname{Neg} \varphi}{\alpha \operatorname{Neg}[\operatorname{ev}(\psi)] \varphi} \\
& \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Neg} v \beta \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Neg} \mu \beta \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Neg} v^{\mathrm{t}} \beta \varphi} \quad \frac{\alpha \operatorname{Neg} \varphi \quad \alpha \neq \beta}{\alpha \operatorname{Neg} \mu^{\mathrm{t}} \beta \varphi}
\end{aligned}
$$

Fig. 13. Positive and Negative Occurrences for the Full Logical Language.

$$
\begin{array}{ccc}
\overline{\vdash^{A} \varphi \vee \varphi \Rightarrow \varphi} & \overline{\vdash^{A} \varphi \Rightarrow \varphi \wedge \varphi} \quad \overline{\vdash^{A} \varphi \Rightarrow \varphi \vee \psi} \quad \overline{\vdash^{A} \varphi \wedge \psi \Rightarrow \varphi} \\
\frac{\vdash^{A} \varphi \vee \psi \Rightarrow \psi \vee \varphi}{\vdash^{A}} & \frac{\vdash^{A} \varphi \wedge \psi \Rightarrow \psi \wedge \varphi}{\vdash^{A} \varphi} \\
\frac{\vdash^{A} \varphi}{\vdash^{A} \varphi \Rightarrow \psi} \\
\frac{\vdash^{A} \varphi \wedge \psi \Rightarrow \theta}{\vdash^{A} \varphi \Rightarrow \psi} & \frac{\vdash^{A} \varphi \Rightarrow(\psi \Rightarrow \theta)}{\vdash^{A} \varphi \wedge \psi \Rightarrow \theta} \\
\vdash^{A} \varphi \Rightarrow \theta & \vdash^{A} \psi \Rightarrow \theta \\
\vdash^{A} \perp \Rightarrow \varphi & \vdash^{A} \varphi \Rightarrow \psi \\
\vdash^{A} \theta \vee \varphi \Rightarrow \theta \vee \psi
\end{array}
$$

Fig. 14. Intuitionistic Propositional Deduction Rules.

The underlying pure type $|T|$ of a refinement type T is inductively defined as follows:

$$
\begin{aligned}
& |A|:=A \\
& |\{A \mid \varphi\}|:=A \\
& |\forall k \cdot T|:=|T| \\
& |T+U|:=|T|+|U| \\
& |T \times U|:=|T| \times|U| \\
& |U \rightarrow T|:=|U| \rightarrow|T| \\
& |\triangleright T|:=>|T| \\
& |\mathbf{\square} T|:=\square|T|
\end{aligned}
$$

$$
\begin{aligned}
& \overline{T \leq T} \quad \frac{T \leq U \quad U \leq V}{T \leq V} \quad \frac{T \leq U}{\rightarrow T \leq U} \quad \frac{U \leq T}{\square U \leq \boldsymbol{■} T} \\
& \frac{T_{0} \leq U_{0} \quad T_{1} \leq U_{1}}{T_{0} \times T_{1} \leq U_{0} \times U_{1}} \quad \frac{T_{0} \leq U_{0} \quad T_{1} \leq U_{1}}{T_{0}+T_{1} \leq U_{0}+U_{1}} \quad \frac{U_{0} \leq T_{0} \quad T_{1} \leq U_{1}}{T_{0} \rightarrow T_{1} \leq U_{0} \rightarrow U_{1}} \\
& \overline{T \leq|T|} \quad \overline{A \leq\{A \mid T\}} \quad \frac{\vdash^{A} \varphi \Rightarrow \psi}{\{A \mid \varphi\} \leq\{A \mid \psi\}} \\
& \overline{\{B \mid \psi\} \rightarrow\{A \mid \varphi\} \equiv\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}} \\
& \overline{-\{A \mid \varphi\} \equiv\{A \mid[\mathrm{next}] \varphi\}} \quad \overline{\forall k \cdot T \equiv \neg k \cdot T}
\end{aligned}
$$

Fig. 15. Subtyping Rules (full version).

C ADDITIONAL MATERIAL FOR §8

This Appendix presents material that we omitted in $\S 8$ for space reasons. We follow roughly he same plan. All proofs a deferred to App. E. We often use θ as a generic notation for μ and v.

C. 1 The Topos of Trees (Basic Structure)

Notation C.1. Given an object X of \mathcal{S} and $0<k \leq n$, we write $t \uparrow k$ for the restriction of $t \in X(n)$ into $X(k)$, obtained by composing restriction functions r_{i}^{X} for $i=k, \ldots, n-1$.

Full definitions and proofs of the semantic require the explicit manipulation of some of the structure of \mathcal{S}. We refer to [Birkedal et al. 2012; Clouston et al. 2016] for details.

First, as in any presheaf category, limits and colimits are computed pointwise. In particular binary sums and products are given by

$$
\begin{aligned}
(X+Y)(n) & =X(n)+Y(n) \\
(X \times Y)(n) & =X(n) \times Y(n)
\end{aligned}
$$

Moreover, exponentials are induced by the Yoneda Lemma see e.g. [Mac Lane and Moerdijk 1992, \S I.6]. Explicitly, given \mathcal{S} object X and Y, the exponent Y^{X} at n is the set of all sequences $\left(f_{\ell}\right)_{\ell \leq n}$ of functions $f_{\ell}: X(\ell) \rightarrow Y(\ell)$ which are compatible with restriction (i.e. $r_{\ell}^{Y} \circ f_{\ell+1}=f_{\ell} \circ r_{\ell}^{X}$).

The morphism fix ${ }^{X}: X^{\triangle} \rightarrow X$ is defined as

$$
\operatorname{fix}_{n}^{X}\left(\left(f_{m}\right)_{m \leq n}\right):=\quad\left(f_{n} \circ \cdots \circ f_{1}\right)(\bullet)
$$

Since we do not require the explicit constructions, we refer to [Birkedal et al. 2012] for the interpretation of guarded recursive types Fix $(X) \cdot A(X)$ and for the definition of the isos

$$
\begin{array}{rlll}
\text { fold }: \llbracket A(\operatorname{Fix}(X) \cdot A(X)) \rrbracket & \longrightarrow & \llbracket \operatorname{Fix}(X) \cdot A(X) \rrbracket \\
\text { unfold }: & \llbracket \operatorname{Fix}(X) \cdot A(X) \rrbracket & \longrightarrow & \llbracket A(\operatorname{Fix}(X) \cdot A(X)) \rrbracket
\end{array}
$$

We now have all the structure we need for the denotational semantics of the \llbracket-free fragment of the pure calculus.

C. 2 Global Sections and Constant Objects

As for any presheaf topos, the global section functor $\Gamma: \mathcal{S} \rightarrow$ Set is right adjoint to the constant object functor $\Delta:$ Set $\rightarrow \mathcal{S}$ (see e.g. [Mac Lane and Moerdijk 1992, §I.6]):

We note the following easy well-known facts for the record.
Lemma C.2. Given a set S and given X, Y objects of \mathcal{S}, we have in Set:
(1) the unit η of $\Delta \dashv \Gamma$ is an iso,
(2) $\Gamma(X \times Y) \simeq \Gamma X \times \Gamma Y$ and $\Gamma 1 \simeq 1$
(3) $\Gamma(X+Y) \simeq \Gamma X+\Gamma Y$
(4) $\Gamma\left(X^{\Delta S}\right) \simeq(\Gamma X)^{S}$
(5) $\Gamma(\triangleright X) \simeq \Gamma X($ via $\Gamma($ next $))$
where all the mentioned isos are natural in X and Y (when applicable).
Proof.
(1) The unit η_{S} of $\Delta \dashv \Gamma$ at S takes $a \in S$ to the constant map $(n \mapsto(\bullet \mapsto a)) \in \mathcal{S}[1, \Delta S]$. Its inverse is the function $\mathcal{S}[1, \Delta S] \rightarrow S$ taking a constant map $x \in \mathcal{S}[1, \Delta S]$ to $x(0)(\bullet)$.
(2) Since Γ is a right adjoint.
(3) Since for any $x \in \mathcal{S}[1, X+Y]$ there is some $i \in\{0,1\}$ such that $x(\bullet)(n)$ is of the form $\operatorname{in}_{i}\left(x_{n}\right)$ for all $n \in \mathbb{N}$.
(4) Using the Cartesian closed structure of \mathcal{S} and the adjunction $\Delta \dashv \Gamma$ we have

$$
\begin{aligned}
\Gamma\left(X^{\Delta S}\right) & =\mathcal{S}\left[1, X^{\Delta S}\right] \\
& \simeq \mathcal{S}[1 \times \Delta S, X] \\
& \simeq \mathcal{S}[\Delta S, X] \\
& \simeq \operatorname{Set}[S, \Gamma X]
\end{aligned}
$$

(5) We show that $x \in \Gamma X \mapsto$ nexto $x \in \Gamma(\mapsto X)$ is a bijection. We first show surjectivity. Consider $x^{\prime} \in$ $\mathcal{S}[1,>X]$. Then for each $n \in \mathbb{N}$, we have $x_{n+1}^{\prime}(\bullet) \in \triangle X(n+1)=X(n)$ with $x_{n+2}^{\prime}(\bullet) \uparrow=x_{n+1}^{\prime}(\bullet)$. This defines a map $x \in \mathcal{S}[\mathbf{1}, X]$ as $x_{n}(\bullet):=x_{n+1}^{\prime}(\bullet)$. Moreover, $\left(\right.$ next $\left._{0} \circ x_{0}\right)(\bullet)=\bullet=x_{0}^{\prime}(\bullet)$ and

$$
\left(\operatorname{next}_{n+1} \circ x_{n+1}\right)(\bullet)=x_{n+1}(\bullet) \uparrow=x_{n+2}^{\prime}(\bullet) \uparrow=x_{n+1}^{\prime}(\bullet)
$$

We now show injectivity. Let $x, y \in \mathcal{S}[1, X]$ and assume next $\circ x=$ next $\circ y: 1 \rightarrow \mathcal{S} \triangleright X$. Then for all n we have $x_{n+1}(\bullet) \uparrow=y_{n+1}(\bullet) \uparrow$ and thus $x_{n}(\bullet)=y_{n}(\bullet)$.

Following [Clouston et al. 2016], for a (closed) pure type A, we have

$$
\llbracket \llbracket A \rrbracket:=\Delta \Gamma \llbracket A \rrbracket
$$

In words, all components $\llbracket \square A \rrbracket(n)$ are equal to $\Gamma \llbracket A \rrbracket$, and the restriction maps of $\llbracket \square A \rrbracket$ are identities. In particular, a global section $x \in \Gamma \llbracket \square A \rrbracket$ is a constant family $\left(x_{n}\right)_{n>0}$ describing a unique global section $x_{n+1}(\bullet)=x_{n}(\bullet) \in \Gamma \llbracket A \rrbracket$.

The term constructor unbox $(-)$ is interpreted as the counit ε of the adjunction $\Delta \dashv \Gamma$: given $\Gamma \vdash M: ■ A$, we let $\llbracket u \operatorname{unbox}(M) \rrbracket$ be the composite

$$
\llbracket \Gamma \rrbracket \quad \xrightarrow{\llbracket M \rrbracket} \llbracket \llbracket A \rrbracket=\Delta \Gamma \llbracket A \rrbracket \quad \xrightarrow{\varepsilon} \quad \llbracket A \rrbracket
$$

The term constructors box and prev rely on a strong semantic property of constant types, namely that their interpretation lie (modulo isomorphism) in the image of the constant object functor Δ.

Definition C. 3 ([Clouston et al. 2016, Def. 2.2]). An object X of \mathcal{S} is constant if $X \simeq \Delta S$ for some set S.

Note that the restriction maps of constant objects are bijections. Similarly as in [Clouston et al. 2016, Def. 2.2], if $x \in X(n)$ with X constant, then we write $x \in X(k)$ for the unique element of $X(k)$ which is equal to x modulo the bijective restriction maps of X.

Lemma C. 4 ([Clouston et al. 2016, Lem. 2.6]). If A is a constant (pure) type, then $\llbracket A \rrbracket$ is a constant object of \mathcal{S}.

We now give the interpretations of $\operatorname{box}_{\sigma}(M)$ and $\operatorname{prev}_{\sigma}(M)$ (where σ stands for $\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto\right.$ $\left.M_{k}\right\rfloor$). Assuming in both cases $\llbracket M \rrbracket$ to be defined, for $n>0$ we let

$$
\begin{gathered}
\llbracket \operatorname{box}_{\sigma}(M) \rrbracket(n): \llbracket \Gamma \rrbracket(n) \longrightarrow \quad \Delta \Gamma \llbracket A \rrbracket(n)=\Gamma \llbracket A \rrbracket \\
\gamma \quad \longmapsto(m \mapsto \\
\left.\hdashline M \rrbracket_{m}\left(\llbracket M_{1} \rrbracket_{n}(\gamma), \ldots, \llbracket M_{k} \rrbracket_{n}(\gamma)\right)\right) \\
\llbracket \operatorname{prev}_{\sigma}(M) \rrbracket(n): \llbracket \Gamma \rrbracket(n) \longrightarrow \quad \longrightarrow \llbracket A \rrbracket(n)=\llbracket A \rrbracket(n+1) \\
\gamma \quad \longmapsto\left(\llbracket M \rrbracket_{n+1}\left(\llbracket M_{1} \rrbracket_{n}(\gamma), \ldots, \llbracket M_{k} \rrbracket_{n}(\gamma)\right)\right)
\end{gathered}
$$

where the mismatches between n and m and between n and $n+1$ are legal since $\llbracket A_{1} \rrbracket, \ldots, \llbracket A_{k} \rrbracket$ are constant by Lem. C.4.

C. 3 External and Internal Semantics: Global Definitions

We can now give the full Set and \mathcal{S} interpretations of the logical language. In contrast with $\S 8$, we discuss the external semantics $\{|-|\}$ in Set before the internal semantics $\llbracket-\rrbracket$ in \mathcal{S}. In both cases, for $\alpha: A \vdash \varphi: A(\alpha)$, we let

$$
\begin{array}{llll}
\varphi^{0}(\top) & :=~ \top & \varphi^{0}(\perp) & :=\perp \\
\varphi^{m+1}(\top) & :=\varphi\left(\varphi^{m}(\top)\right) & \varphi^{m+1}(\perp) & :=\varphi\left(\varphi^{m}(\perp)\right)
\end{array}
$$

(Recall that $\theta^{\mathrm{t}} \alpha \varphi$ is only allowed when φ as at most α as free variable.)
Definition C. 5 (External Semantics). Consider a formula $\alpha_{1}: A_{1}, \ldots, \alpha_{k}: A_{k} \vdash \varphi: A$ without free iteration variable. Assume given a valuation v taking each propositional variable α_{i} for $i=1, \ldots, k$ to a set $v\left(\alpha_{i}\right) \in \mathcal{P}\left(\Gamma \llbracket A_{i} \rrbracket\right)$. We define $\{|\varphi|\}_{v}^{A} \in \mathcal{P}(\Gamma \llbracket A \rrbracket)$ by induction on φ in Fig. 16.

As for the internal \mathcal{S} semantics $\llbracket-\rrbracket$, we give a global definition, in a form similar to Def. C.5.
Definition C. 6 (Internal Semantics). Consider a formula $\alpha_{1}: A_{1}, \ldots, \alpha_{k}: A_{k} \vdash \varphi:$ A without free iteration variable. Assume given a valuation v taking each propositional variable α_{i} for $i=1, \ldots, k$ to a subobject $v\left(\alpha_{i}\right)$ of $\llbracket A_{i} \rrbracket$. The subobject $\llbracket \varphi \rrbracket_{v}^{A}$ of $\llbracket A \rrbracket$ is defined by induction on φ in Fig. 17.

The correctness of Def. C.6, namely that we indeed have $\llbracket \varphi \rrbracket^{A} \in \operatorname{Sub}(\llbracket A \rrbracket)$, as well as the correspondence with the presentation of $\S 8$ are discussed in App. C.6.
Remark C.7. For closed formulae we can rephrase Def. C. 6 as $t \in \llbracket \varphi \rrbracket^{A}(n)$ iff $t \Vdash_{n}^{A} \varphi$, where the forcing relation $t \Vdash_{n}^{A} \varphi$ is inductively defined as follows.

- $t \Vdash_{n}^{A} \perp$.
- $t \Vdash_{n}^{A} \mathrm{~T}$.
- $t \Vdash_{n}^{A} \varphi \vee \psi$ iff $t \Vdash_{n}^{A} \varphi$ or $t \Vdash_{n}^{A} \psi$.
- $t \Vdash_{n}^{A} \varphi \wedge \psi$ iff $t \Vdash_{n}^{A} \varphi$ and $t \Vdash_{n}^{A} \psi$.
- $t \Vdash_{n}^{A} \psi \Rightarrow \varphi$ iff for all $k \leq n, t \uparrow k \Vdash_{k}^{A} \varphi$ whenever $t \uparrow k \Vdash_{k}^{A} \psi$.
- $t \Vdash \Vdash_{n}^{A_{0} \times A_{1}}\left[\pi_{i}\right] \varphi$ iff $\pi_{i}(t) \Vdash{ }_{n}^{A_{i}} \varphi$.

$$
\begin{aligned}
& \{|\perp|\}_{v}^{A}:=\emptyset \quad\{|T|\}_{v}^{A}:=\Gamma \llbracket A \rrbracket \quad\left\{\left|\alpha_{i}\right|\right\}_{v}^{A}:=v\left(\alpha_{i}\right) \\
& \{|\varphi \vee \psi|\}_{v}^{A}:=\{|\varphi|\}_{v}^{A} \cup\{|\psi|\}_{v}^{A} \quad\{|\varphi \wedge \psi|\}_{v}^{A}:=\{|\varphi|\}_{v}^{A} \cap\{|\psi|\}_{v}^{A} \\
& \{|\psi \Rightarrow \varphi|\}_{v}^{A}:=\left(\Gamma \llbracket A \rrbracket \backslash\{|\psi|\}_{v}^{A}\right) \cup\{|\varphi|\}_{v}^{A} \\
& \left\{\left|\left[\pi_{i}\right] \varphi\right|\right\}_{v}^{A_{0} \times A_{1}}:=\left\{x \in \Gamma \llbracket A_{0} \times A_{1} \rrbracket \mid \pi_{i} \circ x \in\{|\varphi|\}_{v}^{A_{i}}\right\} \\
& \left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\}_{v}^{A_{0}+A_{1}}:=\quad\left\{x \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \mid \exists y \in \Gamma \llbracket A_{i} \rrbracket\left(x=\mathrm{in}_{i} \circ y \text { and } y \in\{|\varphi|\}_{v}^{A_{i}}\right)\right\} \\
& \{\mid[\text { fold }] \varphi \mid\}_{v}^{\mathrm{Fix}(X) \cdot A}:=\left\{x \in \Gamma \llbracket \operatorname{Fix}(X) \cdot A \rrbracket \mid \text { unfold } \circ x \in\{|\varphi|\}_{v}^{A[\mathrm{Fix}(X) \cdot A / X]}\right\} \\
& \{|[\operatorname{ev}(\psi)] \varphi|\}_{v}^{B \rightarrow A}:=\quad\left\{x \in \Gamma \llbracket B \rightarrow A \rrbracket \mid \forall y \in \Gamma \llbracket B \rrbracket, y \in\{|\psi|\}_{v}^{B} \Longrightarrow \operatorname{ev} \circ\langle x, y\rangle \in\{|\varphi|\}_{v}^{A}\right\} \\
& \{|[\mathrm{box}] \varphi|\}^{\bullet} \quad:=\quad\left\{x \in \Gamma \llbracket \llbracket A \rrbracket \mid x_{1}(\bullet) \in\{|\varphi|\}^{A}\right\} \\
& \{\mid[\text { next }] \varphi \mid\}_{v}{ }^{A}:=\left\{\text { next } \circ x \in \Gamma \llbracket \neg A \rrbracket \mid x \in\{|\varphi|\}_{v}^{A}\right\} \\
& \left\{\mid \nu^{\mathrm{t}} \alpha \varphi(\alpha)\right\}_{v}^{A}:=\left\{\left|\varphi^{m}(\mathrm{~T})\right|\right\}_{v}^{A} \quad(\llbracket \mathrm{t} \rrbracket=m) \\
& \left\{\mid \mu^{\mathrm{t}} \alpha \varphi(\alpha)\right\}_{v}^{A}:=\left\{\left|\varphi^{m}(\perp)\right|\right\}_{v}^{A} \quad(\llbracket \mathrm{t} \rrbracket=m) \\
& \{|v \alpha \varphi|\}_{v}^{A}:=\bigcup\left\{S \mid S \in \mathcal{P}(\Gamma \llbracket A \rrbracket) \text { and } S \subseteq\{|\varphi|\}_{v[S / \alpha]}^{A}\right\} \\
& \{|\mu \alpha \varphi|\}_{v}^{A}:=\bigcap\left\{S \mid S \in \mathcal{P}(\Gamma \llbracket A \rrbracket) \text { and }\{|\varphi|\}_{v[S / \alpha]}^{A} \subseteq S\right\}
\end{aligned}
$$

Fig. 16. External Semantics.

$$
\begin{aligned}
& \llbracket \perp \rrbracket_{v}^{A}(n):=\emptyset \quad \llbracket \uparrow \rrbracket_{v}^{A}:=\llbracket A \rrbracket \quad \llbracket \alpha_{i} \rrbracket_{v}^{A} \quad:=\quad v\left(\alpha_{i}\right) \\
& \llbracket \varphi \vee \psi \rrbracket_{v}^{A}(n):=\llbracket \varphi \rrbracket_{v}^{A}(n) \cup \llbracket \psi \rrbracket_{v}^{A}(n) \quad \llbracket \varphi \wedge \psi \rrbracket_{v}^{A}(n) \quad:=\llbracket \varphi \rrbracket_{v}^{A}(n) \cap \llbracket \psi \rrbracket_{v}^{A}(n) \\
& \llbracket \psi \Rightarrow \varphi \rrbracket_{v}^{A}(n):=\quad\left\{t \in \llbracket A \rrbracket(n) \mid \forall k \leq n, t \uparrow k \in \llbracket \psi \rrbracket_{v}^{A}(k) \Longrightarrow t \uparrow k \in \llbracket \varphi \rrbracket_{v}^{A}(k)\right\} \\
& \llbracket\left[\pi_{i}\right] \varphi \rrbracket_{v}^{A_{0} \times A_{1}}(n):=\left\{t \in \llbracket A_{0} \times A_{1} \rrbracket(n) \mid \pi_{i}(t) \in \llbracket \varphi \rrbracket_{v}^{A_{i}}(n)\right\} \\
& \llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket_{v}^{A_{0}+A_{1}}(n):=\left\{t \in \llbracket A_{0}+A_{1} \rrbracket(n) \mid \exists u \in \llbracket A_{i} \rrbracket(n), t=\operatorname{in}_{i}(u) \text { and } u \in \llbracket \varphi \rrbracket_{v}^{A_{i}}(n)\right\} \\
& \llbracket[\text { fold }] \varphi \rrbracket_{v}^{\mathbb{F i x}_{2}(X) \cdot A}(n) \quad:=\quad\left\{t \in \llbracket \operatorname{Fix}(X) \cdot A \rrbracket(n) \mid \operatorname{unfold}_{n}(t) \in \llbracket \varphi \rrbracket_{v}^{A[\operatorname{Fix}(X) \cdot A / X]}(n)\right\} \\
& \llbracket\left[\operatorname{ev}(\psi) \rrbracket \varphi \rrbracket_{v}^{B \rightarrow A}(n):=\quad\left\{t \in \llbracket B \rightarrow A \rrbracket(n) \mid \forall k \leq n, \forall u \in \llbracket B \rrbracket(k), u \in \llbracket \psi \rrbracket_{v}^{B}(k) \Longrightarrow(t \uparrow k)(u) \in \llbracket \varphi \rrbracket_{v}^{A}(k)\right\}\right. \\
& \llbracket[\mathrm{box}] \varphi \rrbracket^{A}(n) \quad:=\quad\left\{t \in \llbracket \llbracket A \rrbracket(n)=\Gamma \llbracket A \rrbracket \mid t \in\{|\varphi|\}^{A}\right\} \\
& \llbracket[\text { next }] \varphi \rrbracket_{v}^{A}(1):=\quad 1 \\
& \llbracket[\operatorname{next}] \varphi \rrbracket_{v}^{*}(n) \quad:=\llbracket \varphi \rrbracket_{v}^{A}(n-1) \quad(n>1) \\
& \llbracket v^{\mathrm{t}} \alpha \varphi(\alpha) \rrbracket_{v}^{A}:=\llbracket \varphi^{m}(\mathrm{~T}) \rrbracket_{v}^{A} \quad(\llbracket \mathrm{t} \rrbracket=m) \\
& \llbracket \mu^{\mathrm{t}} \alpha \varphi(\alpha) \rrbracket_{v}^{A}:=\llbracket \varphi^{m}(\perp) \rrbracket_{v}^{A} \quad(\llbracket \mathrm{t} \rrbracket=m) \\
& \llbracket v \alpha \varphi \rrbracket_{v}^{A}:=\bigvee\left\{S \mid S \in \operatorname{Sub}(\llbracket A \rrbracket) \text { and } S \leq \llbracket \varphi \rrbracket_{v[S / \alpha]}^{A}\right\} \\
& \llbracket \mu \alpha \varphi \rrbracket_{v}^{A}:=\wedge\left\{S \mid S \in \operatorname{Sub}(\llbracket A \rrbracket) \text { and } \llbracket \varphi \rrbracket_{v[S / \alpha]}^{A} \leq S\right\}
\end{aligned}
$$

Fig. 17. Internal Semantics.

- $t \Vdash_{n}^{A_{0}+A_{1}}\left[\mathrm{in}_{i}\right] \varphi$ iff there is $u \in \llbracket A_{i} \rrbracket(n)$ such that $t=\operatorname{in}_{i}(u)$ and $u \Vdash \Vdash_{n}^{A_{i}} \varphi$.
- $t \Vdash_{n}^{B \rightarrow A}[\operatorname{ev}(\psi)] \varphi$ iff for all $k \leq n$ and all $u \in \llbracket B \rrbracket(k),(t \uparrow k)(u) \Vdash_{k}^{A} \varphi$ whenever $u \Vdash_{k}^{B} \psi$.
- $t \Vdash_{n}^{\operatorname{Fix}(X) \cdot A}[$ fold $] \varphi$ iff unfold $\circ t \Vdash_{n}^{A[F i x(X) \cdot A / X]} \varphi$.
- $t \Vdash_{0}^{A}[\mathrm{next}] \varphi$.
- $t \Vdash_{n+1}^{*}$ [next] φ iff $t \Vdash_{n}^{A} \varphi$.
- $t \Vdash_{n}^{\boldsymbol{A}^{A}}[\mathrm{box}] \varphi$ iff $t \in\{|\varphi|\}^{A}$.

C. 4 An Open Geometric Morphism

Key properties of the internal semantics of [box] rely on some further facts on the adjunction $\Delta \dashv \Gamma$. We refer to [Johnstone 2002; Mac Lane and Moerdijk 1992].

The functor Δ : Set $\rightarrow \mathcal{S}$ preserves limits (in particular, $\Delta \dashv \Gamma: \mathcal{S} \rightarrow$ Set is a geometric morphism). It follows that Δ preserves monos, so that for each set S the function

$$
A \in \mathcal{P}(S) \quad \longmapsto \Delta A \in \operatorname{Sub}(\Delta S)
$$

is a meet preserving (and thus monotone) map. It is easy to see that this map has a posetal left adjoint

$$
f_{!}: \operatorname{Sub}(\Delta S) \quad \longrightarrow \mathcal{P}(S)
$$

Proof. A subobject A of ΔS is a family of subsets $A=\left(A_{n}\right)_{n}$ with $A_{n} \subseteq S$. Hence we can let $f_{!}(A) \in \mathcal{P}(S)$ be the set of all $a \in S$ such that $a \in A_{n}$ for some $n>0$. Then assuming $f_{!}(A) \subseteq B$ for some set $B \in \mathcal{P}(S)$, it follows that if $a \in A_{n}$ then $a \in f_{!}(A) \subseteq B$ so that $a \in(\Delta B)_{n}$ and thus $A \leq \Delta B$. Conversely, if $A \leq \Delta B$, then for every $a \in f_{!}(A)$, since $a \in A_{n}$ for some $n>0$, we must have $a \in(\Delta B)_{n}=B$, so that $f_{!}(A) \subseteq B$.

As a consequence, the adjoint pair $\Delta \dashv \Gamma: S \rightarrow$ Set is an open geometric morphism (in the sense of [Mac Lane and Moerdijk 1992, Def. IX.6.2]), from which it follows that Δ induces maps of (complete) Heyting algebras $\mathcal{P}(S) \rightarrow \operatorname{Sub}(\Delta S)$ (see e.g. [Mac Lane and Moerdijk 1992, Thm. X.3.1 \& Lem. X.3.2]). We state this for later use.

Lemma C.8. For each set S, the functor Δ induces a map of (complete) Heyting algebras $\mathcal{P}(S) \rightarrow$ $\operatorname{Sub}(\Delta S)$.

C. 5 Abstract Modalities

We present here some well-known basic material which will help us proving the correctness of the internal and external semantics.

Definition C.9. Let \mathbb{C} be a category with pullbacks and consider a morphism $k: X \rightarrow_{\mathbb{C}} Y$.

- The functor $k^{*}: \mathbb{C} / Y \rightarrow \mathbb{C} / X$ is defined by pullbacks

- The functor $(\exists k): \mathbb{C} / X \rightarrow \mathbb{C} / Y$ is defined by postcomposition:

$$
(g: A \rightarrow X) \longmapsto(k \circ g: A \rightarrow Y)
$$

The following is a basic property of toposes.

Lemma C. 10 ([Mac Lane and Moerdijk 1992, Thm. IV.7.2]). Let \mathcal{E} be a topos and fix a map k : $X \rightarrow \mathcal{E}$. The functor $(\exists k)$ is left adjoint to $k^{*}: \mathcal{E} / Y \rightarrow \mathcal{E} / X$. Moreover, k^{*} has a right adjoint $(\forall k)$ and preserves exponentials, and thus preserves subobjects.

Lemma C.11.

(1) The map $\left(\exists \mathrm{in}_{i}\right): \operatorname{Set} / S_{i} \rightarrow \operatorname{Set} /\left(S_{0}+S_{1}\right)$ induces a map $\mathcal{P}\left(S_{i}\right) \rightarrow \mathcal{P}\left(S_{0}+S_{1}\right)$.
(2) The map $\left(\exists \mathrm{in}_{i}\right): \mathcal{S} / X_{i} \rightarrow \mathcal{S} /\left(X_{0}+X_{1}\right)$ induces a map $\operatorname{Sub}\left(X_{i}\right) \rightarrow \operatorname{Sub}\left(X_{0}+X_{1}\right)$.

Proof. Since in both cases the morphism in_{i} is a mono.
Lemma C.12. The map $\mathcal{S} / X \rightarrow \mathcal{S} / \triangleright$ taking $g: Y \rightarrow X$ to $\neg(g): \neg Y \rightarrow X$ induces a map $\operatorname{Sub}(X) \rightarrow \operatorname{Sub}(\triangleright X)$.

Proof. The functor preserves limits since it has a left adjoint ([Birkedal et al. 2012, §2.1]). It thus follows that preserves monos.

C. 6 External and Internal Semantics: Local Definitions

Some key properties of the Set and \mathcal{S} interpretations are easier to get if one goes through a local presentation, as operations on subobject and powerset lattices, similar to that of $\llbracket-\rrbracket$ in $\S 8$. The goal is to pave the way toward the correctness of both semantics:

Lemma C. 13 (Lem. 8.3). The following holds w.r.t. the full modal theories of Def. 6.2.
(1) $I f \vdash_{c}^{A} \varphi$ then $\{|\varphi|\}=\Gamma \llbracket A \rrbracket$.
(2) $I f \vdash^{A} \varphi$ then $\llbracket \varphi \rrbracket=\llbracket A \rrbracket$.

The detailed proof of Lem. C. 13 is deferred to App. E.1. It relies on the following material.
C.6.1 Internal Semantics. We use the material of $\S C .5$ to devise operations on subobject lattices corresponding to our modalities. This formally extends the presentation given in $\S 8$.

Definition C.14.

(a) Given \mathcal{S}-objects X_{0} and X_{1}, define $\llbracket\left[\pi_{i}\right] \rrbracket: \operatorname{Sub}\left(X_{i}\right) \rightarrow \operatorname{Sub}\left(X_{0} \times X_{1}\right)$ as π_{i}^{*}, where $\pi_{i}: X_{0} \times X_{1} \rightarrow \mathcal{S}$ X_{i} is the ith projection.
(b) Given \mathcal{S}-objects X_{0} and X_{1}, define $\llbracket\left[\operatorname{in}_{i}\right] \rrbracket: \operatorname{Sub}\left(X_{i}\right) \rightarrow \operatorname{Sub}\left(X_{0}+X_{1}\right)$ as $\left(\exists_{i n}\right)$, where $\mathrm{in}_{i}: X_{i} \rightarrow \mathcal{S}$ $X_{0}+X_{1}$ is the ith injection.
(c) Given a locally contractive functor T on \mathcal{S}, define $\llbracket[\mathrm{fold}] \rrbracket: \operatorname{Sub}(T(\operatorname{Fix}(T))) \rightarrow \operatorname{Sub}(\operatorname{Fix}(T))$ as unfold*, where we have unfold: $\operatorname{Fix}(T) \rightarrow_{\mathcal{S}} T(\mathrm{Fix}(T))$.
(d) Given a \mathcal{S}-object X, define $\llbracket[$ next $] \rrbracket: \operatorname{Sub}(X) \rightarrow \operatorname{Sub}(\neg X)$ as $>(-)$.
(e) Given a set S, define $\llbracket[\mathrm{box}] \rrbracket: \mathcal{P}(S) \rightarrow \operatorname{Sub}(\Delta S)$ as $\Delta(-)$.

We now discuss the case of $[\operatorname{ev}(\psi)] \varphi$, which is actually interpreted as a logical predicate, in the categorical generalization of the usual sense discussed in [Jacobs 2001a, §9.2 \& Prop. 9.2.4]. We follow here [Mac Lane and Moerdijk 1992, VI.5].

- First, extending the above discussion, for an object X of \mathcal{S}, the (Heyting algebra) exponent

$$
(-) \Rightarrow_{X}(-): \operatorname{Sub}(X) \times \operatorname{Sub}(X) \quad \longrightarrow \operatorname{Sub}(X)
$$

is given by

$$
\left(A \Rightarrow_{X} B\right)(n)=\{t \in X(n) \mid \forall k \leq n, t \uparrow k \in A(k) \Longrightarrow t \uparrow k \in B(k)\}
$$

(see e.g. [Mac Lane and Moerdijk 1992, Prop. I.8.5]).

- Second, it follows from Lem. C. 10 that for objects X, Y of \mathcal{S}, taking the pullback of the evaluation map ev : $X^{Y} \times Y \rightarrow X$ gives a map of subobjects, as in

which in particular preserves limits and colimits.
- Third, in the internal logic of \mathcal{S}, universal quantification over an object Y w.r.t. a predicate $A \in \operatorname{Sub}(X \times Y)$ is given (again via Lem. C.10) by the right adjoint $\forall_{Y}:=\forall(\pi)$ to π^{*}, where π is the projection $X \times Y \rightarrow X$ ([Mac Lane and Moerdijk 1992, §VI.5, p. 300]). Moreover, via the Kripke-Joyal semantics for a presheaf topos ([Mac Lane and Moerdijk 1992, §VI.7, p. 318]), for $A \in \operatorname{Sub}(X \times Y)$, the presheaf $\forall_{Y}(A)$ at n is

$$
\{t \in X(n) \mid \forall k \leq n, \forall u \in Y(k),(t \uparrow k, u) \in A\}
$$

We therefore let, for each pure types A and B,

$$
\llbracket[\operatorname{ev}(-)] \rrbracket: \operatorname{Sub}(\llbracket B \rrbracket) \quad \longrightarrow \quad(\operatorname{Sub}(\llbracket A \rrbracket) \rightarrow \operatorname{Sub}(\llbracket B \rightarrow A \rrbracket))
$$

take $S^{\prime} \in \operatorname{Sub}(\llbracket B \rrbracket)$ to

$$
\llbracket\left[\operatorname{ev}\left(S^{\prime}\right)\right] \rrbracket:=\quad S \in \operatorname{Sub}(\llbracket A \rrbracket) \quad \longmapsto \quad \forall_{\llbracket B \rrbracket}\left(\pi^{*}\left(S^{\prime}\right) \Rightarrow_{\llbracket A \rrbracket \square}^{\llbracket B \rrbracket \times \llbracket B \rrbracket} \mathrm{ev}^{*}(S)\right)
$$

where $\pi: X^{Y} \times Y \rightarrow X^{Y}$ is a projection.
Now, note that we actually have
Lemma C.15. Consider a formula $\Sigma \vdash \varphi: A$ and v as in Def. C.6, such that $\llbracket \varphi \rrbracket_{v} \in \operatorname{Sub}(\llbracket A \rrbracket)$. We have
(1) $\llbracket\left[\pi_{i}\right] \varphi \rrbracket_{v}=\llbracket\left[\pi_{i}\right] \rrbracket\left(\llbracket \varphi \rrbracket_{v}\right)$
(2) $\llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket_{v}=\llbracket\left[\mathrm{in}_{i}\right] \rrbracket\left(\llbracket \varphi \rrbracket_{v}\right)$
(3) $\llbracket[$ fold $] \varphi \rrbracket_{v}=\llbracket[$ fold $] \rrbracket\left(\llbracket \varphi \rrbracket_{v}\right)$
(4) $\llbracket[$ next $] \varphi \rrbracket_{v}=\llbracket[$ next $] \rrbracket\left(\llbracket \varphi \rrbracket_{v}\right)$
(5) $\llbracket[\mathrm{box}] \varphi \rrbracket=\llbracket[\mathrm{box}] \rrbracket(\llbracket \varphi \rrbracket)$
(6) $\llbracket[\operatorname{ev}(\psi)\rceil \varphi \rrbracket_{v}=\llbracket\left[\operatorname{ev}\left(\llbracket \psi \rrbracket_{v}\right)\right] \rrbracket\left(\llbracket \varphi \rrbracket_{v}\right)$ for each $\vdash \psi: B$ such that $\llbracket \psi \rrbracket \in \operatorname{Sub}(\llbracket B \rrbracket)$.

Proof.
(1) Since limits are computed pointwise in presheaves, we have

$$
\llbracket\left[\pi_{i}\right] \rrbracket\left(\llbracket \varphi \rrbracket^{A_{i}}\right)(n)=\left\{(t, u) \in \llbracket A_{0} \times A_{1} \rrbracket(n) \times \llbracket \varphi \rrbracket(n) \mid u=\pi_{i}(t)\right\}
$$

which is clearly in bijection with $\llbracket\left[\pi_{i}\right] \varphi \rrbracket^{A_{0} \times A_{1}}(n)$.
(2) Trivial.
(3) Similar to the case of $\left[\pi_{i}\right]$.
(4) Trivial.
(5) Trivial.
(6) Immediate from the above discussion.

We thus have done almost all the work to obtain the following basic fact.
Lemma C.16. Given $\alpha_{1}: A_{1}, \ldots, \alpha_{k}: A_{k} \vdash \varphi: A$, and v taking α_{i} for $i=1, \ldots, k$ to $v\left(\alpha_{i}\right) \in$ $\operatorname{Sub}\left(\llbracket A_{i} \rrbracket\right)$, we have $\llbracket \varphi \rrbracket_{v}^{A} \in \operatorname{Sub}(\llbracket A \rrbracket)$.

Proof. The proof is by induction on formulae. The interpretation of the propositional connectives follows the corresponding structures in presheaf toposes [Mac Lane and Moerdijk 1992, Prop. I.8.5]. The cases of the modalities [Δ] follow from the induction hypothesis and Lem. C.15. The cases of $\theta \alpha \varphi$ simply amount to the fact that for presheaf toposes, subobjects lattices are complete ([Mac Lane and Moerdijk 1992, Prop. I.8.5]). The cases of $\theta^{\mathrm{t}} \alpha \varphi$ for t an iteration term are trivial.

We now turn to the logical theory. We immediately get from the above:
Corollary C.17.
(1) The maps $\llbracket\left[\pi_{i}\right] \rrbracket, \llbracket[$ fold $] \rrbracket$ and $\llbracket[$ box $] \rrbracket$ are maps of Heyting algebras.
(2) The maps $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket$ preserve \vee, \perp and \wedge.
(3) The maps $\llbracket[n e x t] \rrbracket$ preserve \wedge, \top and \vee.
(4) For each object X of \mathcal{S} and each fixed $S \in \operatorname{Sub}(X)$, the map $\llbracket[\operatorname{ev}(S)] \rrbracket$ preserves \wedge, T.

Proof.
(1) This directly follows from Lem. C.10 and Lem. C.8.
(2) Preservation of \vee, \perp follows from that fact that $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket$ is a left adjoint by Lem. C.10. For binary conjunctions, first note that meets in partial orders are given by pullbacks. In a subobject lattice $\operatorname{Sub}\left(X_{i}\right)$, this can be expressed as

(where arrows are inclusions maps). Since $\mathrm{in}_{i}: X_{i} \rightarrow X_{0}+X_{1}$ is a mono, the following is also a pullback in $\operatorname{Sub}\left(X_{0}+X_{1}\right)$:

(3) Preservation of \wedge, \top follows from the fact that $-(-)$ is a right adjoint ([Birkedal et al. 2012, $\S 2.1]$). As for preservation of \vee, we check the details. Consider an object X of \mathcal{S} and subobjects $A, B \in \operatorname{Sub}(X)$. We have to show $\vee(A \vee B)=>(A) \vee(B)$. But we have

$$
\triangleright(A \vee B)_{0}=\mathbf{1}=\mathbf{1} \cup \mathbf{1}=(\triangleright(A) \vee \vee(B))_{0}
$$

and

$$
\begin{aligned}
\bullet(A \vee B)_{n+1}=(A \vee B)_{n} & =A_{n} \cup B_{n} \\
& =>(A)_{n+1} \cup(B)_{n+1} \\
& =(\neg(A) \vee(B))_{n+1}
\end{aligned}
$$

(4) This directly follows from Lem. C.10, via Lem. C. 15 and the definition of $\llbracket[\operatorname{ev}(-)] \rrbracket$.
C.6.2 External Semantics. We now turn to operations on powerset lattices for the external semantics.

Definition C. 18 .

(a) Given sets S_{0} and S_{1}, define $\left\{\left|\left[\pi_{i}\right]\right|\right\}: \mathcal{P}\left(S_{i}\right) \rightarrow \mathcal{P}\left(S_{0} \times S_{1}\right)$ as π_{i}^{*}, where $\pi_{i}: S_{0} \times S_{1} \rightarrow S_{i}$ is the ith projection.
(b) Given sets S_{0} and S_{1}, define $\left\{\left[\left[\mathrm{in}_{i}\right] \mid\right\}: \mathcal{P}\left(S_{i}\right) \rightarrow \mathcal{P}\left(S_{0}+S_{1}\right)\right.$ as $\left(\exists \mathrm{in}_{i}\right)$, where $\mathrm{in}_{i}: S_{i} \rightarrow S_{0}+S_{1}$ is the ith injection.
(c) Given a \mathcal{S} object X, define $\{|[\mathrm{next}]|\}: \mathcal{P}(\Gamma X) \rightarrow \mathcal{P}(\Gamma \triangleright X)$ as $\left((\Gamma \mathrm{next})^{-1}\right)^{*}$, where $(\Gamma \text { next })^{-1}$: $\Gamma(\triangleright X) \rightarrow \Gamma X$ is the inverse of Γ (next) (Lem. C.2).
(d) Given a locally contractive functor T on \mathcal{S}, define $\{\mid[$ fold $] \mid\}: \mathcal{P}(\Gamma(T(\operatorname{Fix}(T)))) \rightarrow \mathcal{P}(\Gamma \mathrm{Fix}(T))$ as Γ (unfold) *, where unfold : $\operatorname{Fix}(T) \rightarrow_{\mathcal{S}} T(\operatorname{Fix}(T))$.

