
HAL Id: hal-02512655
https://hal.science/hal-02512655v2

Preprint submitted on 16 Jul 2020 (v2), last revised 14 Mar 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Refinements for Guarded Recursive Types
Guilhem Jaber, Colin Riba

To cite this version:
Guilhem Jaber, Colin Riba. Temporal Refinements for Guarded Recursive Types. 2020. �hal-
02512655v2�

https://hal.science/hal-02512655v2
https://hal.archives-ouvertes.fr

1

Temporal Refinements for Guarded Recursive Types

GUILHEM JABER, Université de Nantes, LS2N CNRS, Inria, France

COLIN RIBA, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

We propose a logic to reason on temporal properties of higher-order programs that handle infinite objects like

streams or infinite trees, represented via coinductive types. Specifications of programs are defined using safety

and liveness properties. A given program can then be proven to satisfy its specification, in a compositional

way, our logic being based on a type system.

The logic is presented as a refinement type system over the guarded lambda-calculus, a λ-calculus with
guarded recursive types. The refinements are formulae of a modal µ-calculus which embeds usual temporal

modal logics such as LTL and CTL.
The semantics of our system is given within a rich structure, the topos of trees, in which we build a

realizability model of the temporal refinement type system. We use in a crucial way the connection with

set-theoretic semantics to handle liveness properties.

Additional Key Words and Phrases: coinductive types, guarded recursive types, µ-calculus, refinement types,

topos of trees.

1 INTRODUCTION
Functional programming is by now well established to handle infinite data, thanks to declarative

definitions and equational reasoning on high-level abstractions, in particular when infinite objects

are represented with coinductive types. In such settings, programs in general do not terminate, but

are expected to compute a part of their output in a finite amount of time. For example, a program

expected to generate a stream should produce the next element in finite time: it is productive.

The goal of this paper is to be able to specify temporal properties of higher-order programs that

handle coinductive types. Temporal logics like LTL, CTL or the modal µ-calculus are widely used

to formulate, on infinite objects, safety and liveness properties (see e.g. [Baier and Katoen 2008]).

Typically, modalities like 2 (“always”) or 3 (“eventually”) are used to write properties of streams

or infinite trees and specifications of programs over such data.

We consider temporal refinement types {A | φ}, where A is a standard type of our program-

ming language, and φ is a formula of the (alternation-free) modal µ-calculus. Using refinement

types [Freeman and Pfenning 1991], temporal connectives are not reflected in the programming

language, and programs are formally independent from the shape of their temporal specifications.

One can thus give different refinement types to the same program. For example, the following two

types can be given to the same map function on streams:

map : ({B | ψ } → {A | φ}) −→ {StrB | 23[hd]ψ } −→ {StrA | 23[hd]φ}
map : ({B | ψ } → {A | φ}) −→ {StrB | 32[hd]ψ } −→ {StrA | 32[hd]φ}

(1)

These types are intended to mean that given f : B → A s.t. f (b) satisfies φ whenever b satisfiesψ ,
the function (map f) takes a stream with infinitely many (resp. ultimately all) elements satisfyingψ
to one with infinitely many (resp. ultimately all) elements satisfying φ.

Having a type system enables to reason compositionally on programs, by decomposing a speci-

fication to the various components of a program and picking the right temporal refinements for

each component in order to prove the global specification.

Authors’ addresses: Guilhem Jaber, Université de Nantes, LS2N CNRS, Inria, France, guilhem.jaber@univ-nantes.fr; Colin

Riba, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France , colin.riba@ens-lyon.fr.

2020. 2475-1421/2020/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://doi.org/

1:2 Guilhem Jaber and Colin Riba

Consg := λx .λs . fold(⟨x , s⟩) : A → ▶ StrgA → StrgA
hdg := λs . π0(unfold s) : StrgA → A
tlg := λs . π1(unfold s) : StrgA → ▶ StrgA

mapg := λf .fix(д).λs . Consg (f (hdg s)) (д ⊛ (tlg s))
: (B → A) → Strg B → StrgA

Fig. 1. Constructor, Destructors and Map on Guarded Streams.

Our system is built on top of guarded recursion [Nakano 2000], a simple device to control and

reason about unfoldings of fixpoints, and which provides a syntactic compositional productivity

check [Atkey and McBride 2013]. Coinductive types can be represented as guarded recursive

types [Møgelberg 2014]. See also [Birkedal et al. 2012; Bizjak et al. 2016; Clouston et al. 2016].

Our main challenge is that guarded fixpoints tend to have unique solutions. In particular, safety

properties (e.g. 2[hd]φ) can be correctly represented with guarded fixpoints, but not liveness

properties (e.g.3[hd]φ,32[hd]φ,23[hd]φ). As a result, naively incorporating3 in our refinement

types leads to unwanted behaviours.

Our system is based on the guarded λ-calculus of [Clouston et al. 2016], a higher-order program-

ming language with guarded recursion. It is equipped with a type modality ■, which allows for

typing productive but not causal functions, and that we use to import the standard set-theoretic

semantics of liveness properties into the type system. This leads to a two level system, with the

lower or internal level, which interacts with guarded recursion and at which only safety properties

are correctly represented, and the higher or external one, at which liveness properties are correctly

handled, but without direct access to guarded recursion. By restricting to the alternation-free modal

µ-calculus, in which fixpoints can always be computed in ω-steps, one can syntactically reason on

finite unfoldings of liveness properties, thus allowing for crossing down the safety barrier.

We provide example programs involving linear structures (colists, streams, fair streams [Bahr

et al. 2020; Cave et al. 2014]) and branching structures (resumptions à la [Krishnaswami 2013]), for

which we prove liveness properties similar to (1). Our system also handles safety properties on

breadth-first (infinite) tree traversals à la [Jones and Gibbons 1993] and [Berger et al. 2019].

Organization of the paper. We give an overview of our approach in §2. Then §3 presents the

syntax of the guarded λ-calculus. Our base temporal logic (without liveness) is introduced in §4,

and is used to define our refinement type system in §5. Liveness properties are handled in §6, and §7

provides some details on examples, The semantics is given in §8. Finally, we discuss related work

in §9 and future work in §10. Table 2 (§2) gathers the main refinement types we can give to example

functions, most of them defined in Table 4 (§7). Omitted material is available in the Appendices.

2 OUTLINE
An Overview of the Guarded λ-Calculus. Guarded recursion enforces productivity of programs

using a type system equipped with a type modality ▶, in order to indicate that one has access to a

value not right now but only “later”. One can then define guarded streams StrgA over a type A via

the guarded recursive definition StrgA = A × ▶ StrgA. Streams that inhabit this type have their

head available now, but their tail only one step in the future. The type modality ▶ is reflected in

the term language with the next operation. One also has a fixpoint constructor on terms fix(x).M
for guarded recursive definitions. They are typed with the rules:

Γ ⊢ M : A

Γ ⊢ next(M) : ▶A

Γ,x : ▶A ⊢ M : A

Γ ⊢ fix(x).M : A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:3

Typed Formulae Provability Refinement Types Subtyping Typing

Σ ⊢ φ : A ⊢A φ {A | φ} T ≤ U Γ ⊢ M : T
(§4) (where ⊢ φ : A, §4) (where ⊢ φ : A, §5) (T ,U refinement types, §5)

Table 1. Syntactic Classes and Judgments.

This allows for the constructor and basic destructors on guarded streams to be defined as in Fig. 1,

where fold(−) and unfold(−) are explicit operations for folding and unfolding guarded recursive

types. In the following, we use the infix notation a ::
g s for Consg a s . Using the fact that the type

modality ▶ is an applicative functor [McBride and Paterson 2008], we can distribute ▶ over the

arrow type. This is represented in the programming language by the infix applicative operator ⊛.
With it, one can define the usual map function on guarded streams as in Fig. 1.

Compositional Safety Reasoning on Streams. Given a property φ on a type A, we would like to

consider a subtype of StrgA that selects those streams whose elements all satisfy φ. To do so, we

introduce a temporal modality2[hd]φ, and consider the refinement type {StrgA | 2[hd]φ}. Suppose
for now that we can give the following refinement types to the basic stream operations:

hdg : {StrgA | 2[hd]φ} −→ {A | φ}
tlg : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

Consg : {A | φ} −→ ▶ {StrgA | 2[hd]φ} −→ {StrgA | 2[hd]φ}

By using the standard typing rule for λ-abstraction and application, together with the rules to type

fix(x).M and ⊛, we can type the function mapg with

({B | ψ } → {A | φ}) −→ {Strg B | 2[hd]ψ } −→ {StrgA | 2[hd]φ}

A Manysorted Temporal Logic. Our logical language, taken with minor adaptations from [Jacobs

2001b], is manysorted: for each type A we have formulae of type A (notation ⊢ φ : A), where φ
selects inhabitants of A.
We use basic modalities ([πi], [fold], [next], . . .) in refinements to navigate between types. For

instance, a formula φ of type A0, specifying a property over the inhabitants of A0, can be lifted to

the formula [π0]φ of type A0 ×A1, which intuitively describes those inhabitants of A0 ×A1 whose

first component satisfy φ. Given a formula φ of type A, one can define its “head lift” [hd]φ of type

StrgA, that enforces φ to be satisfied on the head of the provided stream. Also, one can define a

modality ⃝ such that given a formulaψ : StrgA, the formula ⃝ψ : StrgA enforcesψ to be satisfied

on the tail of the provided stream. These modalities are obtained as follows:

[hd]φ := [fold][π0]φ ⃝φ := [fold][π1][next]φ

We similarly have basic modalities [in0], [in1] on sum types. For instance, on the type of guarded

colists defined as CoListgA := Fix(X). 1 +A × ▶X , we can express the fact that a colist is empty

(resp. non-empty) with the formula [nil] := [fold][in0]⊤ (resp. [¬nil] := [fold][in1]⊤).
We also provide a deduction system ⊢A φ on temporal modal formulae. This deduction system is

used to define a subtyping relation T ≤ U between refinement types, with {A | φ} ≤ {A | ψ } when
⊢A φ ⇒ ψ . The subtyping relation thus incorporates logical reasoning in the type system.

In addition, we have greatest fixpoints formulae ναφ (so that formulae can have free typed

propositional variables), equipped with the reasoning principles of [Kozen 1983]. In particular, we

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:4 Guilhem Jaber and Colin Riba

can form an “always” modality 2 as

2φ := να . φ ∧ ⃝α : StrgA (where φ : StrgA)

which intuitively holds on a stream s = (si | i ≥ 0) iff φ holds on every substream (si | i ≥ n) for
n ≥ 0. If we rather start withψ : A, one first need to lift it to [hd]ψ : StrgA. Then 2[hd]ψ means

that all the elements of the stream satisfiesψ , since all its suffixes satisfy [hd]ψ .
Table 1 summarizes the different judgments used in this paper.

Beyond Safety. In order to handle liveness properties, we also need to have least fixpoints formulae

µα .φ. For example, this would give the “eventually” modality3φ := µα . φ ∨⃝α . With Kozen-style

rules, one could then give the following two types to the guarded stream constructor:

• Consg : {A | φ} → ▶ StrgA → {StrgA | 3[hd]φ};
• Consg : A → ▶ {StrgA | 3[hd]φ} → {StrgA | 3[hd]φ}.

But consider a finite base type B with two distinguished elements a, b, and suppose that we have

access to a modality [b] on B so that terms inhabiting {B | [b]} must be equal to b. Using the above

types for Consg, we could type the stream with constant value a, defined as fix(s).a ::
g s , with the

type {Strg B | 3[hd]b} that is supposed to enforce the existence of an occurrence of b in the stream.

Similarly, on colists we would have fix(s).a ::
g s of type {CoListg B | 3[nil]}, while3[nil] expresses

that a colist will eventually contains a nil, and is thus finite. Hence, liveness properties may interact

quite badly with guarded recursion. Let us look at this in a semantic model of guarded recursion.

“Internal” Semantics in the Topos of Trees. The types of the guarded λ-calculus can be interpreted as
sequences of indexed sets (X (n))n>0 where X (n) represents the values available “at time n”. In order

to interpret guarded recursion, one also needs to have access to functions rXn : X (n + 1) → X (n).
This means that the objects used to represent types are in fact presheaves over the poset (N\ {0}, ≤),
the functions rXn being the so-called restriction morphisms. The category S of such presheaves is

called the topos of trees [Birkedal et al. 2012]. For instance, the type Strg B of guarded streams over a

finite base type B is interpreted in S as the indexed sequence of sets (Bn)n>0 with restriction maps

rn taking (b0, . . . , bn−1, bn) to (b0, . . . , bn−1). We write JAK for the interpretation of a type A in S.

The Necessity of an “External” Semantics. The topos of trees cannot correctly handle liveness

properties. For instance, the formula 3[hd][b] should describe the set of streams that contain at

least one occurrence of b. But this is not possible in S. Indeed, the interpretation of 3[hd][b] in S

is a collection (Cn)n>0 with Cn ⊆ Bn . Now, any element of Bn can be extended to a stream which

contains an occurrence of a. Hence Cn should be equal to Bn , and the interpretation of 3[hd][b]
is the whole JStrg BK. More generally, guarded fixpoints have unique solutions in the topos of

trees [Birkedal et al. 2012], and 3φ = µα . φ ∨ ⃝φ gets the same interpretation as να . φ ∨ ⃝α .
We thus have a formal system with least and greatest fixpoints, that has a semantics inside the

topos of trees, but which does not correctly handle least fixpoints. On the other hand, it was shown

by [Møgelberg 2014] that the interpretation of guarded polynomial (i.e. first-order) recursive types

in the topos of trees induces final coalgebras for the corresponding polynomial functors on Set.
This applies e.g. to streams and colists. Hence, it makes sense to think of interpreting least fixpoint

formulae over such types “externally”, in the category Set of usual sets and functions.

The Constant Type Modality. Figure 2 represents adjoint functors Γ : S → Set and ∆ : Set → S.

To correctly handle least fixpoints µαφ : A, we would like to see them as subsets of ΓJAK in Set
rather than subobjects of JAK in S. On the other hand, the internal semantics in S is still necessary

to handle definitions by guarded recursion. We navigate between the internal semantics in S and

the external semantics in Set via the adjunction ∆ ⊣ Γ. This adjunction induces a comonad ∆Γ on

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:5

S Set

JφK subobject of JAK {|φ |} subset of ΓJAK

Internal External
Γ

∆

⊤ν ν , µ

J■AK := ∆ΓJAK
J[box]φK := ∆ {|φ |} (φ : A, [box]φ : ■A)

{|φ |} = ΓJφK (φ safe)

Fig. 2. Internal and External Semantics

S, which is represented in the guarded λ-calculus of [Clouston et al. 2016] by the constant type

modality ■. This gives “coinductive” versions of guarded recursive types, e.g. StrA := ■ StrgA
for streams and CoListA := ■CoListgA for colists, which allow for productive but not causal

programs [Clouston et al. 2016, Ex. 1.10.(3)].

Each formula now gets two interpretations: JφK in S and {|φ |} in Set. The external semantics

{|φ |} handles least fixpoints in the standard set-theoretic way, thus the two interpretations differ in

general. But we do have {|φ |} = ΓJφK when φ is “safe”, that is, when φ describes a safety property.

We have a modality [box]φ which lifts φ : A to ■A. By defining J[box]φK := ∆ {|φ |}, we correctly
handle the least fixpoints which are guarded by a [box] modality. When φ is safe, we can navigate

between {■A | [box]φ} and ■ {A | φ}, thus making available the comonad structure of ■ on [box]φ.

Approximating Least Fixpoints. In order to prove liveness properties on functions defined by

guarded recursion, one needs to navigate between say [box]3φ and 3φ, while 3φ is in general

unsafe. The fixpoint 3φ = µα .φ ∨ ⃝α is alternation-free (see e.g. [Bradfield and Walukiewicz 2018,

§4.1]). This implies that 3φ can be seen as the supremum of

φ , ⃝φ , ⃝ ⃝ φ , . . . ⃝n φ , ⃝n+1φ , . . .

Note that each ⃝nφ is safe when φ is safe. More generally, we can approximate alternation-free

µαφ by their finite unfoldings φn(⊥), à la Kleene. We extend the logic with finite iterations µkαφ,
where k is an “iteration variable”, and where µkαφ is seen as φk (⊥). We have for instance

3kφ := µkα . φ ∨ ⃝α

If φ is safe then so is 3kφ. For safe φ,ψ , the guarded recursive mapg can be safely typed as

mapg : ({B | ψ } → {A | φ}) −→
{
Strg B

�� 3k [hd]ψ
}

−→
{
StrgA

�� 3k [hd]φ
}

which gives the following type for is lift to coinductive streams:

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]3[hd]ψ } −→ {StrA | [box]3[hd]φ}

Overview of Some Examples. Table 2 recaps our main examples of refinement typings.We touch on

it here, more details are given in §7. The compositemodalities23 and32 over streams are read resp.

as “infinitely often” and “eventually always”. Provided with a function {B | ψ } → {A | φ}, the map
function on coinductive streams returns a stream which infinitely often (resp. eventually always)

satisfies φ whenever its stream argument infinitely often (resp. eventually always) satisfiesψ .
We can express that appendg returns a non-empty colist if one of its argument is non-empty.