We trivially have (at appropriate types):

$$
\begin{aligned}
\left\{\left[\left[\pi_{i}\right] \varphi \mid\right\}\right. & =\left\{\left[\left[\pi_{i}\right] \mid\right\}(\{|\varphi|\})\right. \\
\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\} & =\left\{\left[\left[\mathrm{in}_{i}\right] \mid\right\}(\{| | \varphi \mid\})\right. \\
\{\mid[\text { next }] \varphi \mid\} & =\{[\text { next }] \mid\}(\{|\varphi|\}) \\
\{[\text { fold }] \varphi \mid\} & =\{[[\text { fold }] \mid\}(\{|\varphi|\})
\end{aligned}
$$

Similarly as in Cor. C.17, we obtain the following.

Lemma C. 19.

(1) The functions $\left\{\left|\left[\pi_{i}\right]\right|\right\}$, $\{\mid[$ next $] \mid\}$, $\{\mid[$ fold $] \mid\}$ are maps of Boolean algebras.
(2) The function $\left\{\left|\left[\mathrm{in}_{i}\right]\right|\right\}$ preserves \vee, \perp and \wedge.

C. 7 The Safe Fragment

The proofs of Lem. 8.5, Lem. 8.6 and Prop. 8.7 are deferred to App. E.2.

C. 8 The Smooth Fragment

The proof of Lem. 8.8 is deferred to App. E.3.

C. 9 Constant Objects, Again

For the adequacy of the typing rules of the term constructors box and prev, we need to generalize Lem. C. 4 (§С.2) to refinement types. To this end, it is convenient to extend the notation $\llbracket-\rrbracket$ to refinement types.

Definition C.20. For T is a type without free iteration variables, we define $\llbracket T \rrbracket$ by induction as follows:

$$
\begin{aligned}
\llbracket\{A \mid \varphi\} \rrbracket & :=\llbracket \varphi \rrbracket \\
\llbracket \forall k \cdot T \rrbracket & :=\bigwedge n \in \mathbb{N} \llbracket T[\mathrm{n} / k] \rrbracket \\
\llbracket T_{0}+T_{1} \rrbracket & :=\llbracket T_{0} \rrbracket+\llbracket T_{1} \rrbracket \\
\llbracket T_{0} \times T_{1} \rrbracket & :=\llbracket T_{0} \rrbracket \times \llbracket T_{1} \rrbracket \\
\llbracket U \rightarrow T \rrbracket & :=\llbracket U \rrbracket \rightarrow \llbracket T \rrbracket \\
\llbracket \cup T \rrbracket & :=\backsim \llbracket T \rrbracket \\
\llbracket \square T \rrbracket & :=\Delta \Gamma \llbracket T \rrbracket
\end{aligned}
$$

We can now extend Lem. C.4. We crucially rely on the fact that Δ preserves limits (see e.g. [Johnstone 2002, Ex. 4.1.4]).

Lemma C.21. If T is a constant type, then $\llbracket T \rrbracket$ is a constant object of \mathcal{S}.

Proof. The proof is by induction on types. The cases of the type constructors,$+ \times \rightarrow$ are easy and discussed in [Clouston et al. 2016, Lem. 2.6]. In the case of $\operatorname{Fix}(X) . A$, since all occurrences of X in A should be guarded by a - , and since \llbracket can only be applied to closed types, it follows that X cannot occur in A. Then $\llbracket A \rrbracket$ is constant by induction hypothesis and we are done since $\llbracket \operatorname{Fix}(X) . A \rrbracket \simeq \llbracket A \rrbracket$ in this case. The case of $\llbracket T$ is trivial. As for $\forall k \cdot T$, since $|T|$ is constant, we have $\llbracket|T| \rrbracket \simeq \Delta S$ for some set S. By induction hypothesis for each $n \in \mathbb{N}$ we have $\llbracket T[n / k] \rrbracket \simeq \Delta S_{n}$ for some set S_{n} with $\Delta S_{n} \in \operatorname{Sub}(\llbracket|T| \rrbracket)$. Note that ΔS_{n} can be seen as a subobject of ΔS. Recall from §C. 4 the posetal left adjoint

$$
f_{!}: \operatorname{Sub}(\Delta S) \longrightarrow \mathcal{P}(S)
$$

of the map

$$
\Delta: X \in \mathcal{P}(S) \longmapsto \Delta X \in \operatorname{Sub}(\Delta S)
$$

In particular $\Delta: \mathcal{P}(S) \rightarrow \operatorname{Sub}(\Delta S)$ preserves meets and we get

$$
\begin{aligned}
\llbracket \forall k \cdot T \rrbracket & =\bigwedge_{n} \llbracket T[\mathrm{n} / k] \rrbracket \\
& \simeq \bigwedge_{n} \Delta S_{n} \\
& \simeq \bigwedge_{n} \Delta f_{!} \Delta S_{n} \\
& \simeq \Delta\left(\bigcap_{n} f_{i} \Delta S_{n}\right)
\end{aligned}
$$

As for refinement types, we show by induction on $\vdash \varphi: A$ with A constant that $\llbracket \varphi \rrbracket$ is a constant object.

Cases of T, \perp, \wedge, \vee and \Rightarrow.
All these cases follow from (the induction hypothesis and) the fact that Δ induces maps of Heyting algebras on subobject lattices (Lem. C.8).
Case of [box] φ.
Trivial, since $\llbracket[b o x] \varphi \rrbracket$ is in the image of Δ.
Case of [next] φ.
This case cannot occur since A is constant.
Case of [fold $] \varphi$.
In this case, we have $A=\operatorname{Fix}(X)$. B. Since X is guarded in B, it must not occur in B, and we have $\llbracket A \rrbracket \simeq \llbracket B \rrbracket$ via unfold. Moreover $\llbracket B \rrbracket$ is constant, with say $\llbracket B \rrbracket \simeq \Delta S$ and by induction hypothesis, $\llbracket[\varphi] \rrbracket$ is a constant subobject of $\llbracket B \rrbracket$, say $\llbracket[\varphi] \rrbracket \simeq \Delta \Phi$. Now, $\llbracket[$ fold $] \varphi \rrbracket$ lies in the pullback diagram

Since unfold is an iso, the upper arrow π is also an iso, and we are done.

Case of $\left[\pi_{i}\right] \varphi$.

We rely on the description of $\llbracket\left[\pi_{i}\right] \varphi \rrbracket$ as $\llbracket\left[\pi_{i}\right] \rrbracket(\llbracket \varphi \rrbracket)$ in \S C.6. By induction hypothesis and recalling that Δ preserves finite products, consider the pullback

Then one can take the corresponding pullback in Set

and this implies that $\llbracket\left[\pi_{i}\right] \varphi \rrbracket \simeq \Delta(\Psi)$ since Δ preserves finite limits.
Case of [in $\left.{ }_{i}\right] \varphi$.
We rely on the description of $\llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket$ as $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket(\llbracket \varphi \rrbracket)$ in \S C.6. The result follows from the induction hypothesis and the fact that Δ preserves finite limits and colimits, as in:

$$
\llbracket \varphi \rrbracket \simeq \Delta(\Phi) \quad \hookrightarrow \quad \Delta\left(S_{i}\right) \xrightarrow{\Delta\left(\mathrm{in}_{i}\right)=\mathrm{in}_{i}} \quad \Delta\left(S_{0}\right)+\Delta\left(S_{1}\right)
$$

Case of $[\operatorname{ev}(\psi)] \varphi$.
We rely on the description of $\llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket$ in $\S C .6$, that is

$$
\llbracket[\operatorname{ev}(\psi)\rceil \varphi \rrbracket=\forall_{\llbracket B \rrbracket}\left(\pi^{*}(\llbracket \psi \rrbracket) \Longrightarrow_{\llbracket A \rrbracket \rrbracket^{[B]} \times \llbracket B \rrbracket} \operatorname{ev}^{*}(\llbracket \varphi \rrbracket)\right)
$$

The result then follows from Lem. C. 8 and the fact that Δ thus preserves universal quantifications (see e.g. [Mac Lane and Moerdijk 1992, Thm. X.3.1 \& Lem. X.3.2]).

Cases of $\theta^{\mathrm{t}} \alpha \varphi$ and $\theta \alpha \varphi$.

By assumption, the occurrences of α in φ should be guarded by a [next]. Since [box] can only be applied to closed formulae, this imposes α not to appear in φ. But then the result follows by induction hypothesis.

C. 10 Realizability

We detail the steps toward the Adequacy Theorem 8.12. Full proofs are deferred to App. E.4. The first basic result we need about our notion of realizability is that it is monotone w.r.t. step indexes.
Lemma C. 22 (Monotonicity of Realizability). Let T be a type without free iteration variables. If $x \mathbb{I}_{n} T$ then $x \mathbb{H}_{k} T$ for all $k \leq n$.

The correctness of subtyping requires two additional lemmas. The first one concerns the rule

$$
\overline{T \leq|T|}
$$

Lemma C.23. For a pure type A and $x \in \Gamma \llbracket A \rrbracket$, we have $x \Vdash_{n} A$ for all $n>0$.
Second, we need a result of [Clouston et al. 2016] for the correctness of the subtyping rules

$$
\begin{gathered}
\overline{\{B \mid \psi\}} \rightarrow\{A \mid \varphi\} \leq\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\} \\
\frac{\Gamma, x:\{B \mid \psi\} \vdash M:\{A \mid \varphi\}}{\Gamma \vdash \lambda x \cdot M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}}
\end{gathered}
$$

An object X of \mathcal{S} is total if all its restriction maps $r_{n}^{X}: X_{n+1} \rightarrow X_{n}$ are surjective. Hence, if X is total, then given $t \in X_{n}$ for some $n>0$, there is a global section $x: 1 \rightarrow \mathcal{S} X$ such that $x_{n}(\bullet)=t$.

Lemma C. 24 ([Clouston et al. 2016, Cor. 3.8]). For a pure type A, the object $\llbracket A \rrbracket$ is total.
We then obtain the correctness of subtyping as usual. The rules

$$
\frac{\vdash^{A} \varphi \Rightarrow \psi}{\{A \mid \varphi\} \leq\{A \mid \psi\}} \quad \frac{\vdash_{\mathrm{c}}^{A} \varphi \Rightarrow \psi}{\{\mathbf{\square} A \mid[\mathrm{box}] \varphi\} \leq\{\mathbf{\square} A \mid[\mathrm{box}] \psi\}}
$$

rely on Lem. C. 13 (Lem. 8.3), while

$$
\frac{\varphi \text { safe }}{\left.\square\{A \mid \varphi\} \equiv\left\{\left.\begin{array}{l}
\text { a }
\end{array} \right\rvert\, \text { box }\right] \varphi\right\}}
$$

is given by Prop. 8.7.
Lemma C. 25 (Correctness of Subtyping (Lem. 8.11)). Given types T, U without free iteration variable, if $x \|_{-} U$ and $U \leq T$ then $x \|_{n} T$.

We now have all we need for the Adequacy Theorem 8.12. As usual it requires a stronger inductive invariant than the statement of Thm. 8.12. Given a typed term

$$
x_{1}: T_{1}, \ldots, x_{k}: T_{k} \vdash M: T
$$

and global sections $u_{1} \in \Gamma \llbracket\left|T_{1}\right| \rrbracket, \ldots, u_{k} \in \Gamma \llbracket\left|T_{k}\right| \rrbracket$, we obtain a global section

$$
\llbracket M \rrbracket \circ\left\langle u_{1}, \ldots, u_{k}\right\rangle \quad: \quad 1 \quad \longrightarrow \quad \llbracket|T| \rrbracket
$$

We introduce some notation to manipulate these global sections. Given a typing context $\Gamma=x_{1}$: $T_{1}, \ldots, x_{k}: T_{k}$ we write $\rho \models \Gamma$ if ρ takes each x_{i} for $i=1, \ldots, k$ to some $\rho\left(x_{i}\right) \in \Gamma \llbracket\left|T_{i}\right| \rrbracket$. Given a typing judgment $\Gamma \vdash M: T$, we let

$$
\llbracket M \rrbracket_{\rho}:=\llbracket M \rrbracket \circ\left\langle\rho\left(x_{1}\right), \ldots, \rho\left(x_{k}\right)\right\rangle
$$

Given $\rho \mid=\Gamma$ and $n>0$, write $\rho \mathbb{r}_{n} \Gamma$ if $\rho\left(x_{i}\right) \mathbb{r}_{n} T_{i}$ for all $i=1, \ldots, k$. Thm. 8.12 is proved under the following form.

Theorem C. 26 (Adequacy (Thm. 8.12)). Let Γ, T have free iteration variables among $\bar{\ell}$, and let $\bar{m} \in \mathbb{N}$. If $\Gamma \vdash M: T$ and $\rho=\Gamma$, then

$$
\forall n>0, \quad \rho\left\|_{n} \Gamma[\bar{\ell} / \bar{m}] \Longrightarrow \llbracket M \rrbracket_{\rho}\right\|_{n} T[\bar{\ell} / \bar{m}]
$$

Corollary C.27. (1) Consider a closed term $M:\{A \mid \varphi\}$ with φ safe. Then $\llbracket M \rrbracket: \mathbf{1} \rightarrow \mathcal{S} \llbracket A \rrbracket \in\{|\varphi|\}$. (2) Consider a closed term $\vdash M:\{A \mid \psi\} \rightarrow\{A \mid \varphi\}$, with φ, ψ safe. Then $\llbracket M \rrbracket$ induces a function $\Gamma \llbracket M \rrbracket$ taking $x \in\{|\psi|\}$ to $\Gamma \llbracket M \rrbracket=\llbracket M \rrbracket \circ x \in\{|\varphi|\}$.

Corollary C. 27 of course extends to any arity. As a consequence of Cor. C. 27 and Møgelberg's Theorem 8.13 [Møgelberg 2014], for a closed term $M:\{\llbracket P \mid[$ box $] \varphi\}$ with P polynomial, the unique global section $\llbracket M \rrbracket_{n+1}(\bullet)=\llbracket M \rrbracket_{n}(\bullet) \in \Gamma \llbracket P \rrbracket$ satisfies φ in the standard sense (i.e. $\left.\llbracket M \rrbracket_{n+1}(\bullet)=\llbracket M \rrbracket_{n}(\bullet) \in\{|\varphi|\}\right)$. Moreover a function, say $M:\{\mathbf{\bullet} Q \mid[$ box $] \psi\} \rightarrow\{\mathbf{\bullet} P \mid[$ box $] \varphi\}$ with Q, P polynomial induces a Set-function

$$
\begin{array}{rlll}
\Gamma \llbracket M \rrbracket: & \Gamma \llbracket \llbracket Q \rrbracket & \longrightarrow & \Gamma \llbracket\lfloor P \rrbracket \\
x & \longmapsto & \llbracket M \rrbracket \circ x
\end{array}
$$

such that, if $y \in \Gamma \llbracket Q \rrbracket \simeq \Gamma \Delta \Gamma \llbracket Q \rrbracket=\Gamma \llbracket \llbracket \rrbracket$ satisfies ψ in the standard sense (i.e. $y \in\{|\varphi|\}$), then the unique global section $\Gamma \llbracket M \rrbracket(y)_{n+1}(\bullet)=\Gamma \llbracket M \rrbracket(y)_{n}(\bullet) \in \Gamma \llbracket P \rrbracket$ satisfies φ in the standard sense (i.e. belongs to $\{|\varphi|\}$).

C. 11 A Galois Connection

In §8, we indicated that safe formulae over Str ${ }^{\mathrm{g}} A$ are safety (i.e. topologically closed) properties. In view of Møgelberg's Theorem [Møgelberg 2014] (Thm. 8.13), this generalizes to polynomial recursive types: safe formulae on polynomial recursive types define closed sets for the usual tree (or stream) topology.

We briefly elaborate on this. Fix an object X of \mathcal{S}. There is a Galois connection between the subobjects of X in \mathcal{S} and the subsets of ΓX in Set:

$$
\text { Pref } \dashv \text { Clos }: \operatorname{Sub}(X) \longrightarrow \mathcal{P}(\Gamma X)
$$

where for $S \in \mathcal{P}(\Gamma X)$ and $B \in \operatorname{Sub}(X)$,

$$
\begin{array}{lll}
\operatorname{Pref}(S) & : & n \longmapsto\left\{x_{n}(\bullet) \mid x \in S\right\} \\
\operatorname{Clos}(B) & := & \left\{x \in \Gamma X \mid \forall n>0, x_{n}(\bullet) \in B(n)\right\}
\end{array}
$$

Of course, Clos is the restriction of $\Gamma: S \rightarrow$ Set to the subobjects of X.
Let us spell out the fact that Pref \dashv Clos form a Galois connection. Fix an object X of \mathcal{S}. First, it is trivial that the functions

$$
\begin{aligned}
& \text { Pref }: \mathcal{P}(\Gamma X) \quad \longrightarrow \quad \operatorname{Sub}(X) \\
& \text { Clos }: \operatorname{Sub}(X) \quad \longrightarrow \quad \mathcal{P}(\Gamma X)
\end{aligned}
$$

are monotone w.r.t. the orders of the lattices $\mathcal{P}(\Gamma X)$ and $\operatorname{Sub}(X)$. Moreover, we have:
Lemma C.28. We have
(i) $S \subseteq \operatorname{Clos}(\operatorname{Pref}(S))$ for $S \in \mathcal{P}(\Gamma X)$.
(ii) $\operatorname{Pref}(\operatorname{Clos}(B)) \subseteq B$ for $B \in \operatorname{Sub}(X)$.

Proof.
(i) Given $x \in S$, by definition we have $x_{n}(\bullet) \in \operatorname{Pref}(S)(n)$ for all $n>0$, so $x \in \operatorname{Clos}(\operatorname{Pref}(S))$.
(ii) Given $a \in \operatorname{Pref}(\operatorname{Clos}(B))(n)$, there is some $x \in \operatorname{Clos}(B)$ such that $a=x_{n}(\bullet)$. But $x \in \operatorname{Clos}(B)$ means $x_{k}(\bullet) \in B(k)$ for all $k>0$, so that $a=x_{n}(\bullet) \in B(n)$.

As usual, we trivially get

$$
\operatorname{Pref}(S) \leq B \quad \text { iff } \quad S \subseteq \operatorname{Clos}(B)
$$

Say that $S \in \mathcal{P}(\Gamma X)$ is closed if $S=\operatorname{Clos}(B)$ for some $B \in \operatorname{Sub}(X)$. It is easy to see that S is closed if and only if $S=\operatorname{Clos}(\operatorname{Pref}(S))$. Note that $S=\operatorname{Clos}(\operatorname{Pref}(S))$ unfolds to

$$
\forall x \in \Gamma \llbracket A \rrbracket, \quad x \in S \quad \text { iff } \quad \forall n>0, \exists y \in S, x_{n}(\bullet)=y_{n}(\bullet)
$$

When A is a polynomial recursive type, Thm. 8.13 thus says that S is closed if and only if S is closed for the corresponding usual tree (or stream) topology. Since Prop. 8.7 can be formulated as

$$
\{|\varphi|\} \quad=\quad \operatorname{Clos}(\llbracket \varphi \rrbracket)
$$

it indeed says that $\{|\varphi|\}$ is closed for the usual topology.

D DETAILS OF THE EXAMPLES

D. 1 Guarded Streams

D.1.1 The Later Modality on Guarded Streams.

Example D.1. We have the following basic modal refinement types for Cons ${ }^{\mathrm{g}}$ and t^{g} :

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & : A \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \\
\mathrm{tt}^{\mathrm{g}} & :\left\{\mathrm{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \varphi\right\}
\end{aligned}
$$

Proof. We begin with Cons ${ }^{g}$. Recall that Cons ${ }^{g}=\lambda x . \lambda s$.fold $\langle x, s\rangle$ and that $\bigcirc(-)=[$ fold $]\left[\pi_{1}\right][$ next $](-)$. The result then follows from the following derivation:

$$
\begin{aligned}
& \left.x: A, s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \vdash s: \downarrow \operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \\
& ======================= \\
& x: A, s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \vdash s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid[\mathrm{next}] \varphi\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x: A, s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \vdash\langle x, s\rangle:\left\{A \times \operatorname{Str}^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \varphi\right\}}{x: A, s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \varphi\right\} \vdash \text { fold }\langle x, s\rangle:\left\{\operatorname{Str}^{\mathrm{g}} A \mid[\text { fold }]\left[\pi_{1}\right][\text { next }] \varphi\right\}}
\end{aligned}
$$

As for tl^{g}, recalling that $\mathrm{t}^{\mathrm{g}}=\lambda s . \pi_{1}($ unfold $s)$, the result follows from

$$
\begin{aligned}
& \overline{s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \vdash s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid[\text { fold }]\left[\pi_{1}\right][\text { next }] \varphi\right\}} \\
& s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \vdash \text { unfold } s:\left\{A \times>\operatorname{Str}^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \varphi\right\} \\
& s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \varphi\right\} \vdash \pi_{1}(\text { unfold } s):\left\{\triangleright \operatorname{Str}^{\mathrm{g}} A \mid[\text { next }] \varphi\right\} \\
& =====\overline{=}=================== \\
& s:\left\{\operatorname{Str}^{\mathrm{g}} \bar{A} \mid \bigcirc \varphi\right\} \vdash \pi_{1}(\text { unfold } s):\left\{\operatorname{Str}^{\mathrm{g}} \bar{A} \mid \varphi\right\}
\end{aligned}
$$

D.1.2 Destructors of Guarded Streams.

Example D.2. The types of hd^{g} and tl^{g} can be refined as follows with the always modality \square :

$$
\begin{aligned}
& \mathrm{hd}^{\mathrm{g}}:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
& \mathrm{tt}^{\mathrm{g}}:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\{A \mid \varphi\} \\
& \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

Proof. Recall that $[\mathrm{hd}] \varphi=[$ fold $]\left[\pi_{0}\right] \varphi$. We begin with the typing of

$$
\mathrm{hd}^{\mathrm{g}}:=\lambda s . \pi_{0}(\text { unfold } s): \quad\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\{A \mid \varphi\}
$$

We use $\vdash^{\mathrm{Str}^{\mathrm{g}} A} \square[\mathrm{hd}] \varphi \Rightarrow[\mathrm{hd}] \varphi$ (Ex. 4.7).

$$
\frac{\overline{s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}} \quad \frac{\vdash^{\mathrm{Strg} A} \square[\mathrm{hd}] \varphi \Rightarrow[\mathrm{hd}] \varphi}{\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \leq\left\{\mathrm{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}}}{\frac{s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}}{\frac{s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash \text { unfold } s:\left\{A \times>\operatorname{Str}^{\mathrm{g}} A \mid\left[\pi_{0}\right] \varphi\right\}}{}}}
$$

We continue with the typing of

$$
\mathrm{tl}^{\mathrm{g}}:=\lambda s . \pi_{1}(\text { unfold } s) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

We use $\vdash^{\text {Str }^{g} A} \square[$ hd $] \varphi \Rightarrow \bigcirc \square[$ hd $] \varphi$ (Ex.4.7). Recall that $\bigcirc \varphi=[$ fold $]\left[\pi_{1}\right][$ next $] \varphi$.

$$
\begin{aligned}
& \begin{array}{r}
\vdash^{\operatorname{Str}^{g} A} \square[h d] \varphi \Rightarrow \bigcirc \square[h d] \varphi
\end{array} \\
& \frac{s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \quad \frac{\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \leq\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \square[\mathrm{hd}] \varphi\right\}}{s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \square[\mathrm{hd}] \varphi\right\}}}{} \\
& s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash \operatorname{unfold} s:\left\{A \times \triangleright \operatorname{Str}^{\mathrm{g}} A \mid\left[\pi_{0}\right][\text { next }] \square[\mathrm{hd}] \varphi\right\} \\
& s:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash \pi_{1}(\text { unfold } s):\left\{\vee \mathrm{Str}^{\mathrm{g}} A \mid[\mathrm{next}] \square[\mathrm{hd}] \varphi\right\} \\
& ============================ \\
& \frac{s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \vdash \pi_{1}(\text { unfold } s): \mapsto\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}}{\vdash \lambda s . \pi_{1}(\text { unfold } s):\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}}
\end{aligned}
$$

D.1.3 Constructor of Guarded Streams.

Example D.3. The type of Cons ${ }^{\text {g }}$ can be refined as follows with the always modality \square :

$$
\text { Cons }^{\mathrm{g}}:\{A \mid \varphi\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Proof. We show

$$
\text { Cons }^{\mathrm{g}}:=\lambda x . \lambda s . \text { fold }\langle x, s\rangle:\{A \mid \varphi\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

To this end, we use the following derived rule (see Ex. 5.1):

$$
\frac{\Gamma \vdash M:\{A \mid \varphi\} \quad \Gamma \vdash N:\{B \mid \psi\}}{\Gamma \vdash\langle M, N\rangle:\left\{A \times B \mid\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right] \psi\right\}}
$$

Consider the typing context

$$
\Gamma:=x:\{A \mid \varphi\}, s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

We know from §D.1.1 that

$$
\Gamma \vdash \text { fold }\langle x, s\rangle:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \square[\mathrm{hd}] \varphi\right\}
$$

Since $\vdash^{\mathrm{Str}^{\mathrm{g}} A}([\mathrm{hd}] \varphi \wedge \bigcirc \square[\mathrm{hd}] \varphi) \Rightarrow \square[\mathrm{hd}] \varphi$ (Ex. 4.7), we are done if we show

$$
\Gamma \vdash \mathrm{fold}\langle x, s\rangle:\left\{\mathrm{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}
$$

But this is trivial:

$$
\frac{\frac{\Gamma \vdash x:\{A \mid \varphi\}}{\Gamma \vdash\langle x, s\rangle:\left\{A \times>\mathrm{Str}^{\mathrm{g}} A \mid\left[\pi_{0}\right] \varphi\right\}}}{\Gamma \vdash \text { fold }\langle x, s\rangle:\left\{\mathrm{Str}^{\mathrm{g}} A \mid[\text { fold }]\left[\pi_{0}\right] \varphi\right\}}
$$

D.1.4 Map over Guarded Streams.

Example D.4. We have the following:

$$
\begin{aligned}
\operatorname{map}^{\mathrm{g}} & :(\{A \mid \varphi\} \rightarrow\{B \mid \psi\}) \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \\
& :=\lambda f . \operatorname{fix}(g) \cdot \lambda s \cdot\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{g}^{\mathrm{g}}\left(\mathrm{~g} \circledast\left(\mathrm{t}^{\mathrm{g}} s\right)\right)
\end{aligned}
$$

Proof. We proceed as follows, using §D.1.2 and §D.1.3:
where

$$
\begin{aligned}
& T:=(\{A \mid \varphi\} \rightarrow\{B \mid \psi\}) \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \\
& \Gamma:=f:\{A \mid \varphi\} \rightarrow\{B \mid \psi\}, g:\left(\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \rightarrow\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\}\right), s:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

D.1.5 Merge over Guarded Streams.

Example D.5. We have the following:

$$
\begin{aligned}
\text { merge }^{\mathrm{g}} & : \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{0}\right]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{1}\right]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\} \\
& :=\operatorname{fix}(g) \cdot \lambda s_{0} \cdot \lambda s_{1} \cdot \text { Cons }^{\mathrm{g}}\left(\text { hd }^{\mathrm{g}} s_{0}\right)\left(\text { next }^{\left.\left(\text {Conss }^{\mathrm{g}}\left(\text { hd }^{\mathrm{g}} s_{1}\right)\left(g \circledast \circledast\left(\mathrm{tl}^{\mathrm{g}} s_{0}\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s_{1}\right)\right)\right)\right)}\right.
\end{aligned}
$$

Proof. Let Γ be the context

$$
\begin{aligned}
& g:\left(\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{0}\right]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{1}\right]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\}\right), \\
& s_{0}:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{0}\right]\right\}, \\
& s_{1}:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{1}\right]\right\}
\end{aligned}
$$

We have

$$
\begin{array}{ll}
\Gamma \vdash \operatorname{hd}^{\mathrm{g}} s_{0}:\left\{A \mid \varphi_{0}\right\} & \Gamma \vdash \mathrm{t}^{\mathrm{g}} s_{0}: \bullet\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{0}\right]\right\} \\
\Gamma \vdash \operatorname{hd}^{\mathrm{g}} s_{1}:\left\{A \mid \varphi_{1}\right\} & \\
\Gamma \vdash \mathrm{t}^{\mathrm{g}} s_{1}: \triangleright\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left[\varphi_{1}\right]\right\}
\end{array}
$$

We thus get

$$
g \circledast\left(\mathrm{t}^{\mathrm{g}} s_{0}\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s_{1}\right): \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\}
$$

and we are done since using subtyping we have

$$
\begin{aligned}
& \text { Cons }^{\mathrm{g}}:\left\{A \mid \varphi_{0}\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\} \\
& \text { Cons }^{\mathrm{g}}:\left\{A \mid \varphi_{1}\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square\left(\left[\varphi_{0}\right] \vee\left[\varphi_{1}\right]\right)\right\}
\end{aligned}
$$

D. 2 Operations on Coinductive Streams

Example D. 6 (Operations on Coinductive Streams). For a safe φ of the appropriate type, we have

```
hd : {Str A|[box]\square[hd]\varphi} \longrightarrow{A|\varphi}
    tl : {Str A|[box]\square[hd]\varphi} \longrightarrow {Str A|[box]\square[hd]\varphi}
    tl : {Str A|[box]\bigcirc\varphi} \longrightarrow {Str A|[box]\varphi}
```

Proof.

Case of hd.

Recall that

$$
\begin{aligned}
\text { hd } & : \quad \operatorname{Str} A \longrightarrow A \\
& :=\lambda s \cdot \text { hd }^{\mathrm{g}}(\text { unbox } s)
\end{aligned}
$$

We have

Cases of tl .

Recall that

$$
\begin{aligned}
\mathrm{tI} & : \operatorname{Str} A \longrightarrow \operatorname{Str} A \\
& :=\lambda s \cdot \operatorname{box}_{\iota}\left(\operatorname{prev}_{\iota}\left(\mathrm{t}^{\mathrm{g}}(\text { unbox } s)\right)\right)
\end{aligned}
$$

We have

```
    s:{Str A|[box]\square[hd] }\varphi}\vdashs:{\operatorname{Str}A|[\textrm{box}]\square[hd]\varphi
    = = = = =========== = = = ==========
    s:{Str A |[box]\square[hd] }\varphi}\mathrm{ 卜 unbox }s:{\mp@subsup{\textrm{Str}}{}{\textrm{g}}A|\square[hd]\varphi
==== =============================
```



```
    s:{Str A|[box]\square[hd]\varphi}\vdash \mp@subsup{\operatorname{prev}}{t}{}(\mp@subsup{\textrm{tt}}{}{\textrm{g}}(\mathrm{ unbox s)) : {Str}\mp@subsup{}{}{\textrm{g}}A|\square[hd]\varphi}
```



```
        s,
```

 and

D. 3 Map over Coinductive Streams

We discuss here the cases of

$$
\text { map }:(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\text { box }] \Delta[\text { hd }] \psi\} \longrightarrow\{\operatorname{Str} A \mid[\text { box }] \Delta[\text { hd }] \varphi\}
$$

where ψ, φ are safe and smooth and where $\Delta \in\{\square, \diamond, \diamond \square, \square \diamond\}$. The case of \square is handled as in Ex. 5.4, using that $\square[h d] \varphi$ and $\square[h d] \psi$ are safe. The case of \diamond is detailed in Ex. D. 7 (§D.3.1). The idea is that since $\diamond[\mathrm{hd}] \varphi, \diamond[\mathrm{hd}] \psi$ are smooth and since $\diamond^{k}[\mathrm{hd}] \varphi, \diamond^{k}[\mathrm{hd}] \psi$ are safe, we can reduce to typing the guarded map ${ }^{\mathrm{g}}$ as

$$
\text { map }^{\mathrm{g}} \quad: \quad(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

The case of $\diamond \square$, detailed in Ex. D. 8 (§D.3.2), is more involved. Since $\diamond \square[h d] \varphi, \diamond \square[h d] \psi$ are smooth and $\diamond^{k} \square[h d] \varphi, \diamond^{k} \square[h d] \psi$ are safe, we similarly reduce to showing (map ${ }^{g} f$) : $\forall k \cdot T(k)$ where

$$
T(k):=\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}
$$

and assuming f of type $\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$. But this is unfortunately too weak. Similarly as with \diamond, it is natural to first assume the type $\forall k \cdot T(k)$ for the recursion variable g and then to apply the (\forall-CI) rule (Fig. 11) on $\forall k \cdot T(k)$. In the case of $T(k+1)$, we unfold

$$
\diamond^{k+1} \square[\mathrm{hd}] \psi \quad \Leftrightarrow \quad \square[\mathrm{hd}] \psi \vee \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi
$$

and apply the (V-E) rule (Fig. 8). But in the branch of $\square[h d] \psi$, giving g the type, say,

$$
\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{1} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{1} \square[\mathrm{hd}] \varphi\right\}
$$

is not sufficient to derive

$$
s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \quad \vdash \circledast\left(\mathrm{t}^{\mathrm{g}} s\right): \quad\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

The reason is that [next] (and thus \bigcirc) does not satisfy axiom (P) of Table 3 (see $\S 8$). The solution is to use the $[\mathrm{ev}(-)] / \| \rightarrow$ modality (see Not. 7.1) to encode a kind of "intersection" on arrow types (see Rem. 4.8), and to type (mapg f) with

$$
\left.\forall k \cdot\left\{\operatorname{Str}^{\mathrm{g}} B \rightarrow \operatorname{Str}^{\mathrm{g}} A \mid\left(\diamond^{k} \square[\mathrm{hd}] \psi \| \rightarrow \diamond^{k} \square[\mathrm{hd}] \varphi\right) \wedge(\square[\mathrm{hd}] \psi \| \mapsto \square \mathrm{hd}] \varphi\right)\right\}
$$

We finally turn to $\square \diamond$. Using that $\square \diamond[h d] \varphi$ and $\square \diamond[h d] \psi$ are both smooth, we first unfold the \square 's using the rules ($v-\mathrm{I}$) (Fig. 11) and then ($v-\mathrm{E}$) (Ex. 6.10), thus reducing to

$$
\operatorname{box}_{l}\left(\operatorname{map}^{g} f(\text { unbox } s)\right) \quad: \quad\left\{\operatorname{Str} A \mid[\text { box }] \square^{\ell} \diamond[\text { hd }] \varphi\right\}
$$

assuming $f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$ and $s:\left\{\operatorname{Str} B \mid[\operatorname{box}] \square^{\ell} \diamond[\mathrm{hd}] \psi\right\}$. Then, since $\diamond[\mathrm{hd}] \varphi, \diamond[\mathrm{hd}] \psi$ are smooth, we can unfold the \diamond 's using the rules $(\mu-\mathrm{E})$ and $(\mu-\mathrm{I})$ with the non-trivial smooth context

$$
\gamma(\beta):=\square^{\ell} \beta
$$

Since the formulae $\square^{\ell} \diamond^{k}[$ hd $] \psi$ and $\square^{\ell} \diamond^{k}[h d] \varphi$ are safe, we can reduce to showing

$$
\begin{aligned}
\lambda s .\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right)::^{\mathrm{g}}\left(g \circledast\left(\mathrm{t}^{\mathrm{g}} s\right)\right) & : \quad \forall \ell \cdot \forall k \cdot U(\ell, k) \\
U(\ell, k) & :=\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

assuming $f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$ and $g: \bullet \forall \cdot \forall k \cdot U(\ell, k)$. We apply the ($\forall-\mathrm{CI}$) rule on $\forall \ell \cdot \forall k$. $U(\ell, k)$. The case of $\forall k \cdot U(0, k)$ is trivial since $\square^{0} \vartheta \Leftrightarrow T$. We then apply the ($\left.\forall-\mathrm{CI}\right)$ rule, this time on $\forall k \cdot U(\ell+1, k)$. The case of $U(\ell+1,0)$ can be dealt with using the (ExF) rule. In the case of $U(\ell+1, k+1)$, we conclude with a straightforward case analysis based on the unfoldings

$$
\begin{aligned}
\square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \vartheta & \Leftrightarrow \diamond^{k+1}[\mathrm{hd}] \vartheta \wedge \bigcirc \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \vartheta \\
\diamond^{k+1}[\mathrm{hd}] \vartheta & \Leftrightarrow[\mathrm{hd}] \vartheta \vee \bigcirc \diamond^{k}[\mathrm{hd}] \vartheta
\end{aligned}
$$

See Ex. D. 9 (§D.3.3) for details. Just note that since $\bigcirc \top \Leftrightarrow T$ (Table 3) we have $\square^{1} \vartheta \Leftrightarrow \vartheta$, so that

$$
g: \triangleright \forall \ell \cdot \forall k \cdot U(\ell, k) \vdash g \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

D.3.1 The Case of Eventually $(\diamond[\mathrm{hd}] \varphi)$.

Example D.7. We have the following, for safe and smooth φ and ψ :

$$
\begin{aligned}
\text { map } & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\text { box }] \diamond[\text { hd }] \psi\} \longrightarrow\{\operatorname{Str} A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \\
& =\lambda f . \lambda s . \text { box }_{l}\left(\text { map }^{\mathrm{s}} f(\text { unbox } s)\right)
\end{aligned}
$$

Proof. Since $\diamond[h d] \varphi$ and $\diamond[h d] \psi$ are both smooth, we can first reduce to

$$
\Gamma_{f}, s:\left\{\operatorname{Str} B \mid[\operatorname{box}] \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad \operatorname{box}_{l}\left(\operatorname{map}^{\mathrm{g}} f(\text { unbox } s)\right):\left\{\operatorname{Str} A \mid[\text { box }] \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\Gamma_{f}:=f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}
$$

Since the formulae $\diamond^{k}[\mathrm{hd}] \psi$ and $\diamond^{k}[\mathrm{hd}] \varphi$ are safe, we are done if we show

$$
\begin{aligned}
\text { map }^{\mathrm{g}} & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}\right) \\
& =\lambda f \cdot \operatorname{fix}(g) \cdot \lambda s \cdot\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{g}\left(g \circledast\left(\mathrm{t}^{\mathrm{l}} s\right)\right)
\end{aligned}
$$

Let

$$
\begin{array}{ll}
N & :=\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{g}^{\mathrm{g}}\left(g \circledast\left(\mathrm{tl}^{\mathrm{g}} s\right)\right) \\
M & :=\lambda s . N \\
T(k) & :=\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\} \\
\Gamma & :=\Gamma_{f}, g: \bullet \forall k \cdot T(k)
\end{array}
$$

We show

$$
\Gamma \vdash M: \forall k \cdot T(k)
$$

We reason by cases on k with the rule

$$
\frac{\Gamma \vdash M: T(0) \quad \Gamma \vdash M: T(k+1)}{\Gamma \vdash M: \forall k \cdot T(k)}
$$

Case of $T(0)$.
We show

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{\ominus}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{\ominus}[\mathrm{hd}] \varphi\right\}
$$

$$
\frac{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{\ominus}[\mathrm{hd}] \psi\right\} \vdash s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \perp\right\} \quad \Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{\ominus}[\mathrm{hd}] \psi\right\} \vdash N: \operatorname{Str}^{\mathrm{g}} A}{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{\ominus}[\mathrm{hd}] \psi\right\} \vdash N:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond^{\ominus}[\mathrm{hd}] \varphi\right\}}
$$

Case of $T(k+1)$.
We show

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

Using

$$
\vdash \diamond^{k+1}[h d] \psi \Leftrightarrow \quad\left([h d] \psi \vee \bigcirc \diamond^{k}[h d] \psi\right)
$$

we do a case analysis on the refinement type of s.
(Sub)Case of [hd] ψ.
Since $\vdash[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1}[\mathrm{hd}] \varphi$, we reduce to showing

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid[\mathrm{hd}] \psi\right\} \quad \vdash \quad N \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}
$$

By §D.1.2 we have

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{hd}^{\mathrm{g}} s:\{B \mid \psi\}
$$

But we are done since

$$
\text { Cons }^{g}:\{A \mid \varphi\} \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}
$$

(Sub)Case of $\bigcirc \diamond^{k}[h d] \psi$.
Since $\vdash \bigcirc \diamond^{k}[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1}[\mathrm{hd}] \varphi$, we reduce to showing

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

By §D.1.1 we have

$$
\left.\Gamma, s:\left\{\operatorname{Str}^{g} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{tl}^{\mathrm{g}} s: \not \operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\}
$$

Since

$$
\Gamma \vdash g: \forall k>\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

we have

$$
\Gamma \vdash g:>\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

Since moreover by §D.1.1 we have

$$
\text { Cons }^{\mathrm{g}} \quad: A \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

we deduce that

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\}
$$

D.3.2 The Case of Eventually Always ($>\square[\mathrm{hd}] \varphi$).

Example D.8. We have the following, for safe and $\operatorname{smooth} \varphi$ and ψ :

```
map : \((\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\) box \(] \diamond \square[h d] \psi\} \longrightarrow\{\operatorname{Str} A \mid[\) box \(] \diamond \square[h d] \varphi\}\)
    \(=\lambda f . \lambda s\). box \(_{l}\left(\right.\) map \(^{\mathrm{g}} f(\) unbox \(\left.s)\right)\)
```

Proof. Since $\diamond \square[h d] \varphi$ and $\diamond \square[h d] \psi$ are both smooth, we can first reduce to
$\Gamma_{f}, s:\left\{\operatorname{Str} B \mid[\right.$ box $\left.] \diamond^{k} \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad \operatorname{box}_{\iota}\left(\right.$ map $^{g} f($ unbox $\left.s)\right): \quad\left\{\operatorname{Str} A \mid[\right.$ box $\left.] \diamond^{k} \square[\mathrm{hd}] \varphi\right\}$ where

$$
\Gamma_{f}:=f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}
$$

Since the formulae $\diamond^{k} \square[\mathrm{hd}] \psi$ and $\diamond^{k} \square[\mathrm{hd}] \varphi$ are safe, we are done if we show

$$
\begin{aligned}
\operatorname{map}^{\mathrm{g}} & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right) \\
& =\lambda f \cdot \operatorname{fix}(g) \cdot \lambda s \cdot\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):::^{\mathrm{g}}\left(g \circledast\left(\mathrm{tt}^{\mathrm{g}} s\right)\right)
\end{aligned}
$$

Let

$$
\begin{array}{ll}
N & :=\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{g}\left(g \circledast\left(\mathrm{tl}^{\mathrm{g}} s\right)\right) \\
M & :=\lambda s . N \\
T(k) & :=\left\{\mathrm{Str}^{\mathrm{g}} B \rightarrow \operatorname{Str}^{\mathrm{g}} A \mid\left(\diamond^{k} \square[\mathrm{hd}] \psi \| \rightarrow \diamond^{k} \square[\mathrm{hd}] \varphi\right) \wedge(\square[\mathrm{hd}] \psi \| \rightarrow \square[\mathrm{hd}] \varphi)\right\} \\
\Gamma & :=\Gamma_{f}, g: \neg \forall k \cdot T(k)
\end{array}
$$

We show

$$
\Gamma \vdash M: \forall k \cdot T(k)
$$

We reason by cases on k with the rule

$$
\frac{\Gamma \vdash M: T(0) \quad \Gamma \vdash M: T(k+1)}{\Gamma \vdash M: \forall k \cdot T(k)}
$$

Case of $T(0)$.