With the formula 3[nil] (which says that a colist is finite), we can express that the coinductive

append returns a finite colist if its arguments are both finite. In addition, if the first argument of

append has an element which satisfies φ, then the result has an element which satisfies φ. The
same holds true if the first argument is finite while the second one has an element which satisfies φ.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:6 Guilhem Jaber and Colin Riba

Map over coinductive streams (with △ either 2, 3, 32 or 23)

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]△[hd]ψ } −→ {StrA | [box]△[hd]φ}
Diagonal of coinductive streams of streams (with △ either 2 or 32)

diag : {Str(StrA) | [box]△[hd][box]2[hd]φ} −→ {StrA | [box]△[hd]φ}
A fair stream of Booleans (adapted from [Bahr et al. 2020; Cave et al. 2014])

fb : CoNat −→ CoNat −→ Str Bool
fb 0 1 : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}

Append on guarded recursive colists
appendg : {CoListgA | [¬nil]} −→ CoListgA −→ {CoListgA | [¬nil]}
appendg : CoListgA −→ {CoListgA | [¬nil]} −→ {CoListgA | [¬nil]}

Append on coinductive colists
append : {CoListA | [box]3[hd]φ} −→ CoListA −→ {CoListA | [box]3[hd]φ}
append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[hd]φ} −→ {CoListA | [box]3[hd]φ}
append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]}

Breadth-first tree traversal
bftg

: {TreegC | ∀2[lbl]ϑ } −→ {CoListgC | 2[hd]ϑ }
(à la [Jones and Gibbons 1993] or with Hofmann’s algorithm (see e.g. [Berger et al. 2019]))

A scheduler of resumptions (adapted from [Krishnaswami 2013])

sched : {ResA | [box]3[Ret]} −→ {ResA | [box]3[Ret]} −→ {ResA | [box]3[Ret]}
sched : {ResA | [box]3[now]φ} −→ {ResA | [box]3[now]φ} −→ {ResA | [box]3[now]φ}
sched : {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]}
sched : {ResA | [box]23[out]φ} −→ {ResA | [box]23[out]φ} −→ {ResA | [box]23[out]φ}

(where 3 is either ∀3 or ∃3, 2 is either ∀2 or ∃2, and [out] is either [∧out] or [∨out])

Table 2. Some Refinement Typings (functions defined in Table 4).

Our next example is about resumptions, introduced originally in [Milner 1975] to represent

interactions in a concurrent setting. We adapt here the version of [Krishnaswami 2013]. Our

resumptions consist of a type ResgA, parametrized by an “input” type I and an “output” type O,
and with constructors:

Retg : A → ResgA and Contg : (I → (O × ▶ ResgA)) → ResgA

Here, Retg(a) represents a computation which returns the value a : A, while Contg⟨f ,k⟩ (with
⟨f ,k⟩ : I → (O × ▶ ResgA)) represents a computation which on input i : I outputs f i : O
and continues with the computation ki : ▶ ResgA. Provided with resumptions p,q : ResgA, the
scheduler (schedg p q), adapted from [Krishnaswami 2013], first evaluates p. If p returns, then the

whole computation returns, with the same value. Otherwise, p evaluates to say Contg⟨f ,k⟩. Then
(schedg p q) produces a computation which on input i : I outputs f i and continues with the

computation (schedg q (ki)), thus switching arguments.

Consider now formulae φ : O and ψ : ResgA. For each fixed i : I, we have a formula [outi]φ :

ResgA which is satisfied by Contg⟨f ,k⟩ if f i satisfies φ, and a formula ⃝iψ : ResgA which is

satisfied by Contg⟨f ,k⟩ if ki satisfies [next]ψ . This is expressed by the typings

Contg : {I → (O × ▶ ResgA) | i ∥→ [π0]φ} −→ {ResgA | [outi]φ}
Contg : {I → (O × ▶ ResgA) | i ∥→ [π1][next]ψ } −→ {ResgA | ⃝iψ }

If I is a finite base type, it is possible to quantify over its inhabitants:

[∧out]φ := ∧i∈I[outi]φ : ResgA Tψ := ∧i∈I ⃝i ψ : ResgA
[∨out]φ := ∨i∈I[outi]φ : ResgA Uψ := ∨i∈I ⃝i ψ : ResgA

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:7

v ::= M ::= v | x E ::= •

| λx .M | MM | EM
| ⟨M0,M1⟩ | π0(M) | π0(E)
| ⟨⟩ | π1(M) | π1(E)
| in0(M) | caseM of | caseE of
| in1(M) (x .N0 |x .N1) (x .N0 |x .N1)

| fold(M) | unfold(M) | unfold(E)
| boxσ (M) | unbox(M) | unbox(E)
| next(M) | prevσ (M) | prev[](E)

| M ⊛ M | E ⊛ M
| fix(x).M | v ⊛ E

(λx .M)N ; M[N /x]
πi (⟨M0,M1⟩) ; Mi

case ini (M) of (x .N0 |x .N1) ; Ni [M/x]
unfold(fold(M)) ; M

fix(x).M ; M[next(fix(x).M)/x]
next(M) ⊛ next(N) ; next(MN)

unbox(boxσ (M)) ; Mσ
prev[](next(M)) ; M

prevσ (M) ; prev[](Mσ) (σ , [])

M ; N

E[M] ; E[N]

Fig. 3. Syntax and Operational Semantics of the Pure Calculus.

We thus obtain the following CTL-like variants of 2 and 3 (whereψ : ResgA):

∀2ψ := να . ψ ∧ Tα : ResgA ∀3ψ := µα . ψ ∨ Tα : ResgA
∃2ψ := να . ψ ∧ Uα : ResgA ∃3ψ := µα . ψ ∨ Uα : ResgA

The formula ∃3φ holds on a resumption if there is a finite sequence of inputs which leads to a

resumption satisfying φ, while ∀3φ holds on a resumption if φ holds at some point for any finite

sequence of inputs. Moreover, ∃2φ expresses that there is an infinite sequence of inputs in which

the resumption never returns and along which φ always holds, while ∀2φ expresses that for all

infinite sequence of inputs, the resumption never returns and φ always holds. For instance, the

composite formula ∃2∃3[Ret] says that there is an infinite sequence of inputs along which (1) the

resumption does not return and (2), at any point, there is a finite sequence of inputs which leads to

a return. Our system can express that the coinductive (sched p q) returns in finite time if both p
and q return in finite time, both along some or along any sequence of inputs. We moreover have

expected 23 properties for all possible (consistent) combinations of ∃/∀ and [Ret]/[∨out]/[∧out].

3 THE PURE CALCULUS
Our system lies on top of the guarded λ-calculus of [Clouston et al. 2016]. We briefly discuss it here.

Terms. We consider values and terms from the grammar given in Fig. 3 (left). In both boxσ (M)

and prevσ (M), σ is a delayed substitution of the form σ = [x1 7→ M1, . . . ,xk 7→ Mk] and such that

boxσ (M) and prevσ (M) bind x1, . . . ,xk inM . We use the following conventions of [Clouston et al.

2016]: box(M) and prev(M) (without indicated substitution) stand resp. for box[](M) and prev[](M)

i.e. bind no variable ofM . Moreover, boxι (M) stands for box[x1 7→x1, ...,xk 7→xk](M) where x1, . . . ,xk
is a list of all free variables ofM , and similarly for prevι (M).

We consider the weak call-by-name reduction of [Clouston et al. 2016], recalled in Fig. 3 (right).

Productivity of the operational semantics is ensured by the insertion of next in the reduction of fix.

Pure Types. Pure types (notation A,B, etc.) are the closed types over the grammar

A ::= 1 | A +A | A ×A | A → A | ▶A | X | Fix(X).A | ■A

where, (1) in the case Fix(X).A, each occurrence of X in Amust be guarded by a ▶, and (2) in the

case of ■A, the type A is closed (i.e. has no free type variable). Guarded recursive types are built

with the fixpoint constructor Fix(X).A, which allows for X to appear in A both at positive and

negative positions, but only under a ▶. In this paper we shall only consider positive types. We

could have included primitive infinite base types (say a type of natural numbers as in [Clouston

et al. 2016]), but we refrain to do so in order to keep the system simpler.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:8 Guilhem Jaber and Colin Riba

(x : A) ∈ Γ

Γ ⊢ x : A

Γ,x : B ⊢ M : A

Γ ⊢ λx .M : B → A

Γ ⊢ M : B → A Γ ⊢ N : B

Γ ⊢ MN : A Γ ⊢ ⟨⟩ : 1
Γ ⊢ M0 : A0 Γ ⊢ M1 : A1

Γ ⊢ ⟨M0,M1⟩ : A0 ×A1

Γ ⊢ M : Ai

Γ ⊢ ini (M) : A0 +A1

for i ∈ {0, 1},
Γ ⊢ M : A0 +A1 Γ,x : Ai ⊢ Ni : B

Γ ⊢ caseM of (x .N0 |x .N1) : B

Γ ⊢ M : A0 ×A1

Γ ⊢ πi (M) : Ai

Γ,x : ▶A ⊢ M : A

Γ ⊢ fix(x).M : A

Γ ⊢ M : A[Fix(X).A/X]

Γ ⊢ fold(M) : Fix(X).A

Γ ⊢ M : Fix(X).A

Γ ⊢ unfold(M) : A[Fix(X).A/X]

Γ ⊢ M : ▶(B → A) Γ ⊢ N : ▶B

Γ ⊢ M ⊛ N : ▶A

Γ ⊢ M : A

Γ ⊢ next(M) : ▶A

x1 : A1, . . . ,xk : Ak ⊢ M : A Γ ⊢ Mi : Ai with Ai constant for 1 ≤ i ≤ k

Γ ⊢ prev[x1 7→M1, ...,xk 7→Mk]
(M) : A

x1 : A1, . . . ,xk : Ak ⊢ M : A Γ ⊢ Mi : Ai with Ai constant for 1 ≤ i ≤ k

Γ ⊢ box[x1 7→M1, ...,xk 7→Mk](M) : ■A

Γ ⊢ M : ■A

Γ ⊢ unbox(M) : A

Fig. 4. Typing Rules of the Pure Calculus.

Example 3.1. We can code a finite base type B = {b1, . . . , bn} as a sum of unit types

∑n
i=1 1 =

1 + (· · · + 1), where the ith component of the sum is intended to represent the element bi of B. At
the term level, the elements of B are represented as compositions of injections inj1 (inj2 (. . . inji ⟨⟩)).

For instance, Booleans are represented by Bool := 1 + 1, with tt := in0(⟨⟩) and ff := in1(⟨⟩).

Example 3.2 (Guarded Recursive Types). Besides streams (StrgA), colists (CoListgA), conatural
numbers (CoNatg) and infinite binary trees (TreegA), we consider a type ResgA of resumptions

(parametrized by I, O) adapted from [Krishnaswami 2013], and an higher-order recursive type

RougA, used in Martin Hofmann’s breadth-first tree traversal (see e.g. [Berger et al. 2019]):

StrgA := Fix(X). A × ▶X CoListgA := Fix(X). 1 +A × ▶X
TreegA := Fix(X). A × (▶X × ▶X) CoNatg := Fix(X). 1 + ▶X
ResgA := Fix(X). A + (I → (O × ▶X)) RougA := Fix(X). 1 + ((▶X → ▶A) → A)

Definition 3.3. A pure type A is constant if each occurrence of ▶ in A is guarded by a ■ modality.

The typing rules of the pure calculus are given in Fig. 4. Intuitively, ■ behaves as a ×-preserving

comonad, and constant types allow for relaxing syntactic constraints on the shape of types which

are semantically under a ■ (see e.g. [Clouston et al. 2016, Lem. 2.6]).

Example 3.4 (Operations on Guarded Recursive Types). Figure 1 defines some operations on guarded

streams. On other types of Ex. 3.2, we have e.g. the constructors of colists

Nilg := fold(in0⟨⟩) : CoListgA
Consg := λx .λxs .fold(in1⟨x ,xs⟩) : A → ▶CoListgA → CoListgA

Also, infinite binary trees TreegA have operations

Nodeg : A → ▶ TreegA → ▶ TreegA → TreegA song
ℓ

: TreegA → ▶ TreegA
labelg : TreegA → A songr : TreegA → ▶ TreegA

Example 3.5. Coinductive types are guarded recursive types under a ■. For instance

StrA := ■ StrgA CoListA := ■CoListgA CoNat := ■CoNatg ResA := ■ResgA

with A, I, O constant. Basic operations on guarded types lift to coinductive ones. For instance

Cons := λx .λs .boxι
(
Consg x next(unbox s)

)
: A → StrA → StrA

hd := λs .hdg (unbox s) : StrA → A
tl := λs .boxι

(
prevι (tl

g (unbox s))
)

: StrA → StrA

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:9

These definitions follow a general pattern to lift a function over a guarded recursive type into one

over its coinductive version, by performing an η-expansion with some box and unbox inserted in

the right places. For example, one can define the map function on coinductive streams as:

map := λf .λs .boxι
(
mapg f (unbox s)

)
: (B → A) −→ StrB −→ StrA

4 A TEMPORAL MODAL LOGIC
We present here a logic of (modal) temporal specifications. We focus on syntactic aspects. The

semantics is discussed in §8. For the moment the logic has only one form fixpoints (ναφ). Its
extension with least fixpoints (µαφ) is presented in §6.

Manysorted Modal Temporal Formulae. The main ingredient of this paper is the logical language

we use to annotate pure types when forming refinement types. This language, that we took with

minor adaptations from [Jacobs 2001b], is manysorted: for each pure type A we have formulae φ of

type A (notation ⊢ φ : A) as defined in Fig. 5. The idea is that a closed formula φ of type A expresses

a property over the inhabitants of A, so that the refinement type

{A | φ}

may be thought about as a representing a subset of the inhabitants of A. For every pure type A,
formulae of type A are closed under usual propositional connectives. Moreover (and that is the key

ingredient we took from [Jacobs 2001b]), formulae of compound types (sayA0 ×A1 orA0 +A1) may

be obtained from formulae of the component types. For instance a formula φ of type A0, specifying

a property over the inhabitants of A0, can be lifted to the formula [π0]φ of type A0 × A1, which

selects those inhabitants of A0 ×A1 whose first component satisfies φ.

Example 4.1. Given a finite base type B = {b1, . . . , bn} as in Ex. 3.1, with element bi represented by
inj1 (inj2 (. . . inji ⟨⟩)), the formula [inj1][inj2] . . . [inji](⊤) represents the singleton subset {bk } of B.
On Bool, we have the formulae [tt] := [in0]⊤ and [ff] := [in1]⊤ representing resp. tt and ff.

Example 4.2. (a) On guarded streams, we have [hd]φ := [fold][π0]φ and ⃝ψ := [fold][π1][next]ψ ,
with [hd]φ : StrgA and ⃝ψ : StrgA provided φ : A andψ : StrgA.

(b) On colists, let [hd]φ := [fold][in1][π0]φ and ⃝ψ := [fold][in1][π1][next]ψ . Also, [nil] :=

[fold][in0]⊤ (resp. [¬nil] := [fold][in1]⊤), expresses that a colist is empty (resp. non-empty).

(c) The formula [hd][a] ⇒ ⃝[hd][b] intuitively means that if the head of a stream is a, then its

second element (the head of its tail) should be b.
(d) On (guarded) infinite binary trees overA, we also have a modality [lbl]φ := [fold][π0]φ : TreegA

(provided φ : A). Moreover, we have modalities ⃝ℓ and ⃝r defined on formulae φ : TreegA
as ⃝ℓφ := [fold][π1][π0][next]φ and ⃝rφ := [fold][π1][π1][next]φ. Intuitively, [lbl]φ should

hold on a tree t over A iff the root label of t satisfies φ, and ⃝ℓφ (resp. ⃝rφ) should hold on t
iff φ holds on the left (resp. right) son of t .

Formulae have fixpoints ναφ. The rules of Fig. 5 thus allow for the formation of formulae with

free typed propositional variables (ranged over by α , β , . . .), and involve contexts Σ of the form

α1 : A1, . . . ,αn : An . In the formation of a fixpoint, the side condition “α guarded in φ” asks that
each occurrence of α is beneath a [next] modality. We assume a usual positivity condition of α in φ.
It is defined as with relations α Pos φ and α Neg φ. The rules are the usual ones (see App. A). We

just note here that [ev(−)](−) is contravariant in its first argument.

Remark 4.3. Note that [box]φ can only be formed for closed φ.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:10 Guilhem Jaber and Colin Riba

(α : A) ∈ Σ

Σ ⊢ α : A Σ ⊢ ⊥ : A Σ ⊢ ⊤ : A

Σ ⊢ φ : A

Σ,α : B ⊢ φ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ⇒ ψ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ∧ψ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ∨ψ : A

Σ ⊢ φ : Ai

Σ ⊢ [πi]φ : A0 ×A1

Σ ⊢ φ : Ai

Σ ⊢ [ini]φ : A0 +A1

Σ ⊢ ψ : B Σ ⊢ φ : A

Σ ⊢ [ev(ψ)]φ : B → A

Σ ⊢ φ : A[Fix(X).A/X]

Σ ⊢ [fold]φ : Fix(X).A

Σ ⊢ φ : A

Σ ⊢ [next]φ : ▶A

⊢ φ : A

⊢ [box]φ : ■A
(ν-F)

Σ,α : A ⊢ φ : A α Pos φ

Σ ⊢ ναφ : A
(α guarded in φ)

Fig. 5. Formation Rules of Formulae (where A, B are pure types).

Example 4.4. (a) The modality 2 makes it possible to express a range of safety properties. For

instance, assuming φ,ψ : StrgA, the formula 2(ψ ⇒ ⃝φ) is intended to hold on a stream

s = (si | i ≥ 0) iff, for all n ∈ N, if (si | i ≥ n) satisfiesψ , then (si | i ≥ n + 1) satisfies φ.
(b) The modality 2 has its two CTL-like variants on TreegA, namely ∀2φ := να . φ ∧ (⃝ℓα ∧⃝rα)

and ∃2φ := να . φ ∧ (⃝ℓα ∨ ⃝rα). Assuming ψ : A, ∀2[lbl]ψ is intended to hold on a tree

t : TreegA iff all node-labels of t satisfyψ , while ∃2[lbl]ψ holds on t iffψ holds on all nodes of

some infinite path from the root of t .

Modal Theories. Formulae are equipped with a modal deduction system which enters the type

system via a subtyping relation (§5). For each pure type A, we have an intuitionistic theory ⊢A

(the general case) and a classical theory ⊢A
c
(which is only assumed under ■/[box]), summarized

in Fig. 6 and Table 3. The atomic modalities [πi], [fold], [next], [ini] and [box] have deterministic

branching (see Fig. 12, §8). In any case, ⊢A
(c)
φ is only defined when ⊢ φ : A (and so when φ has no

free propositional variable).

Fixpoints ναφ are equipped with their usual axioms from [Kozen 1983]. We can get the axioms

of the intuitionistic (normal) modal logic IK [Plotkin and Stirling 1986] (see also e.g. [Marin 2018;

Simpson 1994]) for [πi], [fold] and [box] but not for [ini] nor for the intuitionistic [next]. For [next],
in the intuitionistic case this is due to semantic issues with step indexing (discussed in §8) which

are absent from the classical case. As for [ini], we have a logical theory allowing for a coding of

finite base types as finite sum types, which in particular allows to derive, for a finite base type B

⊢B
∨

a∈B

(
[a] ∧

∧
b∈B
b,a

¬[b]
)

This implies that the necessitation rule does not hold for [ini] (see Rem. 4.6).

Definition 4.5 (Modal Theories). For each pure typeA, the intuitionistic and classicalmodal theories

⊢A and ⊢A
c
are defined by mutual induction as follows:

• The theory ⊢A is deduction for intuitionistic propositional logic augmented with the checkmarked

(✓) axioms and rules of Table 3 and the axioms and rules of Fig. 6 (for ⊢A).

• The theory ⊢A
c
is ⊢A augmented with the axioms (P) and (C⇒) for [next] and with the axiom

(CL) (Fig. 6).
In any case, ⊢A φ and ⊢A

c
φ are only defined when ⊢ φ : A.

Remark 4.6. All modalities ([πi], [fold], [next], [ini], [ev(ψ)] and [box]) satisfy the monotonicity

rule (RM) and are thus monotone in the sense of [Chellas 1980] (from which we borrowed the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:11

Name Formulation [πi] [fold] [next] [ini] [ev(ψ)] [box] [hd] ⃝

(RM)
⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(C) [△]φ ∧ [△]ψ =⇒ [△](φ ∧ψ) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(N) [△]⊤ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(P) [△]⊥ =⇒ ⊥ ✓ ✓ (C) ✓ ✓ ✓ (C)

(C∨) [△](φ ∨ψ) =⇒ [△]φ ∨ [△]ψ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(C⇒) ([△]ψ ⇒ [△]φ) ⇒ [△](ψ ⇒ φ) ✓ ✓ (C) ✓ ✓ (C)

Table 3. Modal Axioms and Rules (types omitted in ⊢ and (C) marks axioms assumed for ⊢c but not for ⊢).

⊢A
c
((φ ⇒ ψ) ⇒ φ) ⇒ φ

(CL)
⊢A
c
φ

⊢■A [box]φ
⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ

⊢B→A ([ev(ψ0)]φ ∧ [ev(ψ1)]φ) ⇒ [ev(ψ0 ∨ψ1)]φ ⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
⊢A0+A1 ([ini]⊤) ⇒ (¬[ini]φ ⇔ [ini]¬φ) ⊢A ναφ ⇒ φ[ναφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναφ

Fig. 6. Modal Axioms and Rules.

terminology used in Table 3, see also [Frittella 2014; Hansen 2003]). In our context, the normal

intuitionistic modal logic IK of [Plotkin and Stirling 1986] is (RM) + (C) + (N) + (P) + (C∨) + (C⇒),

while the normal modal logic K is IK + (CL) (see e.g. [Blackburn et al. 2002]).

Example 4.7. Using the rules to reason on fixpoints, we can derive the following in ⊢Str
g A

:

2ψ ⇒ (ψ ∧ ⃝2ψ) and (ψ ∧ ⃝2ψ) ⇒ 2ψ

Remark 4.8. The modalities [ev(−)] (denoted ∥→ in §2 and §7) provide a mean to incorporate

properties of functions (see §7). They are a form of internalized logical predicates in the sense

of [Jacobs 2001a, §9.2] (see §8).

5 A TEMPORALLY REFINED TYPE SYSTEM
Temporal Refinement Types. Temporal refinement types (or simply types), notation T ,U ,V , etc.,

are defined by the grammar:

T ::= A | {A | φ} | T +T | T ×T | T → T | ▶T | ■T

So types are built from (closed) pure typesA and temporal refinements {A | φ}, where ⊢ φ : A. They
allow all the type constructors of pure types (where T has no free type variables in ■T).

Subtyping. As a refinement type {A | φ} intuitively represents a subset of the inhabitants of A, it
is natural to equip our system with a notion of subtyping. In addition to the usual rules for product,

arrow and sum types, our subtyping relation is made of two more ingredients. The first follows the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:12 Guilhem Jaber and Colin Riba

T ≤ |T | A ≤ {A | ⊤}

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

⊢A
c
φ ⇒ ψ

{■A | [box]φ} ≤ {■A | [box]ψ }

{▶A | [next]φ} ≡ ▶ {A | φ} {B → A | [ev(ψ)]φ} ≡ {B | ψ } → {A | φ}

Fig. 7. Subtyping Rules (excerpt).

(Pii -I)
Γ ⊢ Mi : {Ai | φ} Γ ⊢ M1−i : A1−i

Γ ⊢ ⟨M0,M1⟩ : {A0 ×A1 | [πi]φ}
(Pii -E)

Γ ⊢ M : {A0 ×A1 | [πi]φ}

Γ ⊢ πi (M) : {Ai | φ}

(Ev-I)
Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}
(Ev-E)

Γ ⊢ M : {B → A | [ev(ψ)]φ} Γ ⊢ N : {B | ψ }

Γ ⊢ MN : {A | φ}

(Fd-I)
Γ ⊢ M : {A[Fix(X).A/X] | φ}

Γ ⊢ fold(M) : {Fix(X).A | [fold]φ}
(Fd-E)

Γ ⊢ M : {Fix(X).A | [fold]φ}
Γ ⊢ unfold(M) : {A[Fix(X).A/X] | φ}

(Inji -E)
Γ ⊢ M : {A0 +A1 | [ini]φ} Γ,x : {Ai | φ} ⊢ Ni : U Γ,x : A1−i ⊢ N1−i : U

Γ ⊢ caseM of (x .N0 |x .N1) : U

(∨-E)

for i ∈ {0, 1},
Γ ⊢ M : {A | φ0 ∨ φ1} Γ,x : {A | φi } ⊢ N : U

Γ ⊢ N [M/x] : U
(Inji -I)

Γ ⊢ M : {Ai | φ}

Γ ⊢ ini (M) : {A0 +A1 | [ini]φ}

(Sub)
Γ ⊢ M : T T ≤ U

Γ ⊢ M : U
(MP)

Γ ⊢ M : {A | ψ ⇒ φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ}
(ExF)

Γ ⊢ M : {A | ⊥} Γ ⊢ N : |U |

Γ ⊢ N : U

Fig. 8. Typing Rules for Refined Modal Types.

principle that our refinement type system is meant to prove properties of programs, and not to

type more programs, so that (say) a type of the form {A | φ} → {B | ψ } is a subtype of A → B. We

formalize this with the notion of underlying pure type |T | of a type T . The second ingredient is the

modal theory ⊢A φ of §4. The subtyping rules concerning refinements are given in Fig. 7, where

T ≡ U enforces bothT ≤ U andU ≤ T . The full set of rules is given in Fig. 15 in §B. Notice that we

do not incorporate folding and unfolding of guarded recursive types in subtyping.

Typing with Temporal Refinement Types. Typing for refinement types is given by the rules of

Fig. 8, together with the rules of Fig. 4 extended to refinement types, where T is constant if |T | is
constant. Modalities [πi], [ini], [fold] and [ev(−)] (but [next]) have introduction rules extending

those of the corresponding term formers.

Example 5.1. Since φ ⇒ ψ ⇒ (φ ∧ψ) and using two times the rule (MP), we get the first derived

rule below, from which we can deduce the second one:

Γ ⊢ M : {A | φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ ∧ψ }

Γ ⊢ M : {A | φ} Γ ⊢ N : {B | ψ }

Γ ⊢ ⟨M,N ⟩ : {A × B | [π0]φ ∧ [π1]ψ }

Example 5.2. Using the implications of Ex. 4.7 in subtyping, we get the following derived rules:

Γ ⊢ M : {StrgA | 2φ}

Γ ⊢ M : {StrgA | φ ∧ ⃝2φ}
and

Γ ⊢ M : {StrgA | φ ∧ ⃝2φ}

Γ ⊢ M : {StrgA | 2φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:13

(µ-F)
Σ,α : A ⊢ φ : A

Σ ⊢ µαφ : A

Σ,α : A ⊢ φ : A

Σ ⊢ µtαφ : A

Σ,α : A ⊢ φ : A

Σ ⊢ νtαφ : A

Fig. 9. Extended Formation Rules of Formulae (where α Pos φ and α is guarded in φ).

Example 5.3 (“Next-Step” (⃝) on Guarded Streams). We have the following for Consg and tlg:

Consg = λx .λs .fold(⟨x , s⟩) : A −→ ▶ {StrgA | φ} −→ {StrgA | ⃝φ}
tlg = λs .π1(unfold s) : {StrgA | ⃝φ} −→ ▶ {StrgA | φ}

Example 5.4 (“Always” (2) on Guarded Streams). The following are easy to derive:

Consg : {A | φ} −→ ▶ {StrgA | 2[hd]φ} −→ {StrgA | 2[hd]φ}
hdg : {StrgA | 2[hd]φ} −→ {A | φ}
tlg : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

mapg : ({B | ψ } → {A | φ}) −→ {Strg B | 2[hd]ψ } −→ {StrgA | 2[hd]φ}
mergeg : {StrgA | 2[hd]φ0} −→ {StrgA | 2[hd]φ1} −→ {StrgA | 2([hd]φ0 ∨ [hd]φ1)}

where mergeg takes two guarded streams and interleaves them:

mergeg : StrgA −→ StrgA −→ StrgA
:= fix(д).λs0.λs1. (hdg s0) ::g next

(
(hdg s1) ::g (д ⊛ (tlg s0) ⊛ (tlg s1))

)
6 POLYNOMIAL TYPES, LIVENESS PROPERTIES AND THE SAFE FRAGMENT
The system presented so far has only one form of fixpoints in formulae (ναφ). We now present

our full system, which also handles least fixpoints (µαφ) and thus liveness properties. A key role is

played by polynomial guarded recursive types, that we discuss first.

Strictly Positive and Polynomial Types. Strictly positive types (notation P+,Q+, etc.) are given by

P+ ::= A | X | ▶P+ | P+ + P+ | P+ × P+ | Fix(X).P+ | B → P+

where A, B are (closed) constant pure types. Strictly positive types are a convenient generalization

of polynomial types. A guarded recursive type Fix(X).P(X) is polynomial if P(X) is induced by

P(X) ::= A | ▶X | P(X) + P(X) | P(X) × P(X) | B → P(X)

where A, B are (closed) constant pure types. Note that if Fix(X).P(X) is polynomial, X cannot occur

on the left of an arrow (→) in P(X). We say that Fix(X).P(X) (resp. P+) is finitary polynomial (resp.

finitary strictly positive) if B is a finite base type (see Ex. 3.1) in the above grammars.

Example 6.1. For A a constant pure type, e.g. StrgA, CoListgA and TreegA as well as Strg(StrA),
CoListg(StrA) and ResgA (with I, O constant) are polynomial. More generally, polynomial types

include all recursive types Fix(X).P(X) where P(X) is of the form

n∑
i=0

Ai × (▶X)Bi (2)

with Ai , Bi constant. On the other hand, the non-strictly positive recursive type RougA of Ex. 3.2,

used in Hofmann’s breadth-first traversal (see e.g. [Berger et al. 2019]), is not polynomial.

The set-theoretic counterpart of our polynomial recursive types are the exponent polynomial

functors of [Jacobs 2016], which all have final Set-coalgebras (see e.g. [Jacobs 2016, Cor. 4.6.3]).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:14 Guilhem Jaber and Colin Riba

⊢A φ[µαφ/α] ⇒ µαφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαφ ⇒ ψ ⊢A θt+1αφ ⇔ φ[θtαφ/α] ⊢A µ0αφ ⇔ ⊥

JtK ≤ JuK
⊢A µtαφ ⇒ µuαφ ⊢A µtαφ ⇒ µαφ

JtK ≥ JuK
⊢A νtαφ ⇒ νuαφ ⊢A ναφ ⇒ νtαφ ⊢A ν0αφ ⇔ ⊤

Fig. 10. Extended Modal Axioms and Rules (where A is a pure type and θ is either µ or ν).

The Full Temporal Modal Logic. We assume given a first-order signature of iteration terms (notation

t, u, etc.), with iteration variables k, ℓ, etc., and for each iteration term t(k1, . . . ,km) with variables

as shown, a given primitive recursive function JtK : Nm → N. We assume a term 0 for 0 ∈ N and a

term k+1 for the successor function n ∈ N 7→ n + 1 ∈ N.
The formulae of the full temporal modal logic extend those of Fig. 5 with least fixpoints µαφ

and with approximated fixpoints µtαφ and νtαφ where t is an iteration term (see Fig. 9). Least

fixpoints µαφ are equipped with their usual Kozen axioms. In addition, iteration formulae νtαφ(α)
and µtαφ(α) have axioms expressing that they are indeed iterations of φ(α) from resp. ⊤ and ⊥. A

fixpoint logic with iteration variables was already considered in [Sprenger and Dam 2003].

Definition 6.2 (Full Modal Theories). The full intuitionistic and classical modal theories (still denoted

⊢A and ⊢A
c
) are defined by extending Def. 4.5 with the axioms and rules of Fig. 10.

Example 6.3. Least fixpoints allow us to define liveness properties. On streams and colists, we

have 3φ := µα . φ ∨ ⃝α and φ U ψ := µα . ψ ∨ (φ ∧ ⃝α). On trees, we have the CTL-like
∃3φ := µα . φ ∨ (⃝ℓα ∨ ⃝rα) and ∀3φ := µα . φ ∨ (⃝ℓα ∧ ⃝rα).

Remark 6.4. On finitary trees (as in (2) but withAi , Bi finite base types), we have all formulae of the

modal µ-calculus. For this fragment, satisfiability is decidable (see e.g. [Bradfield and Walukiewicz

2018]), as well as the classical theory ⊢c by completeness of Kozen’s axiomatization [Walukiewicz

2000] (see [Santocanale and Venema 2010] for completeness results on fragments of the µ-calculus).

The Safe and Smooth Fragments. We now discuss two related but distinct fragments of the

temporal modal logic. Both fragments directly impact the refinement type system by allowing for

more typing rules. The safe fragment plays a crucial role, because it reconciles the internal and

external semantics of our system (see §8). It gives the subtying rule for ■ (Fig. 11), which makes

available the comonad structure of ■ on [box]φ when φ is safe.

Definition 6.5 (Safe Formula). A formula α1 : A1, . . . ,αn : An ⊢ φ : A is safe if

(i) the types A1, . . . ,An ,A are strictly positive, and

(ii) for each occurrence in φ of a modality [ev(ψ)], the formulaψ is closed, and

(iii) each occurrence in φ of a least fixpoint (µα(−)) and of an implication (⇒) is guarded by a [box].

Note that the safe restriction imposes no condition on approximated fixpoints µtα . Recalling that
the theory under a [box] is ⊢A

c
, the only propositional connectives accessible to ⊢A in safe formulae

are those on which ⊢A and ⊢A
c
coincide. The formula [¬nil] = [fold][in1]⊤ is safe. Moreover:

Example 6.6. Any formula without fixpoint nor [ev(−)] is equivalent in ⊢c to a safe one. It φ is safe,

then so are [hd]φ, [lbl]φ, as well as △φ (for △ ∈ {2,∀2,∃2}) and [box]△φ (for △ ∈ {3,∃3,∀3}).

Definition 6.7 (Smooth Formula). A formula α1 : A1, . . . ,αn : An ⊢ φ : A is smooth if

(i) the types A1, . . . ,An ,A are finitary strictly positive, and

(ii) for each occurrence in φ of a modality [ev(ψ)], the formulaψ is closed, and

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:15

φ safe

{■A | [box]φ} ≡ ■ {A | φ} ∀k · ▶T ≡ ▶∀k ·T
(∀-I) Γ ⊢ M : T

Γ ⊢ M : ∀k ·T
(∀-E) Γ ⊢ M : ∀k ·T

Γ ⊢ M : T [t/k]

(ν-I)
Γ ⊢ M :

{
■A

�� [box]γ [νkαψ/β]}
Γ ⊢ M : {■A | [box]γ [ναψ/β]}

(∀-CI) Γ ⊢ M : T [0/k] Γ ⊢ M : T [k+1/k]

Γ ⊢ M : ∀k ·T

(µ-E)
Γ ⊢ M : {■A | [box]γ [µαψ/β]} Γ,x :

{
■A

�� [box]γ [µkαψ/β]} ⊢ N : U

Γ ⊢ N [M/x] : U

Fig. 11. Extended (Sub)Typing Rules for Refinement Types (with k fresh, θαψ , γ smooth and β Pos γ).