We have to show

$$
\begin{array}{llllll}
& \Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} & \vdash & N & :\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
\text { and } & \Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{0} \square[\mathrm{hd}] \psi\right\} & \vdash & N & : & \left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{0} \square[\mathrm{hd}] \varphi\right\}
\end{array}
$$

We only detail the latter since the former can be dealt-with as in §D.1.5. Since

$$
\vdash \diamond^{0} \square[\psi] \Leftrightarrow \perp
$$

we conclude with the (ExF) rule

$$
\frac{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{0} \square[\mathrm{hd}] \psi\right\} \vdash s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \perp\right\} \quad \Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{0} \square[\mathrm{hd}] \psi\right\} \vdash N: \operatorname{Str}^{\mathrm{g}} A}{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{0} \square[\mathrm{hd}] \psi\right\} \vdash N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{0} \square[\mathrm{hd}] \varphi\right\}}
$$

Case of $T(k+1)$.
We show

$$
\left.\left.\begin{array}{llllll}
& \Gamma, s:\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} & \vdash & N & : & \left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \\
\text { and } & \Gamma, s:\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond^{k+1} \square[\mathrm{hd}] \psi\right\} & \vdash & N & : & \left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond k+1\right. \\
\mathrm{h}
\end{array} \mathrm{hd}\right] \varphi\right\}
$$

We only detail the latter since the former can be dealt-with as in §D.1.5. Using

$$
\vdash \quad \diamond^{k+1} \square[\mathrm{hd}] \psi \quad \Leftrightarrow \quad\left(\square[\mathrm{hd}] \psi \vee \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi\right)
$$

we do a case analysis on the refinement type of s.
(Sub)Case of $\square[h d] \psi$.
We show

$$
\Gamma, s:\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond^{k+1} \square[\mathrm{hd}] \varphi\right\}
$$

Note that $\vdash \square[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1} \square[\mathrm{hd}] \varphi$. We can therefore reduce to

$$
\Gamma, s:\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad N \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

and we can conclude as in §D.1.5.
(Sub)Case of $\bigcirc \diamond^{k} \square[h d] \psi$.
Since $\vdash \bigcirc \diamond^{k} \square[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1} \square[\mathrm{hd}] \varphi$, we reduce to showing

$$
\Gamma, s:\left\{\mathrm{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\mathrm{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \varphi\right\}
$$

By §D.1.1 we have

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{tl}^{\mathrm{g}} s \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\}
$$

Since

$$
\Gamma \vdash g: \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right)
$$

we have

$$
\Gamma \vdash g:>\left(\left\{\mathrm{Str}^{\mathrm{g}} B \mid \diamond^{k} \square[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right)
$$

Since moreover by §D.1.1 we have

$$
\mathrm{Cons}^{\mathrm{g}}: A \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \varphi\right\}
$$

we deduce that

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi\right\} \quad \vdash \quad N \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \psi\right\}
$$

D.3.3 The Case of Always Eventually ($\square \diamond[\mathrm{hd}] \varphi$).

Example D.9. We have the following, for safe and smooth φ and ψ :

$$
\begin{aligned}
\text { map } & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow\{\operatorname{Str} B \mid[\text { box }] \square \diamond[\text { hd }] \psi\} \rightarrow\{\operatorname{Str} A \mid[\text { box }] \square \diamond[\text { hd }] \varphi\} \\
& :=\lambda f \cdot \lambda s \cdot \text { box }_{l}\left(\operatorname{map}^{\mathrm{g}} f(\text { unbox } s)\right)
\end{aligned}
$$

Notation D.10. We let

$$
\begin{aligned}
\diamond^{\mathrm{t}} \varphi & :=\mu^{\mathrm{t}} \alpha \cdot \varphi \vee \bigcirc \alpha \\
\square^{\mathrm{t}} \varphi & :=v^{\mathrm{t}} \alpha \cdot \varphi \wedge \bigcirc \alpha
\end{aligned}
$$

Proof. We start in the same spirit as in §D.3.1 and §D.3.2. Using that $\square \diamond[$ hd $] \varphi$ and $\square \diamond[\mathrm{hd}] \psi$ are both smooth, we first unfold the \square using the rules $(v-\mathrm{I})$ and (v-E). Then, since $\diamond[\mathrm{hd}] \varphi$ and $\diamond[\mathrm{hd}] \psi$ are both smooth, we can unfold the \diamond using the rules $(\mu-\mathrm{E})$ and $(\mu-\mathrm{I})$ with the non-trivial smooth context

$$
\gamma(\beta):=\square^{\ell} \beta
$$

We are thus led to deriving

$$
\Gamma_{f}, s:\left\{\operatorname{Str} B \mid[\mathrm{box}] \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad \operatorname{box}_{\iota}\left(\operatorname{map}^{\mathrm{g}} f(\text { unbox } s)\right) \quad: \quad\left\{\operatorname{Str} A \mid[\mathrm{box}] \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\Gamma_{f}:=f:\{B \mid \psi\} \rightarrow\{A \mid \varphi\}
$$

Since the formulae $\square^{\ell} \diamond^{k}[h d] \psi$ and $\square^{\ell} \diamond^{k}$ [hd] φ are safe, we are done if we show

$$
\begin{aligned}
\operatorname{map}^{\mathrm{g}} & :(\{B \mid \psi\} \rightarrow\{A \mid \varphi\}) \longrightarrow \forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}\right) \\
& =\lambda f \cdot \mathrm{fix}(g) \cdot \lambda s \cdot\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{g}^{\mathrm{g}}\left(g \circledast\left(\mathrm{tt}^{\mathrm{g}} s\right)\right)
\end{aligned}
$$

Let

$$
\begin{array}{ll}
N & :=\left(f\left(\mathrm{hd}^{\mathrm{g}} s\right)\right)::^{\mathrm{g}}\left(g \circledast\left(\mathrm{t}^{\mathrm{g}} s\right)\right) \\
M & :=\lambda s . N \\
T(k, \ell) & :=\left\{\mathrm{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\} \\
\Gamma & :=\Gamma_{f}, g: \triangleright \forall k \cdot \forall \ell \cdot T(k, \ell)
\end{array}
$$

We show

$$
\Gamma \vdash M: \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We reason by cases on k and ℓ. This amounts to the derived rule

$$
\frac{\Gamma \vdash M: T(0,0) \quad \Gamma \vdash M: T(0, \ell+1) \quad \Gamma \vdash M: T(k+1,0)}{\Gamma \vdash M: \forall k \cdot \forall \ell \cdot T(k, \ell)}
$$

Cases of $T(\mathrm{u}, 0)$.
We have $\vdash \square^{0} \theta \Leftrightarrow T$, and we are done since

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \mathrm{\top}\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \top\right\}
$$

Case of $T(\theta, \ell+1)$.
We have $\vdash \diamond^{0}[\theta] \Leftrightarrow \perp$, and we reduce to showing

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \perp\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell+1} \perp\right\}
$$

But since $\vdash \square^{\ell+1} \perp \Rightarrow \perp$, we have

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \perp\right\} \quad \vdash \quad s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \perp\right\}
$$

and we conclude with the (ExF) rule

$$
\frac{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \perp\right\} \vdash s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \perp\right\} \quad \Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \perp\right\} \vdash N: \operatorname{Str}^{\mathrm{g}} A}{\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \perp\right\} \vdash N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell+1} \perp\right\}}
$$

Case of $T(k+1, \ell+1)$.
Using $\vdash^{\operatorname{Str}^{g} A} \square^{\ell+1} \theta \Leftrightarrow\left(\theta \wedge \bigcirc \square^{\ell} \theta\right)$, we show
$\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi \wedge \bigcirc \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \varphi\right\}$
We consider each conjunct separately.
(Sub)Case of $\diamond^{k+1}[h d] \varphi$.
We show

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

Using

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k+1}[\mathrm{hd}] \psi\right\}
$$

and $\vdash \diamond^{k+1}[\mathrm{hd}] \psi \Leftrightarrow\left([\mathrm{hd}] \psi \vee \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right)$ we do a case analysis on the refinement type of s.
(SubSub)Case of [hd] ψ.
Since (by §D.1.1)

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{hd}^{\mathrm{g}} s: \quad\left\{\mathrm{Str}^{\mathrm{g}} B \mid[\mathrm{hd}] \psi\right\}
$$

we easily deduce that

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid[\mathrm{hd}] \psi\right\} \quad \vdash \quad N \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}
$$

and we are done since $\vdash[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1}[\mathrm{hd}] \varphi$.
(SubSub)Case of $\bigcirc \diamond^{k}[h d] \psi$.
By §D.1.1 we have

$$
\left.\Gamma, s:\left\{\operatorname{Str}^{g} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{tt}^{\mathrm{g}} s: \not \operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\}
$$

Since
$\Gamma \vdash g: \forall k \cdot \forall \ell \rightarrow\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)$
we have

$$
\Gamma \vdash g:\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{1} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{1} \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

But $\vdash(\theta \wedge \bigcirc T) \Leftrightarrow \theta$, so that $\vdash \square^{1} \theta \Leftrightarrow \theta$, and thus

$$
\Gamma \vdash g:\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

Since moreover by §D.1.1 we have

$$
\text { Cons }^{\mathrm{g}} \quad: A \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

we deduce that

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \diamond^{k}[\mathrm{hd}] \psi\right\}
$$

and we are done since $\vdash \bigcirc \diamond^{k}[h d] \varphi \Rightarrow \diamond^{k+1}[h d] \varphi$.
(Sub)Case of $\bigcirc \square^{\ell} \diamond^{k+1}[h d] \varphi$.
We show

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

Since

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \bigcirc \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \psi\right\}
$$

by §D.1.1 we have

$$
\Gamma, s:\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell+1} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \quad \vdash \quad \mathrm{tl}^{\mathrm{g}} s: \diamond\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \psi\right\}
$$

But now since

$$
\Gamma \vdash g: \forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k}[\mathrm{hd}] \varphi\right\}\right)
$$

we have

$$
\Gamma \vdash g:>\left(\left\{\operatorname{Str}^{\mathrm{g}} B \mid \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \psi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \varphi\right\}\right)
$$

and we conclude with §D.1.1, namely

$$
\text { Cons }^{\mathrm{g}}: A \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \bigcirc \square^{\ell} \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

D. 4 The Diagonal Function

Consider a stream of streams s. We have $s=\left(s_{i} \mid i \geq 0\right)$ where each s_{i} is itself a stream $s_{i}=\left(s_{i, j} \mid j \geq\right.$ $0)$. The diagonal of s is then the stream $\left(s_{i, i} \mid i \geq 0\right)$. Note that $s_{i, i}=\operatorname{hd}\left(\mathrm{tl}^{i}\left(\mathrm{hd}\left(\mathrm{t}^{i}(s)\right)\right)\right.$. Indeed, $\mathrm{tt}^{i}(s)$ is the stream of streams $\left(s_{k} \mid k \geq i\right)$, so that $\operatorname{hd}^{\left(\mathrm{tl}^{i}(s)\right)}$ is the stream s_{i} and $\mathrm{tl}^{i}\left(\mathrm{hd}^{\left.\left(\mathrm{tl}^{i}(s)\right)\right)}\right.$) is the stream $\left(s_{i, k} \mid k \geq i\right)$. Taking its the head thus gives $s_{i, i}$.

We implement the diagonal function as follows:

$$
\begin{array}{rlrl}
\operatorname{diag} & :=\lambda s . \text { box }_{l}\left(\operatorname{diag}^{\mathrm{g}}(\text { unbox } s)\right) & : \operatorname{Str}(\operatorname{Str} A) \longrightarrow \operatorname{Str} A \\
\operatorname{diag}^{\mathrm{g}} & :=\operatorname{diagaux}^{\mathrm{g}} \text { id } & : \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}} A \\
\operatorname{diagaux}^{\mathrm{g}} & :(\operatorname{Str} A \rightarrow \operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) \cdot \lambda t \cdot \lambda s . \operatorname{Cons}^{\mathrm{g}}\left((\operatorname{hd} \circ t)\left(\mathrm{hd}^{\mathrm{g}} s\right)\right)\left(\mathrm{g} \circledast \operatorname{next}(t \circ \mathrm{tl}) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right)\right)
\end{array}
$$

The auxiliary higher-order function diagaux ${ }^{g}$ iterates the coinductive $t l$ over the head of the stream of streams s. We write \circ for function composition, so that assuming $s: \operatorname{Str}{ }^{\mathrm{g}}(\operatorname{Str} A)$ and $t: \operatorname{Str} A \rightarrow \operatorname{Str} A$, we have

$$
\begin{array}{rllrll}
\left(\text { hd }^{g} s\right) & : & \operatorname{Str} A & (\text { hd } \circ t) & : & \operatorname{Str} A \rightarrow A \\
(\text { hd } \circ t)\left(\text { hd }^{\mathrm{g}} s\right) & : & A & (t \circ \mathrm{tl}) & : & \mathrm{Str} A \rightarrow \operatorname{Str} A
\end{array}
$$

This requires the coinductive type Str A. In Ex. D. 11 (§D.4.1) below, for a safe φ we obtain

$$
\operatorname{diag}^{\mathrm{g}}:\left\{\operatorname{Str}^{\mathrm{g}}(\mathrm{Str} A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \quad \longrightarrow \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

This easily follows from the fact that using Ex. 5.3 and Ex. 5.4, we can type diagaux ${ }^{\text {g }}$ with

$$
\left.\begin{array}{rl}
(\{\operatorname{Str} A \mid[\operatorname{box}] \square[\mathrm{hd}] \varphi\} \rightarrow\{ & \operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\}) \longrightarrow \\
& \left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\} \longrightarrow
\end{array} \text { \{ } \mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

In Ex. D. 12 (§D.4.2) we show that for a safe and smooth φ, we have

$$
\operatorname{diag}:\{\operatorname{Str}(\operatorname{Str} A) \mid[\text { box }] \diamond \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\operatorname{Str} A \mid[\text { box }] \diamond \square[\mathrm{hd}] \varphi\}
$$

Similarly as for map in §D.3.2, we reduce to

$$
\begin{aligned}
\text { diagaux } & : \forall k \cdot((\{\operatorname{Str} A \mid[\text { box }] \square[\mathrm{hd}] \varphi\} \rightarrow\{\operatorname{Str} A \mid[\text { box }] \square[\mathrm{hd}] \varphi\}) \longrightarrow U(k)) \\
U(k) & :=\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \rightarrow \operatorname{Str}^{\mathrm{g}} A \mid \psi_{0}(k) \wedge \psi_{1}\right\} \\
\psi_{0}(k) & :=\diamond^{k} \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi \| \rightarrow \diamond^{k} \square[\mathrm{hd}] \varphi \\
\psi_{1} & := \\
\square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi \| \rightarrow & \square[\mathrm{hd}] \varphi
\end{aligned}
$$

where

D.4.1 The Guarded Diagonal Function.

Example D. 11 (The Guarded Diagonal Function). For a safe φ, we have

$$
\operatorname{diag}^{\mathrm{g}}:\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \quad \longrightarrow \quad\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Recall that

$$
\begin{aligned}
\operatorname{diag}^{g} & : \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}} A \\
& :=\operatorname{diagaux}^{\mathrm{g}} \text { id } \\
\operatorname{diagaux}^{\mathrm{g}} & :(\operatorname{Str} A \rightarrow \operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \longrightarrow \operatorname{Str}^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) \cdot \lambda t \cdot \lambda s . \operatorname{Cons}^{\mathrm{g}}\left((\operatorname{hd} \circ t)\left(\operatorname{hd}^{\mathrm{g}} s\right)\right)\left(g \circledast \operatorname{next}^{2}(t \circ \mathrm{tI}) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right)\right)
\end{aligned}
$$

Proof. We reduce to
diagaux ${ }^{\text {g }}:(\{\operatorname{Str} A \mid[$ box $] \square[h d] \varphi\} \rightarrow\{\operatorname{Str} A \mid[$ box $] \square[$ hd $] \varphi\}) \longrightarrow$

$$
\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Let Γ be the context

$$
\begin{aligned}
g & : \\
t & : T, \\
s & :\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\}, \\
& \text { (Str } A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\}
\end{aligned}
$$

where T is the type

$$
\begin{aligned}
(\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \rightarrow\{ & \operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\}) \longrightarrow \\
& \left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\} \longrightarrow
\end{aligned} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

The result directly follows from the following typings, which are themselves given by §D.1.2, §D.1.3 and §D.2:

$$
\begin{aligned}
& \Gamma \vdash \mathrm{hd} \circ t:\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \longrightarrow\{A \mid \varphi\} \\
& \Gamma \vdash \operatorname{hd}^{\mathrm{g}} s:\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \\
& \Gamma \vdash t \circ \mathrm{tl}:\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\mathrm{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \\
& \Gamma \vdash \mathrm{tl}^{\mathrm{g}} s: \rightarrow\left\{\operatorname{Str}{ }^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

D.4.2 The Coinductive Diagonal Function.

Example D. 12 (The Coinductive Diagonal Function). For a safe and smooth φ, we have

$$
\begin{aligned}
\operatorname{diag} & : \quad\{\operatorname{Str}(\operatorname{Str} A) \mid[\operatorname{box}] \diamond \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\operatorname{Str} A \mid[\mathrm{box}] \diamond \square[\mathrm{hd}] \varphi\} \\
& :=\lambda s \cdot \operatorname{box}_{l}\left(\operatorname{diag}^{\mathrm{g}}(\text { unbox } s)\right)
\end{aligned}
$$

Proof. Using that $\diamond^{k} \square[\mathrm{hd}][$ box $] \square[\mathrm{hd}] \varphi$ and $\diamond^{k} \square[\mathrm{hd}] \varphi$ are both smooth, we can first reduce to

$$
s:\left\{\operatorname{Str}(\operatorname{Str} A) \mid[\text { box }] \diamond^{k} \square[\mathrm{hd}][\operatorname{box}] \square[\mathrm{hd}] \varphi\right\} \quad \vdash \quad \operatorname{box}_{\iota}\left(\operatorname{diag}^{\mathrm{g}}(\text { unbox } s)\right) \quad: \quad\left\{\operatorname{Str} A \mid[\operatorname{box}] \diamond^{k} \square[\mathrm{hd}] \varphi\right\}
$$

Since the formulae $\diamond^{k} \square[$ hd $][$ box $] \square[$ hd $] \varphi$ and $\diamond^{k} \square[$ hd $] \varphi$ are safe, we are done if we show

$$
\operatorname{diag}^{\mathrm{g}}: \forall k \cdot\left(\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \diamond^{k} \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right)
$$

Consider the types

$$
\begin{aligned}
& U(k):=\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \rightarrow \operatorname{Str}^{\mathrm{g}} A \mid \psi_{0} \wedge \psi_{1}\right\} \\
& T(k):=(\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\} \rightarrow\{\operatorname{Str} A \mid[\mathrm{box}] \square[\mathrm{hd}] \varphi\}) \longrightarrow U(k)
\end{aligned}
$$

where

$$
\left.\begin{array}{rrrr}
\psi_{0} & := & \diamond^{k} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi & \| \rightarrow \\
\psi_{1} & := & \square[\mathrm{bd}][\text { box }] \square[\mathrm{hd}] \varphi & \| \rightarrow \\
\square \mathrm{hd}]
\end{array}\right)
$$

We show

$$
\text { diagaux }^{\mathrm{g}}: \quad \forall k \cdot T(k)
$$

Let

$$
\begin{aligned}
& N:=\operatorname{Cons}^{\mathrm{g}}\left((\mathrm{hd} \circ t)\left(\mathrm{hd}^{\mathrm{g}} s\right)\right)\left(g \circledast \operatorname{next}(t \circ \mathrm{tl}) \circledast\left(\mathrm{tl}^{\mathrm{g}} s\right)\right) \\
& M
\end{aligned}:=\lambda g \cdot \lambda s \cdot N .
$$

We reason by cases on k with the rule

$$
\frac{\Gamma \vdash M: T(0) \quad \Gamma \vdash M: T(k+1)}{\Gamma \vdash M: \forall k \cdot T(k)}
$$

Let

$$
\Gamma^{\prime}:=\Gamma, t:\{\operatorname{Str} A \mid[\text { box }] \square[\mathrm{hd}] \varphi\} \longrightarrow\{\operatorname{Str} A \mid[\text { box }] \square[\mathrm{hd}] \varphi\}
$$

We omit the proof of

$$
\Gamma^{\prime}+\lambda s . N:\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \rightarrow \operatorname{Str}^{\mathrm{g}} A \mid[\mathrm{ev}(\square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi)] \square[\mathrm{hd}] \varphi\right\}
$$

since it follows that of §D.4.1.

Case of $T(0)$.

Since $\stackrel{{ }^{\ominus}}{ } \theta \Leftrightarrow \perp$, we reduce to showing

$$
\Gamma \vdash \lambda t . \lambda s . N:(\{\operatorname{Str} A \mid[\text { box }] \square[\text { hd }] \varphi\} \rightarrow\{\operatorname{Str} A \mid[\text { box }] \square[\mathrm{hd}] \varphi\}) \underset{ }{\longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} A\left|\diamond^{\ominus} \square[\mathrm{Str} A)\right| \varphi\right\}}
$$

and we conclude using the (ExF) rule.
Case of $T(k+1)$.
We show

$$
\Gamma^{\prime}, s:\left\{\operatorname{Str} \mathrm{g}^{\mathrm{g}}(\operatorname{Str} A) \mid \diamond^{k+1} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k+1} \square[\mathrm{hd}] \varphi\right\}
$$

Using

$$
\vdash \diamond^{k+1} \theta \Longleftrightarrow \theta \vee \bigcirc \diamond^{k} \theta
$$

we reason by cases on the refinement of s. This leads to two subcases.
(Sub)Case of $\square[$ hd $][$ box $] \square[$ hd $] \varphi$.
We show

$$
\Gamma^{\prime}, s:\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k+1} \square[\mathrm{hd}] \varphi\right\}
$$

Since $\vdash \square[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1} \square[\mathrm{hd}] \varphi$, we can reduce to

$$
\Gamma^{\prime}, s:\left\{\operatorname{Str}{ }^{\mathrm{g}}(\operatorname{Str} A) \mid \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

which is proved as in §D.4.1.
(Sub)Case of $\bigcirc \diamond^{k} \square[$ hd $][$ box $] \square[$ hd $] \varphi$.
We show
$\Gamma^{\prime}, s:\left\{\operatorname{Str}{ }^{\mathrm{g}}(\operatorname{Str} A) \mid \bigcirc \diamond^{k} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\} \quad \vdash \quad N:\left\{\operatorname{Str}^{\mathrm{g}} A \mid \bigcirc \diamond^{k} \square[\mathrm{hd}] \varphi\right\}$
Let

$$
\Gamma^{\prime \prime}:=\Gamma^{\prime}, s:\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \bigcirc \diamond^{k} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\}
$$

Note that $\Gamma^{\prime \prime} \vdash g:>T(k)$, so that by §D. 2 we have

$$
\Gamma^{\prime \prime} \vdash g \circledast \operatorname{next}(t \circ \mathrm{tl}):>\left(\left\{\operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \diamond^{k} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\} \rightarrow\left\{\operatorname{Str}^{\mathrm{g}} A \mid \diamond^{k} \square[\mathrm{hd}] \varphi\right\}\right)
$$

[^1]Using §D.1.1, we derive

$$
\begin{aligned}
& \overline{\Gamma^{\prime \prime}+s:\left\{\operatorname{Str}^{5}(\operatorname{Str} A) \mid \bigcirc \diamond^{k} \square[\mathrm{hd}][\text { box }] \square[\mathrm{hd}] \varphi\right\}} \\
& ======================= \\
& \left.\Gamma^{\prime \prime}+\mathrm{tt}^{\mathrm{g}} s: \triangleleft \operatorname{Str}^{\mathrm{g}}(\operatorname{Str} A) \mid \diamond^{k} \square[\mathrm{hd}][\mathrm{box}] \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

D. 5 Fair Streams

We discuss here an adaptation of the fair streams of [Bahr et al. 2020; Cave et al. 2014]. We rely on the basic datatypes presented in §D.5.1. In §D.5.2 we discuss a function

$$
\mathrm{fb}: \text { CoNat } \longrightarrow \mathrm{CoNat} \longrightarrow \text { Str Bool }
$$

such that, writing 0 for Z and 1 for (S Z) (see Ex. D.15), the non-regular stream (fb 0 1), adapted from [Bahr et al. 2020; Cave et al. 2014], is of the form

$$
\text { ff } \mathrm{tt} \text { ff } \mathrm{tt} \mathrm{tt} \text { ff } \mathrm{tt} \text { tt } \mathrm{tt} \text { ff } \mathrm{tt} \text { tt } \mathrm{tt} \text { tt } \mathrm{ff}
$$

This stream thus contains infinitely many tt's and infinitely many ff's. This is expressed with the formula $[b o x] \square \diamond[h d][t t] \wedge[b o x] \square \diamond[h d][f f]$ where $[t t]$, [ff] represent the value of a Boolean, as in

$$
\mathrm{tt}:\{\text { Bool } \mid[\mathrm{tt}]\} \quad \text { and } \quad \mathrm{ff}:\{\text { Bool } \mid[\mathrm{ff}]\}
$$

Examples D. 20 and D. 22 show that we indeed have

$$
(\text { fb } 0 \text { 1) }): \quad\{\operatorname{Str} \text { Bool } \mid[\text { box }] \square \diamond[h d][t \mathrm{tt}] \wedge[\mathrm{box}] \square \diamond[\mathrm{hd}][\mathrm{ff}]\}
$$

The key are the following refinement typings for the guarded fb^{g}, discussed in Ex. D. 19 and Ex. D.21:

$$
\begin{aligned}
& \mathrm{fb}^{\mathrm{g}}: \mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \mathrm{O}[\mathrm{hd}][\mathrm{tt}])\right\} \\
& \mathrm{fb}^{\mathrm{g}}: \forall k \cdot \forall \ell \cdot\left(\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{\ell}[\mathrm{Z}]\right\} \rightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{\ell+1}[\mathrm{Z}]\right\} \rightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool}^{2} \mid \square^{k} \diamond^{k+\ell}[\mathrm{hd}][\mathrm{ff}]\right\}\right)
\end{aligned}
$$

where, as in Not. D. 10 (§D.3.3), we let

$$
\square^{\mathrm{t}} \varphi:=\quad v^{\mathrm{t}} \alpha \cdot \varphi \wedge \bigcirc \alpha
$$

Finally, in §D.5.3 we discuss a stream scheduler

$$
\text { sched }: ~ S t r \text { Bool } \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow \operatorname{Str}(A+B)
$$

such that sched can be typed as follows (Ex. D.25):

$$
\begin{aligned}
& \{\operatorname{Str} \text { Bool | [box }] \square \diamond[\mathrm{hd}][\mathrm{tt}]\} \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow\left\{\operatorname{Str}(A+B) \mid[\mathrm{box}] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\} \\
& \{\operatorname{Str} \text { Bool } \mid[\text { box }] \square \diamond[\mathrm{hd}][\mathrm{ff}]\} \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow\left\{\operatorname{Str}(A+B) \mid[\mathrm{box}] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{1}\right] T\right\}
\end{aligned}
$$

and thus
sched (fb 0 1) : $\quad\left\{\operatorname{Str}(A+B) \mid[\mathrm{box}] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top \wedge[\mathrm{box}] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{1}\right] \top\right\}$

D.5.1 Basic Datatypes.

Example D. 13 (Booleans). Let

$$
\text { Bool }:=1+1
$$

with constructors

$$
\begin{aligned}
& \mathrm{tt}:=\mathrm{in}_{0}(\langle \rangle): \text { Bool } \\
& \mathrm{ff}:=\mathrm{in}_{1}(\langle \rangle): \text { Bool }
\end{aligned}
$$

Example D. 14 (Formulae on Booleans).

$$
\begin{aligned}
& {[\mathrm{tt}]}
\end{aligned}:=\left[\mathrm{in}_{0}\right] T \quad: \quad \text { Bool }
$$

Example D. 15 (CoNatural Numbers). Let

$$
\begin{aligned}
& \mathrm{CoNat}^{2}:=\text { ■CoNat }{ }^{\mathrm{g}} \\
& \mathrm{CoNat}^{\mathrm{g}}
\end{aligned}
$$

with constructors

$$
\begin{aligned}
& \mathrm{Z}:=\operatorname{box}_{l}\left(\mathrm{Z}^{\mathrm{g}}\right) \quad: \text { CoNat } \quad \mathrm{S}:=\lambda n . \text { box }_{l}\left(\mathrm{~S}^{\mathrm{g}}(\text { unbox } n)\right): \text { CoNat } \rightarrow \text { CoNat } \\
& Z^{g}:=\operatorname{fold}\left(\mathrm{in}_{0}\langle \rangle\right): \mathrm{CoNat}^{\mathrm{g}} \quad \mathrm{~S}^{\mathrm{g}}:=\lambda n \text {.fold }\left(\mathrm{in}_{1} n\right) \quad: \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}}
\end{aligned}
$$

Example D. 16 (Formulae on CoNatural Numbers).

[Z]	:=	[fold][in ${ }_{0}$]	CoNat ${ }^{\text {g }}$
[S]	:=	[fold][in_{1}]	CoNat ${ }^{\text {8 }}$
$\bigcirc \varphi$:	[fold][in $\left.{ }_{1}\right][$ next] φ	CoNat ${ }^{\text {8 }}$
$\diamond \varphi$		$\mu \alpha . \varphi \vee \bigcirc \alpha$	CoNat ${ }^{\text {g }}$
$\diamond^{\text {t }} \varphi$		$\mu^{\mathrm{t}} \alpha . \varphi \vee \bigcirc \alpha$	CoNat ${ }^{\text {g }}$

where $\varphi: \mathrm{CoNat}^{\mathrm{g}}$.
D.5.2 A Fair Stream of Booleans.

Example D.17.

$$
\begin{aligned}
& \mathrm{fb} \quad: \quad \mathrm{CoNat} \longrightarrow \mathrm{CoNat} \longrightarrow \text { Str Bool } \\
& :=\lambda c . \lambda m . \text { box }_{l}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right) \\
& \mathrm{fb}^{\mathrm{g}}: \quad \mathrm{CoNat}{ }^{\mathrm{g}} \longrightarrow \mathrm{CoNat}^{\mathrm{g}} \longrightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \\
& :=\text { fix }(g) . \lambda c . \lambda m \text {. case } c \text { of } \\
& \mid \mathrm{Z}^{\mathrm{g}} \mapsto \mathrm{ff}:: \mathrm{:} g \circledast(\text { next } m) \circledast \operatorname{next}\left(\mathrm{S}^{\mathrm{g}}(\text { next } m)\right) \\
& \mid \mathrm{S}^{\mathrm{s}} n \mapsto \mathrm{tt}:: \mathrm{S} g \circledast n \circledast(\text { next } m)
\end{aligned}
$$

Example D. 18.

$$
\begin{aligned}
& \mathrm{fb}:\{\text { CoNat } \mid[\text { box }] \diamond[\mathrm{Z}]\} \longrightarrow \mathrm{CoNat} \longrightarrow\{\text { Str Bool } \mid[\text { box }] \diamond[\mathrm{hd}][\mathrm{ff}]\} \\
& \mathrm{fb}^{\mathrm{g}}:
\end{aligned}: \forall k \cdot\left(\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{k}[\mathrm{Z}]\right\} \longrightarrow \mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid \diamond^{k}[\mathrm{hd}][\mathrm{ff}]\right\}\right)
$$

Proof. Let

$$
T(k):=\left\{\operatorname{CoNat}^{g} \mid \diamond^{k}[\mathrm{Z}]\right\} \longrightarrow \mathrm{CoNat}^{g} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid \diamond^{k}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

and assume

$$
g:>\forall k \cdot T(k)
$$

Let

$$
\begin{aligned}
M(g, c, m):= & \text { case } c \text { of } \\
& \mid Z^{\mathrm{g}} \mapsto \mathrm{ff}:: \mathrm{g} g \circledast(\text { next } m) \circledast \operatorname{next}\left(\mathrm{S}^{\mathrm{g}}(\text { next } m)\right) \\
& \mid \mathrm{S}^{\mathrm{g}} n \mapsto \mathrm{tt}:: \mathrm{s} g \circledast n \circledast(\text { next } m)
\end{aligned}
$$

We show

$$
\lambda c \cdot \lambda m \cdot M(g, c, m) \quad: \quad \forall k \cdot T(k)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. This leads to two cases.
Case of $T(0)$. We get the result from the (ExF) rule since

$$
\diamond^{0}[Z] \quad \Leftrightarrow \quad \perp
$$

Case of $T(k+1)$. We show

$$
M(g, c, m) \quad: \quad\left\{\text { Str }^{\mathrm{g}} \text { Bool } \mid \diamond^{k+1}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

assuming

$$
\begin{aligned}
& c:\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{k+1}[\mathrm{Z}]\right\} \\
& m=\mathrm{CoNat}^{\mathrm{g}}
\end{aligned}
$$

Using

$$
\diamond^{k+1}[Z] \quad \Leftrightarrow \quad[Z] \vee \bigcirc \diamond^{k}[Z]
$$

we reason by cases on the refinement type of c. This leads to two subcases.
(Sub)Case of [Z]. We apply the ($\mathrm{INJ}_{0}-\mathrm{E}$) rule on the refinement type of (unfold c). Since

$$
[\mathrm{hd}][\mathrm{ff}] \Rightarrow \diamond^{k+1}[\mathrm{hd}][\mathrm{ff}]
$$

the result follows from the fact that

$$
\text { ff ::: } g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\text { Str }^{\mathrm{g}} \text { Bool } \mid[\text { hd }][\mathrm{ff}]\right\}
$$

(Sub)Case of $\bigcirc \diamond^{k}[Z]$. We have

$$
\text { unfold } c:\left\{1+\mathrm{CoNat}^{\mathrm{g}} \mid\left[\mathrm{in}_{1}\right][\mathrm{next}] \diamond^{k}[\mathrm{Z}]\right\}
$$

By applying the $\left(\mathrm{INJ}_{1}-\mathrm{E}\right)$ rule on the refinement type of (unfold c), we are left with showing

$$
\mathrm{tt}:: \mathrm{s}^{\mathrm{g}} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\text { Str}^{\mathrm{g}} \text { Bool } \mid \diamond^{k+1}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

assuming

$$
\left.n:>\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{k}[\mathrm{Z}]\right\}
$$

Using

$$
\bigcirc \diamond^{k}[\mathrm{hd}][\mathrm{ff}] \Rightarrow \diamond^{k+1}[\mathrm{hd}][\mathrm{ff}]
$$

we are done since

$$
g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid \diamond^{k}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

Example D.19. Consider a function

$$
f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}
$$

such that

- $1 \leq f(k+1, \ell+1)$
- $f(k, \ell+2) \leq f(k+1, \ell+1)$
- $\ell+1 \leq f(k+1, \ell+1)$
- $f(k, \ell+1) \leq f(k+1, \ell+1)$
for instance $f(k, \ell)=k+\ell$. Then we can give the following refined type to $\mathrm{fb}^{\mathrm{g}}:$

$$
\forall k \cdot \forall \ell \cdot\left(\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{\ell}[\mathrm{Z}]\right\} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{\ell+1}[\mathrm{Z}]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{k} \diamond^{f(k, \ell)}[\mathrm{hd}][\mathrm{ff}]\right\}\right)
$$

Proof. Let

$$
\begin{aligned}
& U(k, \ell):=\left\{\text { CoNat }^{\text {g }} \rightarrow \text { CoNat }^{g} \rightarrow \operatorname{Str}^{g} \text { Bool } \mid \varphi(k, \ell) \wedge \psi(\ell)\right\} \\
& \varphi(k, \ell):=\diamond^{\ell}[Z]\left\|\rightarrow \diamond^{\ell+1}[Z]\right\| \rightarrow \square^{k} \diamond^{f(k, \ell)}[\mathrm{hd}][\mathrm{ff}] \\
& \psi(\ell) \quad:=\diamond^{\ell}[\mathrm{Z}]\|\rightarrow \mathrm{T}\| \rightarrow \diamond^{\ell}[\mathrm{hd}][\mathrm{ff}]
\end{aligned}
$$

and assume

$$
g: \forall k \cdot \forall \ell \cdot U(k)
$$

Let

$$
\begin{aligned}
M(g, c, m):= & \text { case } c \text { of } \\
& \mid Z^{\mathrm{g}} \mapsto \mathrm{ff}:: \mathrm{s} g \circledast(\text { next } m) \circledast \operatorname{next}\left(\mathrm{S}^{\mathrm{g}}(\text { next } m)\right) \\
& \mid \mathrm{S}^{\mathrm{s}} n \mapsto \mathrm{tt}:: \mathrm{s} g \circledast n \circledast(\text { next } m)
\end{aligned}
$$

We show

$$
\lambda c . \lambda m \cdot M(g, c, m) \quad: \quad \forall k \cdot \forall \ell \cdot U(k)
$$

First, proceeding similarly as in Ex. D.18,

$$
\lambda c . \lambda m \cdot M(g, c, m): \quad \forall \ell \cdot\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{g} \rightarrow \operatorname{Str}^{g} \mathrm{Bool} \mid \diamond^{\ell}[\mathrm{Z}]\|\rightarrow \mathrm{T}\| \rightarrow \diamond^{\ell}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

Let

$$
T(k, \ell):=\left\{\operatorname{CoNat}^{g} \mid \diamond^{\ell}[\mathrm{Z}]\right\} \longrightarrow\left\{\operatorname{CoNat}^{\mathrm{g}} \mid \diamond^{\ell+1}[\mathrm{Z}]\right\} \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{k} \diamond^{f(k, \ell)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

We show

$$
\lambda c \cdot \lambda m \cdot M(g, c, m): \quad \forall k \cdot \forall \ell \cdot T(k)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. In the case of $\forall \ell \cdot T(0, \ell)$, the result is trivial since

$$
\square^{0} \diamond^{f(\theta, \ell)}[h d][\mathrm{ff}] \quad \Leftrightarrow \quad \top
$$

In the case of $\forall \ell \cdot T(k+1, \ell)$, we apply the $(\forall-C I)$ rule, this time on $\forall \ell$. The case of $T(k+1,0)$ is dealt-with using the (ExF) rule since

$$
\diamond^{0}[Z] \Leftrightarrow \perp
$$

In the case of $T(k+1, \ell+1)$, we show

$$
M(g, c, m) \quad: \quad\left\{\text { Str }^{g} \text { Bool } \mid \square^{k+1} \diamond^{f(k+1, \ell+1)}[\text { hd }][f f]\right\}
$$

assuming

$$
\begin{aligned}
& c:\left\{\text { CoNat }^{\mathrm{g}}\right. \\
& m
\end{aligned}:\left\{\diamond^{\ell+1}[\mathrm{Z}]\right\}
$$

We apply the typing rule for case (Fig. 4). This leads to two branches, one for $($ unfold $c)=$ fold $\left(\mathrm{in}_{0}\langle)\right\rangle$ $\left(\right.$ denoted $\left.\mathrm{Z}^{\mathrm{g}}\right)$, and one for $(\operatorname{unfold} c)=$ fold $\left(\mathrm{in}_{1} n\right)\left(\right.$ denoted $\left.\mathrm{S}^{\mathrm{g}} n\right)$.

Case of Z^{g}.
We have to show

$$
\text { ff :::g } g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{k+1} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

We have

$$
\square^{k+1} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}] \Leftrightarrow \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}] \wedge \bigcirc \square^{k} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]
$$

and we consider each conjunct separately.
(Sub)Case of $\diamond^{f(k+1, \ell+1)}[h d][\mathrm{ff}]$.
We have

$$
\text { ff ::s } g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\text { Str }^{\mathrm{g}} \text { Bool } \mid[\text { hd }][\mathrm{ff}]\right\}
$$

and as $f(k+1, \ell+1) \geq 1$ we are done with

$$
[\mathrm{hd}][\mathrm{ff}] \quad \Rightarrow \quad \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]
$$

(Sub)Case of $\bigcirc \square^{k} \diamond^{f(k+1, \ell+1)}[h d][\mathrm{ff}]$.
Since

$$
\begin{array}{lll}
m & : & \left\{\text { CoNat }^{\mathrm{g}}\right. \\
\mathrm{S}^{\mathrm{g}}(\text { next } m) & : & \left.\diamond^{\ell+2}[\mathrm{Z}]\right\} \\
\mathrm{CoNat}^{\mathrm{g}} & \left.\diamond^{\ell+3}[\mathrm{Z}]\right\}
\end{array}
$$

we have

$$
g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \square^{k} \diamond^{f(k, \ell+2)}[\text { hd }][\mathrm{ff}]\right\}
$$

so that

$$
\mathrm{ff}::^{\mathrm{g}} g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \bigcirc \square^{k} \diamond^{f(k, \ell+2)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

But since $f(k, \ell+2) \leq f(k+1, \ell+1)$, we have

$$
\diamond^{f(k, \ell+2)}[h d][\mathrm{ff}] \Rightarrow \diamond^{f(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]
$$

and we obtain

$$
\mathrm{ff}:: \mathrm{:g} g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \bigcirc \square^{k} \diamond \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

Case of $S^{\mathrm{g}} n$.