(iii) φ is alternation-free: it can be formed using the rules of Fig. 5 and Fig. 9, but where Σ is the

empty context in (ν -F) and (µ-F).

In an alternation-free formula, fixpoints θαφ are only allowed when φ has at most α free (so

that θαφ has no free propositional variable). Note that the smooth restriction imposes no further

conditions on approximated fixpoints θtα . In the smooth fragment, greatest and least fixpoints can

be thought about respectively as∧
m∈N

φm(⊤) and

∨
m∈N

φm(⊥)

Iteration terms allow for formal reasoning about such unfoldings. Assuming JtK = m ∈ N, the
formula νtαφ(α) (resp. µtαφ(α)) can be read as φm(⊤) (resp. φm(⊥)). This gives the rules (ν-I) and
(µ-E) (Fig. 11), which allow for reductions to the safe case (see examples in §7).

Remark 6.8. It is well-known (see e.g. [Bradfield and Walukiewicz 2018, §4.1]) that on finitary trees

(see Rem. 6.4) the alternation-free fragment is equivalent to Weak MSO (MSO with second-order

variables restricted to finite sets). In the case of streams Str B (for a finite base type B), WeakMSO is

in turn equivalent to the full modal µ-calculus. In particular, the alternation-free fragment contains

all the flat fixpoints of [Santocanale and Venema 2010] and thus LTL on Str B and CTL on Tree B
and on Res B with I, O, B finite base types. A typical property on Tree B which cannot be expressed

with alternation-free formulae is “there is an infinite path with infinitely many occurrences of b”
for a fixed b : B (see e.g. [Bradfield and Walukiewicz 2018, §2.2]).

Example 6.9. Any formula without fixpoint nor [ev(−)] is smooth. It φ is smooth, then so are [hd]φ,
[lbl]φ and △φ for △ ∈ {2,∀2,∃2,3,∃3,∀3}.

The Full System. We extend the types of §5 with universal quantification over iteration variables

(∀k ·T). The type system of §5 is extended with the rules of Fig. 11. The assumption that γ is smooth

(applicable to the rules (ν-I) and (µ-E)) implies that the β cannot occur in subformula of the form

θα(−). On the other hand, β can occur in a subformula of the form θtα(−).

Example 6.10. The logical rules of Fig. 10 give the following derived typing rules (where β Pos γ):

(µ-I)
Γ ⊢ M :

{
■A

�� [box]γ [µtαφ/β]}
Γ ⊢ M : {■A | [box]γ [µαφ/β]}

(ν-E)
Γ ⊢ M : {■A | [box]γ [ναφ/β]}
Γ ⊢ M : {■A | [box]γ [νtαφ/β]}

7 EXAMPLES
We exemplified basic manipulations of our system over §3-5. We give further examples here, in

particular illustrating how to handle liveness properties with the full system presented in §6. The

functions used in our main examples are gathered in Table 4, with the following conventions.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:16 Guilhem Jaber and Colin Riba

append : CoListA −→ CoListA −→ CoListA
:= λs .λt .

boxι (appendg (unbox s) (unbox t))

appendg
: CoListgA → CoListgA → CoListgA
:= fix(д).λs .λt .case s of

| []g 7→ t
| x ::

g xs 7→ x ::
g (д ⊛ xs ⊛ (next t))

sched : ResA −→ ResA −→ ResA
:= λp.λq.

boxι (schedg (unbox p) (unbox q))

schedg
: ResgA −→ ResgA −→ ResgA
:= fix(д).λp.λq. case p of

| Retg a 7→ Retg a
| Contg k 7→

let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

diag := λs .boxι
(
diagg (unbox s)

)
: Str(StrA) −→ StrA

diagg := diagauxg id : Strg(StrA) −→ StrgA

diagauxg : (StrA → StrA) −→ Strg(StrA) −→ StrgA
:= fix(д).λt .λs . Consg

(
(hd ◦ t)(hdg s)

) (
д ⊛ next(t ◦ tl) ⊛ (tlg s)

)
fb : CoNat −→ CoNat −→ Str Bool

:= λc .λm. boxι (fbg (unbox c) (unboxm))

fbg
: CoNatg −→ CoNatg −→ Strg Bool
:= fix(д).λc .λm. case c of

| Zg 7→ ff ::
g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sgn 7→ tt ::
g д ⊛ n ⊛ (nextm)

extract : Roug(CoListgA) −→ CoListgA
:= fix(д).λc . case c of

| Overg 7→ Nilg

| Contg f 7→ f д⊛

unfold : RougA −→ (▶ RougA → ▶A) −→ ▶A
:= λc . case c of

| Overg 7→ λk . k (next Overg)
| Contg f 7→ λk . next(f k)

bftg
:= λt . extract (bftaux t Overg) : TreegA −→ CoListgA

bftaux : TreegA −→ Roug(CoListgA) −→ Roug(CoListgA)

:= fix(д).λt .λc . Cont
(
λk . (labelg t) ::g unfold c

(
k ◦ (д ⊛ (song

ℓ
t))⊛ ◦ (д ⊛ (songr t))⊛

))
Table 4. Code of the Examples.

Notation 7.1. In view of Rem. 4.8, we often writeψ ∥→ φ for the formula [ev(ψ)]φ. We also use the

infix notation a ::
g s for Consg a s and write []g for the empty colist Nilg. Moreover, we use some

syntactic sugar for pattern matching. For instance, assuming s : CoListgA we write

case s of
| []g 7→ N
| x ::

g xs 7→ M
for

case (unfold s) of
| y. N [⟨⟩/y]
| y. M[π0(y)/x , π1(y)/xs]

Most of the functions of Table 4 are obtained from usual recursive definitions by inserting ⊛ and

next at the right places. All the typings of Table 2 (for A, B, O constant, I finite and φ,ψ safe and

smooth) can be derived for the functions of Table 4. We review the main cases. See §D for details.

Example 7.2 (The Append Function on Coinductive CoLists). We discuss

append : {CoListA | [box][fin]} −→ {CoListA | [box][fin]} −→ {CoListA | [box][fin]}

(where [fin] = 3[nil]), which says that append takes finite colists to a finite colist. The strategy is

to reduce to the following refinement type for the guarded appendg:

∀k · ∀ℓ ·
({
CoListgA

��� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ[nil]
}
−→

{
CoListgA

��� 3k+ℓ[nil]
})

(3)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:17

First, since 3[nil] is smooth, we can apply the rule (µ-E) (Fig. 11) twice and reduce to

Γ ⊢ boxι (appendg (unbox s) (unbox t)) : {CoListA | [box]3[nil]}

where Γ assumes s of type
{
CoListA

�� [box]3k [nil]
}
and t of type

{
CoListA

�� [box]3ℓ[nil]
}
. Using

the derived rule (µ-I) (Ex. 6.10), we further reduce to

Γ ⊢ boxι (appendg (unbox s) (unbox t)) :

{
CoListA

�� [box]3k+ℓ[nil]
}

Now, since the formulae 3k [nil], 3ℓ[nil] are safe, by subtyping (Fig. 11) we have

Γ ⊢ s : ■
{
CoListA

�� 3k [nil]
}

and Γ ⊢ t : ■
{
CoListA

�� 3ℓ[nil]
}

and we can reduce to showing the type (3) for appendg. The method is then to assume the type (3)

under ▶ for the recursion variable д and to apply the (∀-CI) rule (Fig. 11). Since 30[nil] ⇔ ⊥, the

branch of 0 trivially follows by (ExF) (Fig. 8). In the branch of k+1, we reason by cases by applying

(∨-E) (Fig. 8) to 3k+1ψ ⇔ ψ ∨ ⃝3kψ . See §D.6 for details, but let us just mention that the type of

appendg can be sharpened to

∀k · ∀ℓ ·
({
CoListgA

��� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[nil]
}
−→

{
CoListgA

��� 3k+ℓ[nil]
})

expressing that on finite colists, appendg removes one constructor Nilg from its arguments. □

Example 7.2 is representative of the general strategy to obtain refinement typings of the form

{■Q | [box]3ψ } −→ {■P | [box]3φ}

with Q , P finitary polynomial andψ , φ safe and smooth (in our cases, if φ is safe then so is 3tφ).
Properties of the form 32 or 23 are more involved, but follow similar patterns.

Example 7.3 (The Map Function on Coinductive Streams). We have

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]△[hd]ψ } −→ {StrA | [box]△[hd]φ}

whereψ , φ are safe and smooth and where △ ∈ {2,3,32,23}. In the case of32, since32[hd]φ,
32[hd]ψ are smooth and 3k2[hd]φ, 3k2[hd]ψ are safe, we reduce to showing

(mapg f) : ∀k ·
({
Strg B

�� 3k2[hd]ψ
}
−→

{
StrgA

�� 3k2[hd]φ
})

assuming f of type {B | ψ } → {A | φ}. But this is unfortunately too weak. Similarly as in Ex. 7.2, it

is natural to first assume the type (put under ▶) for the recursion variable д and to apply (∀-CI).
In the case of k+1, we unfold 3k+12[hd]ψ ⇔ 2[hd]ψ ∨ ⃝3k2[hd]ψ and apply (∨-E). But in the

branch of 2[hd]ψ , giving д the type, say,{
Strg B

�� 312[hd]ψ
}
−→

{
StrgA

�� 312[hd]φ
}

is not sufficient to derive д ⊛ (tlg s) : ▶ {StrgA | 2[hd]φ} assuming s : {Strg B | 2[hd]ψ }. The
reason is that [next] (and thus ⃝) does not satisfy axiom (P) of Table 3 (see §8), so that 31ϑ ̸⇔ ϑ .
The solution is to use the [ev(−)]/∥→ modality to strengthen the type of (mapg f) and to show

(mapg f) : ∀k ·
{
Strg B → StrgA

�� (3k2[hd]ψ ∥→ 3k2[hd]φ
)
∧

(
2[hd]ψ ∥→ 2[hd]φ

)}
We turn to 23. Let 2tϑ := νtα . ϑ ∧ ⃝α . Using that 23[hd]φ and 23[hd]ψ are both smooth, we

first unfold the 2’s using the rules (ν-I) (Fig. 11) and then (ν-E) (Ex. 6.10), thus reducing to

boxι
(
mapg f (unbox s)

)
:

{
StrA

�� [box]2ℓ3[hd]φ
}

assuming f : {B | ψ } → {A | φ} and s :
{
StrB

�� [box]2ℓ3[hd]ψ
}
. Then, since3[hd]φ,3[hd]ψ are

smooth, we can unfold the 3’s using the rules (µ-E) and (µ-I) with the non-trivial smooth context

γ (β) := 2ℓβ

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:18 Guilhem Jaber and Colin Riba

Since the formulae 2ℓ3k [hd]ψ and 2ℓ3k [hd]φ are safe, we can thus reduce to showing

(mapg f) : ∀ℓ · ∀k ·
({
Strg B

�� 2ℓ3k [hd]ψ
}

−→
{
StrgA

�� 2ℓ3k [hd]φ
})

assuming f : {B | ψ } → {A | φ}. The result then follows using (∀-CI) and unfolding 2ℓ+1
, 3k+1

.

Note that the problem encountered above with 31
is avoided since 21ϑ ⇔ ϑ . See §D.3. □

Example 7.4 (The Diagonal Function). Consider a stream of streams s . We have s = (si | i ≥ 0)

where each si is itself a stream si = (si, j | j ≥ 0). The diagonal of s is then the stream (si,i | i ≥ 0).

Note that si,i = hd(tli (hd(tli (s))). Indeed, tli (s) is the stream of streams (sk | k ≥ i), so that hd(tli (s))
is the stream si and tli (hd(tli (s))) is the stream (si,k | k ≥ i). Taking its the head thus gives si,i . In
the diag function of Table 4, the auxiliary higher-order function diagauxg iterates the coinductive
tl over the head of the stream of streams s . We write ◦ for function composition, so that assuming

s : Strg(StrA) and t : StrA → StrA, we have the following (on the coinductive type StrA):

(hdg s) : StrA (hd ◦ t) : StrA → A
(hd ◦ t)(hdg s) : A (t ◦ tl) : StrA → StrA

The expected refinement types for diag (obtained similarly as in Ex. 7.3) say that if its argument is

a stream whose component streams all satisfy 2φ, then diag returns a stream whose elements all

satisfy φ. Also, if the argument of diag is a stream such that eventually all its component streams

satisfy 2φ, then it returns a stream which eventually always satisfies φ. See §D.4 for details. □

Example 7.5 (A Fair Stream of Booleans). The non-regular stream (fb 0 1), adapted from [Bahr et al.

2020; Cave et al. 2014], is of the form

ff tt ff tt tt ff tt tt tt ff tt tt tt tt ff . . .

It thus contains infinitely many tt’s and infinitely many ff’s. We indeed have (see §D.5 for details):

(fb 0 1) : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}

Example 7.6 (Resumptions). The type of resumptions ResgA := Fix(X). A + (I → (O × ▶X)), is

adapted from [Krishnaswami 2013]. Its guarded constructors are

Retg := λa. fold(in0 a) : A −→ ResgA
Contg := λk . fold(in1 k) : (I → (O × ▶ ResgA)) −→ ResgA

The formulae left undefined from §2 are the following (whereψ : A, ϑ : O, φ : ResgA and i : I):

[Ret] := [fold][in0]⊤ [outi]ϑ := [fold][in1] ([i] ∥→ [π0]ϑ)
[now]ψ := [fold][in0]ψ ⃝iφ := [fold][in1] ([i] ∥→ [π1][next]φ)

The formula [Ret] (resp. [now]ψ) holds on a resumption which immediately returns (resp. with a

value satisfyingψ) and we have Retg : A → {ResgA | [Ret]}, Retg : {A | ψ } → {ResgA | [now]ψ }.
Assuming that I is a finite base type (so that ResgA is finitary polynomial), and thatψ : A, ϑ : O
are safe and smooth, the expected refinement typings for sched are obtained similarly as in the

case of map (Ex. 7.3), using approximations of ∀2, ∃2, ∀3 and ∃3 (see §D.7 for details). □

Example 7.7 (Breadth-First Tree Travsersal). The function bftg
of Table 4 (where д⊛ stands for

λx .д ⊛ x) implements Martin Hofmann’s algorithm for breadth-first tree traversal. This algorithm

involves the higher-order type RougA = Fix(X). 1 + ((▶X → ▶A) → A) with constructors

Overg := fold(in0⟨⟩) : RougA
Contg := λf .fold(in1 f) :

(
(▶ RougA → ▶A) → A

)
→ RougA

We refer to [Berger et al. 2019] for explanations. Consider now a formula φ : A. We can lift φ to

[Rou]φ := να . [fold][in1](([next]α ∥→ [next]φ) ∥→ φ) : RougA

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:19

We have, for φ : A andψ : CoListgA,

extract : {Roug(CoListgA) | [Rou]ψ } −→ {CoListgA | ψ }
unfold : RougA −→

(
▶ RougA −→ ▶ {A | φ}

)
−→ ▶ {A | φ}

bftaux : {TreegA | ∀2[lbl]φ} −→ Roug(CoListgA) −→ {Roug(CoListgA) | [Rou]2[hd]φ}
bftg

: {TreegA | ∀2[lbl]φ} −→ {CoListgA | 2[hd]φ}

Assume that φ : A is safe. Note that on the one hand it is not clear what the meaning of [Rou]φ is,

because it is an unsafe formula operating on a non-polynomial type. On the other hand, the above

type of bftg
has its standard expected meaning (namely: if all nodes of a tree satisfy φ then so do

all elements of its traversal) because the types TreegA, CoListgA are polynomial and the formulae

∀2[lbl]φ, 2[hd]φ are safe. Hence, our system can prove standard statements via detours through

non-standard ones, which illustrates its compositionality. We have the same typing for a usual

breadth-first tree traversal with forests (à la [Jones and Gibbons 1993]). See §D.8. □

8 SEMANTICS
We progressively present the main ingredients of the semantics of our type system. We take as

base the denotational semantics of guarded recursion in the topos of trees, that we briefly sketch.

Denotational Semantics in the Topos of Trees. The topos of trees [Birkedal et al. 2012] provides a

natural model of guarded recursion.

Definition 8.1 (Topos of Trees). The topos of trees S is the category of presheaves over (N \ {0}, ≤).

In words, the objects of S are indexed sets X = (X (n))n>0 equipped with restriction maps rXn :

X (n + 1) → X (n). Intuitively, X (n) represents the values available “at time n”, and rXn tells how

values “at n + 1” can be restricted (actually most often truncated) to values “at n”. Excluding 0 from

the indexes is a customary notational convenience ([Birkedal et al. 2012]). The morphisms from X
to Y are families of functions f = (fn : X (n) → Y (n))n>0 which commute with restriction:

X1

f1
��

X2

rX
1oo

f2
��

· · ·oo Xn

fn
��

oo Xn+1
rXnoo

fn+1
��

· · ·oo

Y1 Y2
rY
1

oo · · ·oo Ynoo Yn+1
rYn

oo · · ·oo

As any presheaf category, S has (pointwise) limits and colimits, and is Cartesian closed (see

e.g. [Mac Lane and Moerdijk 1992, §I.6]). We write Γ : S → Set for the global section functor, which

takes X to S[1,X], the set of morphisms 1 −→ X in S, where 1 = ({•})n>0 is terminal in S.

A typed term Γ ⊢ M : T is to be interpreted in S as a morphism

JMK : J|Γ |K −→ J|T |K

where J|Γ |K = J|T1 |K× · · · × J|Tn |K for Γ = x1 : T1, . . . ,xn : Tn . In particular, a closed termM : T is to

be interpreted as a global section JMK ∈ ΓJ|T |K. The ×/+/→ fragment of the calculus is interpreted

by the corresponding structure in S. The ▶ modality is interpreted by the functor ▶ : S → S

of [Birkedal et al. 2012]. This functor shifts indexes by 1 and inserts a singleton set 1 at index 1. The

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:20 Guilhem Jaber and Colin Riba

term constructor next is interpreted by the natural map with component nextX : X → ▶X as in:

X

nextX

��

X1

1
��

X2

rX
1oo

rX
1

��

Xn

rXn−1
��

oo Xn+1
rXnoo

rXn
��

oo

▶X 1 X11
oo Xn−1oo Xn

rXn−1

oo oo

The guarded fixpoint combinator fix is interpreted by the morphism fixX : X ▶X → X , natural in
X , such that given f : ▶X × Y → X with exponential transpose f t : Y → X ▶X , the morphism

fixX ◦ f t : Y → X is unique such that fixX ◦ f t = f ◦ ⟨nextX ◦ fixX ◦ f T , idX ⟩ ([Birkedal et al. 2012,
Thm. 2.4]). Together with an interpretation of guarded recursive types, this gives a denotational

semantics of the whole calculus but for the ■ modality. See [Birkedal et al. 2012; Clouston et al.

2016] for details. We write fold : JA[Fix(X).A/X]K → JFix(X).AK and unfold : JFix(X).AK →

JA[Fix(X).A/X]K for the two components of the iso JFix(X).AK ≃ JA[Fix(X).A/X]K.

Internal Semantics of Formulae. Each formula φ over A has an interpretation in S, in the form of

a subobject JφK of JAK.
A subobject S of an object X of S, notation S ↪→ X , is a family of subsets S(n) ⊆ X (n) such that

rXn (t) ∈ S(n)whenever t ∈ S(n+1). The set of subobjects ofX , denoted Sub(X), is a complete lattice

w.r.t. pointwise inclusions (see e.g. [Mac Lane and Moerdijk 1992, Prop. I.8.5]), and in particular a

(complete) Heyting algebra. Following e.g. [Lambek and Scott 1986; Mac Lane and Moerdijk 1992],

we say that x ∈ ΓX satisfies a property S ∈ Sub(X) if x factors through S , as in

S � _

��
1 x //

55

X

that is: ∀n > 0, xn(•) ∈ S(n)

By adequacy of the S semantics, we mean that for each closed termM : {A | φ}, the global section
JMK ∈ ΓJAK satisfies the property JφK ∈ Sub(JAK).

Formulae without free iteration variables are interpreted by induction as expected. The proposi-

tional connectives are interpreted by the Heyting algebra structure on subobjects. This validates

the rules of intuitionistic logic.

We now turn to the interpretation of modalities. Let [△] be a modality of the form [πi], [ini],
[next] or [fold], and assume [△]φ : B whenever φ : A. Standard topos theoretic constructions give

posets morphisms

J[△]K : Sub(JAK) −→ Sub(JBK)
such that:

• J[πi]K and J[fold]K are maps of Heyting algebras,

• J[ini]K preserves ∨,⊥ and ∧,

• J[next]K preserves ∧,⊤ and ∨.

With J[△]φK := J[△]K(JφK), all the axioms and rules of Table 3 are validated for these modalities. To

handle guarded recursion, it is crucial to have

J[next]φK := ▶(JφK)

with J[next]φK true at time 1, independently from φ. As consequence, [next] and ⃝ do not validate

axiom (P) (Table 3), and 3[hd]φ can “lie” about the next time step.

The modality [ev(ψ)] is a bit more complex. For ψ : B and φ : A, the formula [ev(ψ)]φ is

interpreted as a logical predicate in the sense of [Jacobs 2001a, §9.2 & Prop. 9.2.4]. The idea is that for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:21

{|[πi]φ |} :=
{
x ∈ ΓJA0 ×A1K

�� πi ◦ x ∈ {|φ |}
}

{|[next]φ |} :=
{
next ◦ x ∈ ΓJ▶AK

�� x ∈ {|φ |}
}

{|[fold]φ |} :=
{
x ∈ ΓJFix(X).AK

�� unfold ◦ x ∈ {|φ |}
}

{|[ini]φ |} :=
{
x ∈ ΓJA0 +A1K

�� ∃y ∈ ΓJAiK
(
x = ini ◦ y and y ∈ {|φ |}

)}
{|[ev(ψ)]φ |} :=

{
x ∈ ΓJB → AK

�� ∀y ∈ ΓJBK, y ∈ {|ψ |} =⇒ ev ◦ ⟨x ,y⟩ ∈ {|φ |}
}

Fig. 12. External Semantics (for closed and ■-free formulae).

a termM : {B → A | [ev(ψ)]φ}, the global section ev ◦ ⟨JMK,x⟩ ∈ ΓJAK should satisfy φ whenever

x ∈ ΓJBK satisfiesψ . We refer to §C for details.

The interpretations of νtαφ(α) and µtαφ(α) (for t closed) are defined to be the interpretations

resp. of φJtK(⊤) and φJtK(⊥), where e.g. φ0(⊤) := ⊤ and φn+1(⊤) := φ(φn(⊤)).
We turn to fixpoints ναφ(α) and µαφ(α). A first possibility is to rely on Knaster-Tarski Fixpoint

Theorem and the fact that when α is positive in φ (i.e. α Pos φ), the typing α : A ⊢ φ : A induces

a (monotone) poset morphism JφK : Sub(JAK) → Sub(JAK). This, however, is to some extent

meaningless in our setting, because S has unique guarded fixpoints [Birkedal et al. 2012, §2.5].

Proposition 8.2. Given α : A ⊢ φ(α) : A with α positive and guarded by ▶ in φ, there is a unique
Jναφ(α)K ∈ Sub(JAK) such that Jναφ(α)K = Jφ(ναφ(α))K.

In particular, the typing fix(s).Consg a s : {StrgA | 3[φ]} for arbitrary a : A and φ : StrgA of §2

is not problematic w.r.t. the S semantics J−K!

The External Semantics. The above issue suggests to look for semantics closer to the intended

meaning of the logic. Møgelberg [Møgelberg 2014] has shown that for polynomial types such as

Strg B with B a finite base type, the set of global sections ΓJStrg BK is equipped with the usual final

coalgebra structure of streams over B in Set.
We devise a proper Set interpretation {|φ |} ∈ P(ΓJAK) of formulae φ : A. For propositional

connectives and fixpoints, this interpretation is defined similarly as the S interpretation, but using

(complete) Boolean algebras of subsets rather than (complete) Heyting algebras of subobjects. We

give the cases of [πi], [ini], [next] and [fold] in Fig. 12 (where for simplicity we assume formulae to

be closed).

The Safe Fragment. We would like to have adequacy w.r.t. the Set semantics, namely that given

M : {A | φ}, the global section JMK ∈ ΓJAK satisfies {|φ |} ∈ P(ΓJAK) in the sense that JMK ∈ {|φ |}.
The odd typing of §2 tells us that this is impossible in general. But this is possible for safe formulae

since in this case we have:

{|φ |} = ΓJφK
Let us sketch the key ingredients for this property. First note that on ■-free types, safe formulae do

not contain implications (⇒). For this fragment, intuitionistic and classical logic coincide, making

{|φ |} = ΓJφK plausible. Second, for a safe formula α : A ⊢ φ : A, the poset morphisms

JφK : Sub(JAK) −→ Sub(JAK) and {|φ |} : P(ΓJAK) −→ P(ΓJAK)

are Scott cocontinuous, in the sense that they preserve codirected infs. As a consequence, greatest

fixpoints ναφ(α) can be interpreted, both in Set and S, as the infs of the interpretations of

⊤ , φ(⊤) , φ(φ(⊤)) , . . . φn(⊤) , φn+1(⊤) , . . .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:22 Guilhem Jaber and Colin Riba

This leads to the expected coincidence of the two semantics. In particular, the Set semantics is

adequate for safe formulae. Let us step back to the cases of 2[hd]φ and3[hd]φ on guarded streams

Strg B. Assume that φ is safe. The equality {|2[hd]φ |} = ΓJ2[hd]φK implies that the usual Set
semantics of 2[hd]φ is in the image of Γ. But a subset of ΓJStrg BK which is in the image of Γ is

necessarily a closed set w.r.t. the usual product topology on streams in Set, i.e. a safety property (see
§C.11). Formulae of the form 2[hd]φ define safety properties on streams, but liveness properties of

the form 3[hd]φ are not closed (for non-trivial φ), and thus cannot be in the image of Γ.

The Constant Modality. In order to safely handle unsafe formulae, we rely on the constant type

modality ■ of [Clouston et al. 2016]. At the semantic level, ■ is interpreted as the composite functor

∆Γ : S → S, where the constant object functor ∆ : Set → S takes a set S to the constant family

(S)n>0. In words, all components J■AK(n) are equal to ΓJAK, and the restriction maps of J■AK
are identities. In particular, a global section x ∈ ΓJ■AK is a constant family (xn)n describing a

unique global section xn+1(•) = xn(•) ∈ ΓJAK. We refer to [Clouston et al. 2016] and §C for the

interpretation of prev, box and unbox. Just note that the unit η : IdSet → Γ∆ is an iso.

Consider now an arbitrary formula φ over A. In order to accommodate its Set semantics {|φ |}
within S, we can syntactically lift φ to the formula [box]φ over ■A and impose

J[box]φK := ∆ ({|φ |})

This definition is justified by standard facts of topos theory, namely that for each set S , the functor
∆ induces a map of (complete) Heyting algebras

A ∈ P(S) 7−→ ∆A ∈ Sub(∆S)

This means that the Set interpretation {|φ |} ∈ P(ΓJAK) can be taken to the subobject ∆ {|φ |} ∈

Sub(∆ΓJAK) = Sub(J■AK) in S while respecting the usual Set semantics of logical connectives. In

particular, we can allow the logical theory under a [box] to be classical, while the S semantics

imposes the ambient logical theory to be intuitionistic. For the interpretation of [box] in the external
semantics we can trivially let {|[box]φ |} :=

{
x ∈ ΓJ■AK

�� x1(•) ∈ {|φ |}
}
.

We can now state the correctness of our semantics w.r.t. the full modal theories of Def. 6.2.

Lemma 8.3. If ⊢A
c
φ then {|φ |} = {|⊤|}. If ⊢A φ then JφK = J⊤K.

Safe Formulae: The General Case. The property we use on safe formulae is the following.

Definition 8.4 (Scott Cocontinuity). Let L be a complete lattice. A set S ⊆ L is codirected if it is

non-empty and for all a,b ∈ S , there is some c ∈ S such that c ≤ a,b. A function f : L → L is Scott

cocontinuous if it is monotone and preserves infs of codirected sets (for S ⊆ L codirected, we have

f (
∧
S) =

∧
f (S)).

In other words, a Scott cocontinuous function L → L is a Scott continuous function Lop → Lop.

Lemma 8.5. The greatest fixpoint of a Scott cocontinuous f : L → L is given by

∧
m∈N f m(⊤).

Lemma 8.6. Given a safe formula α : A ⊢ φ(α) : A, the following functions are Scott cocontinuous:

JφK : Sub(JAK) −→ Sub(JAK) {|φ |} : P(ΓJAK) −→ P(ΓJAK)

The key for Lem. 8.6 is the usual fact that codirected infs commute with infs and finite sups.

Proposition 8.7. If φ : A is safe then {|φ |} = ΓJφK.

Proposition 8.7 gives the subtyping rule {■A | [box]φ} ≡ ■ {A | φ} (Fig. 11), which makes available

the comonad structure of ■ on [box]φ when φ is safe. Recall that in safe formulae, implications can

only occur under a [box] modality and thus in closed subformulae. It is crucial for Prop. 8.7 that

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:23

infs and sups are pointwise in the subobject lattices of S, so that conjunctions and disjunctions are

interpreted as with the usual classical Kripke semantics (see e.g. [Mac Lane and Moerdijk 1992,

§VI.7]). This of course does not hold for implications!

The Smooth Fragment. The smooth restriction allows for continuity properties which are stronger

than in the safe case. A Scott continuous function L → L is a Scott cocontinuous function Lop → Lop.

Lemma 8.8. Given α : A ⊢ φ(α) : A with φ smooth and α Pos φ, the function {|φ |} : P(ΓJAK) −→
P(ΓJAK) is Scott continuous as well as cocontinuous.
The least fixpoint of a Scott continuous f : L → L is

∨
m∈N f m(⊥). The following implies the

correctness of the typing rules (ν-I) and (µ-E) of Fig. 11.

Corollary 8.9. Given smooth ναφ(α) : A and µαφ(α) : A we have

{|ναφ(α)|} =
⋂
n∈N

{|φn(⊤)|} and {|µαφ(α)|} =
⋃
n∈N

{|φn(⊥)|}

The Realizability Semantics. The correctness of the type system w.r.t. its semantics in S is proved

with a realizability relation. This relation is formulated with global sections.

Definition 8.10 (Realizability). Given a type T without free iteration variable, a global section

x ∈ ΓJ|T |K and n > 0, we define the realizability relation x ⊪n T by induction on lexicographicaly

ordered pairs (n,T) as follows:

• x ⊪n {A | φ} iff xn(•) ∈ JφKA(n).
• x ⊪n 1.
• x ⊪n T0 +T1 iff there are some i ∈ {0, 1} and y ∈ ΓJ|Ti |K s.t. x = ini ◦ y and y ⊪n Ti .
• x ⊪n T0 ×T1 iff π0 ◦ x ⊪n T0 and π1 ◦ x ⊪n T1.
• x ⊪n U → T iff for all k ≤ n and for all y ∈ ΓJ|U |K such that y ⊪k U , we have ev◦ ⟨x ,y⟩ ⊪k T .
• x ⊪1 ▶T .
• x ⊪n+1 ▶T iff there is y ∈ ΓJ|T |K such that x = next ◦ y and y ⊪n T .
• x ⊪n Fix(X).A iff unfold ◦ x ⊪n A[Fix(X).A/A].
• x ⊪n ■T iff xn(•) ⊪m T for allm > 0 (where x ∈ ΓJ|■T |K).
• x ⊪n ∀k ·T iff x ⊪n T [t/k] for all closed iteration terms t.

Note that we have x ⊪n A for x ∈ ΓA. It is easy to see that if x ⊪n T , then x ⊪k T for all k ≤ n. We

can now state the correctness of subtyping and of typing.

Lemma 8.11. Given types T ,U without free iteration variable, if x ⊪n U andU ≤ T then x ⊪n T .

Theorem 8.12 (Adequacy). If ⊢ M : T ,T with no free iteration variable, then JMK ⊪n T for all n > 0.

A program ⊢ M : {B | ψ } → {A | φ} withψ ,φ safe induces by composition a Set-function ΓJMK :
ΓJBK → ΓJAK, x 7→ JMK ◦x such that ΓJMK(x) satisfies {|φ |} if x satisfies {|ψ |}. To each polynomial

recursive type Fix(X).P(X), we associate a polynomial functor PSet in the obvious way.

Theorem 8.13 ([Møgelberg 2014] (see also [Clouston et al. 2016])). If Fix(X).P(X) is polynomial,

then ΓJFix(X).P(X)K carries a final Set-coalgebra structure for the polynomial Set functor PSet.

For arbitrary φ,ψ , a program ⊢ M : {■B | [box]ψ } → {■A | [box]φ} induces a Set-function

ΓJMK : ΓJBK −→ ΓJAK, x 7−→ JMK ◦ x

(where the isos ΓJCK ≃ Γ∆ΓJCK = ΓJ■CK are left implicit) such that if x ∈ ΓJBK satisfies ψ in

the standard sense (i.e. x ∈ {|φ |}), then ΓJMK(x) ∈ ΓJAK satisfies φ in the standard sense (i.e.

ΓJMK(x) ∈ {|φ |}). In view of Thm. 8.13, ΓJAK, ΓJBK are usual Set final coalgebras when A, B are

polynomial. This applies to all the typings of Table 2 (which require A, B, O to be constant, I to be

finite and φ,ψ to be safe and smooth, see §7).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:24 Guilhem Jaber and Colin Riba

9 RELATEDWORK
Type systems based on guarded recursion have been designed to enforce properties of programs

handling coinductive types, like causality [Krishnaswami and Benton 2011], productivity [Atkey

andMcBride 2013; Clouston et al. 2016; Guatto 2018; Møgelberg 2014]. These properties are captured

by the type system, meaning that all well-typed programs satisfy these properties.

In an initially different line of work, temporal logics have been used as type systems for functional

reactive programming (FRP), starting from LTL [Jeffrey 2012; Jeltsch 2014] to the intuitionistic

modal µ-calculus [Cave et al. 2014]. These works follow the Curry-Howard “proof-as-programs”

paradigm, and reflect in the programming languages the constructions of the temporal logic.

The FRP approach has been adapted to guarded recursion, e.g. for the absence of space leaks [Kr-

ishnaswami 2013], or the absence of time leaks, with the Fitch-style system of [Bahr et al. 2019].