We have to show

$$
\mathrm{tt}:: \mathrm{g} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{k+1} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

assuming

$$
n:\left\{\operatorname{CoNat}^{\mathrm{g}} \mid \diamond^{\ell}[\mathrm{Z}]\right\}
$$

We have

$$
\square^{k+1} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}] \Leftrightarrow \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}] \wedge \bigcirc \square^{k} \diamond^{\mathrm{f}(k+1, \ell+1)}[\mathrm{hd}][\mathrm{ff}]
$$

and we consider each conjunct separately.
(Sub)Case of $\diamond^{f(k+1, \ell+1)}$ [hd][ff].
Using

$$
g: \triangleright\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \diamond^{\ell}[\mathrm{Z}]\|\rightarrow \top\| \rightarrow \diamond^{\ell}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

we get

$$
\mathrm{tt}:: \mathrm{s} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\text { Str}^{\mathrm{g}} \text { Bool } \mid \diamond^{\ell+1}[\text { hd }][\mathrm{ff}]\right\}
$$

and the result follows from the fact that

$$
\ell+1 \leq f(k+1, \ell+1)
$$

(Sub)Case of $\bigcirc \square^{k} \diamond^{f(k+1, \ell+1)}$ [hd][ff].
Since $\ell \leq \ell+1$, we have

$$
n:\left\{\mathrm{CoNat}^{\mathrm{g}} \mid \diamond^{\ell+1}[\mathrm{Z}]\right\}
$$

and thus

$$
g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{k} \diamond^{\mathrm{f}(k, \ell+1)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

so that

$$
\mathrm{tt}:: \mathrm{g} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\text { Str}^{\mathrm{g}} \text { Bool } \mid \bigcirc \square^{k} \diamond f(k, \ell+1)[\text { hd }][\mathrm{ff}]\right\}
$$

But since $f(k, \ell+1) \leq f(k+1, \ell+1)$ we have

$$
\diamond^{f(k, \ell+1)}[h d][f f] \Rightarrow \diamond^{f(k+1, \ell+1)}[h d][f f]
$$

and we obtain

$$
\mathrm{tt}::{ }^{\mathrm{g}} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\text { Str }^{5} \mathrm{Bool} \mid \bigcirc \square^{k} \diamond^{\mathrm{f}(k+1, \ell+1)}[\text { hd }][f f]\right\}
$$

Example D.20. We have

$$
\mathrm{fb} \mathrm{Z}(\mathrm{~S} \text { Z) }: \quad\{\text { Str Bool } \mid[\text { box }] \square \diamond[\text { hd }][f f]\}
$$

Proof. Recall that

$$
\begin{aligned}
\mathrm{fb} & : \quad \mathrm{CoNat} \longrightarrow \mathrm{CoNat} \longrightarrow \text { Str Bool } \\
& :=\lambda c \cdot \lambda m . \operatorname{box}_{l}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right)
\end{aligned}
$$

We show
$\mathrm{fb}: \forall \ell \cdot\left(\left\{\mathrm{CoNat} \mid[\right.\right.$ box $\left.] \diamond^{\ell}[\mathrm{Z}]\right\} \longrightarrow\left\{\right.$ CoNat $\mid[$ box $\left.] \diamond^{\ell+1}[\mathrm{Z}]\right\} \longrightarrow\{$ Str Bool $\mid[$ box $] \square \diamond[$ hd $\left.][\mathrm{ff}]\}\right)$
We apply the ($\forall-I$) rule. Assume

$$
\begin{aligned}
& c:\{\text { CoNat } \\
& \left.m:\{\text { boox }] \diamond^{\ell}[Z]\right\} \\
& m \text { CoNat } \\
& \left.[\text { box }] \diamond^{\ell+1}[Z]\right\}
\end{aligned}
$$

Since the formulae $\diamond^{\ell}[Z]$ and $\diamond^{\ell+1}[Z]$ are safe we have

$$
\begin{aligned}
c & : \llbracket\left\{\mathrm{CoNat}^{\mathrm{g}}\right. \\
m & : \llbracket\left\{\diamond^{\ell}[\mathrm{Z}]\right\} \\
\mathrm{CoNat}^{\mathrm{g}} & \left.\diamond^{\ell+1}[\mathrm{Z}]\right\}
\end{aligned}
$$

and thus

$$
\left.\begin{array}{l}
\text { (unbox c) }:\left\{\begin{array}{l}
\mathrm{CoNat}^{g} \\
(\text { unbox } m \text {) }
\end{array}: \quad \diamond^{\ell}[\mathrm{Z}]\right\} \\
\mathrm{CoNat}^{\mathrm{g}}
\end{array} \diamond^{\ell+1}[\mathrm{Z}]\right\}
$$

Now, it follows from Ex. D. 19 that

$$
\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \square^{k} \diamond^{\mathrm{f}(k, \ell)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

so that

$$
\operatorname{box}_{t}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right): \quad \llbracket\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \square^{k} \diamond^{\mathrm{f}(k, \ell)}[\mathrm{hd}][\mathrm{ff}]\right\}
$$

Since the formula $\square^{k} \diamond^{f(k, \ell)}[h d][f f]$ is safe we have

$$
\operatorname{box}_{l}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right) \quad: \quad\left\{\operatorname{Str} \text { Bool } \mid[\text { box }] \square^{k} \diamond{ }^{f}(k, \ell)[\mathrm{hd}][\mathrm{ff}]\right\}
$$

The (μ-I) rule then gives

$$
\text { box }_{l}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right) \quad: \quad\left\{\text { Str Bool } \mid[\text { box }] \square^{k} \diamond[\text { hd }][\mathrm{ff}]\right\}
$$

and the (v-I) rule gives

$$
\operatorname{box}_{l}\left(\mathrm{fb}^{\mathrm{g}}(\text { unbox } c)(\text { unbox } m)\right) \quad: \quad\{\operatorname{Str} \text { Bool } \mid[\text { box }] \triangleright \diamond[\mathrm{hd}][\mathrm{ff}]\}
$$

The result then follows from the fact that

$$
\begin{array}{ll|l}
\mathrm{Z} & :\{\text { CoNat } & \left.[\text { box }] \diamond^{1}[\mathrm{Z}]\right\} \\
\mathrm{SZ} & : & \{\mathrm{CoNat} \\
\left.[\text { box }] \bigcirc \diamond^{\prime}[\mathrm{Z}]\right\}
\end{array}
$$

Example D.21. We have

$$
\mathrm{fb}^{\mathrm{g}}: \mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

Proof. Let

$$
\begin{aligned}
T & :=\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \varphi \wedge \psi\right\} \\
\varphi & :=[\mathrm{S}]\|\rightarrow \top\| \rightarrow[\mathrm{hd}][\mathrm{tt}] \\
\psi & :=\mathrm{T}\|\rightarrow[\mathrm{~S}]\| \rightarrow \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])
\end{aligned}
$$

and assume

$$
g:>T
$$

Let

$$
\begin{aligned}
M(g, c, m):= & \text { case } c \text { of } \\
& \mid \mathrm{Z}^{\mathrm{g}} \mapsto \mathrm{ff}:: \mathrm{g} g \circledast(\text { next } m) \circledast \operatorname{next}\left(\mathrm{S}^{\mathrm{g}}(\text { next } m)\right) \\
& \mid \mathrm{S}^{\mathrm{g}} n \mapsto \mathrm{tt}:: \mathrm{s}^{\mathrm{s}} g \circledast n \circledast(\text { next } m)
\end{aligned}
$$

We show

$$
\lambda c \cdot \lambda m \cdot M(g, c, m) \quad: \quad T
$$

First, by using the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule we easily get

$$
\lambda c . \lambda m \cdot M(g, c, m) \quad: \quad\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid[\mathrm{S}]\|\rightarrow \mathrm{T}\|[\mathrm{hd}][\mathrm{tt}]\right\}
$$

It remains to show

$$
\lambda c . \lambda m \cdot M(g, c, m) \quad: \quad\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \mathrm{\top}\|[\mathrm{~S}]\| \mapsto([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

Assume

$$
\begin{array}{lll}
c & : \mathrm{CoNat}^{\mathrm{g}} \\
m & : & \left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\}
\end{array}
$$

We apply the typing rule for case (Fig. 4). This leads to two branches, one for (unfold c) $=$ fold $\left(\mathrm{in}_{0}\langle)\right\rangle$ $\left(\right.$ denoted $\left.Z^{g}\right)$, and one for $($ unfold $c)=$ fold $\left(\operatorname{in}_{1} n\right)\left(\right.$ denoted $\left.S^{g} n\right)$.

Case of Z^{g}.

We have to show

$$
\mathrm{ff}:: \mathrm{:s}^{\mathrm{s}} g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

We have

```
\square([hd][tt]\vee\bigcirc[hd][tt]) \Leftrightarrow ([hd][tt]\vee\bigcirc[hd][tt])\wedge ○\square([hd][tt]\vee\bigcirc[hd][tt])
```

and we consider each conjunct separately.
(Sub)Case of $([h d][t t] \vee \bigcirc[h d][t t])$.
Since

```
m : {CoNat' | [S]}
g : ({售Nat }\mp@subsup{}{}{\textrm{g}}|[\textrm{S}]}\longrightarrow\mp@subsup{\textrm{CoNat}}{}{\textrm{g}}\longrightarrow{\mp@subsup{\textrm{Str}}{}{\textrm{g}}\textrm{Bool}|[\textrm{hd}][\textrm{tt}]}
```

we get

$$
g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\text { Str }^{\mathrm{g}} \text { Bool } \mid[\mathrm{hd}][\mathrm{tt}]\right\}
$$

and the result follows.
(Sub)Case of $\bigcirc \square([h d][t t] \vee \bigcirc[h d][t t])$.

Since

$\mathrm{S}^{\mathrm{g}}($ next $m): \quad\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\}$

$$
g:\left(\mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}\right)
$$

we get

$$
g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\text { Str }^{\mathrm{g}} \text { Bool } \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

and the result follows.
Case of $S^{\mathrm{g}} n$.
We have to show

$$
\mathrm{tt}:: \mathrm{g} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

assuming

$$
n: \mathrm{CoNat}^{\mathrm{g}}
$$

We have

$$
\square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}]) \Leftrightarrow([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}]) \wedge \bigcirc \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])
$$

and we consider each conjunct separately.
(Sub)Case of $([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])$.
We have

$$
\mathrm{tt}:: \mathrm{:}^{\mathrm{s}} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid[\mathrm{hd}][\mathrm{tt}]\right\}
$$

(Sub)Case of $\bigcirc \square([h d][t t] \vee \bigcirc[h d][t t])$.

Since

```
\(m:\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\}\)
    \(g:>\left(\mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}\right)\)
```

 we get
 \(g \circledast(\) next \(m) \circledast \operatorname{next}(\mathrm{S}(\) next \(m)) \quad: \quad\left\{\right.\) Str \(\left.^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}\)
 and the result follows.
 Example D.22. We have

$$
\text { fb Z (S Z }) \quad: \quad\{\text { Str Bool } \mid[\text { box }] \square \diamond[h d][\mathrm{tt}]\}
$$

Proof. By Ex. D. 21 we have

$$
\mathrm{fb}^{\mathrm{g}}\left(\text { unbox Z) }(\text { unbox }(\mathrm{S} Z)) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}\right.
$$

so that

$$
\mathrm{fb} \mathrm{Z}(\mathrm{~S} Z): \quad \square\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\right\}
$$

Since the formula $\square([h d][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])$ is safe we get

$$
\mathrm{fb} \mathrm{Z}(\mathrm{~S} Z) \quad: \quad\{\operatorname{Str} \text { Bool } \mid[\text { box }] \square([\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}])\}
$$

Now, the result follows from the fact that

$$
([h d][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}]) \Rightarrow \diamond[\mathrm{hd}][\mathrm{tt}]
$$

The following uses the rule

$$
\overline{\digamma^{B \rightarrow A}}\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right) \Rightarrow\left[\operatorname{ev}\left(\psi_{0} \vee \psi_{1}\right)\right] \varphi
$$

Example D.23. We have

$$
\mathrm{fb}^{\mathrm{g}}: \mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid[\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}]\right\}
$$

Proof. Let T be the type

$$
\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool}\|[\mathrm{~S}]\| \rightarrow \mathrm{T}\|\rightarrow[\mathrm{hd}][\mathrm{tt}] \wedge[\mathrm{Z}]\| \rightarrow[\mathrm{S}] \| \rightarrow \bigcirc[\mathrm{hd}][\mathrm{tt}]\right\}
$$

Note that

$$
T \leq \mathrm{CoNat}^{\mathrm{g}} \longrightarrow\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\} \longrightarrow\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid[\mathrm{hd}][\mathrm{tt}] \vee \bigcirc[\mathrm{hd}][\mathrm{tt}]\right\}
$$

Assume

$$
g:>T
$$

Let

$$
\begin{aligned}
M(g, c, m):= & \text { case } c \text { of } \\
& \mid Z^{\mathrm{g}} \mapsto \mathrm{ff}:: \mathrm{g} g \circledast(\text { next } m) \circledast \operatorname{next}\left(\mathrm{S}^{\mathrm{g}}(\text { next } m)\right) \\
& \mid \mathrm{S}^{\mathrm{g}} n \mapsto \mathrm{tt}::^{\mathrm{s}} g \circledast n \circledast(\text { next } m)
\end{aligned}
$$

We show

$$
\lambda c \cdot \lambda m \cdot M(g, c, m) \quad: \quad T
$$

We consider each conjunct separately.
Case of $[\mathrm{S}]\|\rightarrow \mathrm{T}\| \rightarrow[\mathrm{hd}][\mathrm{tt}]$.
Assume

$$
c:\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\}
$$

Applying the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule, we are done since

$$
\mathrm{tt}:: \mathrm{s} g \circledast n \circledast(\text { next } m) \quad: \quad\left\{\text { Str}^{\mathrm{g}} \text { Bool } \mid[\mathrm{hd}][\mathrm{tt}]\right\}
$$

assuming
$n: \mathrm{CoNat}^{\mathrm{g}}$
Case of $[\mathrm{Z}]\|\rightarrow[\mathrm{S}]\| \rightarrow \bigcirc[\mathrm{hd}][\mathrm{tt}]$.
Assume

$$
\begin{array}{lll}
c & :\left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{Z}]\right\} \\
m & : & \left\{\mathrm{CoNat}^{\mathrm{g}} \mid[\mathrm{S}]\right\}
\end{array}
$$

Applying the $\left(\mathrm{INJ}_{0}-\mathrm{E}\right)$ rule, we are left with showing

$$
\text { ff }:::^{\mathrm{g}} g \circledast(\text { next } m) \circledast \operatorname{next}(\mathrm{S}(\text { next } m)) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid \bigcirc[\mathrm{hd}][\mathrm{tt}]\right\}
$$

But the result is trivial since

$$
g: \quad\left\{\mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{CoNat}^{\mathrm{g}} \rightarrow \mathrm{Str}^{\mathrm{g}} \mathrm{Bool} \mid[\mathrm{S}]\|\rightarrow \mathrm{\top}\|[\mathrm{hd}] \mathrm{tt}\right\}
$$

D.5.3 A Scheduler.

Example D. 24.

$$
\begin{aligned}
& \text { sched }: \quad \text { Str Bool } \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow \operatorname{Str}(A+B) \\
& :=\lambda b \cdot \lambda s . \lambda t \text {. box }{ }_{l}\left(\operatorname{sched}^{g}(\text { unbox } b)(\text { unbox } s)(\text { unbox } t)\right) \\
& \text { sched }^{\mathrm{g}} \quad: \quad \operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} B \longrightarrow \operatorname{Str}^{\mathrm{g}}(A+B) \\
& :=\operatorname{fix}(g) \cdot \lambda b \cdot \lambda s . \lambda t \text {. case }\left({h d^{g}}^{g}\right) \text { of } \\
& \mid \mathrm{tt} \mapsto\left(\mathrm{in}_{0}\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):: \mathrm{s}^{\mathrm{g}} g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{tt}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right) \\
& \mid \mathrm{ff} \mapsto\left(\mathrm{in}_{1}\left(\mathrm{hd}^{\mathrm{g}} t\right)\right):::^{\mathrm{s}} g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right)
\end{aligned}
$$

Example D.25. We can give the following refinement types to sched :

$$
\begin{aligned}
& \{\text { Str Bool } \mid[\text { box }] \square \diamond[\mathrm{hd}][\mathrm{tt}]\} \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow\left\{\operatorname{Str}(A+B) \mid[\text { box }] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\} \\
& \{\operatorname{Str} \text { Bool } \mid[\text { box }] \square \diamond[\mathrm{hd}][\mathrm{ff}]\} \longrightarrow \operatorname{Str} A \longrightarrow \operatorname{Str} B \longrightarrow\left\{\operatorname{Str}(A+B) \mid[\text { box }] \square \diamond[\mathrm{hd}]\left[\mathrm{in}_{1}\right] T\right\}
\end{aligned}
$$

Proof. Direct, using the following Ex. D. 26 .
Example D.26. We can give the following refinement types to sched ${ }^{\text {g }}$:

Proof. We only discuss the first type, since the second one is completely similar. Let $T(k, \ell)$ be the type

$$
\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \square^{k} \diamond^{\ell}[\mathrm{hd}][\mathrm{tt}]\right\} \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} B \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \square^{k} \diamond^{\ell}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top\right\}
$$

and assume

$$
g: \triangleright \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
M(g, b, s, t):= & \text { case }\left(\mathrm{hd}^{\mathrm{g}} b\right) \text { of } \\
& \mid \mathrm{tt} \mapsto\left(\mathrm{in}_{0}\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):::^{\mathrm{g}} g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\left.\mathrm{t}\right|^{\mathrm{g}} s\right) \circledast\left(\mathrm{tt}^{\mathrm{g}} t\right) \\
& \mid \mathrm{ff} \mapsto\left(\mathrm{in}_{1}\left(\mathrm{hd}^{\mathrm{g}} t\right)\right):::^{\mathrm{g}} \mathrm{~g} \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right)
\end{aligned}
$$

We show

$$
\lambda b . \lambda s . \lambda t \cdot M(g, b, s, t) \quad: \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. In the case of $\forall \ell \cdot T(0, \ell)$, the result is trivial since

$$
\square^{0} \diamond^{\ell}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top \quad \Leftrightarrow \quad \top
$$

As for $\forall \ell \cdot T(k+1, \ell)$, we apply the $(\forall-\mathrm{CI})$ rule, this time on $\forall \ell$. In the case of $T(k+1,0)$, since

$$
\begin{array}{rlll}
& \quad \square^{k+1} \diamond^{\theta}[\mathrm{hd}][\mathrm{tt}] & \Leftrightarrow \diamond^{\theta}[\mathrm{hd}][\mathrm{tt}] \wedge \bigcirc \square^{k} \diamond^{\theta}[\mathrm{hd}][\mathrm{tt}] \\
\text { and } & \diamond^{\ominus}[\mathrm{hd}][\mathrm{tt}] & \Leftrightarrow & \perp
\end{array}
$$

we get

$$
\square^{k+1} \diamond^{\ominus}[\mathrm{hd}][\mathrm{tt}] \Leftrightarrow \perp
$$

and we can conclude using the (ExF) rule. It remains to deal with the case of $T(k+1, \ell+1)$. We have to show

$$
M(g, b, s, t):\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \square^{k+1} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\}
$$

assuming

$$
\begin{aligned}
& b: \\
& s\left\{\operatorname{Str}^{g} \text { Bool } \mid \square^{k+1} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}]\right\} \\
& t: \\
& t \operatorname{Str}^{\mathrm{g}} A \\
& \operatorname{Str}^{\mathrm{g}} B
\end{aligned}
$$

We have

$$
\square^{k+1} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top \Leftrightarrow \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top \wedge \bigcirc \square^{k} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T
$$

and we consider each conjunct separately.
Case of $\diamond^{\ell+1}[h d]\left[i n_{0}\right] \top$.
Since

$$
\square^{k+1} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}] \Leftrightarrow \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}] \wedge \bigcirc \square^{k} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}]
$$

we have

$$
b:\left\{\operatorname{Str}^{g} \text { Bool } \mid \diamond^{\ell+1}[\text { hd }][\mathrm{tt}]\right\}
$$

Using

$$
\diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}] \quad \Leftrightarrow \quad[\mathrm{hd}][\mathrm{tt}] \vee \bigcirc \diamond^{\ell}[\mathrm{hd}][\mathrm{tt}]
$$

we reason by cases on the refinement type of b.
(Sub)Case of [hd][tt].
We apply the ($\mathrm{INJ}_{0}-\mathrm{E}$) rule on b and we are done since

$$
\left(\mathrm{in}_{0}\left(\mathrm{hd}^{\mathrm{g}} s\right)\right):::^{\mathrm{g}} g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\}
$$

(Sub)Case of $\bigcirc \diamond^{\ell}[\mathrm{hd}][\mathrm{tt}]$.
We have

$$
\mathrm{tl}^{\mathrm{g}} b: \leadsto\left\{\mathrm{Str}^{\mathrm{g}} \text { Bool } \mid \nabla^{\ell}[\mathrm{hd}][\mathrm{tt}]\right\}
$$

We apply the case-elimination rule on b. In both branches, since (by subtyping) g has type
$\bullet\left(\left\{\operatorname{Str}^{\mathrm{g}} \mathrm{Bool} \mid \square^{1} \diamond^{\ell}[\mathrm{hd}][\mathrm{tt}]\right\} \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} B \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \square^{1} \diamond^{\ell}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top\right\}\right)$
and since, according to Table 3,

$$
\square^{1} \theta \Leftrightarrow \theta
$$

we get

$$
g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right) \quad: \quad\left\{\operatorname{Str}(A+B) \mid \diamond^{\ell}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] \top\right\}
$$

so that

$$
(-):::^{\mathrm{s}} g \circledast\left(\mathrm{tl}^{\mathrm{g}} b\right) \circledast\left(\mathrm{t}^{\mathrm{g}} s\right) \circledast\left(\mathrm{tl}^{\mathrm{g}} t\right) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \bigcirc \diamond^{\ell}[\mathrm{hd}]\left[\mathrm{in} \mathrm{in}_{0}\right] \top\right\}
$$

and we are done since

$$
\bigcirc \diamond^{\ell}[h d]\left[\mathrm{in}_{0}\right] \top \quad \Rightarrow \quad \diamond^{\ell+1}[h d]\left[\mathrm{in}_{0}\right] \top
$$

Case of $\bigcirc \square^{k} \diamond^{\ell+1}[h d]\left[\mathrm{in}_{0}\right] \top$.
Since

$$
\square^{k+1} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}] \Leftrightarrow \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}] \wedge \bigcirc \square^{k} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}]
$$

we have

$$
b:\left\{\operatorname{Str}^{g} \text { Bool } \mid \bigcirc \square^{k} \diamond^{\ell+1}[h d][t t]\right\}
$$

so that

$$
\mathrm{tt}^{\mathrm{g}} b: \quad\left\{\operatorname{Str}^{\mathrm{g}} \text { Bool } \mid \square^{k} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}]\right\}
$$

We apply the case-elimination rule on b. In both branches, since (by subtyping) g has type $\bullet\left(\left\{\operatorname{Str}^{\mathrm{g}}\right.\right.$ Bool $\left.\left.\mid \square^{k} \diamond^{\ell+1}[\mathrm{hd}][\mathrm{tt}]\right\} \longrightarrow \operatorname{Str}^{\mathrm{g}} A \longrightarrow \operatorname{Str}^{\mathrm{g}} B \longrightarrow\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \square^{k} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}{ }_{0}\right] T\right\}\right)$
we get

$$
g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\mathrm{tl}^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right) \quad: \quad\left\{\mathrm{Str}^{\mathrm{g}}(A+B) \mid \square^{k} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\}
$$

so that

$$
(-):::^{\mathrm{g}} g \circledast\left(\mathrm{t}^{\mathrm{g}} b\right) \circledast\left(\left.\mathrm{t}\right|^{\mathrm{g}} s\right) \circledast\left(\mathrm{t}^{\mathrm{g}} t\right) \quad: \quad\left\{\operatorname{Str}^{\mathrm{g}}(A+B) \mid \bigcirc \square^{k} \diamond^{\ell+1}[\mathrm{hd}]\left[\mathrm{in}_{0}\right] T\right\}
$$

D. 6 Colists

We detail here the refinement types given to the guarded and coinductive append functions on colists in Table 2. We present some basic material in §D.6.2. The append function itself is detailed in §D.6.3, and we give sharper refinements with iteration terms in §D.6.4. We begin in §D.6.1 with an overview of the main examples on colists.
D.6.1 Overview. The cases of

$$
\begin{aligned}
\text { append }^{\mathrm{g}} & :\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]^{\text {append }^{\mathrm{g}}}: ~\right.
\end{aligned} \text { CoList }^{\mathrm{g}} A \longrightarrow \text { CoList }^{\mathrm{g}} A \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid\left[\neg \text { nil }^{\mathrm{g}} A \mid[\neg \mathrm{Cnil}]\right\}\right\}\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]\right\}
$$

are detailed in Ex. D. 33 .
We now discuss

$$
\text { append }:\{\text { CoList } A \mid[\text { box }][\text { fin }]\} \longrightarrow\{\text { CoList } A \mid[\text { box }][\text { fin }]\} \longrightarrow\{\text { CoList } A \mid[\text { box }][\text { fin }]\}
$$

which says that append takes finite colists to a finite colist. Recall that [fin] $=\diamond$ [nil]. Details are given in Ex. D.35. The other refinement types for append are detailed in Ex. D. 36 and Ex. D. 37 .

We refer here to the code of the append function as defined in Table 4 and Ex. D.32. First, since $\diamond[$ nil $]$ is smooth, we can apply the rule (μ-E) (Fig. 11) twice and reduce to

$$
\Gamma \vdash \text { box }_{l}\left(\text { append }^{\mathrm{g}}(\text { unbox } s)(\text { unbox } t)\right):\{\text { CoList } A \mid[\text { box }] \diamond[\text { nil }]\}
$$

where Γ assumes s of type $\left\{\operatorname{CoList} A \mid[\right.$ box $] \diamond^{k}[$ nil $\left.]\right\}$ and t of type $\left\{\operatorname{CoList} A \mid[\right.$ box $] \diamond^{\ell}[$ nil $\left.]\right\}$. Using the derived rule ($\mu-\mathrm{I}$) (Ex. 6.10), we further reduce to

$$
\Gamma \vdash \operatorname{box}_{\iota}\left(\text { append }^{g}(\text { unbox } s)(\text { unbox } t)\right):\left\{\text { CoList } A \mid[\text { box }] \diamond^{k+\ell}[\text { nil }]\right\}
$$

Now, since the formulae $\diamond^{\mathrm{t}}[$ nil $]$ are safe, by subtyping (Fig. 11) we have

$$
\Gamma \vdash s: \llbracket\left\{\operatorname{CoList} A \mid \diamond^{k}[\text { nil }]\right\} \quad \text { and } \quad \Gamma \vdash t: \llbracket\left\{\text { CoList } A \mid \diamond^{\ell}[\text { nil }]\right\}
$$

and we can reduce to showing that the guarded append ${ }^{\mathrm{g}}$ has type $\forall k \cdot \forall \ell \cdot T(k, \ell)$, where

$$
T(k, \ell):=\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { nil }]\right\}
$$

Let $N(g, s, t)$ be such that append ${ }^{g}=$ fix $(g) \cdot \lambda s \cdot \lambda t \cdot N(g, s, t)$. We show

$$
\lambda s \cdot \lambda t \cdot N(g, s, t): \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

in a typing context (leaved implicit) which assumes g of type $\forall k \cdot \forall \ell \cdot T(k, \ell)$. We apply the ($\forall-\mathrm{CI}$) rule on $\forall k \cdot \forall \ell \cdot T(k, \ell)$. Since $\diamond^{0}[$ nil $] \Leftrightarrow \perp$, the branch of $\forall \ell \cdot T(0, \ell)$ can be dealt with using the (ExF) rule. In the branch of $\forall \ell \cdot T(k+1, \ell)$, we apply the ($\forall-\mathrm{I}$) rule. We are thus left with showing

$$
N(g, s, t):\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell+1}[\text { nil }]\right\}
$$

assuming further $s:\left\{\right.$ CoList $^{g} A \mid \diamond^{k+1}$ [nil] $\}$ and $t:\left\{\right.$ CoList $^{g} A \mid \diamond^{\ell}[$ nil $\left.]\right\}$. We unfold $\diamond^{k+1}[$ nil $]$ as

$$
\diamond^{k+1}[\text { nil }] \Leftrightarrow \text { [nil } \vee \bigcirc \diamond^{k}[\text { nil }]
$$

Using the ($\mathrm{V}-\mathrm{E}$) rule, we have two cases for the refinement type of s. In the case of $\{$ CoList $A \mid[$ nil $]\}$, since $[$ nil $]=[$ fold $]\left[\mathrm{in}_{0}\right]$ T, we have (unfold s) : [in $\left.{ }_{0}\right]$ T. Thanks to the (INJ_{0}) rule, we are left with showing

$$
t:\left\{\operatorname{CoList} A \mid \diamond^{\ell}[\text { nil }]\right\} \vdash t:\left\{\text { CoList } A \mid \diamond^{k+1+\ell}[\text { nil }]\right\}
$$

But we are done since $\llbracket \ell \rrbracket \leq \llbracket k+\ell+1 \rrbracket$ so that

$$
\diamond^{\ell}[\mathrm{nil}] \Rightarrow \diamond^{k+1+\ell}[\mathrm{nil}]
$$

Assume now that s has type $\left\{\right.$ CoList $A \mid \bigcirc \diamond^{k}[$ nil $\left.]\right\}$. By unfolding $\diamond^{k+\ell+1}$ [nil] we reduce to showing

$$
N(g, s, t) \quad: \quad\left\{\text { CoList }^{g} A \mid \bigcirc \diamond^{k+\ell}[\text { nil }]\right\}
$$

Since, on colists, $O(-)=[$ fold $]\left[\mathrm{in}_{1}\right]\left[\pi_{1}\right][$ next $](-)$, we can apply the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule on (unfold $\left.s\right)$. This amounts to showing

$$
\text { Cons }^{s} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList } A \mid \bigcirc \diamond^{k+\ell}[\text { nil }]\right\}
$$

where, since

$$
(\text { unfold } s): \quad\left\{1+A \times \text { CoList }^{\mathrm{s}} A \mid\left[\text { in }_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

we can assume $x s: \bullet\left\{\right.$ CoList $^{\mathrm{g}} A \mid \diamond^{k}[$ nil $\left.]\right\}$. By subtyping and $(\forall-\mathrm{E})$ we have $g: \nabla T(k, \ell)$, so that

$$
g \circledast x s \circledast(\text { next } t) \quad: \triangleright\left\{\text { CoList } A \mid \diamond^{k+\ell}[\text { nil }]\right\}
$$

and we conclude by the analogue of Ex. 5.3 for colists. The other typings for append are dealt with similarly. Let us finally just mention that the type of append ${ }^{\text {g }}$ can be sharpened to

$$
\forall k \cdot \forall \ell \cdot\left(\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{\ell+1}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell}[\text { nil }]\right\}\right)
$$

reflecting that on finite colists, append ${ }^{\text {g }}$ removes one constructor $\mathrm{Nil}^{\mathrm{g}}$ from its arguments (see Ex. D.38).
D.6.2 The Type of CoLists. The type of colists is

$$
\begin{aligned}
& \text { CoList } A:=\quad \text { CoList }^{\mathrm{g}} A \\
& \operatorname{CoList}^{\mathrm{g}} A:=\mathrm{Fix}(X) \cdot 1+A \times \triangle
\end{aligned}
$$

Its usual guarded constructors are represented as

$$
\begin{aligned}
& \mathrm{Nil}^{\mathrm{g}} \quad:=\text { fold }\left(\mathrm{in}_{0}\langle \rangle\right) \quad: \text { CoList }{ }^{\mathrm{g}} A \\
& \text { Cons }^{\mathrm{g}} \quad:=\lambda x . \lambda x s . \text { fold }\left(\mathrm{in}_{1}\langle x, x s\rangle\right) \quad: \quad A \rightarrow \text { CoList }^{\mathrm{g}} A \rightarrow \text { CoList }^{\mathrm{g}} A
\end{aligned}
$$

Their coinductive (for A a constant type) variants are

$$
\begin{array}{lll}
\mathrm{Nil} & :=\text { box }_{\iota}\left(\mathrm{Nil}^{\mathrm{g}}\right) & \\
\mathrm{Cons}:=\lambda x \cdot \lambda x s . \text { box }_{l}\left(\text { Conss }^{\mathrm{g}} x(\text { next }(\text { unbox } x s))\right) & : A \rightarrow \operatorname{CoList} A \rightarrow \operatorname{CoList} A
\end{array}
$$

Notation D.27. Extending the notation for (guarded) streams, we often write

$$
\begin{array}{llllllll}
(x:: \mathrm{g} x s) & := & \text { Cons }^{\mathrm{g}} x x^{2} & {[]^{\mathrm{g}}} & := & \mathrm{Nil}^{\mathrm{g}} & {\left[x_{0}, x_{1}, \ldots, x_{n}\right]^{\mathrm{g}}} & := \\
x_{0}:::^{\mathrm{g}}\left[x_{1}, \ldots, x_{n}\right]^{\mathrm{g}} \\
(x:: x s) & := & \text { Cons } x x \mathrm{~s} & {[]} & := & \text { Nil } & {\left[x_{0}, x_{1}, \ldots, x_{n}\right]} & := \\
x_{0}::\left[x_{1}, \ldots, x_{n}\right]
\end{array}
$$

Notation D. 28 (Syntactic Sugar for Pattern Matching). Assuming $s:$ CoList $^{5} A$, we often write

$$
\begin{aligned}
& \text { case } s \text { of } \\
& \mid \mathrm{Nil}^{\mathrm{g}} \mapsto N \\
& \mid \text { Cons }^{\mathrm{g}} \times \times \mathrm{xs} \mapsto M
\end{aligned}
$$

for

$$
\begin{aligned}
& \text { case (unfold s) of } \\
& \mid y \cdot N[\langle \rangle / y] \\
& \mid y \cdot M\left[\pi_{0}(y) / x, \pi_{1}(y) / x s\right]
\end{aligned}
$$

Example D. 29 (Formulae over CoList ${ }^{\mathrm{g}}$). Assuming $\psi: A$ and $\varphi:$ CoList $^{g} A$,

$$
\begin{aligned}
& \text { [nil] }:=[\text { fold }]\left[\mathrm{in}_{0}\right] \top \quad: \text { CoList }^{9} A \\
& {[\neg \text { nil }]:=[\text { fold }]\left[\text { in }_{1}\right] \top \quad: \text { CoList }^{g} A} \\
& {[\mathrm{hd}] \psi:=[\text { fold }]\left[\mathrm{in}_{1}\right]\left[\pi_{0}\right] \varphi: \text { CoList }^{9} A} \\
& \bigcirc \varphi:=[\text { fold }]\left[\text { in }_{1}\right]\left[\pi_{1}\right][\text { next }] \varphi: \quad \text { CoList }^{9} A \\
& \diamond \varphi \quad:=\mu \alpha \cdot \varphi \vee \bigcirc \alpha \quad: \quad \text { CoList }{ }^{\mathrm{g}} A \\
& \diamond^{\mathrm{t}} \varphi \quad:=\mu^{\mathrm{t}} \alpha . \varphi \vee \bigcirc \alpha \quad: \quad \text { CoList }{ }^{\mathrm{g}} A \\
& \square \varphi \quad:=v \alpha . \varphi \wedge \bigcirc \alpha \quad: \quad \text { CoList }{ }^{g} A \\
& \square^{\mathrm{fin}} \varphi:=\quad v \alpha \text {.[nil] } \vee(\varphi \wedge \bigcirc \alpha) \quad: \quad \text { CoList }^{\mathrm{g}} A \\
& \text { [inf] := } \quad[\neg \text { nil }] \quad \text { CoList }{ }^{g} A \\
& \text { [fin] }:=\diamond[\text { nil }] \quad: \quad \text { CoList }{ }^{g} A
\end{aligned}
$$

Example D. 30 .

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & : A \longrightarrow \text { CoList }^{\mathrm{g}} A \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \mathrm{nil}]\right\} \\
\text { Cons }^{\mathrm{g}} & : A \longrightarrow\left\{\mathrm{CoList}^{\mathrm{g}} A \mid[\mathrm{inf}]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\mathrm{inf}]\right\} \\
\mathrm{NiI}^{\mathrm{g}} & : \\
& \left\{\text { CoList }^{\mathrm{g}} A \mid\left[\mathrm{nil}^{2}\right]\right\}
\end{aligned}
$$

Note that

$$
\vdash^{\text {CoListg } A} \quad[\text { nil }] \quad \Rightarrow \quad \square^{\mathrm{fin}} \varphi
$$

Example D.31. Similarly as in §D.1.2 and §D.1.3, assuming $\varphi: A$ we have

$$
\begin{aligned}
\text { Cons }^{\mathrm{g}} & :\{A \mid \varphi\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \\
\text { Cons }^{\mathrm{g}} & :\{A \mid \varphi\} \longrightarrow\left\{\mathrm{CoList}^{\mathrm{g}} A \mid[\mathrm{nil}]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \\
\mathrm{Nil}^{\mathrm{g}} & :\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \square_{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \\
\text { Cons }^{\mathrm{g}} & :\{A \mid \varphi\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

D.6.3 The Append Function on Colists.

Example D. 32 (The Append Function on Colists).

$$
\begin{aligned}
& \text { append }^{\mathrm{g}} \quad: \quad \mathrm{CoList}^{\mathrm{g}} A \rightarrow \text { CoList }^{\mathrm{g}} A \rightarrow \text { CoList }^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) . \lambda s . \lambda t \text {.case } s \text { of } \\
& \mid \mathrm{Nil}^{\mathrm{g}} \mapsto t \\
& \mid \text { Cons }^{\mathrm{g}} \times x s \mapsto \mathrm{Cons}^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \\
& \text { append } \quad: \quad \text { CoList } A \rightarrow \operatorname{CoList} A \rightarrow \operatorname{CoList} A \\
& :=\lambda s . \lambda t \cdot \text { box }_{l}\left(\text { append }^{\text {g }}(\text { unbox } s)(\text { unbox } t)\right)
\end{aligned}
$$

Example D. 33 (Properties of Append).

$$
\begin{aligned}
& \text { append }^{g}: \\
& \text { append }^{g}\left.: \text { CoList }^{g} A \mid[\neg \text { nil }]\right\} \longrightarrow \text { CoList }^{\mathrm{g}} A \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]\right\} \\
&\text { CoList } \left.^{\mathrm{g}} A \mid[\neg \text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]\right\}
\end{aligned}
$$

Example D.34. Assuming $\varphi: A$,

$$
\text { append }^{\mathrm{g}}: \quad\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
$$

Proof. Let

$$
T:=\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
$$

and assume

$$
\left.\begin{array}{rl}
g & :
\end{array}\right) T\left(\begin{array}{cc|c}
\\
s & : & \left\{\text { CoList }^{\mathrm{g}} A\right. \\
t & : & \left.\square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\} \\
t & \text { CoList }^{\mathrm{g}} A & \left.\square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
\end{array}\right.
$$

Note that

$$
\square_{\mathrm{fin}}[\mathrm{hd}] \varphi \quad \Leftrightarrow \quad[\mathrm{nil}] \vee\left([\mathrm{hd}] \varphi \wedge \bigcirc \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right)
$$

We reason by cases on the refinement type of s, applying the (V-E) rule (Fig. 8).

Case of [nil].

We thus have

$$
\text { unfold }(s):\left\{1+A \times \text { CoList }^{g} A \mid\left[\mathrm{in}_{0}\right] \top\right\}
$$

We apply the $\left(\mathrm{INJ}_{0}-\mathrm{E}\right)$ rule and get the result by

$$
t:\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
$$

Case of $[h d] \varphi \wedge \bigcirc \square^{\text {fin }}[\mathrm{hd}] \varphi$.
We thus have

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid[\text { hd }] \varphi \wedge \bigcirc \square^{\mathrm{fin}}[\text { hd }] \varphi\right\}
$$

Since the modalities [fold] and $\left[\mathrm{in}_{1}\right]$ preserve \wedge this gives

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid[\text { fold }]\left[\mathrm{in}_{1}\right]\left(\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right][\text { next }] \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right)\right\}
$$

so that

$$
\operatorname{unfold}(s):\left\{1+A \times \operatorname{CoList}^{g} A \mid\left[\mathrm{in}_{1}\right]\left(\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right][\text { next }] \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right)\right\}
$$

We then apply the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule. Assume

$$
y:\left\{A \times \text { CoList }^{\mathrm{g}} A \mid\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right][\text { next }] \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
$$

and let

$$
\begin{aligned}
& x:=\pi_{0}(y):\{A \mid \varphi\} \\
& x s:=\pi_{1}(y): \quad\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \square^{\mathrm{fin}}[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

Then Ex. D. 31 easily gives

$$
\text { Cons }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \square^{\text {fin }}[\mathrm{hd}] \varphi\right\}
$$

Example D. 35.

```
append : {CoList A|[box]}\diamond[\mathrm{ nil]} }\longrightarrow{\mathrm{ CoList A|[box]}\diamond[\mathrm{ nil]} }\longrightarrow{CoList A|[box]\diamond[nil]
append }\mp@subsup{}{}{g}:\quad\forallk\cdot\forall\ell\cdot({\mp@subsup{\mathrm{ CoList}}{}{g}A|\mp@subsup{\diamond}{}{k}[\mathrm{ nil ] } }\longrightarrow{\mp@subsup{\mathrm{ CoList }}{}{g}A|\mp@subsup{\diamond}{}{\ell}[\mathrm{ nil }]}\longrightarrow{\mp@subsup{C}{CoListg}{g}A|\mp@subsup{\diamond}{}{k+\ell}[\mathrm{ nil ] })
```

Proof. Let

$$
T(k, \ell):=\left(\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { nil }]\right\}\right)
$$

and assume

$$
g:>\forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
M(g, s, t):= & \text { case } s \text { of } \\
& \mid \text { Nil }^{\mathrm{g}} \mapsto t \\
& \mid \text { Conss }^{\mathrm{g}} \times x \mathrm{xs} \mapsto \text { Cons }^{\mathrm{g}} \times(\mathrm{g} \circledast x s \circledast(\mathrm{next} t))
\end{aligned}
$$

We show

$$
\lambda s \cdot \lambda t \cdot M(g, s, t): \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the ($\forall-\mathrm{CI})$ rule on $\forall k$. This leads to two cases.
Case of $\forall \ell \cdot T(0, \ell)$.
Apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{0}[\text { nil }]\right\}
$$

Since

$$
\diamond^{\theta}[\text { nil }] \quad \Leftrightarrow \quad \perp
$$

the result follows using the rule (ExF).

Case of $\forall \ell \cdot T(k+1, \ell)$.
Apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
\begin{aligned}
& s: \\
& t:\left\{\text { CoListg }^{g} A\right. \\
& \text { CoList }^{g} A\left.\diamond^{k+1}[\text { nil }]\right\} \\
&\left.\diamond^{\ell}[\text { nil }]\right\}
\end{aligned}
$$

We have to show

$$
M(g, s, t):\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+1+\ell}[\text { nil }]\right\}
$$

Using

$$
\diamond^{k+1}[\text { nil }] \Leftrightarrow[\text { nil }] \vee \bigcirc \diamond^{k}[\text { nil }]
$$

we apply the ($\vee-E)$ rule on the refinement type of s. This leads to two subcases.
(Sub)Case of [nil].
We have

$$
\text { unfold }(s) \quad: \quad\left\{1+A \times \operatorname{CoList}^{\mathrm{s}} A \mid\left[\mathrm{in}_{0}\right] \top\right\}
$$

Since $\llbracket \ell \rrbracket \leq \llbracket k+1+\ell \rrbracket$, the result then follows by applying the ($\mathrm{INJ}_{0}-\mathrm{E}$) rule.
(Sub)Case of $\bigcirc \diamond^{k}$ [nil].
We have

$$
\text { unfold }(s):\left\{1+A \times \text { CoList }^{\mathrm{g}} A \mid\left[\mathrm{in}_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

Using the (INJ_{1}-E) rule we are left with showing

$$
\text { Cons }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{(k+\ell)+1}[\text { nil }]\right\}
$$

where

$$
\begin{aligned}
& x:=\pi_{0}(y): A \\
& \left.x s:=\pi_{1}(y): \text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\}
\end{aligned}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{g} A \mid\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

We have

$$
g \circledast x s \circledast(\text { next } t): \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell}[\text { nil }]\right\}
$$

It follows that

$$
\text { Cons }^{g} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{g} A \mid \bigcirc \diamond^{k+\ell}[\text { nil }]\right\}
$$

and we are done since

$$
\bigcirc \diamond^{k+\ell}[\text { nil }] \Rightarrow \diamond^{(k+\ell)+1}[\text { nil }]
$$

Example D.36. Assuming $\varphi: A$,

$$
\begin{aligned}
& \text { append }: \quad\{\operatorname{CoList} A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \longrightarrow \operatorname{CoList} A \longrightarrow\{\operatorname{CoList} A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \\
& \text { append }^{g} \quad: \quad \forall k \cdot\left(\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { hd }] \varphi\right\} \longrightarrow \text { CoList }^{g} A \longrightarrow\left\{\operatorname{CoList}^{g} A \mid \diamond^{k}[\text { hd }] \varphi\right\}\right)
\end{aligned}
$$

where, in the case of append, $\varphi: A$ is safe and smooth.

Proof. Let

$$
T(k):=\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\} \longrightarrow \operatorname{CoList}^{\mathrm{g}} A \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

and assume

$$
g:>\forall k \cdot T(k)
$$

Let

$$
\begin{aligned}
M(g, s, t):= & \text { case } s \text { of } \\
& \mid \mathrm{Nil}^{\mathrm{g}} \mapsto t \\
& \mid \mathrm{Cons}^{\mathrm{g}} x x s \mapsto \mathrm{Cons}^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t))
\end{aligned}
$$

We show

$$
\lambda s \cdot \lambda t \cdot M(g, s, t) \quad: \quad \forall k \cdot T(k)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. This leads to two cases.
Case of $T(0)$.
Assume

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{0}[\mathrm{hd}] \varphi\right\}
$$

Since

$$
\diamond^{0}[h d] \varphi \quad \Leftrightarrow \quad \perp
$$

the result follows using the rule (ExF).

Case of $T(k+1)$.