This more recently lead [Bahr et al. 2020] to consider liveness properties with an FRP approach

based on guarded recursion. In this system, the guarded λ-calculus (presented in a Fitch-style type

system) is extended with a delay modality (written ⃝) together with a “until type” A Until B.
Following the Curry-Howard correspondence,A Until B is eliminated with a specific recross, based

on the usual unfolding of Until in LTL, and distinct from the guarded fixpoint operator.

In these Curry-Howard approaches, temporal operators are wired into the structure of types.

This means that there is no separation between the program and the proof that it satisfies a given

temporal property. Different type formers having different program constructs, different temporal

specifications for the same program may lead to different actual code.

We have chosen a different approach, based on refinement types, with which the structure of

formulae is not reflected in the structure of types. This allows for our examples to be mostly written

in a usual guarded recursive fashion (see Table 4). Of course, we indeed use the modality ■ at the

type level as a separation between safety and liveness properties. But different liveness properties

(e.g. 3, 32, 23) are uniformly handled with the same ■-type, which is moreover the expected

one in the guarded λ-calculus [Clouston et al. 2016].

Higher-order model checking (HOMC) [Kobayashi and Ong 2009; Ong 2006] has been introduced

to check automatically that higher-order recursion schemes, a simple form of higher-order pro-

grams with finite data-types, satisfy a µ-calculus formula. Automatic verification of higher-order

programs with infinite data-types (integers) has been explored for safety [Kobayashi et al. 2011],

termination [Kuwahara et al. 2014], and more generally ω-regular [Murase et al. 2016] proper-

ties. In presence of infinite datatypes, semi-automatic extensions of HOMC have recently been

proposed [Watanabe et al. 2019]. While HOMC automatically checks properties on coinductive

structures, the major difference with our approach is that we consider input-output behaviors of

functions operating on coalgebraic data.

Event-driven approaches consider effects as generating streams of events, which can be checked

for temporal properties with algorithms based on (HO)MC [Hofmann and Chen 2014; Hofmann

and Ledent 2017], or, in presence of infinite datatypes, with refinement type systems [Koskinen

and Terauchi 2014; Nanjo et al. 2018]. Our iteration terms can be seen as oracles, as required

by [Koskinen and Terauchi 2014] to handle liveness properties, but we do not know if they allow

for the non-regular specifications of [Nanjo et al. 2018]. While such approaches can handle infinite

data types with good levels of automation, they do not have coinductive types nor branching time

properties, such as the temporal specification of the scheduler sched on resumptions (Table 2).

Along similar lines, branching was approached via non-determinism in [Unno et al. 2018], which

also handles universal and existential properties on traces. This framework can handle CTL-like
properties of the form ∃/∀-2/3 (with our notation of Table 2, §2), but not nested combinations of

these (as e.g. ∃2∀3 for sched in Table 2). It moreover does not handle coinductive types.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:25

10 CONCLUSION AND FUTUREWORK
Wehave presented a refinement type system for the guarded λ-calculus, with refinements expressing

temporal properties stated as (alternation-free) µ-calculus formulae. As we have seen, the system

is general enough to prove precise behavioral input/output properties of coinductively-typed

programs. Our main contribution is to handle liveness properties in presence of guarded recursive

types. As seen in §2, this comes with inherent difficulties. In general, once guarded recursive

functions are packed into coinductive ones using ■, the logical reasoning is made in our system

directly on top of programs, following their shape, but requiring no further modification. We thus

believe to have achieved some separation between programs and proofs.

We provided several examples. While they demonstrate the flexibility of our system, they also

show that more abstraction would be welcomed when proving liveness properties. In addition, our

system lacks expressiveness to prove e.g. liveness properties on breadth-first tree traversals.

Extensions of the guarded λ-calculus with dependent types have been explored, namely Guarded

(Cubical) Dependent Type Theory [Birkedal et al. 2019; Bizjak et al. 2016]. It may be possible to

extend our work to these systems. This would require to work in a Fitch-style presentation of

the ■ modality, as in [Bahr et al. 2019], as it is not known how to extend delayed substitutions to

dependent types. Also, it is appealing to investigate the generalization of our approach to sized

types [Abel and Pientka 2016], in which guarded recursive types are representable [Veltri and

van der Weide 2019].

We plan to investigate type checking. For instance, in a decidable fragment like the µ-calculus
on streams, one can check that a function of type {StrgC | 32[hd]ϑ } → {Strg B | 32[hd]ψ } can
be postcomposed with one of type {Strg B | 23[hd]ψ } → {StrgA | 23[hd]φ} (since 32[hd]ψ ⇒

23[hd]ψ). Hence, we expect that some automation is possible for fragments of our logic. In presence

of iteration terms, arithmetic extensions of the µ-calculus [Kobayashi et al. 2019, 2020] may provide

interesting backends. An other direction is the interaction with HOMC. If (say) a stream over A is

representable in a suitable format, one may use HOMC to check whether it can be argument of a

function expecting e.g. a stream of type {StrgA | 23[hd]φ}. This might provide automation for

fragments of the guarded λ-calculus. Besides, the combination of refinement types with automatic

techniques like predicate abstraction [Rondon et al. 2008], abstract interpretation [Jhala et al. 2011],

or SMT solvers [Vazou 2016; Vazou et al. 2014] has been particularly successful. More recently, the

combination of refinement types inference with HOMC has been investigated [Sato et al. 2019].

We would like to explore temporal specification of general, effectful programs. To do so, we

wish to develop the treatment of the coinductive resumptions monad [Piróg and Gibbons 2014],

that provides a general framework to reason on effectful computations, as shown by interaction

trees [Xia et al. 2019]. It would be interesting to study temporal specifications we could give to

effectful programs encoded in this setting. To formalize reasoning on such examples, we would like

to design an embedding of our system in a proof assistant like Coq.

Following [Appel et al. 2007], guarded recursion has been used to abstract the reasoning over

the step-indexing technique [Appel and McAllester 2001], that has been used to design Kripke

Logical Relations [Ahmed 2006] for typed higher-order effectful programming languages. Program

logics for reasoning on such logical relations [Dreyer et al. 2011, 2010] uses this representation

of step-indexing via guarded recursion. It is also found in Iris [Jung et al. 2018], a framework for

higher-order concurrent separation logic. It would be interesting to explore the incorporation of

temporal reasoning, especially liveness properties, in such logics.

Acknowledgments. We would like to thank anonymous referees of previous versions of this paper

for stimulating comments.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:26 Guilhem Jaber and Colin Riba

REFERENCES
A. Abel and B. Pientka. 2016. Well-founded recursion with copatterns and sized types. J. Funct. Program. 26 (2016), e2.

https://doi.org/10.1017/S0956796816000022

A. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the 15th

European Conference on Programming Languages and Systems (ESOP’06). Springer-Verlag, Berlin, Heidelberg, 69–83.

https://doi.org/10.1007/11693024_6

A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. 2007. A Very Modal Model of a Modern, Major, General Type System.

SIGPLAN Not. 42, 1 (2007), 109–122. https://doi.org/10.1145/1190215.1190235

A. W. Appel and D. McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying Code. ACM

Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

R. Atkey and C. McBride. 2013. Productive Coprogramming with Guarded Recursion. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA, 197–208. https:

//doi.org/10.1145/2500365.2500597

P. Bahr, C. Graulund, and R. Møgelberg. 2019. Simply RaTT: A Fitch-Style Modal Calculus for Reactive Programming

without Space Leaks. Proc. ACM Program. Lang. 3, ICFP (2019), 109:1–109:27. https://doi.org/10.1145/3341713

P. Bahr, C. Graulund, and R. Møgelberg. 2020. Diamonds are not forever: Liveness in reactive programming with guarded

recursion. arXiv:cs.PL/2003.03170

C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. The MIT Press.

U. Berger, R. Matthes, and A. Setzer. 2019. Martin Hofmann’s Case for Non-Strictly Positive Data Types. In 24th International

Conference on Types for Proofs and Programs (TYPES 2018), P. Dybjer, J. Espírito Santo, and L. Pinto (Eds.). Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 130. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 1:1–1:22.

https://doi.org/10.4230/LIPIcs.TYPES.2018.1

L. Birkedal, A. Bizjak, R. Clouston, H. B. Grathwohl, B. Spitters, and A. Vezzosi. 2019. Guarded Cubical Type Theory. Journal

of Automated Reasoning 63, 2 (2019), 211–253. https://doi.org/10.1007/s10817-018-9471-7

L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. 2012. First steps in synthetic guarded domain theory:

step-indexing in the topos of trees. Logical Methods in Computer Science 8, 4 (2012).

A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal. 2016. Guarded Dependent Type Theory with

Coinductive Types. In Foundations of Software Science and Computation Structures, B. Jacobs and C. Löding (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 20–35.

P. Blackburn, M. de Rijke, and Y. Venema. 2002. Modal Logic. Cambridge University Press.

J. C. Bradfield and I. Walukiewicz. 2018. The mu-calculus and Model Checking. In Handbook of Model Checking, E. M. Clarke,

T. A. Henzinger, H. Veith, and R. Bloem (Eds.). Springer, 871–919.

A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. 2014. Fair Reactive Programming. In Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 361–372.

B. F. Chellas. 1980. Modal Logic: An Introduction. Cambridge University Press.

R. Clouston, A. Bizjak, H. Bugge Grathwohl, and L. Birkedal. 2016. The Guarded Lambda-Calculus: Programming and

Reasoning with Guarded Recursion for Coinductive Types. Logical Methods in Computer Science 12, 3 (2016).

D. Dreyer, A. Ahmed, and L Birkedal. 2011. Logical Step-Indexed Logical Relations. Logical Methods in Computer Science

Volume 7, Issue 2 (2011). https://doi.org/10.2168/LMCS-7(2:16)2011

D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. 2010. A Relational Modal Logic for Higher-order Stateful ADTs. In

Proceedings POPL’10. ACM, 185–198.

T. Freeman and F. Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN 1991 Conference on

Programming Language Design and Implementation (PLDI’91). Association for Computing Machinery, New York, NY,

USA, 268–277. https://doi.org/10.1145/113445.113468

S. Frittella. 2014. Monotone Modal Logics & Friends. Ph.D. Dissertation. Aix-Marseille Univ.

A. Guatto. 2018. A Generalized Modality for Recursion. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS ’18). ACM, New York, NY, USA, 482–491. https://doi.org/10.1145/3209108.3209148

H. H. Hansen. 2003. Monotonic Modal Logics. Master’s thesis. ILLC, Amsterdam.

M. Hofmann and W. Chen. 2014. Abstract interpretation from Büchi automata. In Joint Meeting of the Twenty-Third EACSL

Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, T. A. Henzinger and D. Miller (Eds.). ACM,

51:1–51:10. https://doi.org/10.1145/2603088.2603127

M. Hofmann and J. Ledent. 2017. A cartesian-closed category for higher-order model checking. In 32nd Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12.

https://doi.org/10.1109/LICS.2017.8005120

B. Jacobs. 2001a. Categorical Logic and Type Theory. Elsevier.

B. Jacobs. 2001b. Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study. ITA 35, 1 (2001), 31–59.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/3341713
http://arxiv.org/abs/cs.PL/2003.03170
https://doi.org/10.4230/LIPIcs.TYPES.2018.1
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1109/LICS.2017.8005120

Temporal Refinements for Guarded Recursive Types 1:27

B. Jacobs. 2016. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge University Press.

A. Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic Propositions As Types, Proofs As Functional Reactive Programs.

In Proceedings of the Sixth Workshop on Programming Languages Meets Program Verification (PLPV’12). ACM, New York,

NY, USA, 49–60. https://doi.org/10.1145/2103776.2103783

W. Jeltsch. 2014. An Abstract Categorical Semantics for Functional Reactive Programming with Processes. In Proceedings of

the ACM SIGPLAN 2014 Workshop on Programming Languages Meets Program Verification (PLPV’14). ACM, New York, NY,

USA, 47–58. https://doi.org/10.1145/2541568.2541573

R. Jhala, R. Majumdar, and A. Rybalchenko. 2011. HMC: Verifying functional programs using abstract interpreters. In

International Conference on Computer Aided Verification. Springer, 470–485.

P.T. Johnstone. 2002. Sketches of an Elephant: A Topos Theory Compendium. Clarendon Press.

G. Jones and J. Gibbons. 1993. Linear-time Breadth-first Tree Algorithms: An Exercise in the Arithmetic of Folds and Zips.

Technical Report. University of Auckland.

R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. 2018. Iris from the ground up: A modular foundation

for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018).

K. Kobayashi, T. Nishikawa, A. Igarashi, and H. Unno. 2019. Temporal Verification of Programs via First-Order Fixpoint Logic.

In Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings (Lecture Notes in

Computer Science), Bor-Yuh Evan Chang (Ed.), Vol. 11822. Springer, 413–436. https://doi.org/10.1007/978-3-030-32304-2_

20

N Kobayashi, G. Fedyukovich, and A. Gupta. 2020. Fold/Unfold Transformations for Fixpoint Logic. In Tools and Algorithms

for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II

(Lecture Notes in Computer Science), A. Biere and D. Parker (Eds.), Vol. 12079. Springer, 195–214. https://doi.org/10.1007/

978-3-030-45237-7_12

N. Kobayashi and C-H L. Ong. 2009. A type system equivalent to the modal mu-calculus model checking of higher-order

recursion schemes. In 2009 24th Annual IEEE Symposium on Logic In Computer Science. IEEE, 179–188.

N. Kobayashi, R. Sato, and H. Unno. 2011. Predicate abstraction and CEGAR for higher-order model checking. SIGPLAN

Not. 46, 6 (2011), 222–233. https://doi.org/10.1145/1993316.1993525

E. Koskinen and T. Terauchi. 2014. Local Temporal Reasoning. In Proceedings of the Joint Meeting of the Twenty-Third

EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS) (CSL-LICS’14). Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/2603088.2603138

D. Kozen. 1983. Results on the propositional µ-calculus. Theoretical Computer Science 27, 3 (1983), 333 – 354. Special Issue

Ninth International Colloquium on Automata, Languages and Programming (ICALP) Aarhus, Summer 1982.

N. R. Krishnaswami. 2013. Higher-order Functional Reactive Programming Without Spacetime Leaks. In Proceedings of

ICFP’13. ACM, New York, NY, USA, 221–232.

N. R. Krishnaswami and N. Benton. 2011. Ultrametric Semantics of Reactive Programs. In 2011 IEEE 26th Annual Symposium

on Logic in Computer Science. 257–266. https://doi.org/10.1109/LICS.2011.38

T. Kuwahara, T. Terauchi, H. Unno, and N. Kobayashi. 2014. Automatic Termination Verification for Higher-Order Functional

Programs. In Programming Languages and Systems (ESOP’14), Z. Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

392–411.

J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic. CUP.

S. Mac Lane and I. Moerdijk. 1992. Sheaves in geometry and logic: A first introduction to topos theory. Springer.

S. Marin. 2018. Modal proof theory through a focused telescope. PhD Thesis. Université Paris Saclay. https://hal.

archives-ouvertes.fr/tel-01951291

C. McBride and R. Paterson. 2008. Applicative programming with effects. Journal of Functional Programming 18, 1 (2008).

https://doi.org/10.1017/S0956796807006326

R. Milner. 1975. Processes: a mathematical model of computing agents. In Studies in Logic and the Foundations of Mathematics.

Vol. 80. Elsevier, 157–173.

R. E. Møgelberg. 2014. A Type Theory for Productive Coprogramming via Guarded Recursion. In Proceedings of CSL-LICS

2014 (CSL-LICS ’14). ACM.

A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno. 2016. Temporal Verification of Higher-Order Functional

Programs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’16). Association for Computing Machinery, New York, NY, USA, 57–68. https://doi.org/10.1145/2837614.2837667

H. Nakano. 2000. A Modality for Recursion. In Proceedings of LICS’00. IEEE Computer Society, 255–266.

Y. Nanjo, H. Unno, E. Koskinen, and T. Terauchi. 2018. A Fixpoint Logic and Dependent Effects for Temporal Property

Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ?18). Association

for Computing Machinery, New York, NY, USA, 759?768. https://doi.org/10.1145/3209108.3209204

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2541568.2541573
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1145/1993316.1993525
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1109/LICS.2011.38
https://hal.archives-ouvertes.fr/tel-01951291
https://hal.archives-ouvertes.fr/tel-01951291
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/3209108.3209204

1:28 Guilhem Jaber and Colin Riba

C.-H. L. Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In Proceedings of LICS 2006.

IEEE Computer Society, 81–90.

M. Piróg and J. Gibbons. 2014. The coinductive resumption monad. Electronic Notes in Theoretical Computer Science 308

(2014), 273–288.

G. Plotkin and C. Stirling. 1986. A Framework for Intuitionistic Modal Logics: Extended Abstract. In Proceedings of the 1986

Conference on Theoretical Aspects of Reasoning About Knowledge (TARK ’86). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 399–406.

P. M. Rondon, M. Kawaguci, and R. Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’08). Association for Computing Machinery, New York, NY,

USA, 159–169. https://doi.org/10.1145/1375581.1375602

L. Santocanale and Y. Venema. 2010. Completeness for flat modal fixpoint logics. Ann. Pure Appl. Logic 162, 1 (2010), 55–82.