Assume

$$
\begin{aligned}
& s: \\
& t\left.: \text { CoList }^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi\right\} \\
& \text { CoList }^{\mathrm{g}} A
\end{aligned}
$$

Using

$$
\diamond^{k+1}[\mathrm{hd}] \varphi \quad \Leftrightarrow \quad[\mathrm{hd}] \varphi \vee \bigcirc \diamond^{k}[\mathrm{hd}] \varphi
$$

we apply the $(V-E)$ rule on the refinement type of s. This leads to two subcases.
(Sub)Case of [hd] φ.
We have

$$
\operatorname{unfold}(s) \quad: \quad\left\{1+A \times \text { CoList }^{g} A \mid\left[\mathrm{in}_{1}\right]\left[\pi_{0}\right] \varphi\right\}
$$

Using the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule we are left with showing

$$
\mathrm{Cons}^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\begin{array}{llll}
x & :=\pi_{0}(y) & :\{A \mid \varphi\} \\
x s & :=\pi_{1}(y) & :>\text { CoList }^{\mathrm{g}} A
\end{array}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{\mathrm{g}} A \mid\left[\pi_{0}\right] \varphi\right\}
$$

We have

$$
\text { Cons }{ }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid[\mathrm{hd}] \varphi\right\}
$$

and we are done since

$$
[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1}[\mathrm{hd}] \varphi
$$

(Sub)Case of $\bigcirc \diamond^{k}[h d] \varphi$.
We have

$$
\text { unfold }(s): \quad\left\{1+A \times \operatorname{CoList}^{g} A \mid\left[\mathrm{in}_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

Using the (INJ_{1}-E) rule we are left with showing

$$
\text { Cons }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+1}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\begin{aligned}
& x:=\pi_{0}(y): A \\
& \left.x s:=\pi_{1}(y): \not \text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{hd}] \varphi\right\}
\end{aligned}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

We have

$$
g \circledast x s \circledast(\text { next } t) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { hd }] \varphi\right\}
$$

It follows that

$$
\text { Cons }{ }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{g} A \mid \bigcirc \diamond^{k}[\mathrm{hd}] \varphi\right\}
$$

and we are done since

$$
\bigcirc \diamond^{k}[h d] \varphi \Rightarrow \diamond^{k+1}[h d] \varphi
$$

Example D.37. Assuming $\varphi: A$, we have

$$
\begin{aligned}
& \text { append } \quad: \quad\{\operatorname{CoList} A \mid[\text { box }] \diamond[\text { nil }]\} \longrightarrow\{\text { CoList } A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \longrightarrow\{\text { CoList } A \mid[\text { box }] \diamond[\text { hd }] \varphi\} \\
& \text { append }^{g}: \quad \forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{CoList}^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell}[\text { hd }] \varphi\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { hd }] \varphi\right\}\right)
\end{aligned}
$$

where, in the case of append, $\varphi: A$ is safe and smooth.

Proof. Let

$$
T(k, \ell):=\left(\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell}[\text { hd }] \varphi\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { hd }] \varphi\right\}\right)
$$

and assume

$$
g:>\forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
M(g, s, t):= & \text { case } s \text { of } \\
& \mid \text { Nil }^{\mathrm{g}} \mapsto t \\
& \mid \text { Cons }^{\mathrm{g}} \times x \mathrm{xs} \mapsto \text { Cons }^{\mathrm{g}} \times(\mathrm{g} \circledast x s \circledast(\text { next } t))
\end{aligned}
$$

We show

$$
\lambda s \cdot \lambda t \cdot M(g, s, t): \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. This leads to two cases.
Case of $\forall \ell \cdot T(\theta, \ell)$.
We apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{0}[\text { nil }]\right\}
$$

Since

$$
\diamond^{\ominus}[\text { nil }] \Leftrightarrow \perp
$$

the result follows using the rule (ExF).

Case of $\forall \ell \cdot T(k+1, \ell)$.

We apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
\begin{aligned}
& s: \\
& t::\left\{\text { CoList }^{g} A\right. \\
& \text { CoList }^{g} A\left.\diamond^{k+1}[\text { nil }]\right\} \\
&\left.\diamond^{\ell}[\text { hd }] \varphi\right\}
\end{aligned}
$$

Using

$$
\diamond^{k+1}[\text { nil }] \Leftrightarrow[\text { nil }] \vee \bigcirc \diamond^{k}[\text { nil }]
$$

we apply the ($\vee-E$) rule on the refinement type of s. This leads to two subcases.
(Sub)Case of [nil].
We have

$$
\text { unfold }(s):\left\{1+A \times \operatorname{CoList}^{g} A \mid\left[\operatorname{in}_{0}\right] \top\right\}
$$

Since $\llbracket \ell \rrbracket \leq \llbracket k+1+\ell \rrbracket$, the result then follows by applying the ($\mathrm{INJ}_{0}-\mathrm{E}$) rule.
(Sub)Case of $\bigcirc \diamond^{k}[$ nil $]$.
We have

$$
\operatorname{unfold}(s):\left\{1+A \times \text { CoList }^{g} A \mid\left[\text { in }_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

Using the (IN_{1}-E) rule we are left with showing

$$
\mathrm{Cons}^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \diamond^{(k+\ell)+1}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\begin{aligned}
& x:=\pi_{0}(y): A \\
& \left.x s:=\pi_{1}(y): \text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\}
\end{aligned}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

We have

$$
g \circledast x s \circledast(\text { next } t) \quad: \quad\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { hd }] \varphi\right\}
$$

It follows that

$$
\text { Conss }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \bigcirc \diamond^{k+\ell}[\mathrm{hd}] \varphi\right\}
$$

and we are done since

$$
\bigcirc \diamond^{k+\ell}[h d] \varphi \Rightarrow \diamond^{(k+\ell)+1}[h d] \varphi
$$

D.6.4 Sharper Refinements for the Append Function on Colists.

Example D. 38 .

$$
\text { append }^{\mathrm{g}}: \quad \forall k \cdot \forall \ell \cdot\left(\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{\ell+1}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell}[\text { nil }]\right\}\right)
$$

Proof. Let

$$
T(k, \ell):=\left(\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell+1}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { nil }]\right\}\right)
$$

and assume

$$
g:>\forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
M(g, s, t):= & \text { case } s \text { of } \\
& \mid \mathrm{Nil}^{\mathrm{g}} \mapsto t \\
& \mid \text { Conss }^{\mathrm{g}} \times x \mathrm{xs} \mapsto \text { Cons }^{\mathrm{s}} \times(\mathrm{g} \circledast x s \circledast(\mathrm{next} t))
\end{aligned}
$$

We show

$$
\lambda s . \lambda t \cdot M(g, s, t): \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the ($\forall-\mathrm{CI}$) rule on $\forall k$. This leads to two cases.
Case of $\forall \ell \cdot T(0, \ell)$.
Apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
s:\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{\ominus}[\text { nil }]\right\}
$$

Since

$$
\diamond^{\ominus}[\text { nil }] \quad \Leftrightarrow \quad \perp
$$

the result follows using the rule (ExF).
Case of $\forall \ell \cdot T(k+1, \ell)$.
Apply the ($\forall-\mathrm{I}$) rule on $\forall \ell$ and assume

$$
\begin{aligned}
& s: \\
& t:\left\{\text { CoList }^{g} A\right. \\
& \text { CoList }^{g} A\left.\diamond^{k+1}[\text { nil }]\right\} \\
&\left.\diamond^{\ell+1}[\text { nil }]\right\}
\end{aligned}
$$

We have to show

$$
M(g, s, t):\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k+1+\ell}[\text { nil }]\right\}
$$

Using

$$
\diamond^{k+1}[\text { nil }] \Leftrightarrow[\text { nil }] \vee \bigcirc \diamond^{k}[\text { nil }]
$$

we apply the ($\vee-E$) rule on the refinement type of s. This leads to two subcases.
(Sub)Case of [nil].
We have

```
unfold(s) : {1+A\times CoLists}A|[\mp@subsup{\textrm{in}}{0}{}]T
```

Since $\llbracket \ell+1 \rrbracket \leq \llbracket k+1+\ell \rrbracket$, the result then follows by applying the $\left({ }^{(} \mathrm{N}_{0}-\mathrm{E}\right)$ rule.
(Sub)Case of $\bigcirc \diamond^{k}$ [nil].
We have

$$
\text { unfold }(s): \quad\left\{1+A \times \text { CoList }^{g} A \mid\left[\text { in }_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

Using the ($\left.\mathrm{INJ}_{1}-\mathrm{E}\right)$ rule we are left with showing

$$
\text { Cons }^{g} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{g} A \mid \diamond^{k+1+\ell}[\text { nil }]\right\}
$$

where

$$
\begin{aligned}
& x:=\pi_{0}(y): A \\
& \left.x s:=\pi_{1}(y): \text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\text { nil }]\right\}
\end{aligned}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{g} A \mid\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

We have

$$
\left.g \circledast x s \circledast(\text { next } t): \diamond \text { CoList }^{\mathrm{g}} A \mid \diamond^{k+\ell}[\text { nil }]\right\}
$$

It follows that

$$
\text { Cons }^{g} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{g} A \mid \bigcirc \diamond^{k+\ell}[\text { nil }]\right\}
$$

and we are done since

$$
\bigcirc \diamond^{k+\ell}[\text { nil }] \Rightarrow \diamond^{k+1+\ell}[\text { nil }]
$$

Example D.39. Assuming $\varphi: A$, we have

$$
\text { append }^{\mathrm{g}}: \quad \forall k \cdot \forall \ell \cdot\left(\left\{\text { CoList }^{g} A \mid \diamond^{k}[\text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{\ell+1}[\text { hd }] \varphi\right\} \longrightarrow\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\text { hd }] \varphi\right\}\right)
$$

Proof. Let
$T(k, \ell):=\left(\left\{\right.\right.$ CoList $^{g} A \mid \diamond^{k}[$ nil $\left.]\right\} \longrightarrow\left\{\right.$ CoList $^{g} A \mid \diamond^{\ell+1}[$ hd $\left.] \varphi\right\} \longrightarrow\left\{\right.$ CoList $^{g} A \mid \diamond^{k+\ell}[$ hd $\left.\left.] \varphi\right\}\right)$
and assume

$$
g:>\forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
M(g, s, t):= & \text { case } s \text { of } \\
& \mid \text { Nil }^{\mathrm{g}} \mapsto t \\
& \mid \text { Cons }^{\mathrm{g}} \times x \mathrm{xs} \mapsto \text { Cons }^{\mathrm{g}} x(\mathrm{~g} \circledast x s \circledast(\mathrm{next} t))
\end{aligned}
$$

We show

$$
\lambda s . \lambda t \cdot M(g, s, t) \quad: \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the $(\forall-C I)$ rule on $\forall k$. This leads to two cases.
Case of $\forall \ell \cdot T(0, \ell)$.
We apply the $(\forall-\mathrm{I})$ rule on $\forall \ell$ and assume

$$
s:\left\{\text { CoList }^{g} A \mid \nabla^{0}[\text { nil }]\right\}
$$

Since

$$
\diamond^{0}[\text { nil }] \quad \Leftrightarrow \quad \perp
$$

the result follows using the rule (ExF).
Case of $\forall \ell \cdot T(k+1, \ell)$.
We apply the $(\forall-I)$ rule on $\forall \ell$ and assume

$$
\begin{array}{rl|l}
s & : & \left\{\text { CoList }^{\mathrm{g}} A\right. \\
t & : & \left.\diamond^{k+1}[\text { nil }]\right\} \\
\text { CoList }^{\mathrm{g}} A & \left.\diamond^{\ell+1}[\mathrm{hd}] \varphi\right\}
\end{array}
$$

We have to show

$$
M(g, s, t) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond k+1+\ell[\mathrm{hd}] \varphi\right\}
$$

Using

$$
\diamond^{k+1}[\mathrm{nil}] \quad \Leftrightarrow \quad[\mathrm{nil}] \vee \bigcirc \diamond^{k}[\mathrm{nil}]
$$

we apply the $(V-E)$ rule on the refinement type of s. This leads to two subcases.
(Sub)Case of [nil].
We have

$$
\operatorname{unfold}(s) \quad: \quad\left\{1+A \times \operatorname{CoList}^{\mathrm{g}} A \mid\left[\mathrm{in}_{0}\right] T\right\}
$$

Since $\llbracket \ell+1 \rrbracket \leq \llbracket k+1+\ell \rrbracket$, the result then follows by applying the ($\mathrm{IN}_{0}-\mathrm{E}$) rule.
(Sub)Case of $\bigcirc \diamond^{k}$ [nil].
We have

$$
\operatorname{unfold}(s):\left\{1+A \times \text { CoList }^{g} A \mid\left[\mathrm{in}_{1}\right]\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

Using the ($\left.\mathrm{IN}_{\mathrm{J}_{1}}-\mathrm{E}\right)$ rule we are left with showing

$$
\text { Cons }^{\mathrm{g}} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \diamond^{k+1+\ell}[\mathrm{hd}] \varphi\right\}
$$

where

$$
\begin{array}{llll}
x & :=\pi_{0}(y) & : A \\
x s & :=\pi_{1}(y) & :>\left\{\text { CoList }^{\mathrm{g}} A \mid \diamond^{k}[\mathrm{nil}]\right\}
\end{array}
$$

assuming

$$
y:\left\{A \times \text { CoList }^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \diamond^{k}[\text { nil }]\right\}
$$

We have

$$
g \circledast x s \circledast(\text { next } t) \quad: \quad\left\{\text { CoList }^{g} A \mid \diamond^{k+\ell}[\mathrm{hd}] \varphi\right\}
$$

It follows that

$$
\text { Cons }^{g} x(g \circledast x s \circledast(\text { next } t)) \quad: \quad\left\{\text { CoList }^{g} A \mid \bigcirc \diamond^{k+\ell}[\mathrm{hd}] \varphi\right\}
$$

and we are done since

$$
\bigcirc \diamond^{k+\ell}[\mathrm{hd}] \varphi \Rightarrow \diamond^{k+1+\ell}[\mathrm{hd}] \varphi
$$

D. 7 Resumptions

This example is adapted from [Krishnaswami 2013]. Fix a constant type 0 and a finite base type I. Let

$$
\begin{aligned}
& \operatorname{Res} A:=\quad \text { ■es }{ }^{g} A \\
& \operatorname{Res}^{5} A:=\operatorname{Fix}(X) \cdot A+(0 \times \nabla)^{\mathrm{I}} \\
& \operatorname{Ret}^{\mathrm{g}} \quad:=\lambda a . \text { fold }\left(\mathrm{in}_{0} a\right) \quad: \quad A \longrightarrow \operatorname{Res}^{\mathrm{g}} A \\
& \text { Cont }{ }^{g}:=\lambda k \text {. fold }\left(\mathrm{in}_{1} k\right):\left(0 \times \operatorname{Res}^{g} A\right)^{\mathrm{I}} \longrightarrow \operatorname{Res}^{g} A
\end{aligned}
$$

Example D. 40 (A Scheduler on Resumptions).

$$
\begin{aligned}
& \text { sched : } \quad \operatorname{Res} A \longrightarrow \operatorname{Res} A \longrightarrow \operatorname{Res} A \\
& :=\lambda p \cdot \lambda q \cdot \text { box }_{l}\left(\text { sched }^{\mathrm{g}}(\text { unbox } p)(\text { unbox } q)\right) \\
& \text { sched }^{\mathrm{g}} \quad: \quad \operatorname{Res}^{\mathrm{g}} A \longrightarrow \operatorname{Res}^{\mathrm{g}} A \longrightarrow \operatorname{Res}^{\mathrm{g}} A \\
& :=\quad \text { fix }(g) \cdot \lambda p \cdot \lambda q \text {. case } p \text { of } \\
& \mid \operatorname{Ret}^{\mathrm{g}} a \mapsto \operatorname{Ret}^{\mathrm{g}} a \\
& \text { | Cont }{ }^{\text {g }} k \mapsto \\
& \text { let } h=\lambda i \text {. let }\langle o, t\rangle=k i \\
& \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& \text { in Cont }{ }^{\text {g }} h
\end{aligned}
$$

Example D. 41 (Formulae on $\operatorname{Res}^{g} A$). Assuming $\psi: A, \varphi: \operatorname{Res}{ }^{g} A, \vartheta: 0$ and $\mathrm{i} \in \mathrm{I}$,

[Ret]	:=	[fold][in ${ }_{0}$] ${ }^{\text {c }}$	$\mathrm{Res}^{\text {g }} A$	
[Cont]	:=	[fold][in_{1}] ${ }^{\text {T }}$	$\mathrm{Res}^{\text {g }} A$	
[now] ψ	:=	[fold] $\left[\mathrm{in}_{0}\right] \psi$	Res ${ }^{\text {g }} A$	
[out ${ }_{\text {i }}$] $\boldsymbol{\theta}$:=	[fold][in $\left.{ }_{1}\right]\left([\mathrm{i}] \\| \rightarrow\left[\pi_{0}\right] \vartheta\right)$	$\mathrm{Res}^{\text {g }} A$	
[^out] ϑ	:=	$\wedge_{\mathrm{i} \in \mathrm{I}}\left[\right.$ out $\left._{\mathrm{i}}\right]$	$\mathrm{Res}^{\text {g }}$ A	
[Vout] ϑ	:=	$\vee_{i \in I}\left[\right.$ out $\left._{\text {i }}\right] \vartheta$	$\mathrm{Res}^{\text {g }} A$	
$\bigcirc \bigcirc_{i} \varphi$:=	[fold][in $\left.{ }_{1}\right]\left([\mathrm{i}] \\| \rightarrow\left[\pi_{1}\right][\mathrm{next}] \varphi\right)$	$\mathrm{Res}^{\text {g }} A$	
$\otimes \varphi$:=	$\wedge_{i \in I} \bigcirc_{i} \varphi$	$\mathrm{Res}^{\text {g }}$ A	
$\otimes \varphi$:=	$\vee_{i \in I} \bigcirc_{i} \varphi$	$\mathrm{Res}^{\text {g }}$ A	
$\exists \square \varphi$:=	$v \alpha . \varphi \wedge \otimes \alpha$	$\mathrm{Res}^{\text {g }} A$	
$\forall \square \varphi$:=	$v \alpha . \varphi \wedge \otimes \alpha$	$\mathrm{Res}^{\text {g }} A$	
$\exists \diamond \varphi$:=	$\mu \alpha . \varphi \vee \otimes \alpha$	$\mathrm{Res}^{\text {g }} A$	
$\forall \diamond \varphi$:=	$\mu \alpha . \varphi \vee \otimes \alpha$	$\mathrm{Res}^{\text {g }} A$	

We moreover let

$$
\begin{array}{lllllll}
\forall \square^{\mathrm{t}} \psi & := & v^{\mathrm{t}} \alpha \cdot \psi \wedge \otimes \alpha & : & \operatorname{Res}^{\mathrm{g}} A & \forall \diamond^{\mathrm{t}} \psi & :=\mu^{\mathrm{t}} \alpha \cdot \psi \vee \otimes \alpha \\
\exists \square^{\mathrm{t}} \psi & := & v^{\mathrm{t}} \alpha \cdot \psi \wedge \otimes \alpha & : & \operatorname{Res}^{\mathrm{g}} A & \exists \diamond^{\mathrm{t}} \psi:=\mu^{\mathrm{g}} \alpha \cdot \psi \vee \otimes \alpha & : \operatorname{Res}^{\mathrm{g}} A
\end{array}
$$

Example D.42. Let ψ : A be a safe and smooth formula and let $\varphi \in\{[\operatorname{Ret}],[n o w] \psi\}$. We have

$$
\begin{array}{ll}
\text { sched } & :\{\operatorname{Res} A \mid[\operatorname{box}] \exists \diamond \varphi\} \longrightarrow\{\operatorname{Res} A \mid[\operatorname{box}] \exists \diamond \varphi\} \longrightarrow\{\operatorname{Res} A \mid[\operatorname{box}] \exists \diamond \varphi\} \\
\text { sched } & :\{\operatorname{Res} A \mid[\operatorname{box}] \forall \diamond \varphi\} \longrightarrow\{\operatorname{Res} A \mid[\operatorname{box}] \forall \diamond \varphi\} \longrightarrow\{\operatorname{Res} A \mid[\text { box }] \forall \diamond \varphi\} \\
\text { sched }^{\mathrm{g}} & : \\
\text { sched }^{\mathrm{g}} & : \forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{Res}^{\mathrm{g}} A \mid \exists \diamond^{k} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \exists \diamond{ }^{\ell} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \exists \diamond^{k+\ell} \varphi\right\}\right) \\
\text { sch }^{k} & \forall k \cdot \forall \ell \cdot\left(\left\{\operatorname{Res}^{\mathrm{g}} A \mid \forall \diamond^{k} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \forall \diamond^{\ell} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \forall \diamond^{k+\ell} \varphi\right\}\right)
\end{array}
$$

Proof. Let $\diamond \in\{\exists \diamond, \forall \diamond\}$ and

$$
T(k, \ell):=\left\{\operatorname{Res}^{g} A \mid \diamond^{k} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{g} A \mid \diamond^{\ell} \varphi\right\} \longrightarrow\left\{\operatorname{Res}^{g} A \mid \diamond^{k+\ell} \varphi\right\}
$$

and assume

$$
g:>\forall k \cdot \forall \ell \cdot T(k, \ell)
$$

Let

$$
\begin{aligned}
& M(g, p, q):= \text { case } p \text { of } \\
& \mid \operatorname{Ret}^{\mathrm{g}} a \mapsto \operatorname{Ret}^{\mathrm{g}} a \\
& \operatorname{Cont}^{\mathrm{g}} k \mapsto \\
& \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \quad \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle
\end{aligned} \quad \begin{aligned}
& \quad{\operatorname{in~} \operatorname{Cont}^{\mathrm{g}} h} \quad
\end{aligned}
$$

We show

$$
\lambda p \cdot \lambda q \cdot M(g, p, q) \quad: \quad \forall k \cdot \forall \ell \cdot T(k, \ell)
$$

We apply the $(\forall-\mathrm{CI})$ rule on $\forall k$. In the case of $\forall \ell \cdot T(0, \ell)$, we get the result using the (ExF) rule since

$$
\diamond^{0} \varphi \quad \Leftrightarrow \quad \perp
$$

As for $\forall \ell \cdot T(k+1, \ell)$, we apply the $(\forall-\mathrm{I})$ rule on $\forall \ell$. We have to show

$$
M(g, p, q) \quad: \quad\left\{\operatorname{Res}^{\mathrm{g}} A \mid \diamond^{k+\ell+1} \varphi\right\}
$$

assuming

$$
\begin{aligned}
p & :\left\{\begin{array}{l}
\operatorname{Res}^{g} A \\
q
\end{array}:\left\{\diamond^{k+1} \varphi\right\}\right. \\
\operatorname{Res}^{g} A & \left.\diamond^{\ell} \varphi\right\}
\end{aligned}
$$

Using

$$
\begin{aligned}
& \exists \diamond^{k+1} \varphi \quad \Leftrightarrow \quad \varphi \vee \otimes \exists \diamond^{k} \varphi \\
& \forall \diamond^{k+1} \varphi \Leftrightarrow \varphi \vee \otimes \forall \diamond^{k} \varphi
\end{aligned}
$$

we reason by cases on the refinement type of p.

Case of [Ret].

We have

$$
\text { unfold } p \quad: \quad\left\{A+\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid\left[\mathrm{in}_{0}\right] \top\right\}
$$

We apply the $\left(\mathrm{INJ}_{0}-\mathrm{E}\right)$ rule on p and we are done since

$$
\operatorname{Ret}^{g} a:\left\{\operatorname{Res}^{g} A \mid[\operatorname{Ret}]\right\}
$$

assuming

$$
a: A
$$

Case of [now] ψ.

We have

$$
\text { unfold } p \quad: \quad\left\{A+\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid\left[\mathrm{in}_{0}\right] \psi\right\}
$$

We apply the ($\mathrm{IN}_{\mathrm{J}_{0}}-\mathrm{E}$) rule on p and we are done since

$$
\operatorname{Ret}^{\mathrm{g}} a:\left\{\operatorname{Res}^{\mathrm{g}} A \mid[\text { now }] \psi\right\}
$$

assuming

$$
a:\{A \mid \psi\}
$$

Case of $\otimes \exists \diamond^{k} \varphi$.
We apply the ($V-E)$ rule on the refinement type of p. So let $i \in I$ and assume

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \exists \diamond^{k} \varphi\right\}
$$

We have

$$
\text { unfold } p:\left\{A+\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \|\left[\pi_{1}\right][\mathrm{next}] \exists \diamond^{k} \varphi\right)\right\}
$$

We apply the ($\mathrm{IN}_{1}-\mathrm{E}$) rule on the refinement type of p. Let

$$
\begin{aligned}
N(g, k, q):= & \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& {\text { in } \text { Cont }^{\mathrm{g}} h}{ }^{(2)}
\end{aligned}
$$

We show

$$
N(g, k, q): \quad\left\{\operatorname{Res}^{g} A \mid \bigcirc_{\mathrm{i}} \exists \diamond^{k+\ell} \varphi\right\}
$$

assuming

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \exists \diamond^{k} \varphi\right\}
$$

Assuming

$$
i:\{\mathrm{I} \mid[\mathrm{i}]\}
$$

we thus have

$$
k i: \quad\left\{0 \times \operatorname{Res}^{\mathrm{g}} A \mid\left[\pi_{1}\right][\mathrm{next}] \exists \diamond^{k} \varphi\right\}
$$

It follows that

$$
\left\langle\pi_{0}(k i), g \circledast(\operatorname{next} q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{0 \times \operatorname{Res}^{\mathrm{g}} A \mid\left[\pi_{1}\right][\operatorname{next}] \exists \diamond^{k+\ell} \varphi\right\}
$$

and thus
$\lambda i .\left\langle\pi_{0}(k i), g \circledast(n e x t q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \mapsto\left[\pi_{1}\right][\mathrm{next}] \exists \diamond^{k+\ell} \varphi\right\}$
Now we are done since

$$
\begin{aligned}
& \\
& \text { and } \quad \bigcirc_{\mathrm{i}} \exists \diamond^{k+\ell} \varphi=[\text { fold }]\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \exists \diamond^{k+\ell} \varphi\right) \\
& \operatorname{Cont}^{\mathrm{g}}=\lambda h . \text { fold }\left(\mathrm{in}_{1} h\right)
\end{aligned}
$$

Case of $\otimes \forall \diamond^{k} \varphi$.

Using

$$
\forall \diamond^{k+\ell+1} \varphi \Leftrightarrow \varphi \vee \otimes \forall \diamond^{k+\ell} \varphi
$$

for each $i \in I$ we show

$$
M(g, p, q) \quad: \quad\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \forall \diamond^{k+\ell} \varphi\right\}
$$

So let $\mathrm{i} \in \mathrm{I}$. Since

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \otimes \exists \diamond^{k} \varphi\right\}
$$

We have

$$
\text { unfold } p:\left\{A+\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \|\left[\pi_{1}\right][\text { next }] \exists \diamond^{k} \varphi\right)\right\}
$$

and we conclude similarly as in the case of $\otimes \exists \diamond^{k} \varphi$.
Example D.43. Let $\vartheta: 0$ be a safe and smooth formula. Furthermore, let $\square \in\{\forall \square, \exists \square\}, \diamond \in$ $\{\forall \diamond, \exists \diamond\}$ and [out] $\in\{[\wedge$ out $],[$ Vout $]\}$. We have sched $: \quad\{\operatorname{Res} A \mid[$ box $] \square \diamond[$ out $] \vartheta\} \longrightarrow\{\operatorname{Res} A \mid[$ box $] \square \diamond[$ out $] \vartheta\} \longrightarrow\{\operatorname{Res} A \mid[$ box $] \square \diamond[$ out $] \vartheta\}$

Proof. We show that we can give the following refinement type to sched ${ }^{\mathrm{g}}$:
$\forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot\left(\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}}[\right.\right.$ out $\left.] \vartheta\right\} \rightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{1}}[\right.$ out $\left.] \vartheta\right\} \rightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}+\ell_{1}}[\right.$ out $\left.\left.] \vartheta\right\}\right)$
Let $T\left(k, \ell_{0}, \ell_{1}\right)$ be the type

$$
\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}}[\text { out }] \vartheta\right\} \rightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{1}}[\text { out }] \vartheta\right\} \rightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}+\ell_{1}}[\text { out }] \vartheta\right\}
$$

and assume

$$
g: \Delta \forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k, \ell_{0}, \ell_{1}\right)
$$

Let

$$
\begin{aligned}
& M(g, p, q):= \text { case } p \text { of } \\
& \mid \operatorname{Ret}^{\mathrm{g}} a \mapsto \operatorname{Ret}^{\mathrm{g}} a \\
& \operatorname{Cont}^{\mathrm{g}} k \mapsto \\
& \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \quad \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& \quad \text { in } \operatorname{Cont}^{\mathrm{g}} h
\end{aligned}
$$

We show

$$
\lambda p \cdot \lambda q \cdot M(g, p, q) \quad: \quad \forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k, \ell_{0}, \ell_{1}\right)
$$

We apply the $(\forall-\mathrm{CI})$ rule on $\forall k$. The case of $\forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(0, \ell_{0}, \ell_{1}\right)$ is trivial since

$$
\square^{0} \diamond \diamond^{\ell_{0}+\ell_{1}}[\text { out }] \vartheta \Leftrightarrow \quad \quad \Leftrightarrow
$$

As for $\forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k+1, \ell_{0}, \ell_{1}\right)$, we apply the $(\forall-\mathrm{CI})$ rule, this time on $\forall \ell_{0}$. In the case of $\forall \ell_{1}$. $T\left(k+1,0, \ell_{1}\right)$, since $\square^{k+1} \diamond^{\theta}$ [out $] \vartheta$ is of the form

$$
\diamond^{\ominus}[\text { out }] \vartheta \quad \wedge \quad \psi
$$

while

$$
\diamond^{\theta}[\text { out }] \vartheta \quad \Leftrightarrow \quad \perp
$$

we can conclude using the (ExF) rule. It remains to deal with the case of $\forall \ell_{1} \cdot T\left(k+1, \ell_{0}+1, \ell_{1}\right)$. We apply the $(\forall-\mathrm{I})$ rule on $\forall \ell_{1}$. We show

$$
M(g, p, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\mathrm{out}] \vartheta\right\}
$$

assuming

$$
\begin{aligned}
& p: \\
& q:\left\{\operatorname{Res}^{\mathrm{g}} A\right. \\
& \operatorname{Res}^{\mathrm{g}} A\left.\square^{k+1} \nabla^{k+1} \diamond^{\ell_{0}+1}[\text { out }] \vartheta\right\} \\
& {[\text { out }] \vartheta\} }
\end{aligned}
$$

We will apply the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule on (unfold p) and show

$$
N(g, k, q): \quad\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\mathrm{out}] \vartheta\right\}
$$

where

$$
\begin{aligned}
N(g, k, q):= & \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& {\text { in } \text { Cont }^{g} h}^{*}
\end{aligned}
$$

and under suitable assumption on the refinement type of k. We have

$$
\begin{aligned}
& \forall \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta \Leftrightarrow \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta \wedge \otimes \forall \square^{k} \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta \\
& \left.\left.\exists \square^{k+1} \diamond \ell_{0}+\ell_{1}+1 \text { [out }\right] \vartheta \Leftrightarrow \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta \wedge \otimes \exists \square^{k} \diamond \ell_{0}+\ell_{1}+1 \text { [out }\right] \vartheta
\end{aligned}
$$

and we consider each conjunct separately.
Cases of $\diamond^{\ell_{0}+\ell_{1}+1}[$ out $] \vartheta$.
We have

$$
p:\left\{\operatorname{Res}^{g} A \mid \diamond^{\ell_{0}+1}[\text { out }] \vartheta\right\}
$$

Using

$$
\begin{array}{lll}
\exists \diamond^{\ell_{0}+1}[\text { out }] \vartheta & \Leftrightarrow & \text { [out } \left.] \vartheta \vee \otimes \exists \exists \diamond^{\ell_{0}} \text { [out }\right] \vartheta \\
\forall \diamond^{\ell_{0}+1}[\text { out }] \vartheta & \Leftrightarrow & \text { [out }] \vartheta \vee \otimes \forall \diamond \diamond_{0}[\text { out }] \vartheta
\end{array}
$$

we reason by cases on the refinement type of p.
(Sub)Cases of [out] ϑ.
We show

$$
N(g, k, q):\left\{\operatorname{Res}^{g} A \mid[\text { out }] \vartheta\right\}
$$

We handle the cases of [Vout] and [\wedge out] separately.
(SubSub)Case of [Vout].
We apply the ($V-E$) rule on the refinement type of p. So let $i \in I$ and assume

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid\left[\text { out }_{\mathrm{i}}\right] \vartheta\right\}
$$

This amounts to

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{0}\right] \vartheta\right\}
$$

Hence assuming

$$
i:\{A \mid[\mathrm{i}]\}
$$

we have

$$
\left\langle\pi_{0}(k i), g \circledast(\operatorname{next} q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{0 \times \operatorname{Res}^{\mathrm{g}} A \mid\left[\pi_{0}\right] \vartheta\right\}
$$

It follows that

$$
\lambda i .\left\langle\pi_{0}(k i), g \circledast(\operatorname{next} q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{0}\right] \vartheta\right\}
$$

and we are done since

$$
\text { Cont }^{\mathrm{g}}=\lambda h . \text { fold }\left(\mathrm{in}_{1} h\right)
$$

(SubSub)Case of [^out].
For each i \in I we have to show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid\left[\text { out }_{i}\right] \vartheta\right\}
$$

So let $\mathrm{i} \in \mathrm{I}$. Since

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid\left[\text { out }_{\mathrm{i}}\right] \vartheta\right\}
$$

we have

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{0}\right] \vartheta\right\}
$$

and we conclude similarly as in the case of [Vout].
(Sub)Case of $\otimes \exists \diamond^{\ell_{0}}[$ out $] \vartheta$.
We show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \otimes \exists \diamond \diamond_{0}+\ell_{1}[\text { out }] \vartheta\right\}
$$

We apply the ($V-E$) rule on the refinement type of p. So let $i \in I$ and assume

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \exists \diamond^{\ell_{0}}[\text { out }] \vartheta\right\}
$$

This amounts to

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] 川\left[\pi_{1}\right][\text { next }] \exists \diamond^{\ell_{0}}[\text { out }] \vartheta\right\}
$$

Assuming

$$
i:\{\mathrm{I} \mid[\mathrm{i}]\}
$$

we thus have

$$
k i: \quad\left\{0 \times \operatorname{Res}^{g} A \mid\left[\pi_{1}\right][\text { next }] \exists \diamond^{\ell_{0}}[\text { out }] \vartheta\right\}
$$

since (by subtyping) g has type
$-\left(\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{1} \exists \diamond^{\ell_{0}}[\right.\right.$ out $\left.] \vartheta\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{1} \exists \diamond^{\ell_{1}}[\right.$ out $\left.] \vartheta\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{1} \exists \diamond^{\ell_{0}+\ell_{1}}[\right.$ out $\left.\left.] \vartheta\right\}\right)$
and since, according to Table 3,

$$
\square^{1} \theta \Leftrightarrow \theta
$$

it follows that

$$
\left\langle\pi_{0}(k i), g \circledast(\text { next } q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{0 \times \operatorname{Res}^{g} A \mid\left[\pi_{1}\right][\text { next }] \exists \diamond \ell_{0}+\ell_{1}[\text { out }] \vartheta\right\}
$$

We thus get
$\lambda i .\left\langle\pi_{0}(k i), g \circledast(\right.$ next $\left.q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{\left(0 \times \operatorname{Res}^{g} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\right.$ next $] \exists \diamond \ell_{0}+\ell_{1}[$ out $\left.] \vartheta\right\}$
Now we are done since

$$
\begin{array}{rlrl}
& & \bigcirc_{\mathrm{i}} \exists \diamond \ell_{0}+\ell_{1}[\text { out }] \vartheta & =[\text { fold }]\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \exists \diamond \ell_{0}+\ell_{1}[\text { out }] \vartheta\right) \\
\text { and } & \operatorname{Cont}^{g} & =\lambda h . \text { fold }\left(\mathrm{in}_{1} h\right)
\end{array}
$$

(Sub)Case of $\otimes \forall \diamond^{\ell_{0}}[$ out $] \vartheta$.
We show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \otimes \forall \diamond \iota_{0}+\ell_{1}[\text { out }] \vartheta\right\}
$$

Hence, for each $i \in I$ we have to show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \forall \diamond^{\ell_{0}+\ell_{1}}[\text { out }] \vartheta\right\}
$$

So let $\mathrm{i} \in \mathrm{I}$. Since

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \forall \diamond^{\ell_{0}}[\text { out }] \vartheta\right\}
$$

we have

$$
k:\left\{\left(0 \times \operatorname{Res}^{g} A\right)^{\mathrm{I}} \mid[\mathrm{i}] 川 \rightarrow\left[\pi_{1}\right][\text { next }] \forall \diamond \diamond_{0}^{\ell_{0}}[\text { out }] \vartheta\right\}
$$

and we conclude similarly as in the case of $\otimes \exists \diamond \ell_{0}[$ out $] \vartheta$.

Case of $\otimes \forall \square^{k} \diamond^{\ell_{0}+\ell_{1}+1}[$ out $] \vartheta$.
For each $i \in I$ we have to show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \forall \square^{k} \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta\right\}
$$

So let $\mathrm{i} \in \mathrm{I}$. Since

$$
p:\left\{\operatorname{Res}^{g} A \mid \bigcirc_{i} \forall \square^{k} \diamond^{\ell_{0}+1}[\text { out }] \vartheta\right\}
$$

we have

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \forall \square^{k} \diamond \ell_{0}+1[\text { out }] \vartheta\right\}
$$

Assuming

$$
i:\{\mathrm{I} \mid[\mathrm{i}]\}
$$

we thus have

$$
k i:\left\{0 \times \operatorname{Res}^{\mathrm{g}} A \mid\left[\pi_{1}\right][\text { next }] \forall \square^{k} \diamond^{\ell_{0}+1}[\text { out }] \vartheta\right\}
$$

and it follows that
$\lambda i .\left\langle\pi_{0}(k i), g \circledast(\right.$ next $\left.q) \circledast\left(\pi_{1}(k i)\right)\right\rangle \quad: \quad\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\right.$ next $] \forall \square^{k} \diamond \ell_{0}+\ell_{1}+1[$ out $\left.] \vartheta\right\}$
Now we are done since

$$
\begin{aligned}
\mathrm{O}_{\mathrm{i}} \forall \square^{k} \exists \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta & =[\text { fold }]\left[\mathrm{in}_{1}\right]\left([\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \forall \square^{k} \exists \diamond^{\ell_{0}+\ell_{1}+1}[\text { out }] \vartheta\right) \\
\text { Cont }^{g} & =\lambda h . \text { fold }\left(\mathrm{in}_{1} h\right)
\end{aligned}
$$

and
Case of $\otimes \exists \square^{k} \diamond^{\ell_{0}+\ell_{1}+1}[$ out $] \vartheta$.
We have to show

$$
N(g, k, q):\left\{\operatorname{Res}^{\mathrm{g}} A \mid \otimes \exists \square^{k} \diamond \ell_{0}+\ell_{1}+1[\text { out }] \vartheta\right\}
$$

We apply the ($V-E)$ rule on the refinement type of p. So let $i \in I$ and assume

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \bigcirc_{\mathrm{i}} \exists \square^{k} \diamond \diamond_{0}+1[\text { out }] \vartheta\right\}
$$

We have

$$
k:\left\{\left(0 \times \operatorname{Res}^{\mathrm{g}} A\right)^{\mathrm{I}} \mid[\mathrm{i}] \| \rightarrow\left[\pi_{1}\right][\text { next }] \exists \square^{k} \diamond \ell_{0}+1[\text { out }] \vartheta\right\}
$$

and we conclude similarly as in the case of $\otimes \forall \square^{k} \diamond \diamond_{0}+\ell_{1}+1$ [out] ϑ.
Example D.44. Let $\square \in\{\forall \square, \exists \square\}$ and $\diamond \in\{\forall \diamond, \exists \diamond\}$. We have
sched $:\{\operatorname{Res} A \mid[b o x] \square \diamond[\operatorname{Ret}]\} \longrightarrow\{\operatorname{Res} A \mid[\mathrm{box}] \square \diamond[\operatorname{Ret}]\} \longrightarrow\{\operatorname{Res} A \mid[b o x] \square \diamond[\operatorname{Ret}]\}$
Proof. We show that we can give the following refinement type to sched ${ }^{\mathrm{g}}$:
$\forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot\left(\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}}[\operatorname{Ret}]\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond \ell_{1}[\operatorname{Ret}]\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}+\ell_{1}}[\operatorname{Ret}]\right\}\right)$
Let $T\left(k, \ell_{0}, \ell_{1}\right)$ be the type

$$
\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}}[\operatorname{Ret}]\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{1}}[\operatorname{Ret}]\right\} \longrightarrow\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k} \diamond^{\ell_{0}+\ell_{1}}[\operatorname{Ret}]\right\}
$$

and assume

$$
g:>\forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k, \ell_{0}, \ell_{1}\right)
$$

Let

$$
\begin{aligned}
M(g, p, q):= & \text { case } p \text { of } \\
& \mid \operatorname{Ret}^{\mathrm{g}} a \mapsto \operatorname{Ret}^{\mathrm{g}} a \\
& \operatorname{Cont}^{\mathrm{g}} k \mapsto
\end{aligned} \quad \begin{aligned}
& \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \quad \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& \quad{\text { in } \operatorname{Cont}^{\mathrm{g}} h} \quad
\end{aligned}
$$

We show

$$
\lambda p \cdot \lambda q \cdot M(g, p, q) \quad: \quad \forall k \cdot \forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k, \ell_{0}, \ell_{1}\right)
$$

We apply the $(\forall-\mathrm{CI})$ rule on $\forall k$. The case of $\forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(0, \ell_{0}, \ell_{1}\right)$ is trivial since

$$
\square^{0} \diamond^{\ell_{0}+\ell_{1}}[\text { Ret }] \Leftrightarrow \top
$$

As for $\forall \ell_{0} \cdot \forall \ell_{1} \cdot T\left(k+1, \ell_{0}, \ell_{1}\right)$, we apply the $(\forall-C I)$ rule, this time on $\forall \ell_{0}$. In the case of $\forall \ell_{1}$. $T\left(k+1,0, \ell_{1}\right)$, since $\square^{k+1} \diamond^{\theta}$ [Ret] is of the form

$$
\diamond^{\ominus}[\text { Ret }] \wedge \psi
$$

while

$$
\diamond^{0}[\text { Ret }] \Leftrightarrow \perp
$$

we can conclude using the (ExF) rule. It remains to deal with the case of $\forall \ell_{1} \cdot T\left(k+1, \ell_{0}+1, \ell_{1}\right)$. We apply the $(\forall-\mathrm{I})$ rule on $\forall \ell_{1}$. We show

$$
M(g, p, q) \quad: \quad\left\{\operatorname{Res}^{\mathrm{g}} A \mid \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\operatorname{Ret}]\right\}
$$

assuming

$$
\left.\left.\begin{array}{rl|l}
p & : & \left\{\operatorname{Res}^{\mathrm{g}} A\right. \\
\left.\square^{k+1} \diamond^{\ell_{0}+1}[\operatorname{Ret}]\right\} \\
q & : & \operatorname{Res}^{\mathrm{g}} A
\end{array} \square^{k+1} \diamond^{\ell_{1}}[\operatorname{Ret}]\right\}\right\}
$$

We have

$$
\begin{aligned}
& \left.\forall \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\text { Ret }] \Leftrightarrow \diamond^{\ell_{0}+\ell_{1}+1} \text { [Ret }\right] \wedge \otimes \forall \square^{k} \diamond^{\ell_{0}+\ell_{1}+1} \text { [Ret] } \\
& \left.\exists \square^{k+1} \diamond^{\ell_{0}+\ell_{1}+1}[\text { Ret }] \Leftrightarrow \diamond^{\ell_{0}+\ell_{1}+1}[\text { Ret }] \wedge \otimes \exists \square^{k} \diamond \ell_{0}+\ell_{1}+1 \text { [Ret }\right]
\end{aligned}
$$

and we consider each conjunct separately.
Cases of $\diamond^{\ell_{0}+\ell_{1}+1}$ [Ret].
We have

$$
p:\left\{\operatorname{Res}^{\mathrm{g}} A \mid \diamond^{\ell_{0}+1}[\text { out }] \vartheta\right\}
$$

Using

$$
\begin{array}{lll}
\exists \diamond^{\ell_{0}+1}[\text { Ret }] & \Leftrightarrow & {[\text { Ret }] \vee \otimes \exists \diamond^{\ell_{0}}[\text { Ret }]} \\
\forall \diamond^{\ell_{0}+1}[\text { Ret }] & \Leftrightarrow & {[\text { Ret }] \vee \otimes \forall \diamond^{\ell_{0}}[\text { Ret }]}
\end{array}
$$

we reason by cases on the refinement type of p. In the case of [Ret], apply the ($\mathrm{INJ}_{0}-\mathrm{E}$) rule on (unfold p), and we conclude similarly as in Ex. D.42. In the other cases, we apply the $\left(\mathrm{IN}_{1}-\mathrm{E}\right)$ rule on (unfold p) and show

$$
N(g, k, q) \quad: \quad\left\{\operatorname{Res}^{\mathrm{g}} A \mid \diamond^{\ell_{0}+\ell_{1}+1}[\operatorname{Ret}]\right\}
$$

where

$$
\begin{aligned}
N(g, k, q):= & \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& {\text { in } C^{\circ} \operatorname{Cont}^{g} h}
\end{aligned}
$$

and under suitable assumption on the refinement type of k. We can then conclude similarly as in Ex. D. 43 .

Cases of $\bigcirc \square^{k} \diamond^{\ell_{0}+\ell_{1}+1}$ [Ret].
We apply the ($\mathrm{INJ}_{1}-\mathrm{E}$) rule on (unfold p) and show

$$
N(g, k, q):\left\{\operatorname{Res}^{g} A \mid \square^{k+1} \diamond{ }^{\ell_{0}+\ell_{1}+1}[\operatorname{Ret}]\right\}
$$

where

$$
\begin{aligned}
N(g, k, q):= & \text { let } h=\lambda i . \text { let }\langle o, t\rangle=k i \\
& \text { in }\langle o, g \circledast(\text { next } q) \circledast t\rangle \\
& \text { in Cont }^{\mathrm{g}} h
\end{aligned}
$$

and under suitable assumption on the refinement type of k. We can then conclude similarly as in Ex. D. 43 .

D. 8 Breadth-First Tree Traversal

D.8.1 Infinite Binary Trees. The guarded recursive type of binary trees is

$$
\begin{aligned}
& \operatorname{Tree}^{\mathrm{g}} A:=\operatorname{Fix}(X) . A \times(\triangleright X \times X) \\
& \text { Tree } A:=\llbracket \operatorname{Tree}^{\mathrm{g}} A
\end{aligned}
$$

The usual guarded constructors and destructors on $\operatorname{Tree}^{\mathrm{g}} A$ are represented as

$$
\begin{aligned}
& \text { Node }^{\mathrm{g}} \quad:=\lambda v . \lambda \ell . \lambda r . \operatorname{fold}(\langle v,\langle\ell, r\rangle\rangle): \quad A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \\
& \text { label }{ }^{\mathrm{g}}:=\lambda t \cdot \pi_{0}(\text { unfold } t) \quad: \quad \text { Tree }^{\mathrm{g}} A \rightarrow A \\
& \begin{array}{ll}
\operatorname{son}_{\ell}^{\mathrm{g}} & :=\lambda t \cdot \pi_{0}\left(\pi_{1}(\operatorname{unfold} t)\right) \\
\operatorname{son}_{r}^{\mathrm{g}} & :=\lambda t \cdot \pi_{1}\left(\pi_{1}(\operatorname{unfold} t)\right)
\end{array} \quad: \quad \text { Tree }{ }^{\mathrm{g}} A \rightarrow \operatorname{Tree}^{\mathrm{g}} A
\end{aligned}
$$

Their coinductive (for A a constant type) variants are

$$
\begin{array}{rlrl}
\text { Node } & :=\lambda v \cdot \lambda \ell \cdot \lambda r . & : A \rightarrow \operatorname{Tree} A \rightarrow \text { Tree } A \rightarrow \text { Tree } A \\
& \text { box }_{l}\left(\text { Node }^{\mathrm{g}} v(\text { next }(\text { unbox } \ell))(\text { next }(\text { unbox } \ell))\right) & \\
\text { label } & :=\lambda t \cdot \text { label }^{\mathrm{g}}(\text { unbox } t) & & \text { Tree } A \rightarrow A \\
\operatorname{son}_{\ell}:=\lambda t \cdot \text { son }_{\ell}^{\mathrm{g}}(\text { unbox } t) & : & \text { Tree } A \rightarrow \operatorname{Tree}^{\mathrm{g}} A \\
\operatorname{son}_{r} & :=\lambda t \cdot \operatorname{son}_{r}^{\mathrm{g}}(\text { unbox } t) & : & \text { Tree } A \rightarrow \text { Tree } A
\end{array}
$$

Example D. 45 (Tree Formulae). Assuming φ : Tree $^{g} A$,

$$
\begin{aligned}
\forall \square \varphi & : \operatorname{Tree}^{\mathrm{g}} A \\
& :=v \alpha \cdot \varphi \wedge\left(\bigcirc_{\ell} \alpha \wedge \bigcirc_{r} \alpha\right) \\
\exists \diamond \varphi & : \operatorname{Tree}^{\mathrm{g}} A \\
& :=\mu \alpha \cdot \varphi \vee\left(\bigcirc_{\ell} \alpha \vee \bigcirc_{r} \alpha\right)
\end{aligned}
$$

Example D.46. Assuming $\varphi: A$, we have

$$
\begin{aligned}
& \text { label }^{\mathrm{g}} \quad: \quad\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{lb\mid}] \varphi\right\} \longrightarrow\{A \mid \varphi\} \\
& \operatorname{son}_{\ell}^{\mathrm{g}} \quad: \quad\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{IbI}] \varphi\right\} \longrightarrow\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{Ib}] \varphi\right\} \\
& \operatorname{son}_{r}^{\mathrm{g}} \quad: \quad\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{IbI}] \varphi\right\} \longrightarrow\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{Ib}] \varphi\right\}
\end{aligned}
$$

D.8.2 Breadth-First Traversal of Guarded Trees Using Forests.

Example D. 47.

$$
\begin{aligned}
& \text { bft : Tree } A \rightarrow \text { CoList } A \\
& :=\lambda t \text {. } \operatorname{box}_{l}\left(\mathrm{bft}^{\mathrm{g}}(\text { unbox } t)\right) \\
& \mathrm{bft}^{\mathrm{g}} \quad: \quad \text { Tree }^{\mathrm{g}} A \rightarrow \text { CoList }^{\mathrm{g}} A \\
& :=\lambda t . \text { bftaux }^{\mathrm{g}}[t]^{\mathrm{g}} \\
& \text { bftaux }^{\mathrm{g}}: \quad \text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \rightarrow \text { CoList }^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) . \lambda s \text {. case } s \text { of } \\
& \mid \mathrm{Ni}^{\mathrm{g}} \mapsto \mathrm{Ni}^{\mathrm{g}} \\
& \mid \text { Cons }^{\mathrm{g}} x x s \mapsto\left(\text { label }^{\mathrm{g}} x\right):::^{\mathrm{g}} g \circledast\left(\operatorname{next}\left(\text { append }^{\mathrm{g}}\right) \circledast x s \circledast\left[\left(\operatorname{son}_{\ell}^{\mathrm{g}} x\right),\left(\operatorname{son}_{r}^{\mathrm{g}} x\right)\right]^{\triangleright}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
{[]^{\mathrm{g}}} & :=\operatorname{next}\left([]^{\mathrm{g}}\right) \\
{\left[y_{0}, y_{1}, \ldots, y_{n}\right]^{\mathrm{g}}} & :=\operatorname{next}\left(\mathrm{Cons}^{\mathrm{g}}\right) \circledast y_{0} \circledast \operatorname{next}\left[y_{1}, \ldots, y_{n}\right]^{\mathrm{g}}
\end{array}
$$

Example D. 48.

$$
\begin{array}{ll}
\text { bft }^{\mathrm{g}} & : \text { Tree }^{\mathrm{g}} A \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]\right\} \\
\text { bftaux }^{\mathrm{g}} & :\left\{\text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid[\neg \text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\neg \text { nil }]\right\}
\end{array}
$$

Example D. 49.

$$
\begin{array}{ll}
\text { bft }^{\mathrm{g}} & : \quad \text { Tree } A \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\text { inf }]\right\} \\
\text { bftaux }^{\mathrm{g}} & : \quad\left\{\operatorname{CoList}^{\mathrm{g}}(\text { Tree } A) \mid[\neg \text { nil }]\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid[\text { inf }]\right\}
\end{array}
$$

Example D.50. Assuming $\varphi: A$,

$$
\mathrm{bft}^{\mathrm{g}}: \quad\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{lbl}] \varphi\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Proof. Thanks to Ex. D. 30 and Ex. D.31, we can reduce to showing

$$
\text { bftaux }^{\mathrm{g}}:\left\{\text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid[\neg \text { nil }] \wedge \square^{\text {fin }}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Let

$$
T:=\left\{\text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid[\neg \text { nil }] \wedge \square^{\mathrm{fin}}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

and assume

$$
\begin{aligned}
g & :>T \\
s & : \quad\left\{\text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid[\neg \mathrm{nil}] \wedge \square^{\text {fin }}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right\}
\end{aligned}
$$

Note that we have, at type CoList ${ }^{\mathrm{g}}$ (Tree ${ }^{\mathrm{g}} A$),

$$
\begin{aligned}
{[\neg \mathrm{nil}] \wedge \square^{\mathrm{fin}}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi } & \Leftrightarrow[\neg \mathrm{nil}] \wedge\left([\text { nil }] \vee\left([\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi \wedge \bigcirc \square^{\mathrm{fin}}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right)\right) \\
& \Leftrightarrow([\neg \mathrm{nil}] \wedge[\text { nil }]) \vee\left([\neg \mathrm{nil}] \wedge[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi \wedge \bigcirc \square^{\mathrm{fin}}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right)
\end{aligned}
$$

Since the modality [fold] preserves \wedge and \perp (Table 3), we have

$$
([\neg \text { nil }] \wedge[\text { nil }]) \quad \Rightarrow \quad \perp
$$

We apply the (V-E) rule on the refinement type of s. The branch of [$\neg \mathrm{nil}] \wedge[\mathrm{nil}]$ is dealt-with using the rule (ExF). It remains to handle the case of

$$
s:\left\{\operatorname{CoList}^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid[\neg \mathrm{nil}] \wedge[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi \wedge \bigcirc \square^{\mathrm{fin}}[\mathrm{hd}] \forall \square[\mathrm{lbl}] \varphi\right\}
$$

Since the modalities [fold] and [in in_{1}] preserve \wedge we have

$$
\text { unfold }(s):\left\{1+\operatorname{Tree}^{\mathrm{g}} A \times \operatorname{CoList}^{\mathrm{g}}\left(\operatorname{Tree}^{\mathrm{g}} A\right) \mid\left[\mathrm{in}_{1}\right]\left(\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right][\text { next }] \square^{\text {fin }}[\text { hd }] \forall \square[\operatorname{lb|}] \varphi\right)\right\}
$$

Using the typing rule ($\mathrm{INJ}_{1}-\mathrm{E}$) (Fig. 8) and Ex. D. 46 we are left with showing

$$
\left.v::^{\mathrm{s}} g \circledast\left(\text { next (append }{ }^{\mathrm{g}}\right) \circledast x s \circledast[\ell, r]^{\mathrm{s}}\right) \quad: \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

where

$$
\begin{array}{lll}
x s & :=\pi_{1} y & :\left\{\text { CoList }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid \square^{\mathrm{fin}}[\text { hd }] \forall \square[\mathrm{Ib\mid}] \varphi\right\} \\
v & :=\operatorname{label}^{\mathrm{g}}\left(\pi_{0} y\right) & :\{A \mid \varphi\} \\
\ell & :=\operatorname{son}_{\ell}^{\mathrm{g}}\left(\pi_{0} y\right) & :\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{Ib} \mid] \varphi\right\} \\
r & :=\operatorname{son}_{r}^{\mathrm{g}}\left(\pi_{0} y\right) & :-\left\{\operatorname{Tree}^{\mathrm{g}} A \mid \forall \square[\mathrm{lb}] \varphi\right\}
\end{array}
$$

assuming

$$
\left.y:\left\{\text { Tree }^{\mathrm{g}} A \times \text { CoListg }^{\mathrm{g}}\left(\text { Tree }^{\mathrm{g}} A\right) \mid\left[\pi_{0}\right] \varphi \wedge\left[\pi_{1}\right][\text { next }] \square^{\text {fin }}[\text { hd }] \forall \square[\mathrm{lb}]\right] \varphi\right\}
$$

It follows from Ex. D. 30 and Ex. D. 31 that

$$
\left.[\ell, r]^{\mathrm{g}}: \wedge\left\{\operatorname{CoList}^{\mathrm{g}}(\text { Tree } A) \mid[\neg \text { nil }] \wedge \square^{\text {fin }}[\text { hd }] \forall \square[\mathrm{lb}]\right] \varphi\right\}
$$

Hence, by Ex. D. 33 and Ex. D. 34 we obtain

$$
\operatorname{next}\left(\text { append }^{\mathrm{g}}\right) \circledast x s \circledast[\ell, r]^{\mathrm{g}}: \bullet\left\{\text { CoList }^{\mathrm{g}}(\text { Tree } A) \mid[\neg \text { nil }] \wedge \square^{\mathrm{fin}}[\text { hd }] \forall \square[\mathrm{lb} \mid] \varphi\right\}
$$

and the result follows.
D.8.3 Martin Hofmann's Algorithm. We follow the presentation of [Berger et al. 2019] with some slight changes in terminology and notation. Consider the non-strictly positive type

$$
\operatorname{Rou}^{\mathrm{g}} A \quad:=\operatorname{Fix}(X) .1+((\triangleright X \rightarrow A) \rightarrow A)
$$

so that

$$
\operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right):=\quad \mathrm{Fix}(X) .1+\left(\left(\rightarrow \text { CoList }^{\mathrm{g}} A\right) \rightarrow \text { CoList }^{\mathrm{g}} A\right)
$$

The constructors of Rou ${ }^{g} A$ are

$$
\begin{aligned}
& \text { Over }^{\mathrm{g}}:={\text { fold }\left(\mathrm{in}_{0}\langle \rangle\right)}^{\text {Cont }^{\mathrm{g}}}:=\lambda \mathrm{Rou}^{\mathrm{g}} A \\
& \text { fold }\left(\mathrm{in}_{1} f\right)
\end{aligned}: \quad:\left(\left(\operatorname{Rou}^{\mathrm{g}} A \rightarrow A\right) \rightarrow A\right) \rightarrow \operatorname{Rou}^{\mathrm{g}} A
$$

The following are two basic important functions on Rous:

$$
\begin{aligned}
& \text { unfold : } \quad \mathrm{Rou}^{\mathrm{g}} A \longrightarrow\left(\operatorname{Rou}^{\mathrm{g}} A \rightarrow A\right) \longrightarrow A \\
& :=\lambda c \text {. case } c \text { of } \\
& \mid \text { Over }{ }^{\mathrm{g}} \mapsto \lambda k . k \text { (next Over }{ }^{\mathrm{g}} \text {) } \\
& \mid \text { Cont }^{g} f \mapsto \lambda k . \operatorname{next}(f k) \\
& \text { extract : } \operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right) \longrightarrow \text { CoList }^{\mathrm{g}} A \\
& :=\operatorname{fix}(g) \cdot \lambda c \text {. case } c \text { of } \\
& \text { | Over }{ }^{\text {g }} \mapsto \mathrm{Nil}^{\text {g }} \\
& \mid \text { Cont }^{\mathrm{g}} f \mapsto f g^{\circledast}
\end{aligned}
$$

where

$$
g^{\circledast}:=\lambda x . g \circledast x
$$

We then let

```
\(\mathrm{bft}^{\mathrm{g}} \quad: \quad\) Tree \(^{\mathrm{g}} A \longrightarrow\) CoList \(^{\mathrm{g}} A\)
    \(:=\lambda t\). extract (bftaux \(t\) Over \(^{\mathrm{g}}\) )
bftaux : \(\quad \operatorname{Tree}^{\mathrm{g}} A \longrightarrow \operatorname{Rou}^{\mathrm{g}}\left(\right.\) CoList \(\left.^{\mathrm{g}} A\right) \longrightarrow \operatorname{Rou}^{\mathrm{g}}\left(\right.\) CoList \(\left.^{\mathrm{g}} A\right)\)
        \(:=\operatorname{fix}(g) \cdot \lambda t \cdot \lambda c\).
        Cont \(\left(\lambda k .\left(\right.\right.\) label \(\left.^{\mathrm{g}} t\right):: \mathrm{g}\) unfold \(\left.c\left(k \circ\left(g \circledast\left(\operatorname{son}_{\ell}^{\mathrm{g}} t\right)\right)^{\circledast} \circ\left(g \circledast\left(\operatorname{son}_{r}^{\mathrm{g}} t\right)\right)^{\circledast}\right)\right)\)
```

Example D. 51 ((Non) Emptiness).

$$
\begin{array}{llll}
{[\mathrm{ov}]} & := & {[\mathrm{fold}]\left[\mathrm{in}_{0}\right] \top} & : \\
{[\mathrm{Rou}} & \mathrm{Rou}^{\mathrm{g}} A \\
{[\mathrm{ct}]} & := & {[\mathrm{fold}]\left[\mathrm{in}_{1}\right] \top} & : \\
\operatorname{Rou}^{\mathrm{g}} A
\end{array}
$$

Example D.52. Assuming $\varphi: A$, we let

$$
[\operatorname{Rou}] \varphi:=v \alpha .[\text { fold }]\left[\mathrm{in}_{1}\right](([\text { next }] \alpha \| \rightarrow[\text { next }] \varphi) \| \mapsto \varphi): \quad \operatorname{Rou}^{\mathrm{g}} A
$$

Then for $\varphi:$ CoList $^{g} A$ we have

$$
\text { extract }:\left\{\operatorname{Rou}^{\mathrm{g}}\left(\mathrm{CoList}^{\mathrm{g}} A\right) \mid[\operatorname{Rou}] \varphi\right\} \longrightarrow\left\{\text { CoList }^{\mathrm{g}} A \mid \varphi\right\}
$$

Proof. Assume

$$
\begin{aligned}
g & : \quad\left(\left\{\operatorname{Rou}^{\mathrm{g}}\left(\operatorname{CoList}^{\mathrm{g}} A\right) \mid[\operatorname{Rou}] \varphi\right\} \longrightarrow\left\{\operatorname{CoList}^{\mathrm{g}} A \mid \varphi\right\}\right) \\
c & :\left\{\operatorname{Rou}^{\mathrm{g}}\left(\operatorname{CoList}^{\mathrm{g}} A\right) \mid[\operatorname{Rou}] \varphi\right\}
\end{aligned}
$$

and let

$$
B:=\text { CoList }^{\mathrm{g}} A
$$

Since

$$
[\mathrm{Rou}] \varphi=v \alpha .[\text { fold }]\left[\mathrm{in}_{1}\right]\left(\left([\text { next }] \alpha \|\left[\mathrm{next}^{2}\right] \varphi\right) \| \rightarrow \varphi\right)
$$

we have

$$
(\text { unfold } c):\left\{1+\left(\operatorname{Rou}^{\mathrm{g}} B \rightarrow B\right) \rightarrow B \mid\left[\operatorname{in}_{1}\right](([\text { next }][\operatorname{Rou}] \varphi \| \rightarrow[\text { next }] \varphi) \| \varphi)\right\}
$$

We can thus apply the $\left(\mathrm{INJ}_{1}-\mathrm{E}\right)$ rule, which leads us to showing

$$
f(\lambda x . g \circledast x) \quad: \quad\{B \mid \varphi\}
$$

assuming

$$
f \quad: \quad\left\{\left(\operatorname{Rou}^{\mathrm{g}} B \rightarrow B\right) \rightarrow B \mid([\text { next }][\operatorname{Rou}] \varphi \|[\text { next }] \varphi) \| \rightarrow \varphi\right\}
$$

that is

$$
f:\left(\triangleright\left\{\operatorname{Rou}^{\mathrm{g}} B \mid[\operatorname{Rou}] \varphi\right\} \rightarrow\{B \mid \varphi\}\right) \longrightarrow\{B \mid \varphi\}
$$

But this is trivial, by assumption on the type of g.
Example D.53. Assuming φ : A we have

$$
\text { unfold }: \operatorname{Rou}^{\mathrm{g}} A \longrightarrow\left(\operatorname{Rou}^{\mathrm{g}} A \longrightarrow\{A \mid \varphi\}\right) \longrightarrow\{A \mid \varphi\}
$$

Proof. Assume

$$
\left.\begin{array}{rl}
c & : \operatorname{Rou}^{\mathrm{g}} A \\
k & :>\operatorname{Rou}^{\mathrm{g}} A \longrightarrow\{A \mid \varphi\} \\
f & :
\end{array}>\left\{\operatorname{Rou}^{\mathrm{g}} A \mid[\operatorname{Rou}] \varphi\right\} \longrightarrow\{A \mid \varphi\}\right) \longrightarrow\{A \mid \varphi\}
$$

Then we have

$$
k \text { (next Over} \text {) }: ~\{A \mid \varphi\}
$$

Moreover, by subtyping we have

$$
k:\left\{\operatorname{Rou}^{\mathrm{g}} A \mid[\operatorname{Rou}] \varphi\right\} \longrightarrow\{A \mid \varphi\}
$$

so that

$$
\operatorname{next}(f k): \triangleright\{A \mid \varphi\}
$$

Example D.54. Assuming φ : A we have

$$
\mathrm{bft}^{\mathrm{g}}:\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{lbl}] \varphi\right\} \quad \longrightarrow \quad\left\{\text { CoList }^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

Proof. It follows from the type of extract in Ex. D. 52 that we are done if we show

$$
\text { bftaux }: \quad\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{Ibl}] \psi\right\} \longrightarrow \operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right) \longrightarrow\left\{\operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right) \mid[\text { Rou }] \square[\text { hd }] \psi\right\}
$$

Let

$$
T:=\left\{\operatorname{Tree}^{\mathrm{g}} A \mid \forall \square[\mathrm{lbl}] \psi\right\} \longrightarrow \operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right) \longrightarrow\left\{\operatorname{Rou}^{\mathrm{g}}\left(\text { CoList }^{\mathrm{g}} A\right) \mid[\operatorname{Rou}] \square[\mathrm{hd}] \psi\right\}
$$

and assume

$$
\begin{aligned}
g & : \\
t & : \\
c & \left\{\operatorname{Tree}^{\mathrm{g}} A \mid \forall \square[\mathrm{lbl}] \varphi\right\} \\
c & : \operatorname{Rou}^{\mathrm{g}}\left(\operatorname{CoList}^{\mathrm{g}} A\right)
\end{aligned}
$$

Using Ex. D.46, let

$$
\begin{aligned}
\ell & :=\operatorname{son}_{l}^{\mathrm{g}} t:>\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{Ibl}] \varphi\right\} \\
r & :=\operatorname{son}_{r}^{\mathrm{g}} t:>\left\{\text { Tree }^{\mathrm{g}} A \mid \forall \square[\mathrm{lbl}] \varphi\right\}
\end{aligned}
$$

Since (label $\left.{ }^{\mathrm{g}} t\right):\{A \mid \varphi\}$, it follows from Ex. D. 31 that we are done if we show

$$
\text { unfold } c\left(k \circ(g \circledast \ell)^{\circledast} \circ(g \circledast r)^{\circledast}\right) \quad: \quad\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

assuming

$$
k: \quad\left\{\operatorname{Rou}^{\mathrm{g}}\left(\mathrm{CoList}^{\mathrm{g}} A\right) \mid[\mathrm{Rou}] \square[\mathrm{hd}] \varphi\right\} \longrightarrow\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

But by Ex. D. 53 we are done since

$$
k \circ(g \circledast \ell)^{\circledast} \circ(g \circledast r)^{\circledast}: \quad \operatorname{Rou}^{\mathrm{g}}(\mathrm{CoList} A) \longrightarrow\left\{\mathrm{CoList}^{\mathrm{g}} A \mid \square[\mathrm{hd}] \varphi\right\}
$$

E PROOFS OF §8

Warning. In §E.1-E. 3 we assume formulae to have no free iteration variables. Free iteration variables in types are then always instantiated in the Adequacy Theorem E. 14 (Thm. C.26, Thm. 8.12).

E. 1 Correctness of the External and Internal Semantics

E.1.1 Proof of Lem. C.13.(1) (Lem. 8.3).

Lemma E.1. If $\vdash_{c}^{A} \varphi$ in full modal theory of Def. 6.2, then $\{|\varphi|\}=\Gamma \llbracket A \rrbracket$.
Lemma C. 19 gives almost all the axioms and rules of Table 3 and Fig. 6, but for the [ev(-)] modality that we treat separately. We first treat the axioms of Table 3.
Lemma E.2. If $\varphi: A$ is an axiom of Table 3, then $\{|\varphi|\}^{A}=\llbracket A \rrbracket$.
Proof. Most of the axioms follow from Lem. C.19. Following Def. 4.5, we include the axioms marked (C) in Table 3. The cases of [box] are trivial and omitted.

Case of (C). Since in each case, the map $\{[[\Delta] \mid\}$ preserves \wedge.
The case of $[\mathrm{ev}(-)]$ is treated directly:

$$
\vdash^{B \rightarrow A}([\operatorname{ev}(\phi)] \psi \wedge[\operatorname{ev}(\phi)] \varphi) \Longrightarrow[\operatorname{ev}(\phi)](\psi \wedge \varphi)
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$ and assume that $x \in\{|[\operatorname{ev}(\phi)] \psi|\} \cap\{[\lceil\operatorname{ev}(\phi)] \varphi \mid\}$. Let now $y \in \Gamma \llbracket B \rrbracket$ such that $y \in\{|\phi|\}$. We then have ev $\circ\langle x, y\rangle \in\{|\psi|\} \cap\{|\varphi|\}$.
Case of (N). Since $\left\{\left|\left[\pi_{i}\right]\right|\right\},\{[[$ next $] \mid\}$ and $\{[[$ fold $] \mid\}$ are maps of Heyting algebras.
The case of $[\mathrm{ev}(-)]$ is treated directly:

$$
\overline{\vdash^{B \rightarrow A}[\operatorname{ev}(\phi)] \top}
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$. Given $y \in \Gamma \llbracket B \rrbracket$ such that $y \in\{|\phi|\}$, we have ev $\circ\langle x, y\rangle \in \Gamma \llbracket A \rrbracket=\{|T|\}$.
Case of (P). Since $\left.\left\{\mid\left[\pi_{i}\right]\right]\right\},\{\mid[$ next $] \mid\}$ and $\{\mid[$ fold $] \mid\}$ are maps of Heyting algebras. As for [in $\left.{ }_{i}\right]$, this follows from Lem. C.19.
Case of (C_{V}). By Lem. C. 19 .
Case of $\left(\mathrm{C}_{\Rightarrow}\right)$. Since $\left\{\left[\left[\pi_{i}\right] \mid\right\},\{[[\right.$ next $] \mid\}$ and $\{\mid[$ fold $] \mid\}$ are maps of Heyting algebras.
In order to handle fixpoints, we have the usual monotonicity lemma w.r.t. set inclusion.
Lemma E.3. Consider, for a formula $\alpha_{1}: A_{1}, \ldots, \alpha_{k}: A_{k} \vdash \varphi$, the map

$$
\{|\varphi|\}: \mathcal{P}\left(\Gamma \llbracket A_{1} \rrbracket\right) \times \cdots \times \mathcal{P}\left(\Gamma \llbracket A_{k} \rrbracket\right) \quad \longrightarrow \mathcal{P}(\Gamma \llbracket A \rrbracket), \quad v \longmapsto\{|\varphi|\}_{v}
$$

For $i \in\{1, \ldots, k\}$, if $\alpha_{i} \operatorname{Pos} \varphi$ (resp. $\alpha_{i} \operatorname{Neg} \varphi$), then w.r.t. set inclusion, $\{|\varphi|\}$ is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma E.1.
Proof of Lemma E.1. By induction on $\vdash^{A} \varphi$. The rules of intuitionistic propositional logic (Fig. 14) as well as of (CL) are trivial and omitted.

Case of

$$
(\mathrm{RM}) \frac{\vdash \psi \Rightarrow \varphi}{\vdash[\Delta] \psi \Rightarrow[\Delta] \varphi}
$$

By Lem. C.19, this holds for $\left[\pi_{i}\right]$, [next] and [fold] since $\left\{\left[\left[\pi_{i}\right] \mid\right\}\right.$, $\{[[$ next $] \mid\}$ and $\{[$ fold $]\}$ are maps of Heyting algebras. As for [in_{i}], this follows from the fact that $\left\{\left[\left[\mathrm{in}_{i}\right] \mid\right\}\right.$ preserves implications as it preserves \vee.
The case of $[\mathrm{ev}(-)]$ is treated directly:

$$
\frac{\vdash^{A} \psi \Rightarrow \varphi}{\vdash^{B \rightarrow A}[\operatorname{ev}(\phi)] \psi \Rightarrow[\operatorname{ev}(\phi)] \varphi}
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$. Given $y \in \Gamma \llbracket B \rrbracket$ such that $y \in\{|\phi|\}$, we have ev $\circ\langle x, y\rangle \in\{|\psi|\}$, so that ev $\circ\langle x, y\rangle \in\{|\varphi|\}$ since $\{|\psi|\} \subseteq\{|\varphi|\}$.

Case of

$$
\frac{\vdash_{c}^{A} \varphi}{r^{A}[\text { box }] \varphi}
$$

Trivial.

Case of

$$
\frac{\vdash^{B} \psi \Rightarrow \phi \quad \vdash \varphi: A}{\vdash^{B \rightarrow A}[\operatorname{ev}(\phi)] \varphi \Rightarrow[\operatorname{ev}(\psi)] \varphi}
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$ and assume that $x \in\{|[\operatorname{ev}(\phi)] \varphi|\}$. Let furthermore $y \in \Gamma \llbracket B \rrbracket$ such that $y \in\{|\psi|\}$. We have to show evo $\langle x, y\rangle \in\{|\varphi|\}$. By induction hypothesis we have $y \in\{|\psi \Rightarrow \phi|\}$, so that $y \in\{|\phi|\}$. But this implies ev $\circ\langle x, y\rangle \in\{|\varphi|\}$ since $x \in\{|[\operatorname{ev}(\phi)] \varphi|\}$.

Case of

$$
\overline{\vdash^{B \rightarrow A}\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right) \Rightarrow\left[\operatorname{ev}\left(\psi_{0} \vee \psi_{1}\right)\right] \varphi}
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$ and assume that $x \in\left\{\mid\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right)\right\}$. Let furthermore $y \in \Gamma \llbracket B \rrbracket$ such that $y \in\left\{\left|\psi_{0} \vee \psi_{1}\right|\right\}$. We have to show ev $\circ\langle x, y\rangle \in\{|\varphi|\}$. But if $y \in\left\{\left|\psi_{0}\right|\right\}$ then we are done since $x \in\left\{\left|\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi\right|\right\}$, and similarly if $y \in\left\{\left|\psi_{1}\right|\right\}$.

Case of

$$
\overline{\vdash_{0}+A_{1}\left(\left[\mathrm{in}_{0}\right] T \vee\left[\mathrm{in}_{1}\right] T\right) \wedge \neg\left(\left[\mathrm{in}_{0}\right] \mathrm{T} \wedge\left[\mathrm{in}_{1}\right] \mathrm{T}\right)}
$$

Consider $x \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \simeq \Gamma \llbracket A_{0} \rrbracket+\Gamma \llbracket A_{1} \rrbracket$ (via Lem. C.2). Hence $x=\operatorname{in}_{i}(y)$ for some $y \in \Gamma \llbracket A_{i} \rrbracket$ and we have $x \in\left\{\left|\left[\mathrm{in}_{i}\right] T\right|\right\}$. Moreover, since the injections in_{0} and in_{1} have disjoint images, we have $\left\{\left|\left[\mathrm{in}_{0}\right] \top \wedge\left[\mathrm{in}_{1}\right] \top\right|\right\}=\emptyset$ so $x \in\left\{\left|\neg\left(\left[\mathrm{in}_{0}\right] \top \wedge\left[\mathrm{in}_{1}\right] \top\right)\right|\right\}$.

Case of

$$
\overline{\vdash^{A_{0}+A_{1}}\left[\mathrm{in}_{i}\right] \top \Rightarrow\left(\neg\left[\mathrm{in}_{i}\right] \varphi \Leftrightarrow\left[\mathrm{in}_{i}\right] \neg \varphi\right)}
$$

Let $x \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \simeq \Gamma \llbracket A_{0} \rrbracket+\Gamma \llbracket A_{1} \rrbracket$, and assume $x \in\left\{\left|\left[\mathrm{in}_{i}\right] \top\right|\right\}$, so that $x=\mathrm{in}_{i}(y)$ for some (unique) $y \in \Gamma \llbracket A_{i} \rrbracket$. We show

$$
x \in\left\{\left|\neg\left[\mathrm{in}_{i}\right] \varphi \Rightarrow\left[\mathrm{in}_{i}\right] \neg \varphi\right|\right\} \quad \text { and } \quad x \in\left\{\left|\left[\mathrm{in}_{i}\right] \neg \varphi \Rightarrow \neg\left[\mathrm{in}_{i}\right] \varphi\right|\right\}
$$

For the former, assume $x \notin\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\}$. Since y is unique such that $x=\operatorname{in}_{i}(y)$, we have $y \notin\{|\varphi|\}$. But this implies $y \in\{|\neg \varphi|\}$ and we are done.
For the latter, assume $x \in\left\{\left[\left[\mathrm{in}_{i}\right] \neg \varphi \mid\right\}\right.$. Assume toward a contradiction that $x \in\left\{\left[\left[\mathrm{in}_{i}\right] \varphi \mid\right\}\right.$.
Since y is unique such that $x=\operatorname{in}_{i}(y)$, we have both $y \notin\{|\varphi|\}$ and $y \in\{|\varphi|\}$, a contradiction.

Cases of

$$
\overline{\vdash^{A} v^{\theta} \alpha \varphi \Leftrightarrow \mathrm{T}} \quad \overline{\digamma^{A} \nu^{\mathrm{t}+1} \alpha \varphi \Leftrightarrow \varphi\left[\nu^{\mathrm{t}} \alpha \varphi / \alpha\right]} \quad \overline{\vdash^{A} \mu^{\ominus} \alpha \varphi \Leftrightarrow \perp} \quad \overline{\digamma^{A} \mu^{\mathrm{t}+1} \alpha \varphi \Leftrightarrow \varphi\left[\mu^{\mathrm{t}} \alpha \varphi / \alpha\right]}
$$

By definition of $\left\{\left|\theta^{\mathrm{t}} \alpha \varphi\right|\right\}$.

Cases of

$$
\frac{\llbracket \mathrm{t} \rrbracket \geq \llbracket u \rrbracket}{\vdash^{A} \nu^{\mathrm{t}} \alpha \varphi \Rightarrow v^{\mathrm{u}} \alpha \varphi} \quad \frac{\llbracket \mathrm{t} \rrbracket \leq \llbracket u \rrbracket}{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi \Rightarrow \mu^{\mathrm{u}} \alpha \varphi}
$$

These cases follows from Lem. E. 3 (in $\theta^{\mathrm{t}} \alpha \varphi$ we assume that α is positive in φ) and the definition of $\left\{\left|\theta^{\mathrm{t}} \alpha \varphi\right|\right\}$.

Cases of

$$
\overline{\vdash^{A} v \alpha \varphi \Rightarrow \varphi[v \alpha \varphi / \alpha]} \quad \frac{\vdash^{A} \psi \Rightarrow \varphi[\psi / \alpha]}{\vdash^{A} \psi \Rightarrow v \alpha \varphi} \quad \frac{}{\vdash^{A} \varphi[\mu \alpha \varphi / \alpha] \Rightarrow \mu \alpha \varphi} \quad \frac{\vdash^{A} \varphi[\psi / \alpha] \Rightarrow \psi}{\vdash^{A} \mu \alpha \varphi \Rightarrow \psi}
$$

By Lem. E. 3 and the Knaster-Tarski Theorem.
Cases of

$$
\overline{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi(\alpha) \Rightarrow \mu \alpha \varphi(\alpha)} \quad \overline{\vdash^{A} v \alpha \varphi(\alpha) \Rightarrow v^{\mathrm{t}} \alpha \varphi(\alpha)}
$$

We show by induction on $m \in \mathbb{N}$ that

$$
\left\{\left|\mu^{\mathrm{m}} \alpha \varphi(\alpha)\right|\right\} \subseteq\{|\mu \alpha \varphi(\alpha)|\} \quad \text { and } \quad\{|v \alpha \varphi(\alpha)|\} \subseteq\left\{\left|\nu^{\mathrm{m}} \alpha \varphi(\alpha)\right|\right\}
$$

The base case $m=0$ is trivial since

$$
\left\{\mid \mu^{\ominus} \alpha \varphi(\alpha)\right\} \quad=\{|\perp|\} \quad \text { and } \quad\left\{\left|\nu^{\theta} \alpha \varphi(\alpha)\right|\right\} \quad=\{|T|\}
$$

For the induction step we have

$$
\left\{\left|\mu^{m+1} \alpha \varphi(\alpha)\right|\right\} \quad=\left\{\left|\varphi\left(\mu^{m} \alpha \varphi(\alpha)\right)\right|\right\} \quad \text { and } \quad\left\{\left|v^{m+1} \alpha \varphi(\alpha)\right|\right\} \quad=\left\{\mid \varphi\left(\nu^{m} \alpha \varphi(\alpha) \mid\right\}\right.
$$

So the induction hypothesis together with Lem. E. 3 gives

$$
\left\{\left|\mu^{\mathrm{m}+1} \alpha \varphi(\alpha)\right|\right\} \quad \subseteq \quad\{|\varphi(\mu \alpha \varphi(\alpha))|\} \quad \text { and } \quad\{|\varphi(v \alpha \varphi(\alpha))|\} \quad \subseteq \quad\left\{\left|\varphi\left(v^{\mathrm{m}} \alpha \varphi(\alpha)\right)\right|\right\}
$$

and we are done since by the Knaster-Tarski Theorem, we have

$$
\{|\varphi(\mu \alpha \varphi(\alpha))|\} \quad=\quad\{|\mu \alpha \varphi(\alpha)|\} \quad \text { and } \quad\{|\varphi(v \alpha \varphi(\alpha))|\}=\{|v \alpha \varphi(\alpha)|\}
$$

E.1.2 Proof of Lem. C.13.(2) (Lem. 8.3).

Lemma E.4. If $\vdash^{A} \varphi$ in full modal theory of Def. 6.2, then $\llbracket \varphi \rrbracket=\llbracket A \rrbracket$.
Corollary C. 17 gives almost everything we need for the semantic correctness of the modal theory. We begin with the axioms of Table 3.

Lemma E.5. If $\varphi: A$ is an axiom of Table 3, then $\llbracket \varphi \rrbracket^{A}=\llbracket A \rrbracket$.
Proof. Most of the axioms follow from Cor. C.17.
Case of (C). Since in each case, the map $\llbracket[\Delta] \rrbracket$ preserves \wedge.
Case of (N). Since in each case, the map $\llbracket[\Delta] \rrbracket$ preserves T (recall that axiom is not assumed for $\left[\mathrm{in}_{i}\right]$).
Case of (P). The result for $\left[\pi_{i}\right]$, [fold $]$ and $[$ box $]$ follows from the fact that $\llbracket\left[\pi_{i}\right] \rrbracket$, $\llbracket[$ fold $] \rrbracket$ and $\llbracket[$ box $] \rrbracket$ are maps of Heyting algebras.
As for $\left[\mathrm{in}_{i}\right]$, it follows from the fact that $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket$ preserves \perp (Cor. C.17).
Case of $\left(\mathrm{C}_{\mathrm{V}}\right)$. By Cor. C.17.
Case of $\left(\mathrm{C}_{\Rightarrow}\right)$. Since $\llbracket\left[\pi_{i}\right] \rrbracket$, $\llbracket[$ fold $] \rrbracket$ and $\llbracket[$ box $] \rrbracket$ are maps of Heyting algebras.
In order to handle fixpoints, we have the usual monotonicity property w.r.t. subobject posets.
Lemma E.6. Consider, for a formula $\alpha_{1}: A_{1}, \ldots, \alpha_{k}: A_{k} \vdash \varphi$, the map

$$
\llbracket \varphi \rrbracket: \operatorname{Sub}\left(\llbracket A_{1} \rrbracket\right) \times \cdots \times \operatorname{Sub}\left(\llbracket A_{k} \rrbracket\right) \quad \longrightarrow \quad \operatorname{Sub}(\llbracket A \rrbracket), \quad v \longmapsto \llbracket \varphi \rrbracket_{v}
$$

For $i \in\{1, \ldots, k\}$, if $\alpha_{i} \operatorname{Pos} \varphi\left(r e s p . \alpha_{i} \operatorname{Neg} \varphi\right)$, then w.r.t. subobjects posets, $\llbracket \varphi \rrbracket$ is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma E.4.
Proof of Lemma E.4. By induction on $\vdash^{A} \varphi$. The rules of Fig. 14 follow from the fact that in a topos, the subobjects of a given object form a Heyting algebra.

Case of

$$
(\mathrm{RM}) \frac{\vdash \psi \Rightarrow \varphi}{\vdash[\Delta] \psi \Rightarrow[\Delta] \varphi}
$$

The result holds for $\left[\pi_{i}\right]$, [fold $]$ and [box] since $\llbracket\left[\pi_{i}\right] \rrbracket$, $\llbracket[$ fold $] \rrbracket$ and $\llbracket[$ box $] \rrbracket$ are maps of Heyting algebras.
As for $\left[\mathrm{in}_{i}\right]$, $[$ next $]$ and $[\mathrm{ev}(-)]$, this follows from the fact that the maps $\llbracket\left[\mathrm{in}_{i}\right] \rrbracket, \llbracket[n e x t] \rrbracket$ and $\llbracket[\mathrm{ev}(-)] \rrbracket$ preserve implications since they preserve \wedge.

Case of

$$
\frac{\vdash_{c}^{A} \varphi}{r^{A}[\text { box }] \varphi}
$$

By Cor. C. 17.

Case of

$$
\frac{\vdash^{B} \psi \Rightarrow \phi \quad \vdash \varphi: A}{\vdash^{B \rightarrow A}[\operatorname{ev}(\phi)] \varphi \Rightarrow[\operatorname{ev}(\psi)] \varphi}
$$

This case can be seen as following (via Lem. C.15) from the definition of $\llbracket[\mathrm{ev}(-)] \rrbracket$. A direct argument is nevertheless possible. Let $t \in \llbracket B \rightarrow A \rrbracket(n)$. Let $k \leq n$ such that $t \uparrow k \Vdash_{k}[\operatorname{ev}(\phi)] \varphi$. Let furthermore $\ell \leq k$ and $u \in \llbracket B \rrbracket(\ell)$ such that $u \Vdash_{\ell}^{B} \psi$. We have to show evo $\langle t \uparrow \ell, u\rangle \Vdash_{\ell}^{A} \varphi$. By induction hypothesis we have $u \Vdash_{\ell}^{B} \psi \Rightarrow \phi$, so that $u \Vdash r_{\ell}^{B} \phi$. But this implies evo $\langle t \uparrow \ell, u\rangle \Vdash_{\ell}^{A} \varphi$ since $t \uparrow k \Vdash_{k}[\operatorname{ev}(\phi)] \varphi$.

Case of

$$
\overline{\vdash^{B \rightarrow A}\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right) \Rightarrow\left[\operatorname{ev}\left(\psi_{0} \vee \psi_{1}\right)\right] \varphi}
$$

Let $t \in \llbracket B \rightarrow A \rrbracket(n)$. Let $k \leq n$ such that $t \uparrow k \mathbb{r}_{k}\left(\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi \wedge\left[\operatorname{ev}\left(\psi_{1}\right)\right] \varphi\right)$. Let furthermore $\ell \leq k$ and $u \in \llbracket B \rrbracket(\ell)$ such that $u \Vdash_{\ell}^{B} \psi_{0} \vee \psi_{1}$. We have to show $\operatorname{ev} \circ\langle t \uparrow \ell, u\rangle \Vdash_{\ell}^{A} \varphi$. If $u \Vdash_{\ell}^{B} \psi_{0}$, then we are done since $t \Vdash_{k}\left[\operatorname{ev}\left(\psi_{0}\right)\right] \varphi$, and similarly if $u \Vdash_{\ell}^{B} \psi_{1}$.