R. Sato, N. Iwayama, and N. Kobayashi. 2019. Combining higher-order model checking with refinement type inference. In

Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM@POPL 2019,

Cascais, Portugal, January 14-15, 2019, M. V. Hermenegildo and A. Igarashi (Eds.). ACM, 47–53. https://doi.org/10.1145/

3294032.3294081

A. K. Simpson. 1994. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD Thesis. University of Edinburgh.

https://www.era.lib.ed.ac.uk/handle/1842/407

C. Sprenger and M. Dam. 2003. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the µ-
Calculus. In Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS 2003

Held as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April

7-11, 2003, Proceedings (Lecture Notes in Computer Science), A. D. Gordon (Ed.), Vol. 2620. Springer, 425–440. https:

//doi.org/10.1007/3-540-36576-1_27

H. Unno, Y. Satake, and T. Terauchi. 2018. Relatively complete refinement type system for verification of higher-order

non-deterministic programs. Proc. ACM Program. Lang. 2, POPL (2018), 12:1–12:29. https://doi.org/10.1145/3158100

N. Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D. Dissertation. UC San Diego.

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. 2014. Refinement Types for Haskell. In Proceedings

of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP’14). Association for Computing

Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

N. Veltri and N. van der Weide. 2019. Guarded Recursion in Agda via Sized Types. In 4th International Conference on

Formal Structures for Computation and Deduction (FSCD 2019) (Leibniz International Proceedings in Informatics (LIPIcs)),

H. Geuvers (Ed.), Vol. 131. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 32:1–32:19. https:

//doi.org/10.4230/LIPIcs.FSCD.2019.32

I. Walukiewicz. 2000. Completeness of Kozen’s Axiomatisation of the Propositional µ-Calculus. Information and Computation

157, 1-2 (2000), 142–182.

K. Watanabe, T. Tsukada, H. Oshikawa, and N. Kobayashi. 2019. Reduction from Branching-Time Property Verification

of Higher-Order Programs to HFL Validity Checking. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation (PEPM 2019). Association for Computing Machinery, New York, NY, USA, 22?34.

https://doi.org/10.1145/3294032.3294077

L.-Y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and S. Zdancewic. 2019. Interaction Trees: Representing

Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL (2019). https://doi.org/10.1145/3371119

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081
https://www.era.lib.ed.ac.uk/handle/1842/407
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1145/3158100
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1145/3371119

Temporal Refinements for Guarded Recursive Types 1:29

A ADDITIONAL MATERIAL FOR §4
Figure 13 presents the definition of the variance predicates α Pos φ and α Neg φ for the full logical

language (§4 and §6). The intuitionistic propositional deduction rules are given in Fig. 14.

Remark A.1 (Rem. 4.6). All modalities ([πi], [fold], [next], [ini], [ev(ψ)] and [box]) satisfy the

monotonicity rule (RM) and are thus monotone in the sense of [Chellas 1980], from which we

borrowed the terminology used in Table 3 (see also [Frittella 2014; Hansen 2003]). Assuming the

rule (RM), we easily get the following:

(a) Axiom (N) implies the usual necessitation rule:

⊢ φ

⊢ [△]φ
(RN)

Proof. Indeed, one can derive

(N)
⊢ [△]⊤

φ

⊢ ⊤ ⇒ φ
(RM)

⊢ [△]⊤ ⇒ [△]φ

[△]φ

□

(b) Axiom (C) implies the usual axiom (K):

[△](φ ⇒ ψ) =⇒ ([△]φ ⇒ [△]ψ)

Proof. Indeed, one has (
(φ ⇒ ψ) ∧ φ

)
=⇒ ψ

(RM)
[△]

(
(φ ⇒ ψ) ∧ φ

)
=⇒ [△]ψ

(C)
[△](φ ⇒ ψ) ∧ [△]φ =⇒ [△]ψ

[△](φ ⇒ ψ) =⇒ ([△]φ ⇒ [△]ψ)

□

(c) We have the monotonicity axioms

[△](φ ∧ψ) =⇒ [△]φ ∧ [△]ψ
[△]φ ∨ [△]ψ =⇒ [△](φ ∨ψ)

Hence, with our adaptation to unbounded linear branching, the normal intuitionistic modal logic

IK of [Plotkin and Stirling 1986] is (RM) + (C) + (N) + (P) + (C∨) + (C⇒), while the normal modal

logic K is IK + (CL) (see e.g. [Blackburn et al. 2002]).

B ADDITIONAL MATERIAL FOR §5
The definition of the subtyping relation ≤ for the full system (§5 and §6) is given in Fig. 15.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:30 Guilhem Jaber and Colin Riba

α Pos α

α , β

α Pos β α Pos ⊤ α Pos ⊥

α Pos φ α Pos ψ

α Pos φ ∨ψ

α Pos φ α Pos ψ

α Pos φ ∧ψ

α Neg ψ α Pos φ

α Pos ψ ⇒ φ

α Pos φ

α Pos [πi]φ

α Pos φ

α Pos [ini]φ
α Pos φ

α Pos [fold]φ
α Pos φ

α Pos [next]φ
α Neg ψ α Pos φ

α Pos [ev(ψ)]φ

α Pos φ α , β

α Pos ν βφ

α Pos φ α , β

α Pos µβφ

α Pos φ α , β

α Pos νtβφ

α Pos φ α , β

α Pos µtβφ

α , β

α Neg β α Neg ⊤ α Neg ⊥

α Neg φ α Neg ψ

α Neg φ ∨ψ

α Neg φ α Neg ψ

α Neg φ ∧ψ

α Pos ψ α Neg φ

α Neg ψ ⇒ φ

α Neg φ

α Neg [πi]φ

α Neg φ

α Neg [ini]φ
α Neg φ

α Neg [fold]φ
α Neg φ

α Neg [next]φ
α Pos ψ α Neg φ

α Neg [ev(ψ)]φ

α Neg φ α , β

α Neg ν βφ

α Neg φ α , β

α Neg µβφ

α Neg φ α , β

α Neg νtβφ

α Neg φ α , β

α Neg µtβφ

Fig. 13. Positive and Negative Occurrences for the Full Logical Language.

⊢A φ ∨ φ ⇒ φ ⊢A φ ⇒ φ ∧ φ ⊢A φ ⇒ φ ∨ψ ⊢A φ ∧ψ ⇒ φ

⊢A φ ∨ψ ⇒ ψ ∨ φ ⊢A φ ∧ψ ⇒ ψ ∧ φ

⊢A φ ∧ψ ⇒ θ

⊢A φ ⇒ (ψ ⇒ θ)

⊢A φ ⇒ (ψ ⇒ θ)

⊢A φ ∧ψ ⇒ θ

⊢A φ ⊢A φ ⇒ ψ

⊢A ψ

⊢A φ ⇒ ψ ⊢A ψ ⇒ θ

⊢A φ ⇒ θ ⊢A ⊥ ⇒ φ

⊢A φ ⇒ ψ

⊢A θ ∨ φ ⇒ θ ∨ψ

Fig. 14. Intuitionistic Propositional Deduction Rules.

The underlying pure type |T | of a refinement type T is inductively defined as follows:

|A| := A
| {A | φ} | := A
|∀k ·T | := |T |
|T +U | := |T | + |U |

|T ×U | := |T | × |U |

U → T	:=	U	→	T
▶T	:= ▶	T		
■T	:= ■	T		

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:31

T ≤ T

T ≤ U U ≤ V

T ≤ V

T ≤ U

▶T ≤ ▶U

U ≤ T

■U ≤ ■T

T0 ≤ U0 T1 ≤ U1

T0 ×T1 ≤ U0 ×U1

T0 ≤ U0 T1 ≤ U1

T0 +T1 ≤ U0 +U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ |T | A ≤ {A | ⊤}

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

{B | ψ } → {A | φ} ≡ {B → A | [ev(ψ)]φ}

▶ {A | φ} ≡ {▶A | [next]φ} ∀k · ▶T ≡ ▶∀k ·T

φ safe

■ {A | φ} ≡ {■A | [box]φ}
⊢A
c
φ ⇒ ψ

{■A | [box]φ} ≤ {■A | [box]ψ }

Fig. 15. Subtyping Rules (full version).

C ADDITIONAL MATERIAL FOR §8
This Appendix presents material that we omitted in §8 for space reasons. We follow roughly he

same plan. All proofs a deferred to App. E. We often use θ as a generic notation for µ and ν .

C.1 The Topos of Trees (Basic Structure)
Notation C.1. Given an object X of S and 0 < k ≤ n, we write t↑k for the restriction of t ∈ X (n)
into X (k), obtained by composing restriction functions rXi for i = k, . . . ,n − 1.

Full definitions and proofs of the semantic require the explicit manipulation of some of the structure

of S. We refer to [Birkedal et al. 2012; Clouston et al. 2016] for details.

First, as in any presheaf category, limits and colimits are computed pointwise. In particular

binary sums and products are given by

(X + Y)(n) = X (n) + Y (n)
(X × Y)(n) = X (n) × Y (n)

Moreover, exponentials are induced by the Yoneda Lemma see e.g. [Mac Lane and Moerdijk 1992,

§I.6]. Explicitly, given S object X and Y , the exponent YX
at n is the set of all sequences (fℓ)ℓ≤n of

functions fℓ : X (ℓ) → Y (ℓ) which are compatible with restriction (i.e. rY
ℓ
◦ fℓ+1 = fℓ ◦ r

X
ℓ
).

The morphism fixX : X ▶X → X is defined as

fixXn ((fm)m≤n) := (fn ◦ · · · ◦ f1)(•)

Since we do not require the explicit constructions, we refer to [Birkedal et al. 2012] for the

interpretation of guarded recursive types Fix(X).A(X) and for the definition of the isos

fold : JA(Fix(X).A(X))K −→ JFix(X).A(X)K
unfold : JFix(X).A(X)K −→ JA(Fix(X).A(X))K

We now have all the structure we need for the denotational semantics of the ■-free fragment of

the pure calculus.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:32 Guilhem Jaber and Colin Riba

C.2 Global Sections and Constant Objects
As for any presheaf topos, the global section functor Γ : S → Set is right adjoint to the constant

object functor ∆ : Set → S (see e.g. [Mac Lane and Moerdijk 1992, §I.6]):

S

Γ
))

⊤ Set
∆

ii

We note the following easy well-known facts for the record.

Lemma C.2. Given a set S and given X , Y objects of S, we have in Set:
(1) the unit η of ∆ ⊣ Γ is an iso,

(2) Γ(X × Y) ≃ ΓX × ΓY and Γ1 ≃ 1
(3) Γ(X + Y) ≃ ΓX + ΓY
(4) Γ(X∆S) ≃ (ΓX)S

(5) Γ(▶X) ≃ ΓX (via Γ(next))
where all the mentioned isos are natural in X and Y (when applicable).

Proof.

(1) The unit ηS of ∆ ⊣ Γ at S takes a ∈ S to the constant map (n 7→ (• 7→ a)) ∈ S[1,∆S]. Its inverse
is the function S[1,∆S] → S taking a constant map x ∈ S[1,∆S] to x(0)(•).

(2) Since Γ is a right adjoint.

(3) Since for any x ∈ S[1,X + Y] there is some i ∈ {0, 1} such that x(•)(n) is of the form ini (xn)
for all n ∈ N.

(4) Using the Cartesian closed structure of S and the adjunction ∆ ⊣ Γ we have

Γ(X∆S) = S[1,X∆S]

≃ S[1 × ∆S,X]

≃ S[∆S,X]

≃ Set[S, ΓX]

(5) We show that x ∈ ΓX 7→ next◦x ∈ Γ(▶X) is a bijection.We first show surjectivity. Consider x ′ ∈

S[1, ▶X]. Then for each n ∈ N, we have x ′
n+1(•) ∈ ▶X (n + 1) = X (n) with x ′

n+2(•)↑ = x ′
n+1(•).

This defines a map x ∈ S[1,X] as xn(•) := x ′
n+1(•). Moreover, (next0 ◦ x0)(•) = • = x ′

0
(•) and

(nextn+1 ◦ xn+1)(•) = xn+1(•)↑ = x ′
n+2(•)↑ = x ′

n+1(•)

We now show injectivity. Let x ,y ∈ S[1,X] and assume next ◦ x = next ◦ y : 1 →S ▶X . Then

for all n we have xn+1(•)↑ = yn+1(•)↑ and thus xn(•) = yn(•). □

Following [Clouston et al. 2016], for a (closed) pure type A, we have

J■AK := ∆ΓJAK

In words, all components J■AK(n) are equal to ΓJAK, and the restriction maps of J■AK are identities.
In particular, a global section x ∈ ΓJ■AK is a constant family (xn)n>0 describing a unique global

section xn+1(•) = xn(•) ∈ ΓJAK.
The term constructor unbox(−) is interpreted as the counit ε of the adjunction ∆ ⊣ Γ: given

Γ ⊢ M : ■A, we let Junbox(M)K be the composite

JΓK
JMK
−→ J■AK = ∆ΓJAK

ε
−→ JAK

The term constructors box and prev rely on a strong semantic property of constant types, namely

that their interpretation lie (modulo isomorphism) in the image of the constant object functor ∆.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:33

Definition C.3 ([Clouston et al. 2016, Def. 2.2]). An object X of S is constant if X ≃ ∆S for some

set S .

Note that the restriction maps of constant objects are bijections. Similarly as in [Clouston et al.

2016, Def. 2.2], if x ∈ X (n) with X constant, then we write x ∈ X (k) for the unique element of X (k)
which is equal to x modulo the bijective restriction maps of X .

Lemma C.4 ([Clouston et al. 2016, Lem. 2.6]). If A is a constant (pure) type, then JAK is a constant
object of S.

We now give the interpretations of boxσ (M) and prevσ (M) (where σ stands for [x1 7→ M1, . . . ,xk 7→

Mk]). Assuming in both cases JMK to be defined, for n > 0 we let

Jboxσ (M)K(n) : JΓK(n) −→ ∆ΓJAK(n) = ΓJAK
γ 7−→

(
m 7→ JMKm

(
JM1Kn(γ) , . . . , JMk Kn(γ)

))
Jprevσ (M)K(n) : JΓK(n) −→ ▶JAK(n) = JAK(n + 1)

γ 7−→

(
JMKn+1

(
JM1Kn(γ) , . . . , JMk Kn(γ)

))
where the mismatches between n andm and between n and n + 1 are legal since JA1K, . . . , JAk K are
constant by Lem. C.4.

C.3 External and Internal Semantics: Global Definitions
We can now give the full Set and S interpretations of the logical language. In contrast with §8, we

discuss the external semantics {|−|} in Set before the internal semantics J−K in S. In both cases, for

α : A ⊢ φ : A(α), we let

φ0(⊤) := ⊤

φm+1(⊤) := φ(φm(⊤))
φ0(⊥) := ⊥

φm+1(⊥) := φ(φm(⊥))

(Recall that θtαφ is only allowed when φ as at most α as free variable.)

Definition C.5 (External Semantics). Consider a formula α1 : A1, . . . ,αk : Ak ⊢ φ : A without free

iteration variable. Assume given a valuation v taking each propositional variable αi for i = 1, . . . ,k
to a set v(αi) ∈ P(ΓJAiK). We define {|φ |}Av ∈ P(ΓJAK) by induction on φ in Fig. 16.

As for the internal S semantics J−K, we give a global definition, in a form similar to Def. C.5.

Definition C.6 (Internal Semantics). Consider a formula α1 : A1, . . . ,αk : Ak ⊢ φ : A without free

iteration variable. Assume given a valuation v taking each propositional variable αi for i = 1, . . . ,k
to a subobject v(αi) of JAiK. The subobject JφKAv of JAK is defined by induction on φ in Fig. 17.

The correctness of Def. C.6, namely that we indeed have JφKA ∈ Sub(JAK), as well as the

correspondence with the presentation of §8 are discussed in App. C.6.

Remark C.7. For closed formulae we can rephrase Def. C.6 as t ∈ JφKA(n) iff t ⊩An φ, where the
forcing relation t ⊩An φ is inductively defined as follows.

• t ̸⊩An ⊥.

• t ⊩An ⊤.

• t ⊩An φ ∨ψ iff t ⊩An φ or t ⊩An ψ .
• t ⊩An φ ∧ψ iff t ⊩An φ and t ⊩An ψ .
• t ⊩An ψ ⇒ φ iff for all k ≤ n, t↑k ⊩Ak φ whenever t↑k ⊩Ak ψ .

• t ⊩A0×A1

n [πi]φ iff πi (t) ⊩
Ai
n φ.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:34 Guilhem Jaber and Colin Riba

{|⊥|}Av := ∅ {|⊤|}Av := ΓJAK {|αi |}
A
v := v(αi)

{|φ ∨ψ |}Av := {|φ |}Av ∪ {|ψ |}Av {|φ ∧ψ |}Av := {|φ |}Av ∩ {|ψ |}Av

{|ψ ⇒ φ |}Av :=
(
ΓJAK \ {|ψ |}Av

)
∪ {|φ |}Av

{|[πi]φ |}
A0×A1

v :=
{
x ∈ ΓJA0 ×A1K

�� πi ◦ x ∈ {|φ |}Aiv
}

{|[ini]φ |}A0+A1

v :=
{
x ∈ ΓJA0 +A1K

�� ∃y ∈ ΓJAiK
(
x = ini ◦ y and y ∈ {|φ |}Aiv

)}
{|[fold]φ |}Fix(X).A

v :=
{
x ∈ ΓJFix(X).AK

��� unfold ◦ x ∈ {|φ |}A[Fix(X).A/X]
v

}
{|[ev(ψ)]φ |}B→A

v :=
{
x ∈ ΓJB → AK

�� ∀y ∈ ΓJBK, y ∈ {|ψ |}Bv =⇒ ev ◦ ⟨x ,y⟩ ∈ {|φ |}Av
}

{|[box]φ |}■A :=
{
x ∈ ΓJ■AK

�� x1(•) ∈ {|φ |}A
}

{|[next]φ |}▶Av :=
{
next ◦ x ∈ ΓJ▶AK

�� x ∈ {|φ |}Av
}{��νtαφ(α)��}Av := {|φm(⊤)|}Av (JtK =m){��µtαφ(α)��}Av := {|φm(⊥)|}Av (JtK =m)

{|ναφ |}Av :=
⋃ {

S
��� S ∈ P(ΓJAK) and S ⊆ {|φ |}Av[S/α]

}
{|µαφ |}Av :=

⋂ {
S
��� S ∈ P(ΓJAK) and {|φ |}Av[S/α] ⊆ S

}
Fig. 16. External Semantics.