Case of

$$
\overline{\vdash \vdash_{0}+A_{1}}\left(\left[\mathrm{in}_{0}\right] \top \vee\left[\mathrm{in}_{1}\right] \mathrm{T}\right) \wedge \neg\left(\left[\mathrm{in}_{0}\right] \mathrm{T} \wedge\left[\mathrm{in}_{1}\right] \mathrm{T}\right)
$$

Write $A=A_{0}+A_{1}$ and consider $t \in \llbracket A_{0}+A_{1} \rrbracket(n)$. Hence $t=\operatorname{in}_{i}(u)$ for some $u \in \llbracket A_{i} \rrbracket(n)$ and we have $t \Vdash_{n}\left[\mathrm{in}_{i}\right] \top$. Moreover, since the injections in_{0} and in_{1} have disjoint images, we have $\llbracket\left[\mathrm{in}_{0}\right] \top \wedge\left[\mathrm{in}_{1}\right] \top \rrbracket(k)=\emptyset$ for all $k>0$ so $t \Vdash_{n} \neg\left(\left[\mathrm{in}_{0}\right] \top \wedge\left[\mathrm{in}_{1}\right] \top\right)$.

Case of

$$
\overline{\vdash A_{0}+A_{1}\left[\mathrm{in}_{i}\right] T \Rightarrow\left(\neg\left[\mathrm{in}_{i}\right] \varphi \Leftrightarrow\left[\mathrm{in}_{i}\right] \neg \varphi\right)}
$$

Write $A=A_{0}+A_{1}$. Let $t \in \llbracket A_{0}+A_{1} \rrbracket(n)$, and let $k \leq n$ such that $t \uparrow k \Vdash_{k}\left[\mathrm{in}_{i}\right] \top$, so that we have $t \uparrow k=\operatorname{in}_{i}(u)$ for some (unique) $u \in \llbracket A_{i} \rrbracket(k)$. We show

$$
t \Vdash_{k}^{A_{0}+A_{1}} \neg\left[\mathrm{in}_{i}\right] \varphi \Rightarrow\left[\mathrm{in}_{i}\right] \neg \varphi \quad \text { and } \quad t \Vdash_{k}^{A_{0}+A_{1}}\left[\mathrm{in}_{i}\right] \neg \varphi \Rightarrow \neg\left[\mathrm{in}_{i}\right] \varphi
$$

For the former, let $\ell \leq k$ such that $t \uparrow \ell=(t \uparrow k) \uparrow \ell \Vdash_{\ell} \neg\left[\mathrm{in}_{i}\right] \varphi$, that is such that $t \uparrow m \psi_{m}\left[\mathrm{in}_{i}\right] \varphi$
 $u \uparrow m \Vdash_{m} \varphi$, then we would have $t \uparrow m=\mathrm{in}_{i}(u \uparrow m) \Vdash_{m}\left[\mathrm{in}_{i}\right] \varphi$, a contradiction.
For the latter, let $\ell \leq k$ such that $t \uparrow \ell \Vdash_{\ell}\left[\mathrm{in}_{i}\right] \neg \varphi$. We have to show $t \uparrow \ell \Vdash_{\ell} \neg\left[\mathrm{in}_{i}\right] \varphi$, that is $t \uparrow m \Vdash_{m}\left[\mathrm{in}_{i}\right] \varphi$ for all $m \leq \ell$. So assume $t \uparrow \tilde{m} \Vdash_{\tilde{m}}\left[\mathrm{in}_{i}\right] \varphi$ for some $\tilde{m} \leq \ell$. Hence, there is $u^{\prime} \in \llbracket A_{i} \rrbracket(\tilde{m})$ such that $t \uparrow \tilde{m}=\operatorname{in}_{i}\left(u^{\prime}\right)$ and $u^{\prime} \Vdash_{\tilde{m}} \varphi$. But we have $u^{\prime}=u \uparrow \tilde{m}$. On the other hand, since $t \uparrow \ell \Vdash_{\ell}\left[\mathrm{in}_{i}\right] \neg \varphi$, there is some $u^{\prime \prime} \in \llbracket A_{i} \rrbracket(\ell)$ such that $t \uparrow \ell=\mathrm{in}_{i}\left(u^{\prime \prime}\right)$ and $u^{\prime \prime} \uparrow m \Vdash_{m} \varphi$ for all $m \leq \ell$. But we also have $u^{\prime \prime} \uparrow \tilde{m}=u \uparrow \tilde{m}$, thus contradicting $u \uparrow \tilde{m} \Vdash_{\tilde{m}} \varphi$.
Cases of

$$
\overline{\vdash^{A} \nu^{0} \alpha \varphi \Leftrightarrow \top} \quad \overline{\digamma^{A} v^{\mathrm{t}+1} \alpha \varphi \Leftrightarrow \varphi\left[\nu^{\mathrm{t}} \alpha \varphi / \alpha\right]} \quad \overline{\vdash^{A} \mu^{0} \alpha \varphi \Leftrightarrow \perp} \quad \overline{\vdash^{A} \mu^{\mathrm{t}+1} \alpha \varphi \Leftrightarrow \varphi\left[\mu^{\mathrm{t}} \alpha \varphi / \alpha\right]}
$$

By definition of $\llbracket \theta^{\mathrm{t}} \alpha \varphi \rrbracket$.
Cases of

$$
\frac{\llbracket \mathrm{t} \rrbracket \geq \llbracket \mathrm{u} \rrbracket}{\vdash^{A} v^{\mathrm{t}} \alpha \varphi \Rightarrow v^{\mathrm{u}} \alpha \varphi} \quad \frac{\llbracket \mathrm{t} \rrbracket \leq \llbracket \mathrm{u} \rrbracket}{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi \Rightarrow \mu^{\mathrm{u}} \alpha \varphi}
$$

These cases follows from Lem. E. 6 (in $\theta^{\mathrm{t}} \alpha \varphi$ we assume that α is positive in φ) and the definition of $\llbracket \theta^{\mathrm{t}} \alpha \varphi \rrbracket$.

Cases of

$$
\overline{\vdash^{A} v \alpha \varphi \Rightarrow \varphi[v \alpha \varphi / \alpha]} \quad \frac{\vdash^{A} \psi \Rightarrow \varphi[\psi / \alpha]}{r^{A} \psi \Rightarrow v \alpha \varphi} \quad \overline{r^{A} \varphi[\mu \alpha \varphi / \alpha] \Rightarrow \mu \alpha \varphi} \quad \frac{\vdash^{A} \varphi[\psi / \alpha] \Rightarrow \psi}{\vdash^{A} \mu \alpha \varphi \Rightarrow \psi}
$$

By Lem. E. 6 and the Knaster-Tarski Theorem, since subobject lattices of \mathcal{S} are complete ([Mac Lane and Moerdijk 1992, Prop. I.8.5]).

Cases of

$$
\overline{\vdash^{A} \mu^{\mathrm{t}} \alpha \varphi(\alpha) \Rightarrow \mu \alpha \varphi(\alpha)} \quad \overline{\vdash^{A} v \alpha \varphi(\alpha) \Rightarrow v^{\mathrm{t}} \alpha \varphi(\alpha)}
$$

Similar to the same case in the proof of Lem. E.1.

E. 2 The Safe Fragment

Lemma E. 7 (Lem. 8.5). The greatest fixpoint of a Scott cocontinuous function $f: L \rightarrow L$ is given by

$$
v(f):=\quad \bigwedge_{n \in \mathbb{N}} f^{n}(\top)
$$

Proof. That $v(f)$ is a fixpoint of f follows from the continuity of f and the fact that the set $\left\{f^{n}(T) \mid \in \mathbb{N}\right\}$ is codirected, which in turn follows from the fact that f is monotone. In order to show that $v(f)$ is the greatest fixpoint of f, recall that the greatest fixpoint of f is in any case given by

$$
b:=\bigvee\{a \in L \mid a \leq f(a)\}
$$

We trivially have $v(f) \leq b$ as $v(f)$ is a fixpoint of f. For the revere inequality, for all a such that $a \leq f(a)$, it follows by induction on $n \in \mathbb{N}$ and from the monotony of f that we have $a \leq f^{n}(\mathrm{~T})$ for all $n \in \mathbb{N}$. Hence $a \leq v(f)$ for all a such that $a \leq f(a)$, which in turn gives $b \leq v(f)$.

Lemma E. 8 (Lem. 8.6). Consider a safe formula $\alpha_{1}: P_{1}^{+}, \ldots, \alpha_{k}: P_{k}^{+} \vdash \varphi: P^{+}$. The following two functions are Scott-cocontinuous:

$$
\begin{array}{rlll}
\llbracket \varphi \rrbracket & : \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right) \times \cdots \times \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right) & \longrightarrow \operatorname{Sub}\left(\llbracket P^{+} \rrbracket\right), & v \longmapsto \llbracket \varphi \rrbracket_{v} \\
\{|\varphi|\}: & \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right) \times \cdots \times \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right) & \longrightarrow \mathcal{P}\left(\Gamma \llbracket P^{+} \rrbracket\right), & v \longmapsto\{\mid \varphi\}_{v}
\end{array}
$$

Proof. In both cases, monotony w.r.t. lattice order follows by an easy induction from the positivity of safe formulae. We now turn to preservation of codirected meets. We first consider the case of $\{|\varphi|\}$. We reason by induction on φ.

Cases of $\alpha, \mathrm{T}, \perp$.
Trivial.
Case of $\varphi \wedge \psi$.
Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. By induction hypothesis we obtain

$$
\{|\varphi \wedge \psi|\}\left(\bigcap D_{1}, \ldots, \bigcap D_{k}\right)=\bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \cap \bigcap\{|\psi|\}\left(D_{1}, \ldots, D_{k}\right)
$$

and the result is trivial.
Case of $\varphi \vee \psi$.
This is the interesting case. Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. By induction hypothesis we obtain

$$
\{|\varphi \wedge \psi|\}\left(\bigcap D_{1}, \ldots, \bigcap D_{k}\right)=\bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \cup \bigcap\{|\psi|\}\left(D_{1}, \ldots, D_{k}\right)
$$

We then trivially get

$$
\bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \cup \bigcap\{|\psi|\}\left(D_{1}, \ldots, D_{k}\right) \subseteq \bigcap\{|\varphi \vee \psi|\}\left(D_{1}, \ldots, D_{k}\right)
$$

It remains to show the converse direction

$$
\bigcap\{|\varphi \vee \psi|\}\left(D_{1}, \ldots, D_{k}\right) \subseteq \bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \cup \bigcap\{|\psi|\}\left(D_{1}, \ldots, D_{k}\right)
$$

So let $x \in \Gamma \llbracket P^{+} \rrbracket$ such that $x \in\{|\varphi \vee \psi|\}\left(S_{1}, \ldots, S_{k}\right)$ for every $S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}$. Assume toward a contradiction that there are $S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}$ such that $x \notin\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)$ and that there are $S_{1}^{\prime} \in D_{1}, \ldots, S_{k}^{\prime} \in D_{k}$ such that $x \notin\{|\psi|\}\left(S_{1}^{\prime}, \ldots, S_{k}^{\prime}\right)$. Since the D_{i} 's are
codirected for inclusion, there are $S_{1}^{\prime \prime} \in D_{1}, \ldots, S_{k}^{\prime \prime} \in D_{k}$ such that $S_{i}^{\prime \prime} \subseteq S_{i} \cap S_{i}^{\prime}$ for $i=1, \ldots, k$. By monotonicity w.r.t. inclusion, we have $x \notin\{|\varphi|\}\left(S_{1}^{\prime \prime}, \ldots, S_{k}^{\prime \prime}\right)$ and $x \notin\{|\psi|\}\left(S_{1}^{\prime \prime}, \ldots, S_{k}^{\prime \prime}\right)$. But this implies $x \notin\{|\varphi \vee \psi|\}\left(S_{1}^{\prime \prime}, \ldots, S_{k}^{\prime \prime}\right)$, a contradiction.
Case of $\left[\pi_{i}\right] \varphi$.
Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q_{0}^{+} \times Q_{1}^{+}$.
Then we are done since by induction hypothesis

$$
\begin{array}{lll}
x \in\left\{\left|\left[\pi_{i}\right] \varphi\right|\right\}\left(\cap D_{1}, \ldots, \cap D_{k}\right) & \text { iff } & \pi_{i} \circ x \in\{|\varphi|\}\left(\cap D_{1}, \ldots, \cap D_{k}\right) \\
& \text { iff } & \pi_{i} \circ x \in \bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
& \text { iff } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, \pi_{i} \circ x \in\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
\text { iff } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, x \in\left\{\left|\left[\pi_{i}\right] \varphi\right|\right\}\left(D_{1}, \ldots, D_{k}\right) \\
& \text { iff } & x \in \bigcap\left\{\left|\left[\pi_{i}\right] \varphi\right|\right\}\left(D_{1}, \ldots, D_{k}\right)
\end{array}
$$

Case of $\left[\mathrm{in}_{i}\right] \varphi$.
Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q_{0}^{+}+Q_{1}^{+}$. By Lem. C.2, we have $x=\operatorname{in}_{j} \circ y$ for some unique $j \in\{0,1\}$ and $y \in \Gamma \llbracket Q_{j}^{+} \rrbracket$. Then we are done since by induction hypothesis we have $x \in\left\{\left[\left[\mathrm{in}_{i}\right] \varphi \mid\right\}\left(\cap D_{1}, \ldots, \cap D_{k}\right)\right.$

$$
\begin{array}{ll}
\text { iff } j=i \text { and } & y \in\{|\varphi|\}\left(\bigcap D_{1}, \ldots, \cap D_{k}\right) \\
\text { iff } j=i \text { and } & y \in \bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
\text { iff } j=i \text { and } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, y \in\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
\text { iff } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, x \in\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\}\left(D_{1}, \ldots, D_{k}\right) \\
\text { iff } & x \in \bigcap\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\}\left(D_{1}, \ldots, D_{k}\right)
\end{array}
$$

Case of [next] φ.

Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q^{+}$. By Lem. C.2, we have $x=$ next $\circ y$ for some unique $y \in \Gamma \llbracket Q^{+} \rrbracket$. Then we are done since by induction hypothesis we have

$$
\begin{array}{ll}
x \in\{\mid[\text { next }] \varphi \mid\}\left(\cap D_{1}, \ldots, \cap D_{k}\right) & \text { iff } y \in\{|\varphi|\}\left(\cap D_{1}, \ldots, \cap D_{k}\right) \\
& \text { iff } y \in \bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
& \text { iff } \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, y \in\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right) \\
& \text { iff } \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, x \in\{\mid[\text { next }] \varphi \mid\}\left(D_{1}, \ldots, D_{k}\right) \\
& \text { iff } x \in \bigcap\{\mid[\text { next }] \varphi \mid\}\left(D_{1}, \ldots, D_{k}\right)
\end{array}
$$

Case of [fold $] \varphi$.

This case is dealt-with similarly as that of $\left[\pi_{i}\right]$.
Case of $[b o x] \varphi$.
Trivial since φ is required to be closed.
Case of $[\operatorname{ev}(\psi)] \varphi$.
Note that ψ is assumed to be closed since $[\operatorname{ev}(\psi)] \varphi$ is safe. Let $D_{1} \subseteq \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq$ $\mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=R^{+} \rightarrow Q^{+}$. Then we are done since by induction hypothesis we have

```
\(x \in\{|[\operatorname{ev}(\psi)] \varphi|\}\left(\cap D_{1}, \ldots, \cap D_{k}\right) \quad\) iff \(\quad \forall y \in\{|\psi|\}, \operatorname{ev} \circ\langle x, y\rangle \in\{|\varphi|\}\left(\cap D_{1}, \ldots, \cap D_{k}\right)\)
    iff \(\forall y \in\{|\psi|\}\), ev \(\circ\langle x, y\rangle \in \bigcap\{|\varphi|\}\left(D_{1}, \ldots, D_{k}\right)\)
    iff \(\forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, \forall y \in\{|\psi|\}\), ev \(\circ\langle x, y\rangle \in\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\)
    iff \(\forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, x \in\{|[\mathrm{ev}(\psi)] \varphi|\}\left(S_{1}, \ldots, S_{k}\right)\)
    iff \(\quad x \in \bigcap\left\{\{[\operatorname{ev}(\psi)] \varphi \mid\}\left(D_{1}, \ldots, D_{k}\right)\right.\)
```


Cases of $\theta^{\mathrm{t}} \alpha \varphi$.

By induction hypothesis, the function
$\{|\varphi|\}: \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right) \times \cdots \times \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right) \times \mathcal{P}\left(\Gamma \llbracket P^{+} \rrbracket\right) \longrightarrow \mathcal{P}\left(\Gamma \llbracket P^{+} \rrbracket\right), \quad v, S \longmapsto\{|\varphi|\}_{v[S / \alpha]}$
is Scott-cocontinuous. Hence by Lem. E.7, for $S_{1} \in \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right), \ldots, S_{k} \in \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right)$ we have

$$
\left\{\left|\nu^{\mathrm{m}} \alpha \varphi\right|\right\}\left(S_{1}, \ldots, S_{k}\right)=\left(\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\right)^{m}(\mathrm{~T})
$$

where
$\left(\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\right)^{m+1}(\mathrm{~T}) \quad:=\quad\{|\varphi|\}\left(S_{1}, \ldots, S_{k},\left(\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\right)^{m}(\mathrm{~T})\right)$
and where $\left(\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\right)^{0}(\mathrm{~T}):=\mathrm{T}$ and $\left(\{|\varphi|\}\left(S_{1}, \ldots, S_{k}\right)\right)^{0}(\perp):=\perp$. An easy induction on $m \in \mathbb{N}$ then shows that each function

$$
(\{|\varphi|\}(-, \ldots,-))^{m}(\mathrm{~T}) \quad: \quad \mathcal{P}\left(\Gamma \llbracket P_{1}^{+} \rrbracket\right) \times \cdots \times \mathcal{P}\left(\Gamma \llbracket P_{k}^{+} \rrbracket\right) \quad \longrightarrow \quad \mathcal{P}\left(\Gamma \llbracket P^{+} \rrbracket\right)
$$

is Scott-cocontinuous.
Cases of $\theta \alpha \varphi$.
Trivial since φ is required to have at most α as free variable.
We now turn to the case of $\llbracket \varphi \rrbracket$. Most of cases are similar to those for $\{|\varphi|\}$. Also, note that

$$
\llbracket \varphi \rrbracket: \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right) \times \cdots \times \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right) \longrightarrow \operatorname{Sub}\left(\llbracket P^{+} \rrbracket\right)
$$

being Scott-continuous means that for $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ codirected w.r.t. subobject lattice orders, we have

$$
\llbracket \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)=\bigwedge \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)
$$

But since meets in subobject lattices of \mathcal{S} are pointwise, the above is equivalent to have, for all $n>0$ that

$$
\llbracket \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n)=\bigcap \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
$$

Cases of $\alpha, \mathrm{T}, \perp$.

Trivial.

Case of $\varphi \wedge \psi$.
Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. By induction hypothesis we obtain

$$
\llbracket \varphi \wedge \psi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)=\bigwedge \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \wedge \bigwedge \llbracket \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)
$$

and the result is trivial.
Case of $\varphi \vee \psi$.
Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. By induction hypothesis we obtain

$$
\llbracket \varphi \wedge \psi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)=\bigwedge \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \vee \bigwedge \llbracket \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)
$$

By monotonicity w.r.t. subobject lattice orders, we trivially get

$$
\bigwedge \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \vee \bigwedge \llbracket \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \subseteq \quad \bigwedge \llbracket \varphi \vee \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)
$$

It remains to show the converse direction

$$
\bigwedge \llbracket \varphi \vee \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \subseteq \bigwedge \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right) \vee \bigwedge \llbracket \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)
$$

Since meets and joins are computed pointwise in subobject lattices, we are done if for each $n>0$ we show

$$
\bigcap \llbracket \varphi \vee \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n) \subseteq \bigcap \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n) \cup \bigcap \llbracket \psi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
$$

We can then conclude as in the case of $\{|-|\}$. Fix $n>0$ and let $t \in \llbracket P^{+} \rrbracket$ such that $t \in$ $\llbracket \varphi \vee \psi \rrbracket\left(A_{1}, \ldots, A_{k}\right)(n)$ for every $A_{1} \in D_{1}, \ldots, A_{k} \in D_{k}$. Assume toward a contradiction that there are $A_{1} \in D_{1}, \ldots, A_{k} \in D_{k}$ such that $t \notin \llbracket \varphi \rrbracket\left(A_{1}, \ldots, A_{k}\right)(n)$ and that there are $A_{1}^{\prime} \in$ $D_{1}, \ldots, A_{k}^{\prime} \in D_{k}$ such that $t \notin \llbracket \psi \rrbracket\left(A_{1}^{\prime}, \ldots, A_{k}^{\prime}\right)(n)$. Since the D_{i} 's are codirected for inclusion, there are $A_{1}^{\prime \prime} \in D_{1}, \ldots, A_{k}^{\prime \prime} \in D_{k}$ such that $A_{i}^{\prime \prime} \leq A_{i} \wedge A_{1}^{\prime}$ for $i=1, \ldots, k$. By monotonicity w.r.t. subobject lattice orders, we have $t \notin \llbracket \varphi \rrbracket\left(A_{1}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}\right)(n)$ and $t \notin \llbracket \psi \rrbracket\left(A_{1}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}\right)(n)$. But this implies $t \notin \llbracket \varphi \vee \psi \rrbracket\left(A_{1}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}\right)(n)$, a contradiction.
Case of $\left[\pi_{i}\right] \varphi$.
Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. We show that for all $n>0$ we have

$$
\llbracket\left[\pi_{i}\right] \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n)=\bigcap \llbracket\left[\pi_{i}\right] \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
$$

and this goes similarly as for $\{|-|\}$.
Case of $\left[\mathrm{in}_{i}\right] \varphi$.
Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. We show that for all $n>0$ we have

$$
\llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n)=\bigcap \llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
$$

and this goes similarly as for $\{|-|\}$ since the pointwise maps $\left(\mathrm{in}_{j}\right)_{n}: \llbracket Q_{j}^{+} \rrbracket(n) \rightarrow \llbracket Q_{0}^{+} \rrbracket(n)+$ $\llbracket Q_{1}^{+} \rrbracket(n)$ are injective.
Case of [next] φ.
Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Write $P^{+}=Q^{+}$. We show that for all $n>0$ we have

$$
\llbracket[\text { next }] \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n)=\bigcap \llbracket[n e x t] \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
$$

The result is trivial if $n=1$. For $n>1$, it reduces to

$$
\llbracket \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n-1)=\bigcap \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n-1)
$$

which follows from the induction hypothesis.
Case of [fold $] \varphi$.
This case is handled similarly as that of $\left[\pi_{i}\right]$.
Case of $[b o x] \varphi$.
Trivial since φ is required to be closed.
Case of $[\operatorname{ev}(\psi)] \varphi$.
Note that ψ is assumed to be closed since $[\operatorname{ev}(\psi)] \varphi$ is safe. Let $D_{1} \subseteq \operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, D_{k} \subseteq$ $\operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$ be codirected. Write $P^{+}=R^{+} \rightarrow Q^{+}$. We show that for all $n>0$ we have

$$
\llbracket\left[\operatorname{ev}(\psi) \rrbracket \varphi \rrbracket\left(\bigwedge D_{1}, \ldots, \bigwedge D_{k}\right)(n)=\bigcap \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)\right.
$$

Let $n>0$ and $t \in \llbracket P^{+} \rrbracket(n)$. Then we are done since by induction hypothesis we have:

$$
\begin{array}{ll}
& t \in \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket\left(\wedge D_{1}, \ldots, \wedge D_{k}\right)(n) \\
\text { iff } & \forall \ell \leq n, \forall u \in \llbracket \psi \rrbracket(\ell), \text { ev } \circ\langle t \uparrow \ell, u\rangle \in \llbracket \varphi \rrbracket\left(\wedge D_{1}, \ldots, \wedge D_{k}\right)(\ell) \\
\text { iff } & \forall \ell \leq n, \forall u \in \llbracket \psi \rrbracket(\ell), \text { ev } \circ\langle t \uparrow \ell, u\rangle \in \bigcap \llbracket \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(\ell) \\
\text { iff } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, \forall \ell \leq n, \forall u \in \llbracket \psi \rrbracket(\ell), \text { ev } \circ\langle t \uparrow \ell, u\rangle \in \llbracket \varphi \rrbracket\left(S_{1}, \ldots, S_{k}\right)(\ell) \\
\text { iff } & \forall S_{1} \in D_{1}, \ldots, S_{k} \in D_{k}, t \in \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket\left(S_{1}, \ldots, S_{k}\right)(n) \\
\text { iff } & t \in \bigcap[\operatorname{ev}(\psi)] \varphi \rrbracket\left(D_{1}, \ldots, D_{k}\right)(n)
\end{array}
$$

Cases of $\theta^{\mathrm{t}} \alpha \varphi$ and $\theta \alpha \varphi$.

These cases are handled exactly as for $\{|-|\}$.

Cases of $\theta \alpha \varphi$.

Trivial since φ is required to have at most α as free variable.

Proposition E. 9 (Prop. 8.7). Let $\alpha_{1}: P_{1}^{+}, \ldots, \alpha_{k}: P_{k}^{+} \vdash \varphi: P^{+}$be a safe formula. Given $S_{1} \in$ $\operatorname{Sub}\left(\llbracket P_{1}^{+} \rrbracket\right), \ldots, S_{k} \in \operatorname{Sub}\left(\llbracket P_{k}^{+} \rrbracket\right)$, we have

$$
\{|\varphi|\}\left(\Gamma\left(S_{1}\right), \ldots, \Gamma\left(S_{k}\right)\right)=\Gamma\left(\llbracket \varphi \rrbracket\left(S_{1}, \ldots, S_{k}\right)\right)
$$

Proof. We reason by induction on the derivation of $\alpha_{1}: P_{1}^{+}, \ldots, \alpha_{k}: P_{k}^{+} \vdash \varphi: P^{+}$. In all cases but $v \alpha \varphi$, the parameters are irrelevant and we omit them.

Cases of α, \top and \perp.
Trivial.
Case of $\varphi \wedge \psi$.
Let $x \in \Gamma \llbracket P^{+} \rrbracket$. Then we are done since by induction hypothesis we have

$$
\begin{array}{lll}
x \in\{|\varphi \wedge \psi|\} & \text { iff } & x \in\{|\varphi|\} \text { and } x \in\{|\psi|\} \\
& \text { iff } & \left(\forall n>0, x_{n}(\bullet) \in \llbracket \varphi \rrbracket(n)\right) \text { and }\left(\forall n>0, x_{n}(\bullet) \in \llbracket \psi \rrbracket(n)\right) \\
& \text { iff } & \forall n>0, x_{n}(\bullet) \in \llbracket \varphi \rrbracket(n) \text { and } x_{n}(\bullet) \in \llbracket \psi \rrbracket(n) \\
& \text { iff } \quad \forall n>0, x_{n}(\bullet) \in \llbracket \varphi \wedge \psi \rrbracket(n)
\end{array}
$$

Case of $\varphi \vee \psi$.
Let $x \in \Gamma \llbracket P^{+} \rrbracket$. Assume first that $x \in\{|\varphi \vee \psi|\}$. If (say) $x \in\{|\varphi|\}$, then by induction hypothesis we get $x_{n}(\bullet) \in \llbracket \varphi \rrbracket(n)$ for all $n>0$, which implies $x_{n}(\bullet) \in \llbracket \varphi \vee \psi \rrbracket(n)$ for all $n>0$.
Conversely, assume that $x_{n}(\bullet) \in \llbracket \varphi \vee \psi \rrbracket(n)$ for all $n>0$. Assume toward a contradiction that there are $k, \ell>0$ with (say) $k \leq \ell$ such that $x_{k}(\bullet) \notin \llbracket \varphi \rrbracket(n)$ and $x_{\ell}(\bullet) \notin \llbracket \psi \rrbracket(n)$. Since $k \leq \ell$, by Lem. C. 16 we have $x_{k}(\bullet) \notin \llbracket \psi \rrbracket(n)$, but this contradicts $x_{k}(\bullet) \in \llbracket \varphi \vee \psi \rrbracket(n)$. Hence, we have either $x_{n}(\bullet) \in \llbracket \varphi \rrbracket(n)$ for all $n>0$ or $x_{n}(\bullet) \in \llbracket \psi \rrbracket(n)$ for all $n>0$, and the result follows by induction hypothesis.
Case of $\psi \Rightarrow \varphi$.
This case cannot occur since $\psi \Rightarrow \varphi$ is not safe.
Case of $\left[\pi_{i}\right] \varphi$.
Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q_{0}^{+} \times Q_{1}^{+}$. Then we are done since $\left(\pi_{i} \circ x\right)_{n}(\bullet)=\pi_{i}\left(x_{n}(\bullet)\right)$ so that by induction hypothesis we have

$$
\begin{array}{lll}
x \in\left\{\left|\left[\pi_{i}\right] \varphi\right|\right\} & \text { iff } & \pi_{i} \circ x \in\{|\varphi|\} \\
& \text { iff } & \forall n>0,\left(\pi_{i} \circ x\right)_{n}(\bullet) \in \llbracket \varphi \rrbracket(n) \\
& \text { iff } \quad \forall n>0, x_{n}(\bullet) \in \llbracket\left[\pi_{i}\right] \varphi \rrbracket(n)
\end{array}
$$

Case of $\left[\mathrm{in}_{i}\right] \varphi$.
Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q_{0}^{+}+Q_{1}^{+}$. By Lem. C.2, we have $x=\operatorname{in}_{j} \circ y$ for some unique $j \in\{0,1\}$ and $y \in \Gamma \llbracket Q_{j}^{+} \rrbracket$. Then we are done since $x_{n}(\bullet)=\left(\mathrm{in}_{j} \circ y\right)_{n}(\bullet)=\mathrm{in}_{j}\left(y_{n}(\bullet)\right)$ so that by induction hypothesis we have

$$
\begin{array}{lll}
x \in\left\{\left|\left[\mathrm{in}_{i}\right] \varphi\right|\right\} & \text { iff } j=i \text { and } & y \in\{|\varphi|\} \\
& \text { iff } j=i \text { and } & \forall n>0, y_{n}(\bullet) \in \llbracket \varphi \rrbracket(n) \\
& \text { iff } & \forall n>0, x_{n}(\bullet) \in \llbracket\left[\operatorname{in}_{i}\right] \varphi \rrbracket(n)
\end{array}
$$

Case of $[$ next $] \varphi$.
Let $x \in \Gamma \llbracket P^{+} \rrbracket$ and write $P^{+}=Q^{+}$. By Lem. C.2, we have $x=$ next $\circ y$ for some unique $y \in \Gamma \llbracket Q^{+} \rrbracket$. Assume first $x \in\{\mid[$ next $] \varphi \mid\}$. Hence we have $y \in\{|\varphi|\}$, which by induction hypothesis implies $y_{n}(\bullet) \in \llbracket \varphi \rrbracket(n)$ for all $n>0$. Now, we trivially have $x_{1}(\bullet) \in \llbracket[$ next $] \varphi \rrbracket(1)$. Moreover, for $n>1$, we have $x_{n}(\bullet)=y_{n-1}(\bullet)$, so that $x_{n}(\bullet) \in \llbracket[$ next $] \varphi \rrbracket(n)=\llbracket \varphi \rrbracket(n-1)$. Assume conversely that $x_{n}(\bullet) \in \llbracket[n e x t] \varphi \rrbracket(n)$ for all $n>0$. This implies $x_{n}(\bullet) \in \llbracket \varphi \rrbracket(n-1)$ for all $n>1$, which in turn implies $y_{n-1}(\bullet) \in \llbracket \varphi \rrbracket(n-1)$ for all $n>1$. But by induction hypothesis this implies $y \in\{|\varphi|\}$ so that $x \in\{\mid[$ next $] \varphi \mid\}$.

Case of [fold $] \varphi$.

This case is handled similarly as that of $\left[\pi_{i}\right]$.
Case of [box] φ.
Recall that φ is required to be closed. Also, by definition we have

$$
\begin{aligned}
\llbracket[\mathrm{box}] \varphi \rrbracket^{A}(n) & :=\left\{t \in \llbracket A \rrbracket(n)=\Gamma \llbracket A \rrbracket \mid t \in\{|\varphi|\}^{A}\right\} \\
\left\{[[\mathrm{box}] \varphi \mid\}^{A}\right. & :=\left\{x \in \Gamma \llbracket \llbracket \rrbracket \mid x_{1}(\bullet) \in\{|\varphi|\}^{A}\right\}
\end{aligned}
$$

It follows that given $x \in \Gamma \llbracket \llbracket A \rrbracket$, we have

$$
\begin{array}{lll}
x \in\{|[\mathrm{box}] \varphi|\}^{\bullet A} & \text { iff } & x_{1}(\bullet) \in\{|\varphi|\}^{A} \\
& \text { iff } \quad \forall n>0, x_{n}(\bullet) \in\{|\varphi|\}^{A} \\
& \text { iff } \quad \forall n>0, x_{n}(\bullet) \in \llbracket[\text { box }] \varphi \rrbracket \rrbracket^{A}(n)
\end{array}
$$

Case of $[\operatorname{ev}(\psi)] \varphi$.
This case cannot occur since P^{+}is assumed to be strictly positive.
Cases of $\theta^{\mathrm{t}} \alpha \varphi(\alpha)$.
Assume $\alpha: P^{+} \vdash \varphi(\alpha): P^{+}$. We show by induction on $m \in \mathbb{N}$ that

$$
\left\{\left|\varphi^{m}(\mathrm{~T})\right|\right\}=\Gamma \llbracket \varphi^{m}(\mathrm{~T}) \rrbracket \quad \text { and } \quad\left\{\left|\varphi^{m}(\perp)\right|\right\}=\Gamma \llbracket \varphi^{m}(\perp) \rrbracket
$$

The base case $m=0$ is trivial. As for the inductive case we have

$$
\left\{\left\lvert\, \begin{array}{rlll}
\varphi^{m+1}(\mathrm{~T})
\end{array}\right.\right\}=\left\{\left|\varphi\left(\varphi^{m}(\mathrm{~T})\right)\right|\right\} \quad \text { and } \quad \begin{array}{ll}
\llbracket \varphi^{m+1}(\mathrm{~T}) \rrbracket & =\llbracket \varphi\left(\varphi^{m}(\mathrm{~T})\right) \rrbracket \\
\left.\varphi^{m+1}(\perp)\right\} & =\left\{\left|\varphi\left(\varphi^{m}(\perp)\right)\right|\right\}
\end{array} \quad \text { and } \quad \llbracket \varphi^{m+1}(\perp) \rrbracket=\llbracket \varphi\left(\varphi^{m}(\perp)\right) \rrbracket
$$

By induction hypothesis on m we have

$$
\left\{\left|\varphi^{m}(\mathrm{~T})\right|\right\}=\Gamma \llbracket \varphi^{m}(\mathrm{~T}) \rrbracket \quad \text { and } \quad\left\{\left|\varphi^{m}(\perp)\right|\right\}=\Gamma \llbracket \varphi^{m}(\perp) \rrbracket
$$

and we conclude by induction hypothesis on φ.
Case of $v \alpha \varphi$.
Assume $\alpha: P^{+} \vdash \varphi: P^{+}$. Reasoning as above, for all $m \in \mathbb{N}$ we have

$$
\left\{\left|\varphi^{m}(\mathrm{~T})\right|\right\}=\Gamma \llbracket \varphi^{m}(\mathrm{~T}) \rrbracket
$$

It then directly follows that for all $x \in \Gamma \llbracket P^{+} \rrbracket$, we have

$$
x \in \bigcap_{m \in \mathbb{N}}\left\{\left|\varphi^{m}(T)\right|\right\} \quad \text { iff } \quad \forall n>0, x_{n}(\bullet) \in \bigcap_{m \in \mathbb{N}} \llbracket \varphi^{m}(T) \rrbracket(n)
$$

and we conclude by Lem. E. 8 and Lem. E.7.

E. 3 The Smooth Fragment

Lemma E. 10 (Lem. 8.8). Let $\alpha_{1}: P_{1}^{+}, \ldots, \alpha_{k}: P_{k}^{+}, \alpha: Q^{+} \vdash \varphi: P^{+}$be a smooth formula and let v be a valuation taking each propositional variable α_{i} for $i=1, \ldots, k$ to a set $v\left(\alpha_{i}\right) \in \mathcal{P}\left(\Gamma \llbracket A_{i} \rrbracket\right)$. Consider the function

$$
\{|\varphi|\}: \mathcal{P}(\Gamma \llbracket B \rrbracket) \longrightarrow \mathcal{P}(\Gamma \llbracket A \rrbracket), \quad S \longmapsto\{|\varphi|\}_{v[S / \alpha]}
$$

- If α is positive in φ (i.e. $\alpha \operatorname{Pos} \varphi$), then $\{|\varphi|\}$ is Scott-continuous as well as Scott-cocontinuous.
- If α is negative in φ (i.e. $\alpha \operatorname{Neg} \varphi$), then $\{|\varphi|\}$ is (antimonotone and) takes joins of directed sets to meets of codirected sets and takes meets of codirected sets to joins of directed sets.

Proof. The proof is by induction on formation of formulae $\alpha: B \vdash \varphi: A$. Monotonicity and antimonotonicity follow from Lem. E.3. Note that since formulae of the form $\theta \alpha \varphi$ and [box] φ are necessarily closed, nothing has to be proved for these. Some cases are already handled by Lem. 8.6 (Lem. E.8), and we do not repeat them.

Cases of α, \top, \perp.
Trivial.
Case of $\varphi \wedge \psi$ (monotone).
Preservation of codirected meets is trivial (see Lem. 8.6 (Lem. E.8)). As for the preservation of directed joins, assume $\alpha: B \vdash \varphi \wedge \psi: A$, and let $D \subseteq \mathcal{P}(\Gamma \llbracket B \rrbracket)$ be directed. Then by induction hypothesis we have

$$
\{|\varphi \wedge \psi|\}(\bigcup D)=\bigcup\{|\varphi|\}(D) \cap \bigcup\{|\psi|\}(D) \quad \supseteq \quad \int\{|\varphi \wedge \psi|\}(D)
$$

For the converse inclusion, consider some x both in $\bigcup\{|\varphi|\}(D)$ and $\bigcup\{|\psi|\}(D)$. Hence there are $S, S^{\prime} \in D$ such that $x \in\{|\varphi|\}(S)$ and $x \in\{|\psi|\}\left(S^{\prime}\right)$. Now since D is directed and by monotonicity, there is some $S^{\prime \prime} \in D$ such that $x \in\{|\varphi|\}\left(S^{\prime \prime}\right) \cap\{|\psi|\}\left(S^{\prime \prime}\right)$.
Case of $\varphi \wedge \psi$ (antimonotone).
Assume $\alpha: B \vdash \varphi \wedge \psi: A$. That $\{|\varphi \wedge \psi|\}$ turns directed joins into codirected meets is trivial (as codirected meets commute over binary meets) and omitted. Let us show that $\{|\varphi \wedge \psi|\}$ turns codirected meets into directed joins. So let $D \subseteq \mathcal{P}(\Gamma \llbracket B \rrbracket)$ be codirected. Then by induction hypothesis we have

$$
\{|\varphi \wedge \psi|\}(\bigcap D) \quad=\bigcup\{|\varphi|\}(D) \cap \bigcup\{|\psi|\}(D) \quad \supseteq \quad \bigcup\{|\varphi \wedge \psi|\}(D)
$$

We then conclude as for preservation of directed joins in the monotone case. Given x both in $\bigcup\{|\varphi|\}(D)$ and $\bigcup\{|\psi|\}(D)$, there are $S, S^{\prime} \in D$ such that $x \in\{|\varphi|\}(S)$ and $x \in\{|\psi|\}\left(S^{\prime}\right)$. Now since D is codirected there is some $S^{\prime \prime} \in D$ such that $S^{\prime \prime} \subseteq S \cap S^{\prime}$, and by antimonotonicity we have $x \in\{|\varphi|\}\left(S^{\prime \prime}\right) \cap\{|\psi|\}\left(S^{\prime \prime}\right)$.
Case of $\varphi \vee \psi$ (monotone).
Preservation of codirected meets is handled in Lem. 8.6 (Lem. E.8) while preservation of directed join is trivial.
Case of $\varphi \vee \psi$ (antimonotone).
Assume $\alpha: B \vdash \varphi \wedge \psi: A$. That $\{|\varphi \vee \psi|\}$ turns codirected meets into directed joins is trivial (as directed joins commute over binary joins) and omitted. Let us show that $\{|\varphi \vee \psi|\}$ turns directed joins into codirected meets. So let $D \subseteq \mathcal{P}(\Gamma \llbracket B \rrbracket)$ be directed. By induction hypothesis we have

$$
\{|\varphi \vee \psi|\}(\bigcup D)=\bigcap\{|\varphi|\}(D) \cup \bigcap\{|\psi|\}(D) \subseteq \bigcap\{|\varphi \vee \psi|\}(D)
$$

We can then conclude similarly as in Lem. 8.6 (Lem. E.8). Let $x \in \bigcap\{|\varphi \vee \psi|\}$ (D) and assume toward a contradiction that there are $S, S^{\prime} \in D$ such that $x \notin\{|\varphi|\}(S)$ and $x \notin\{|\psi|\}\left(S^{\prime}\right)$. Then since D is directed, there is some $S^{\prime \prime} \in D$ such that $S \cup S^{\prime} \subseteq S^{\prime \prime}$, and by antimonotonicity we get $x \notin\{|\varphi \vee \psi|\}\left(S^{\prime \prime}\right)$, a contradiction.
Case of $\psi \Rightarrow \varphi$.
With the classical semantics, the interpretation of \Rightarrow can be decomposed into \vee and \neg, where $\{|\neg \varphi|\}$ is the complement of $\{|\varphi|\}$ (at the appropriate type). Let α be positive in φ and negative in ψ, with $\alpha: B \vdash \varphi, \psi: A$, and let furthermore by D and D^{\prime} (of the appropriate type) be resp. directed and codirected. We then trivially have

$$
\begin{aligned}
\{|\neg \varphi|\}(\cup D) & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\varphi|\}(\cup D) & \{|\neg \varphi|\}\left(\cap D^{\prime}\right) & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\varphi|\}\left(\cap D^{\prime}\right) \\
& =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash \bigcup\{|\varphi|\}(D) & & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash \bigcap\{|\varphi|\}\left(D^{\prime}\right) \\
& =\cap(\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\varphi|\}(D)) & & =\cup\left(\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\varphi|\}\left(D^{\prime}\right)\right) \\
\{|\neg \psi|\}(\cup D) & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\psi|\}(\cup D) & \{|\neg \psi|\}\left(\cap D^{\prime}\right) & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\psi|\}\left(\cap D^{\prime}\right) \\
& =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash \cap\{|\psi|\}(D) & & =\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash \bigcup\{|\psi|\}\left(D^{\prime}\right) \\
& =\cup(\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\psi|\}(D)) & & =\cap\left(\mathcal{P}(\Gamma \llbracket A \rrbracket) \backslash\{|\psi|\}\left(D^{\prime}\right)\right)
\end{aligned}
$$

Cases of $\left[\pi_{i}\right] \varphi,\left[\mathrm{in}_{i}\right] \varphi,[$ next $] \varphi$ and $[$ fold $] \varphi$.
These modalities are handled similarly as in Lem. 8.6 (Lem. E.8).
Cases of $[\operatorname{ev}(\psi)] \varphi$.
Since $[\operatorname{ev}(\psi)] \varphi$ is smooth, the formula ψ is closed and we have $Q^{+}=B \rightarrow R^{+}$with B a finite base type. Since B is constant, by Lem. C. 4 there is a finite set A such that $\llbracket B \rrbracket \simeq \Delta A$, so that $\Gamma \llbracket B \rrbracket \simeq A$ by Lem. C.2. Now, given $x \in \Gamma \llbracket P^{+} \rrbracket$ and $S \subseteq \Gamma \llbracket Q^{+} \rrbracket$ we have

$$
x \in\{|[\operatorname{ev}(\psi)] \varphi|\}(S) \quad \text { iff } \quad \forall y \in A(y \in\{|\psi|\} \Rightarrow \operatorname{ev} \circ\langle x, y\rangle \in\{|\varphi|\}(S))
$$

Since A is finite, we can then reason similarly as in the cases of conjunction (\wedge) above.

Cases of $\theta^{\mathrm{t}} \beta \varphi$.

We have $\alpha_{1}: P_{1}^{+}, \ldots, \alpha_{k}: P_{k}^{+}, \beta: P^{+}, \alpha: Q^{+} \vdash \varphi: P^{+}$with $\beta \operatorname{Pos} \varphi$. Since for $S \subseteq \Gamma \llbracket Q^{+} \rrbracket$ and $m \in \mathbb{N}$ we have

$$
\left\{\left|\theta^{m+1} \beta \varphi\right|\right\}(S)=\left\{\left|\varphi\left[\theta^{m} \beta \varphi / \beta\right]\right|\right\}(S)
$$

it follows from Lem. 8.6 (Lem. E.8), that the function $\left\{\left|\theta^{\mathrm{t}} \beta \varphi\right|\right\}$ is monotone (resp. antimonotone) if $\alpha \operatorname{Pos} \varphi$ (resp. α Neg φ). We can then reason as in Lem. 8.6 (Lem. E.8).

E. 4 Realizability

Lemma E. 11 (Monotonicity of Realizability (Lem. C.22)). Let T be a type without free iteration variables. If $x \mathbb{H}_{n} T$ then $x \mathbb{r}_{k} T$ for all $k \leq n$.

Proof. By induction on the definition of $\mathbb{1}$.
Case of a refinement type $\{A \mid \varphi\}$.
The result follows from monotony of forcing (i.e. that $\llbracket \varphi \rrbracket$ is a subobject of $\llbracket A \rrbracket)$.

Case of 1 .

The result is trivial as $x \Vdash_{n} 1$ for all $n>0$.
Case of $T_{0}+T_{1}$.
Assume $x \Vdash_{n} T_{0}+T_{1}$ and let $k \leq n$. Then we have $x=\mathrm{in}_{i} \circ y$ for some $i=0,1$ and some $y \in \Gamma \llbracket\left|T_{i}\right| \rrbracket$ such that $y \Vdash_{n} T_{i}$. By induction hypothesis we get $y \mathbb{r}_{k} T_{i}$, so that $x \mathbb{r}_{k} T_{0}+T_{1}$.
Case of $T_{0} \times T_{1}$.
Assume $x \mathbb{r}_{n} T_{0} \times T_{1}$ and let $k \leq n$. Then for each $i=0,1$ we have $\pi_{i} \circ x \|_{n} T_{i}$, so that $\pi_{i} \circ x \mathbb{r}_{k} T_{i}$ by induction hypothesis, and it follows that $x \mathbb{r}_{k} T_{0} \times T_{1}$.
Case of $U \rightarrow T$.
Assume $x \mathbb{r}_{n} U \rightarrow T$ and let $k \leq n$. But given $\ell \leq k$ and $y \in \Gamma \llbracket|U| \rrbracket$ such that $y \mathbb{r}_{\ell} U$ we have ev $\circ\langle x, y\rangle \mathbb{r}_{\ell} T$ since $\ell \leq n$.
Case of \rightarrow.
Assume $x \mathbb{r}_{n}>T$ and let $k \leq n$. If $k=1$ then we are done since always $x \mathbb{r}_{1}>T$. Otherwise, $k=\ell+1$, so that $n=m+1$ with $\ell \leq m$. Moreover, there is $y \in \Gamma \llbracket T \rrbracket$ such that $x=$ next $\circ y$ and $y \Vdash_{m} T$. We get $y \mathbb{r}_{\ell} T$ by induction hypothesis, so that $x \mathbb{H}_{k}>T$.
Case of $\operatorname{Fix}(X) . A$.
Assume $x \|_{n} \operatorname{Fix}(X) . A$ and let $k \leq n$. We have unfold $\circ x \Vdash_{n} A[\operatorname{Fix}(X) . A / X]$, so that unfold $\circ x \mathbb{r}_{k} A[\operatorname{Fix}(X) \cdot A / X]$ by induction hypothesis and thus $x \mathbb{r}_{k} \operatorname{Fix}(X) . A$.
Case of \square^{T}.
Trivial.
Lemma E. 12 (Lem. C.23). For a pure type A and $x \in \Gamma \llbracket A \rrbracket$, we have $x \|_{n} A$ for all $n>0$.
Proof. The proof is by induction on pairs (n, A), using implicitly Lem. C. 2 whenever required.
Case of 1 .
Trivial.

Case of $A_{0}+A_{1}$.
Given $x \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \simeq \Gamma \llbracket A_{0} \rrbracket+\Gamma \llbracket A_{1} \rrbracket$, we have $x=\mathrm{in}_{i} \circ y$ for some $y \in \Gamma \llbracket A_{i} \rrbracket$. Then we are done since $y \mathbb{r}_{n} A_{i}$ by induction hypothesis.
Case of $A_{0} \times A_{1}$.
Given $x \in \Gamma \llbracket A_{0} \times A_{1} \rrbracket \simeq \Gamma \llbracket A_{0} \rrbracket \times \Gamma \llbracket A_{1} \rrbracket$, we have $\pi_{0} \circ x \Vdash_{n} A_{0}$ and $\pi_{1} \circ x \mathbb{r}_{n} A_{1}$ by induction hypothesis, and the result follows.
Case of $B \rightarrow A$.
Fix $x \in \Gamma \llbracket B \rightarrow A \rrbracket$. Given $y \in \Gamma \llbracket B \rrbracket$ and $k \leq n$, we have $y \Vdash_{k} B$ by induction hypothesis, so that ev $\circ\langle x, y\rangle \Vdash_{k} A$. Hence $x \Vdash_{n} B \rightarrow A$.

Case of \rightarrow.

The result is trivial if $n=1$, so assume $n>1$. Given $x \in \Gamma \llbracket A \rrbracket$, we have $x=$ next $\circ y$ for some $y \in \Gamma \llbracket A \rrbracket$. But then $y \mathbb{\Vdash}_{n-1} A$ by induction hypothesis, so that $x \mathbb{H}_{n}>A$.
Case of $\operatorname{Fix}(X) . A$.
Let $x \in \Gamma \llbracket \operatorname{Fix}(X) . A \rrbracket$. It follows by induction on A from the induction hypothesis on n and the guardedness of X in A that unfold $\circ x \Vdash_{n} A[\operatorname{Fix}(X) . A / X]$, and we are done.

Case of $■$.

Let $x \in \Gamma \llbracket \llbracket T \rrbracket$. Given $n>0$, we have $x_{n}(\bullet) \in \Gamma \llbracket T \rrbracket$, so that $x_{n}(\bullet) \Vdash_{m} T$ for all $m>0$ by induction hypothesis. But this implies $x \|_{n} \llbracket T$.

Lemma E. 13 (Correctness of Subtyping (Lem. C.25)). Given types T, U without free iteration variable, if $x \mathbb{r}_{n} U$ and $U \leq T$ then $x \Vdash_{n} T$.

Proof. By induction on $U \leq T$.
Cases of

$$
\overline{T \leq T} \quad \frac{T \leq U \quad U \leq V}{T \leq V}
$$

Trivial.

Cases of

$$
\begin{array}{cc}
\frac{T_{0} \leq U_{0} \quad T_{1} \leq U_{1}}{T_{0} \times T_{1} \leq U_{0} \times U_{1}} & \frac{T_{0} \leq U_{0} \quad T_{1} \leq U_{1}}{T_{0}+T_{1} \leq U_{0}+U_{1}}
\end{array} \quad \frac{U_{0} \leq T_{0} \quad T_{1} \leq U_{1}}{T_{0} \rightarrow T_{1} \leq U_{0} \rightarrow U_{1}}
$$

Trivial
Case of

$$
\frac{U \leq T}{\square U \leq \boldsymbol{\Xi}^{T}}
$$

Let $x: 1 \rightarrow_{\mathcal{S}} \Delta \Gamma \llbracket U \rrbracket$ such that $x \Vdash_{n} \llbracket U$, so that $x_{n}(\bullet) \Vdash_{m} U$ for all $m>0$. By induction hypothesis we get $x_{n}(\bullet) \Vdash_{m} T$ for all $m>0$ and we are done.

Case of

$$
\overline{T \leq|T|}
$$

By Lem. C.23.

Case of

$$
\overline{A \leq\{A \mid \top\}}
$$

Trivial

Case of

$$
\frac{\vdash^{A} \varphi \Rightarrow \psi}{\{A \mid \varphi\} \leq\{A \mid \psi\}}
$$

By Lem. E. 4 (Lem. C.13.(2)).

Case of

$$
\overline{\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\} \leq\{B \mid \psi\} \rightarrow\{A \mid \varphi\}}
$$

Let $x \in \Gamma \llbracket B \rightarrow A \rrbracket$ and $n>0$. Assume $x \mathbb{1}_{n}\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}$, that is $x_{n}(\bullet) \in \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket(n)$. Let further $y \in \Gamma \llbracket B \rrbracket$ and $k \leq n$ such that $y \mathbb{r}_{k}\{B \mid \psi\}$, that is $y_{k}(\bullet) \in \llbracket \psi \rrbracket(k)$. Then by monotonicity of $\llbracket-\rrbracket\left(\right.$ Lem. C.16) we have $x_{k}(\bullet) \in \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket(k)$, from which it follows that $\left(x_{k}(\bullet)\right)\left(y_{k}(\bullet)\right) \in \llbracket \varphi \rrbracket(k)$. But this means ev $\circ\langle x, y\rangle \Vdash_{k}\{A \mid \varphi\}$ and we are done.

Case of

$$
\overline{\{B \mid \psi\} \rightarrow\{A \mid \varphi\} \leq\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}}
$$

Let $x \in \Gamma \llbracket B \rrbracket \rightarrow A$ and $n>0$. Assume $x \mathbb{1}_{n}\{B \mid \psi\} \rightarrow\{A \mid \varphi\}$. Let furthermore $k \leq n$ and $u \in \llbracket \psi \rrbracket(k)$. By Lem. C. 24 ([Clouston et al. 2016, Cor. 3.8]) there is some $y \in \Gamma \llbracket B \rrbracket$ such that $y_{k}(\bullet)=u$. We thus have $y \mathbb{1}_{k}\{B \mid \psi\}$, and it follows that $\operatorname{ev} \circ\langle x, y\rangle \mathbb{r}_{k}\{A \mid \varphi\}$, that is $x_{k}(\bullet)\left(y_{k}(\bullet)\right) \in \llbracket \varphi \rrbracket(k)$, and we are done.

Case of

$$
\overline{\diamond\{A \mid \varphi\} \equiv\{\triangleright A \mid[\mathrm{next}] \varphi\}}
$$

Let $x \in \Gamma \llbracket A \rrbracket$. First, we always have $x \|_{1}>A$, as well as $x_{1} \in \llbracket[$ next $] \varphi \rrbracket \rrbracket^{A}$. Let now $n>1$. By Lem. C. 2 we have $x=$ next $\circ y$ for some $y \in \Gamma \llbracket A \rrbracket$. Since $x_{n}(\bullet)=y_{n-1}(\bullet)$, we have

$$
\begin{array}{lll}
x \mathbb{H}_{n} \triangleright\{A \mid \varphi\} & \text { iff } & y \Vdash_{n-1}\{A \mid \varphi\} \\
& \text { iff } & y_{n-1}(\bullet) \in \llbracket \varphi \rrbracket^{A}(n-1) \\
& \text { iff } & x_{n}(\bullet)=y_{n-1}(\bullet) \in \llbracket[\text { next }] \varphi \rrbracket \rrbracket^{A}(n) \\
& \text { iff } & x \| \Vdash_{n}\{\triangleright A \mid[\text { next }] \varphi\} .
\end{array}
$$

Case of

$$
\overline{\forall k \cdot \neg T \equiv \forall k \cdot T}
$$

Let $x \in \Gamma \llbracket|T| \rrbracket$.
Assume first that $x \|_{n} \forall k \cdot T$. We have to show $x \|_{n} \triangleright \forall k \cdot T$. The result is trivial if $n=1$. So assume $n>1$. By Lem. C.2, there some unique $y \in \Gamma \llbracket|T| \rrbracket$ such that $x=$ next $\circ y$. We have to show $y \Vdash_{n-1} T[\mathrm{~m} / k]$ for all $m \in \mathbb{N}$. But by assumption we have $x \Vdash_{n} \neg T[\mathrm{~m} / k]$, so that by uniqueness of y we get $y \| r_{n-1} T[\mathrm{~m} / k]$.
Conversely, assume that $x \mathbb{I}_{n} \bullet \forall k \cdot T$. We have to show $x \mathbb{r}_{n} \forall k \cdot T$. Let $m \in \mathbb{N}$. If $n=1$, then we trivially have $x \| r_{n}>T[\mathrm{~m} / k]$. Otherwise, by Lem. C. 2 let $y \in \Gamma \llbracket|T| \rrbracket$ such that $x=$ next $\circ y$. But since $x \mathbb{r}_{n} \triangleright \forall k \cdot T$, we get $y \mathbb{r}_{n-1} T[\mathrm{~m} / k]$, so that $x \mathbb{r}_{n} \triangleright T[\mathrm{~m} / k]$ and we are done.

Case of

$$
\frac{\varphi \text { safe }}{\left.\square\{A \mid \varphi\} \equiv\left\{\begin{array}{ll}
\text { ■ }
\end{array}\right][\text { box }] \varphi\right\}}
$$

Let $x: \mathbf{1} \rightarrow_{\mathcal{S}} \Delta \Gamma \llbracket A \rrbracket$. Since φ is safe we have $\{|\varphi|\}^{A}=\operatorname{Clos}\left(\llbracket \varphi \rrbracket^{A}\right)$ by Prop. E. 9 (Prop. 8.7). Then we are done since:

$$
\begin{array}{lll}
x \mathbb{H}_{n} ■\{A \mid \varphi\} & \text { iff } & x_{n}(\bullet) \mathbb{H}_{m}\{A \mid \varphi\} \text { for all } m>0 \\
& \text { iff } & \left(x_{n}(\bullet)\right)_{m}(\bullet) \in \llbracket \varphi \rrbracket^{A}(m) \text { for all } m>0 \\
& \text { iff } & x_{n}(\bullet) \in\{|\varphi|\} \\
& \text { iff } & x_{n}(\bullet) \in \llbracket[\text { box }] \varphi \rrbracket A(n) \\
& \text { iff } & x \|_{n}\{■ A \mid[\operatorname{box}] \varphi\}
\end{array}
$$

Case of

$$
\frac{\vdash_{\mathrm{c}}^{A} \varphi \Rightarrow \psi}{\{\mathbf{\square} A \mid[\mathrm{box}] \varphi\} \leq\{\mathbf{\square} A \mid[\mathrm{box}] \psi\}}
$$

By Lem. E. 1 (Lem. C.13.(1)).
Theorem E. 14 (Adequacy (Thm. C.26)). Let Γ, T have free iteration variables among $\bar{\ell}$, and let $\bar{m} \in \mathbb{N}$. If $\Gamma \vdash M: T$ and $\rho \mid=\Gamma$, then

$$
\forall n>0, \quad \rho \mathbb{\Vdash}_{n} \Gamma[\bar{\ell} / \bar{m}] \Longrightarrow \llbracket M \rrbracket_{\rho} \mathbb{\Vdash}_{n} T[\bar{\ell} / \bar{m}]
$$

Proof. The proof is by induction on typing derivations. We implicitly use Lem. C. 2 whenever required. We omit iteration variables when possible.

Case of

$$
\frac{\Gamma, x: \rightarrow T \vdash M: T}{\Gamma \vdash \operatorname{fix}(x) \cdot M: T}
$$

Let $\rho \neq \Gamma$ and write $y:=\llbracket \operatorname{fix}(x) \cdot M \rrbracket \rho \in \Gamma \llbracket T \rrbracket$. Note that

$$
y=\llbracket M[\operatorname{next}(\operatorname{fix}(x) \cdot M) / x] \rrbracket_{\rho}=\llbracket M \rrbracket_{\rho[\operatorname{nexto} y / x]}
$$

We show by induction on $n>0$ that $\rho \mathbb{\|} \vdash_{n} \Gamma$ implies $y \| \vdash_{n} T$. In the base case $n=1$, since next $\circ y \| \Vdash_{1} \triangleright T$, we have $\rho[$ next $\circ y / x] \| \Vdash_{1} \Gamma, x: \triangleright T$, so that the induction hypothesis on typing derivations gives $y=\llbracket M \rrbracket_{\rho[\text { nexto } y / x]} \|_{1} T$.
As for induction step, assume $\rho \mathbb{I}_{n+1} \Gamma$. By Monotonicity of Realizability (Lem. E.11), we have $\rho \Vdash_{n} \Gamma$, and the induction hypothesis on n gives $y \Vdash_{n} T$. It follows that next $\circ y \Vdash_{n+1} \triangleright T$, so that $\rho[$ next $\circ y / x] \Vdash_{n+1} \Gamma, x: \triangleright T$ and the induction hypothesis on typing derivations gives $y=\llbracket M \rrbracket_{\rho[\text { nextoy } / x]} \|_{\Vdash_{n+1}} T$.

Case of

$$
\frac{\Gamma \vdash M: T}{\Gamma \vdash \operatorname{next}(M): \triangleright T}
$$

Let $\rho \mid=\Gamma$ and write $x:=\llbracket \operatorname{next}(M) \rrbracket \rho \in \Gamma \llbracket \neg T \rrbracket$. Let $n>0$ such that $\rho \mathbb{r}_{n} T$. If $n=1$ then we trivially have $x \mathbb{I F}_{1} \triangleright T$. Assume $n>1$. Write $y:=\llbracket M \rrbracket_{\rho}$, so that $x=$ next $\circ y$. By Monotonicity of Realizability (Lem. E.11), we have $\rho \mathbb{I}_{n-1} \Gamma$, so that the induction hypothesis on typing derivations gives $y \Vdash_{n-1} T$ and we are done.

Case of

$$
\frac{x_{1}: T_{1}, \ldots, x_{k}: T_{k} \vdash M: T \quad \Gamma \vdash M_{1}: T_{1} \quad \ldots \quad \Gamma \vdash M_{k}: T_{k}}{\Gamma \vdash \operatorname{box}_{\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]}(M): ■ T}\left(T_{1}, \ldots, T_{k} \text { constant }\right)
$$

Let $\rho \mid=\Gamma$ and write $x:=\llbracket \operatorname{box}_{\sigma}(M) \rrbracket \rho$ where $\sigma=\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. We show $x \Vdash_{n} ■ T$, i.e. that $x_{m}(\bullet) \Vdash_{m} T$ for all $m>0$. Fix $m>0$. We have by definition

$$
\left.x_{m}(\bullet) \quad: \quad \ell \quad \longmapsto \quad \llbracket M \rrbracket_{\ell}\left(\llbracket M_{1} \rrbracket_{m}\left(\rho_{m}(\bullet)\right), \ldots, \llbracket M_{k} \rrbracket_{m}\left(\rho_{m}(\bullet)\right)\right)\right)
$$

For $i=1, \ldots, k$, since the type T_{i} is constant, we have by Lem. C. 21 that $\llbracket M_{i} \rrbracket_{m}\left(\rho_{m}(\bullet)\right)=$ $\llbracket M_{i} \rrbracket_{\ell}\left(\rho_{\ell}(\bullet)\right)$ for all $\ell>0$, so that

$$
\left.x_{m}(\bullet)=\ell \longmapsto \llbracket M \rrbracket \ell\left(\llbracket M_{1} \rrbracket_{\ell}\left(\rho_{\ell}(\bullet)\right), \ldots, \llbracket M_{k} \rrbracket_{\ell}\left(\rho_{\ell}(\bullet)\right)\right)\right)
$$

Now, by induction hypothesis, since $\rho \mathbb{H}_{n} \Gamma$ by assumption, for each $i=1, \ldots, k$ we have $\llbracket M_{i} \rrbracket_{\rho} \Vdash_{n} T_{i}$ and since T_{i} is constant, by Lem. C. 21 this implies $\llbracket M_{i} \rrbracket_{\rho} \mathbb{r}_{\ell} T_{i}$ for all $\ell>0$. By induction hypothesis again, this in turn gives $\llbracket M \rrbracket \circ\left\langle\llbracket M_{1} \rrbracket_{\rho}, \ldots, \llbracket M_{k} \rrbracket_{\rho}\right\rangle \Vdash_{\ell} T$ for each $\ell>0$. But then we are done since

$$
\begin{aligned}
x_{m}(\bullet) & \left.=\ell \longmapsto \llbracket M \rrbracket_{\ell}\left(\llbracket M_{1} \rrbracket_{\ell}\left(\rho_{\ell}(\bullet)\right), \ldots, \llbracket M_{k} \rrbracket_{\ell}\left(\rho_{\ell}(\bullet)\right)\right)\right) \\
& =\llbracket M \rrbracket \circ\left\langle\llbracket M_{1} \rrbracket_{\rho}, \ldots, \llbracket M_{k} \rrbracket_{\rho}\right\rangle
\end{aligned}
$$

Case of

$$
\frac{\Gamma \vdash M: ■ T}{\Gamma \vdash \operatorname{unbox}(M): T}
$$

Let $\rho \vDash \Gamma$ and write $x:=\llbracket \operatorname{unbox}(M) \rrbracket_{\rho}$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. By induction hypothesis we get $\llbracket M \rrbracket_{\rho} \| \Vdash_{n} \llbracket T$, that is $\left(\llbracket M \rrbracket_{\rho}\right)_{m}(\bullet) \| \Vdash_{m} T$ for all $m>0$, so in particular $\left(\llbracket M \rrbracket_{\rho}\right)_{n}(\bullet) \Vdash_{r_{n}} T$. But now we are done since $x_{m}(\bullet)=\left(\llbracket M \rrbracket_{\rho}\right)_{n}(\bullet)_{m}(\bullet)$ for each $m>0$.

Case of

$\frac{x_{1}: T_{1}, \ldots, x_{k}: T_{k} \vdash M: T \quad \Gamma \vdash M_{1}: T_{1} \quad \ldots \quad \Gamma \vdash M_{k}: T_{k}}{\Gamma \vdash \operatorname{prev}_{\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]}(M): T}\left(T_{1}, \ldots, T_{k}\right.$ constant $)$
Let $\rho \vDash \Gamma$ and write $x:=\llbracket \operatorname{box}_{\sigma}(M) \rrbracket_{\rho}$ where $\sigma=\left[x_{1} \mapsto M_{1}, \ldots, x_{k} \mapsto M_{k}\right]$. Let $n>0$ such that $\rho \mathbb{H}_{n} \Gamma$. We show $x \mathbb{H}_{n}>T$. If $n=1$ then the result trivially holds. Assume $n>1$. For each $m>0$, we have by definition

$$
\left.x_{m}(\bullet)=\llbracket M \rrbracket_{m+1}\left(\llbracket M_{1} \rrbracket_{m}\left(\rho_{m}(\bullet)\right), \ldots, \llbracket M_{k} \rrbracket_{m}\left(\rho_{m}(\bullet)\right)\right)\right)
$$

For $i=1, \ldots, k$, since the type T_{i} is constant, we have by Lem. C. 21 that $\llbracket M_{i} \rrbracket_{m}\left(\rho_{m}(\bullet)\right)=$ $\llbracket M_{i} \rrbracket_{m+1}\left(\rho_{m+1}(\bullet)\right)$, so that

$$
\left.x_{m}(\bullet)=\llbracket M \rrbracket_{m+1}\left(\llbracket M_{1} \rrbracket_{m+1}\left(\rho_{m+1}(\bullet)\right), \ldots, \llbracket M_{k} \rrbracket_{m+1}\left(\rho_{m+1}(\bullet)\right)\right)\right)
$$

and it follows that

$$
x=\operatorname{next} \circ \llbracket M \rrbracket \circ\left\langle\llbracket M_{1} \rrbracket_{\rho}, \ldots, \llbracket M_{k} \rrbracket \rho\right\rangle
$$

Now, by induction hypothesis, since $\rho \mathbb{H}_{n} \Gamma$ by assumption, for each $i=1, \ldots, k$ we have $\llbracket M_{i} \rrbracket_{\rho} \Vdash_{n} T_{i}$ and since T_{i} is constant, by Lem. C. 21 this implies $\llbracket M_{i} \rrbracket_{\rho} \Vdash_{n-1} T_{i}$. By induction hypothesis again, this in turn gives $\llbracket M \rrbracket \circ\left\langle\llbracket M_{1} \rrbracket_{\rho}, \ldots, \llbracket M_{k} \rrbracket_{\rho}\right\rangle \Vdash_{n-1} T$ and we are done.

Case of

$$
\frac{\Gamma \vdash M: T \quad T \leq U}{\Gamma \vdash M: U}
$$

By Lem. C. 25 (Lem. E.13).

Case of

$$
\frac{\Gamma \vdash M:\{A \mid \psi \Rightarrow \varphi\} \quad \Gamma \vdash M:\{A \mid \psi\}}{\Gamma \vdash M:\{A \mid \varphi\}}
$$

Let $\rho \vDash \Gamma$ and write $x:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A \rrbracket$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. By induction hypothesis, the right premise gives $x_{n}(\bullet) \in \llbracket \psi \rrbracket^{A}(n)$ and the left premise implies $x_{n}(\bullet) \in \llbracket \varphi \rrbracket^{A}(n)$.

Case of

$$
\frac{\Gamma \vdash M:\left\{A \mid \varphi_{0} \vee \varphi_{1}\right\}}{} \begin{aligned}
& \text { for } i \in\{0,1\}, \\
& \Gamma, x:\left\{A \mid \varphi_{i}\right\} \vdash N: U
\end{aligned}
$$

Let $\rho \mid=\Gamma$ and write $y:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A \rrbracket$ and $z:=\llbracket N \rrbracket_{\rho[y / x]} \in \Gamma \llbracket|U| \rrbracket$. Let $n>0$ and assume $\rho \mathbb{r}_{n} \Gamma$. By induction hypothesis we have $y \in \llbracket \varphi_{i} \rrbracket$ for some $i \in\{0,1\}$. It follows that $\rho[y / x] \Vdash_{n} \Gamma, x:\left\{A \mid \varphi_{i}\right\}$, from which we get $z \Vdash_{n} B$ by induction hypothesis.

Case of

$$
\frac{\Gamma \vdash M:\{A \mid \perp\} \quad \Gamma \vdash N:|U|}{\Gamma \vdash N: U}
$$

Let $\rho \vDash \Gamma$ and write $x:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A \rrbracket$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. By induction hypothesis, the left premise gives $x_{n}(\bullet) \in \llbracket \perp \rrbracket(n)=\emptyset$, a contradiction. Hence $\rho \mathbb{r}_{n} \Gamma$, and the result follows.

Case of

$$
\frac{\Gamma \vdash M_{i}:\left\{A_{i} \mid \varphi\right\} \quad \Gamma \vdash M_{1-i}: A_{1-i}}{\Gamma \vdash\left\langle M_{0}, M_{1}\right\rangle:\left\{A_{0} \times A_{1} \mid\left[\pi_{i}\right] \varphi\right\}}
$$

Let $\rho \vDash \Gamma$. Write $y_{0}:=\llbracket M_{0} \rrbracket_{\rho} \in \Gamma \llbracket A_{0} \rrbracket, y_{1}:=\llbracket M_{1} \rrbracket_{\rho} \in \Gamma \llbracket A_{1} \rrbracket$, and $x:=\llbracket\left\langle M_{0}, M_{1}\right\rangle \rrbracket_{\rho}=$ $\left\langle y_{0}, y_{1}\right\rangle$. Let $n>0$ such that $\rho \mathbb{H}_{n} \Gamma$. By induction hypothesis on typing derivations we have $\left(y_{i}\right)_{n}(\bullet) \in \llbracket \varphi \rrbracket$. But since $\pi_{i}\left(x_{n}(\bullet)\right)=\left(y_{i}\right)_{n}(\bullet)$, this gives $x_{n}(\bullet) \in \llbracket\left[\pi_{i}\right] \varphi \rrbracket$.
Case of

$$
\frac{\Gamma \vdash M:\left\{A_{0} \times A_{1} \mid\left[\pi_{i}\right] \varphi\right\}}{\Gamma \vdash \pi_{i}(M):\left\{A_{i} \mid \varphi\right\}}
$$

Let $\rho \mid=\Gamma$. Write $y:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A_{0} \times A_{1} \rrbracket$ and $x:=\llbracket \pi_{i}(M) \rrbracket_{\rho}=\pi_{i} \circ y$. Let $n>0$ such that $\rho \| \Vdash_{n} \Gamma$. By induction hypothesis on typing derivations we have $y_{n}(\bullet) \in \llbracket\left[\pi_{i}\right] \varphi \rrbracket$, so that $\pi_{i}\left(y_{n}(\bullet)\right) \in \llbracket \varphi \rrbracket$. But then we are done since $x_{n}(\bullet)=\pi_{i}\left(y_{n}(\bullet)\right)$.

Case of

$$
\frac{\Gamma \vdash M:\left\{A_{i} \mid \varphi\right\}}{\Gamma \vdash \operatorname{in}_{i}(M):\left\{A_{0}+A_{1} \mid\left[\mathrm{in}_{i}\right] \varphi\right\}}
$$

Let $\rho \vDash \Gamma$. Write $y:=\llbracket M \rrbracket \rrbracket_{\rho} \in \Gamma \llbracket A_{i} \rrbracket$, and $x:=\llbracket \operatorname{in}_{i}(M) \rrbracket_{\rho}=\mathrm{in}_{i} \circ y$. Let $n>0$ such that $\rho \mathbb{r}_{n} \Gamma$. Hence by induction hypothesis on typing derivations we have $y_{n}(\bullet) \in \llbracket \varphi \rrbracket$. But since $x_{n}(\bullet)=\operatorname{in}_{i}\left(y_{n}(\bullet)\right)$, this implies $x_{n}(\bullet) \in \llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket$.

Case of

$$
\frac{\Gamma \vdash M:\left\{A_{0}+A_{1} \mid\left[\mathrm{in}_{i}\right] \varphi\right\} \quad \Gamma, x:\left\{A_{i} \mid \varphi\right\} \vdash N_{i}: U \quad \text { Г, } x: A_{1-i} \vdash N_{1-i}: U}{\Gamma \vdash \operatorname{case} M \text { of }\left(x . N_{0} \mid x \cdot N_{1}\right): U}
$$

Let $\rho \vDash \Gamma$. Write $y:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A_{0}+A_{1} \rrbracket \simeq \Gamma \llbracket A_{0} \rrbracket+\Gamma \llbracket A_{1} \rrbracket$. Hence $y=\mathrm{in}_{j} \circ z$ for some (unique) $j \in\{0,1\}$ and $z \in \Gamma \llbracket A_{j} \rrbracket$. Let $n>0$ such that $\rho \| \Vdash_{n} \Gamma$. By induction hypothesis, the left premise gives $y_{n}(\bullet) \in \llbracket\left[\mathrm{in}_{i}\right] \varphi \rrbracket(n)$, so that $y_{n}(\bullet)=\operatorname{in}_{i}(u)$ for some $u \in \llbracket \varphi \rrbracket(n)$. But this implies $j=i$ and $u=z_{n}(\bullet)$, so that $z \Vdash_{n}\left\{A_{i} \mid \varphi\right\}$. It follows that $\rho[z / x] \Vdash_{n} \Gamma, x:\left\{A_{i} \mid \varphi\right\}$, and the induction hypothesis on typing derivations gives $\llbracket N_{i} \rrbracket_{\rho[z / x]} \| \vdash_{n} U$. But then we are done since

$$
\llbracket \text { case } M \text { of }\left(x \cdot N_{0} \mid x \cdot N_{1}\right) \rrbracket_{\rho}=\llbracket N_{i} \rrbracket_{\rho[z / x]}
$$

Case of

$$
\frac{\Gamma, x:\{B \mid \psi\} \vdash M:\{A \mid \varphi\}}{\Gamma \vdash \lambda x \cdot M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\}}
$$

Let $\rho \mid=\Gamma$. Write $y:=\llbracket \lambda x . M \rrbracket_{\rho} \in \Gamma \llbracket B \rightarrow A \rrbracket$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. We show $y_{n}(\bullet) \in \llbracket[\operatorname{ev}(\psi)] \varphi \rrbracket(n)$. So let $k \leq n$ and $u \in \Gamma \llbracket B \rrbracket(k)$ such that $u \in \llbracket \psi \rrbracket(k)$. By [Clouston et al. 2016, Cor. 3.8] there is some $z \in \Gamma \llbracket B \rrbracket$ such that $z_{k}(\bullet)=t$. By Monotonicity of Realizability
(Lem. E.11), we have $\rho \Vdash_{k} \Gamma$, so that $\rho[z / x] \Vdash_{k} \Gamma, x:\{B \mid \psi\}$. The induction hypothesis on typing derivations thus gives $\left(\llbracket M \rrbracket_{\rho[z / x]}\right)_{k}(\bullet) \in \llbracket \varphi \rrbracket$, and we are done since $\left(y_{k}(\bullet)\right)\left(z_{k}(\bullet)\right)=$ $\left(\llbracket M \rrbracket_{\rho[z / x]}\right)_{k}(\bullet)$.

Case of

$$
\frac{\Gamma \vdash M:\{B \rightarrow A \mid[\operatorname{ev}(\psi)] \varphi\} \quad \Gamma \vdash N:\{B \mid \psi\}}{\Gamma \vdash M N:\{A \mid \varphi\}}
$$

Let $\rho \mid=\Gamma$. Write $y:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket B \rightarrow A \rrbracket, z:=\llbracket N \rrbracket_{\rho} \in \Gamma \llbracket B \rrbracket$ and $x:=\llbracket M N \rrbracket_{\rho}=\mathrm{ev} \circ\langle y, z\rangle$. Let $n>0$ such that $\rho \Vdash_{n} \Gamma$. By induction on typing derivations, the right premise gives $z_{n}(\bullet) \in \llbracket \psi \rrbracket(n)$, so that the left premise gives $\left(y_{n}(\bullet)\right)\left(z_{n}(\bullet)\right) \in \llbracket \varphi \rrbracket(n)$. But then we are done since $x_{n}(\bullet)=\left(y_{n}(\bullet)\right)\left(z_{n}(\bullet)\right)$.

Case of

$$
\frac{\Gamma \vdash M:\{A[\operatorname{Fix}(X) \cdot A / X] \mid \varphi\}}{\Gamma \vdash \operatorname{fold}(M):\{\operatorname{Fix}(X) \cdot A \mid[\operatorname{fold}] \varphi\}}
$$

Let $\rho=\Gamma$. Write $y:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket A[\operatorname{Fix}(X) . A / X\rceil \rrbracket$ and $x:=\llbracket$ fold $(M) \rrbracket_{\rho}=$ fold $\circ y$. Let $n>0$ such that $\rho \|_{n} \Gamma$. By induction hypothesis on typing derivations we have $y_{n}(\bullet) \in \llbracket \varphi \rrbracket$. But then we are done since $\operatorname{unfold}_{n}\left(x_{n}(\bullet)\right)=y_{n}(\bullet)$.

Case of

$$
\frac{\Gamma \vdash M:\{\operatorname{Fix}(X) \cdot A \mid[\text { fold }] \varphi\}}{\Gamma \vdash \operatorname{unfold}(M):\{A[\operatorname{Fix}(X) \cdot A / X] \mid \varphi\}}
$$

Let $\rho \mid=\Gamma$. Write $y:=\llbracket M \rrbracket \rho \in \Gamma \llbracket \operatorname{Fix}(X) . A \rrbracket$ and $x:=\llbracket \operatorname{unfold}(M) \rrbracket_{\rho}=$ unfold $\circ y$. Let $n>0$ such that $\rho \mathbb{r}_{n} \Gamma$. By induction hypothesis on typing derivations we have $y_{n}(\bullet) \in \llbracket[$ fold $] \varphi \rrbracket$. Hence $\operatorname{unfold}_{n}\left(y_{n}(\bullet)\right) \in \llbracket \varphi \rrbracket$ and we are done since $x_{n}(\bullet)=\operatorname{unfold}_{n}\left(y_{n}(\bullet)\right)$.

Cases of

$$
\frac{\Gamma \vdash M: T[0 / \ell] \quad \Gamma \vdash M: T[\ell+1 / \ell]}{\Gamma \vdash M: \forall \ell \cdot T}(\ell \text { not free in } \Gamma) \quad \frac{\Gamma \vdash M: T}{\Gamma \vdash M: \forall \ell \cdot T}(\ell \text { not free in } \Gamma)
$$

Let $\rho \vDash \Gamma$ and write $x:=\llbracket M \rrbracket \rrbracket_{\rho} \in \Gamma \llbracket|T| \rrbracket$. Let $n>0$ and assume $\rho \mathbb{r}_{n} \Gamma$. Let $m \in \mathbb{N}$. We have to show $M \Vdash_{n} T[\mathrm{~m} / \ell]$. Since ℓ does not occur free in Γ, we have $\rho \| \Vdash_{n} \Gamma\left[\mathrm{~m}^{\prime} / \ell\right]$ for all $m^{\prime} \in \mathbb{N}$. For both rules we can conclude from the induction hypothesis.

Case of

$$
\frac{\Gamma \vdash M: \forall \ell \cdot T}{\Gamma \vdash M: T[\mathrm{t} / \ell]}
$$

Let $\rho \vDash \Gamma$ and write $x:=\llbracket M \rrbracket_{\rho} \in \Gamma \llbracket|T| \rrbracket$. Let $n>0$ and assume $\rho \mathbb{H}_{n} \Gamma$. By induction hypothesis we have $x \mathbb{r}_{n} T[\mathrm{~m} / \ell]$ for $m=\llbracket \mathrm{t} \rrbracket$ and the result follows.

Cases of

$$
\frac{\Gamma \vdash M:\left\{\mathbf{■} A \mid[\mathrm{box}] \gamma\left[v^{\ell} \alpha \varphi / \beta\right]\right\} \quad \beta \operatorname{Pos} \gamma}{\Gamma \vdash M:\{\mathbf{■} A \mid[\mathrm{box}] \gamma[v \alpha \varphi / \beta]\}}
$$

where ℓ is not free in Γ, U, γ, and γ, φ are smooth. First, since φ is smooth by Cor. 8.9 we have

$$
\begin{aligned}
& \{|v \alpha \varphi(\alpha)|\}
\end{aligned}=\bigcap_{m \in \mathbb{N}}\left\{\left|\varphi^{m}(\mathrm{~T})\right|\right\}
$$

Moreover, since β is positive in γ and γ is smooth, it follows from Lem. E. 10 (Lem. 8.8) that $\{|\gamma|\}$ is continuous and cocontinuous in β. We thus get

$$
\text { and } \quad \begin{array}{ll}
\{|\gamma[v \alpha \varphi(\alpha) / \beta]|\} & =\bigcap_{m \in \mathbb{N}}\left\{\left|\gamma\left[\varphi^{m}(\mathrm{~T}) / \beta\right]\right|\right\} \\
\{|\gamma[\mu \alpha \varphi(\alpha) / \beta]|\} & =\bigcup_{m \in \mathbb{N}}\left\{\gamma\left[\varphi^{m}(\mathrm{~T}) / \beta\right] \mid\right\}
\end{array}
$$

and the result follows.

Contents

Abstract 1
1 Introduction 1
Organization of the paper. 2
2 Outline 2
An Overview of the Guarded λ-Calculus. 2
Compositional Safety Reasoning on Streams. 3
A Manysorted Temporal Logic. 3
Beyond Safety 4
"Internal" Semantics in the Topos of Trees. 4
The Necessity of an "External" Semantics. 4
The Constant Type Modality. 4
Approximating Least Fixpoints. 5
Overview of Some Examples. 5
3 The Pure Calculus 7
Terms 7
Pure Types 7
4 A Temporal Modal Logic 9
Manysorted Modal Temporal Formulae. 9
Modal Theories. 10
5 A Temporally Refined Type System 11
Temporal Refinement Types. 11
Subtyping. 11
Typing with Temporal Refinement Types. 12
6 Polynomial Types, Liveness Properties and the Safe Fragment 13
Strictly Positive and Polynomial Types 13
The Full Temporal Modal Logic 14
The Safe and Smooth Fragments 14
The Full System 15
7 Examples 15
8 Semantics 19
Denotational Semantics in the Topos of Trees. 19
Internal Semantics of Formulae. 20
The External Semantics. 21
The Safe Fragment. 21
The Constant Modality. 22
Safe Formulae: The General Case. 22
The Smooth Fragment. 23
The Realizability Semantics. 23
9 Related Work 24
10 Conclusion and Future Work 25
Acknowledgments. 25
References 26
A Additional Material for $\S 4$ 29
B Additional Material for §5 29
C Additional Material for §8 31
C. 1 The Topos of Trees (Basic Structure) 31
C. 2 Global Sections and Constant Objects 32
C. 3 External and Internal Semantics: Global Definitions 33
C. 4 An Open Geometric Morphism 35
C. 5 Abstract Modalities 35
C. 6 External and Internal Semantics: Local Definitions 36
C.6.1 Internal Semantics 36
C.6.2 External Semantics 39
C. 7 The Safe Fragment 39
C. 8 The Smooth Fragment 39
C. 9 Constant Objects, Again 39
C. 10 Realizability 41
C. 11 A Galois Connection 42

D Details of the Examples 44
D. 1 Guarded Streams 44
D.1.1 The Later Modality on Guarded Streams 44
D.1.2 Destructors of Guarded Streams 44
D.1.3 Constructor of Guarded Streams 45
D.1.4 Map over Guarded Streams 45
D.1.5 Merge over Guarded Streams 46
D. 2 Operations on Coinductive Streams 46
D. 3 Map over Coinductive Streams 47
D.3.1 The Case of Eventually $(\diamond[\mathrm{hd}] \varphi) 48$
D.3.2 The Case of Eventually Always $(\diamond \square[h \mathrm{~d}] \varphi) 50$
D.3.3 The Case of Always Eventually $(\square \diamond[\mathrm{hd}] \varphi) 51$
D. 4 The Diagonal Function 54
D.4.1 The Guarded Diagonal Function 54
D.4.2 The Coinductive Diagonal Function 55
D. 5 Fair Streams 57
D.5.1 Basic Datatypes 58
D.5.2 A Fair Stream of Booleans 58
D.5.3 A Scheduler 65
D. 6 Colists 67
D.6.1 Overview 68
D.6.2 The Type of CoLists 69
D.6.3 The Append Function on Colists 70
D.6.4 Sharper Refinements for the Append Function on Colists 75
D. 7 Resumptions 78
D. 8 Breadth-First Tree Traversal 86
D.8.1 Infinite Binary Trees 86
D.8.2 Breadth-First Traversal of Guarded Trees Using Forests 87
D.8.3 Martin Hofmann's Algorithm 88

E Proofs of §8 90
E. 1 Correctness of the External and Internal Semantics 90
E.1.1 Proof of Lem. C.13.(1) (Lem. 8.3) 90
E.1.2 Proof of Lem. C.13.(2) (Lem. 8.3) 93
E. 2 The Safe Fragment 95
E. 3 The Smooth Fragment 100
E. 4 Realizability 102Contents110

[^0]: Authors' addresses: Guilhem Jaber, Université de Nantes, LS2N CNRS, Inria, France, guilhem.jaber@univ-nantes.fr; Colin

[^1]: Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