J⊥KAv (n) := ∅ J⊤KAv := JAK JαiKAv := v(αi)

Jφ ∨ψ KAv (n) := JφKAv (n) ∪ Jψ KAv (n) Jφ ∧ψ KAv (n) := JφKAv (n) ∩ Jψ KAv (n)

Jψ ⇒ φKAv (n) :=
{
t ∈ JAK(n)

�� ∀k ≤ n, t↑k ∈ Jψ KAv (k) =⇒ t↑k ∈ JφKAv (k)
}

J[πi]φKA0×A1

v (n) :=
{
t ∈ JA0 ×A1K(n)

��� πi (t) ∈ JφKAiv (n)
}

J[ini]φKA0+A1

v (n) :=
{
t ∈ JA0 +A1K(n)

��� ∃u ∈ JAiK(n), t = ini (u) and u ∈ JφKAiv (n)
}

J[fold]φKFix(X).A
v (n) :=

{
t ∈ JFix(X).AK(n)

��� unfoldn(t) ∈ JφKA[Fix(X).A/X]
v (n)

}
J[ev(ψ)]φKB→A

v (n) :=
{
t ∈ JB → AK(n)

�� ∀k ≤ n, ∀u ∈ JBK(k), u ∈ Jψ KBv (k) =⇒ (t↑k)(u) ∈ JφKAv (k)
}

J[box]φK■A(n) :=
{
t ∈ J■AK(n) = ΓJAK

�� t ∈ {|φ |}A
}

J[next]φK▶Av (1) := 1

J[next]φK▶Av (n) := JφKAv (n − 1) (n > 1)

Jνtαφ(α)KAv := Jφm(⊤)KAv (JtK =m)

Jµtαφ(α)KAv := Jφm(⊥)KAv (JtK =m)

JναφKAv :=
∨ {

S
��� S ∈ Sub(JAK) and S ≤ JφKAv[S/α]

}
JµαφKAv :=

∧ {
S
��� S ∈ Sub(JAK) and JφKAv[S/α] ≤ S

}
Fig. 17. Internal Semantics.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:35

• t ⊩A0+A1

n [ini]φ iff there is u ∈ JAiK(n) such that t = ini (u) and u ⊩
Ai
n φ.

• t ⊩B→A
n [ev(ψ)]φ iff for all k ≤ n and all u ∈ JBK(k), (t↑k)(u) ⊩Ak φ whenever u ⊩Bk ψ .

• t ⊩Fix(X).A
n [fold]φ iff unfold ◦ t ⊩A[Fix(X).A/X]

n φ.
• t ⊩▶A

0
[next]φ.

• t ⊩▶An+1 [next]φ iff t ⊩An φ.

• t ⊩■An [box]φ iff t ∈ {|φ |}A.

C.4 An Open Geometric Morphism
Key properties of the internal semantics of [box] rely on some further facts on the adjunction ∆ ⊣ Γ.
We refer to [Johnstone 2002; Mac Lane and Moerdijk 1992].

The functor ∆ : Set → S preserves limits (in particular, ∆ ⊣ Γ : S → Set is a geometric

morphism). It follows that ∆ preserves monos, so that for each set S the function

A ∈ P(S) 7−→ ∆A ∈ Sub(∆S)

is a meet preserving (and thus monotone) map. It is easy to see that this map has a posetal left

adjoint

f! : Sub(∆S) −→ P(S)

Proof. A subobject A of ∆S is a family of subsets A = (An)n with An ⊆ S . Hence we can let

f!(A) ∈ P(S) be the set of all a ∈ S such that a ∈ An for some n > 0. Then assuming f!(A) ⊆ B
for some set B ∈ P(S), it follows that if a ∈ An then a ∈ f!(A) ⊆ B so that a ∈ (∆B)n and thus

A ≤ ∆B. Conversely, if A ≤ ∆B, then for every a ∈ f!(A), since a ∈ An for some n > 0, we must

have a ∈ (∆B)n = B, so that f!(A) ⊆ B. □

As a consequence, the adjoint pair ∆ ⊣ Γ : S → Set is an open geometric morphism (in the

sense of [Mac Lane and Moerdijk 1992, Def. IX.6.2]), from which it follows that ∆ induces maps of

(complete) Heyting algebras P(S) → Sub(∆S) (see e.g. [Mac Lane and Moerdijk 1992, Thm. X.3.1 &

Lem. X.3.2]). We state this for later use.

Lemma C.8. For each set S , the functor ∆ induces a map of (complete) Heyting algebras P(S) →
Sub(∆S).

C.5 Abstract Modalities
We present here some well-known basic material which will help us proving the correctness of the

internal and external semantics.

Definition C.9. Let C be a category with pullbacks and consider a morphism k : X →C Y .

• The functor k∗ : C/Y → C/X is defined by pullbacks

A′

⌟
//

k∗(д)
��

A

д
��

X
k
// Y

• The functor (∃k) : C/X → C/Y is defined by postcomposition:

(д : A → X) 7−→ (k ◦ д : A → Y)

The following is a basic property of toposes.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:36 Guilhem Jaber and Colin Riba

Lemma C.10 ([Mac Lane and Moerdijk 1992, Thm. IV.7.2]). Let E be a topos and fix a map k :

X →E Y . The functor (∃k) is left adjoint to k∗ : E/Y → E/X . Moreover, k∗ has a right adjoint (∀k)
and preserves exponentials, and thus preserves subobjects.

Lemma C.11.
(1) The map (∃ini) : Set/Si → Set/(S0 + S1) induces a map P(Si) → P(S0 + S1).
(2) The map (∃ini) : S/Xi → S/(X0 + X1) induces a map Sub(Xi) → Sub(X0 + X1).

Proof. Since in both cases the morphism ini is a mono. □

Lemma C.12. The map S/X → S/▶X taking д : Y → X to ▶(д) : ▶Y → ▶X induces a map

Sub(X) → Sub(▶X).

Proof. The functor ▶ preserves limits since it has a left adjoint ([Birkedal et al. 2012, §2.1]). It

thus follows that ▶ preserves monos. □

C.6 External and Internal Semantics: Local Definitions
Some key properties of the Set and S interpretations are easier to get if one goes through a local

presentation, as operations on subobject and powerset lattices, similar to that of J−K in §8. The

goal is to pave the way toward the correctness of both semantics:

Lemma C.13 (Lem. 8.3). The following holds w.r.t. the full modal theories of Def. 6.2.

(1) If ⊢A
c
φ then {|φ |} = ΓJAK.

(2) If ⊢A φ then JφK = JAK.

The detailed proof of Lem. C.13 is deferred to App. E.1. It relies on the following material.

C.6.1 Internal Semantics. We use the material of §C.5 to devise operations on subobject lattices

corresponding to our modalities. This formally extends the presentation given in §8.

Definition C.14.
(a) Given S-objectsX0 andX1, define J[πi]K : Sub(Xi) → Sub(X0×X1) as π

∗
i , where πi : X0×X1 →S

Xi is the ith projection.

(b) Given S-objects X0 and X1, define J[ini]K : Sub(Xi) → Sub(X0 +X1) as (∃ini), where ini : Xi →S

X0 + X1 is the ith injection.

(c) Given a locally contractive functor T on S, define J[fold]K : Sub(T (Fix(T))) → Sub(Fix(T)) as
unfold∗, where we have unfold : Fix(T) →S T (Fix(T)).

(d) Given a S-object X , define J[next]K : Sub(X) → Sub(▶X) as ▶(−).
(e) Given a set S , define J[box]K : P(S) → Sub(∆S) as ∆(−).

We now discuss the case of [ev(ψ)]φ, which is actually interpreted as a logical predicate, in the

categorical generalization of the usual sense discussed in [Jacobs 2001a, §9.2 & Prop. 9.2.4]. We

follow here [Mac Lane and Moerdijk 1992, VI.5].

• First, extending the above discussion, for an object X of S, the (Heyting algebra) exponent

(−) ⇒X (−) : Sub(X) × Sub(X) −−→ Sub(X)

is given by

(A ⇒X B)(n) = {t ∈ X (n) | ∀k ≤ n, t↑k ∈ A(k) =⇒ t↑k ∈ B(k)}

(see e.g. [Mac Lane and Moerdijk 1992, Prop. I.8.5]).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:37

• Second, it follows from Lem. C.10 that for objects X , Y of S, taking the pullback of the

evaluation map ev : XY × Y → X gives a map of subobjects, as in

ev∗(A)
⌟

//

��

A��

XY × Y ev
// X

which in particular preserves limits and colimits.

• Third, in the internal logic of S, universal quantification over an object Y w.r.t. a predicate

A ∈ Sub(X ×Y) is given (again via Lem. C.10) by the right adjoint ∀Y := ∀(π) to π ∗
, where π

is the projection X ×Y → X ([Mac Lane and Moerdijk 1992, §VI.5, p. 300]). Moreover, via the

Kripke-Joyal semantics for a presheaf topos ([Mac Lane and Moerdijk 1992, §VI.7, p. 318]),

for A ∈ Sub(X × Y), the presheaf ∀Y (A) at n is

{t ∈ X (n) | ∀k ≤ n, ∀u ∈ Y (k), (t↑k,u) ∈ A}

We therefore let, for each pure types A and B,

J[ev(−)]K : Sub(JBK) −→
(
Sub(JAK) → Sub(JB → AK)

)
take S ′ ∈ Sub(JBK) to

J[ev(S ′)]K := S ∈ Sub(JAK) 7−→ ∀JBK

(
π ∗(S ′) ⇒JAKJBK×JBK ev∗(S)

)
where π : XY × Y → XY

is a projection.

Now, note that we actually have

Lemma C.15. Consider a formula Σ ⊢ φ : A and v as in Def. C.6, such that JφKv ∈ Sub(JAK). We

have

(1) J[πi]φKv = J[πi]K(JφKv)
(2) J[ini]φKv = J[ini]K(JφKv)
(3) J[fold]φKv = J[fold]K(JφKv)
(4) J[next]φKv = J[next]K(JφKv)
(5) J[box]φK = J[box]K(JφK)
(6) J[ev(ψ)]φKv = J[ev(Jψ Kv)]K(JφKv) for each ⊢ ψ : B such that Jψ K ∈ Sub(JBK).

Proof.

(1) Since limits are computed pointwise in presheaves, we have

J[πi]K(JφKAi)(n) =
{
(t ,u) ∈ JA0 ×A1K(n) × JφK(n)

�� u = πi (t)}
which is clearly in bijection with J[πi]φKA0×A1 (n).

(2) Trivial.

(3) Similar to the case of [πi].
(4) Trivial.

(5) Trivial.

(6) Immediate from the above discussion. □

We thus have done almost all the work to obtain the following basic fact.

Lemma C.16. Given α1 : A1, . . . ,αk : Ak ⊢ φ : A, and v taking αi for i = 1, . . . ,k to v(αi) ∈

Sub(JAiK), we have JφKAv ∈ Sub(JAK).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:38 Guilhem Jaber and Colin Riba

Proof. The proof is by induction on formulae. The interpretation of the propositional connectives

follows the corresponding structures in presheaf toposes [Mac Lane and Moerdijk 1992, Prop. I.8.5].

The cases of the modalities [△] follow from the induction hypothesis and Lem. C.15. The cases of

θαφ simply amount to the fact that for presheaf toposes, subobjects lattices are complete ([Mac Lane

and Moerdijk 1992, Prop. I.8.5]). The cases of θtαφ for t an iteration term are trivial. □

We now turn to the logical theory. We immediately get from the above:

Corollary C.17.

(1) The maps J[πi]K, J[fold]K and J[box]K are maps of Heyting algebras.

(2) The maps J[ini]K preserve ∨,⊥ and ∧.

(3) The maps J[next]K preserve ∧,⊤ and ∨.

(4) For each object X of S and each fixed S ∈ Sub(X), the map J[ev(S)]K preserves ∧,⊤.

Proof.

(1) This directly follows from Lem. C.10 and Lem. C.8.

(2) Preservation of ∨,⊥ follows from that fact that J[ini]K is a left adjoint by Lem. C.10. For binary

conjunctions, first note that meets in partial orders are given by pullbacks. In a subobject lattice

Sub(Xi), this can be expressed as

A ∧ B⌟
//

��

B

��
A // Xi

(where arrows are inclusions maps). Since ini : Xi → X0 + X1 is a mono, the following is also a

pullback in Sub(X0 + X1):

A ∧ B⌟
//

��

B

��
Xi

ini
��

A // Xi ini
// X0 + X1

(3) Preservation of ∧,⊤ follows from the fact that ▶(−) is a right adjoint ([Birkedal et al. 2012,
§2.1]). As for preservation of ∨, we check the details. Consider an object X of S and subobjects

A,B ∈ Sub(X). We have to show ▶(A ∨ B) = ▶(A) ∨ ▶(B). But we have

▶(A ∨ B)0 = 1 = 1 ∪ 1 = (▶(A) ∨ ▶(B))0

and

▶(A ∨ B)n+1 = (A ∨ B)n = An ∪ Bn
= ▶(A)n+1 ∪ ▶(B)n+1
= (▶(A) ∨ ▶(B))n+1

(4) This directly follows from Lem. C.10, via Lem. C.15 and the definition of J[ev(−)]K. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:39

C.6.2 External Semantics. We now turn to operations on powerset lattices for the external

semantics.

Definition C.18.
(a) Given sets S0 and S1, define {|[πi]|} : P(Si) → P(S0 × S1) as π

∗
i , where πi : S0 × S1 → Si is the ith

projection.

(b) Given sets S0 and S1, define {|[ini]|} : P(Si) → P(S0 + S1) as (∃ini), where ini : Si → S0 + S1 is
the ith injection.

(c) Given a S object X , define {|[next]|} : P(ΓX) → P(Γ▶X) as ((Γnext)−1)∗, where (Γnext)−1 :

Γ(▶X) → ΓX is the inverse of Γ(next) (Lem. C.2).

(d) Given a locally contractive functor T on S, define {|[fold]|} : P(Γ(T (Fix(T)))) → P(ΓFix(T)) as
Γ(unfold)∗, where unfold : Fix(T) →S T (Fix(T)).

We trivially have (at appropriate types):

{|[πi]φ |} = {|[πi]|} ({|φ |})
{|[ini]φ |} = {|[ini]|} ({|φ |})

{|[next]φ |} = {|[next]|} ({|φ |})
{|[fold]φ |} = {|[fold]|} ({|φ |})

Similarly as in Cor. C.17, we obtain the following.

Lemma C.19.
(1) The functions {|[πi]|}, {|[next]|}, {|[fold]|} are maps of Boolean algebras.

(2) The function {|[ini]|} preserves ∨,⊥ and ∧.

C.7 The Safe Fragment
The proofs of Lem. 8.5, Lem. 8.6 and Prop. 8.7 are deferred to App. E.2.

C.8 The Smooth Fragment
The proof of Lem. 8.8 is deferred to App. E.3.

C.9 Constant Objects, Again
For the adequacy of the typing rules of the term constructors box and prev, we need to generalize

Lem. C.4 (§C.2) to refinement types. To this end, it is convenient to extend the notation J−K to
refinement types.

Definition C.20. For T is a type without free iteration variables, we define JT K by induction as

follows:

J{A | φ}K := JφK
J∀k ·T K :=

∧
n∈NJT [n/k]K

JT0 +T1K := JT0K + JT1K
JT0 ×T1K := JT0K × JT1K
JU → T K := JU K → JT K

J▶T K := ▶JT K
J■T K := ∆ΓJT K

We can now extend Lem. C.4. We crucially rely on the fact that ∆ preserves limits (see e.g. [John-

stone 2002, Ex. 4.1.4]).

Lemma C.21. If T is a constant type, then JT K is a constant object of S.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:40 Guilhem Jaber and Colin Riba

Proof. The proof is by induction on types. The cases of the type constructors +, ×, → are easy

and discussed in [Clouston et al. 2016, Lem. 2.6]. In the case of Fix(X).A, since all occurrences
of X in A should be guarded by a ▶, and since ■ can only be applied to closed types, it follows

that X cannot occur in A. Then JAK is constant by induction hypothesis and we are done since

JFix(X).AK ≃ JAK in this case. The case of ■T is trivial. As for ∀k · T , since |T | is constant, we
have J|T |K ≃ ∆S for some set S . By induction hypothesis for each n ∈ N we have JT [n/k]K ≃ ∆Sn
for some set Sn with ∆Sn ∈ Sub(J|T |K). Note that ∆Sn can be seen as a subobject of ∆S . Recall
from §C.4 the posetal left adjoint

f! : Sub(∆S) −→ P(S)

of the map

∆ : X ∈ P(S) 7−→ ∆X ∈ Sub(∆S)

In particular ∆ : P(S) → Sub(∆S) preserves meets and we get

J∀k ·T K =
∧

nJT [n/k]K
≃

∧
n ∆Sn

≃
∧

n ∆f!∆Sn
≃ ∆ (

⋂
n f!∆Sn)

As for refinement types, we show by induction on ⊢ φ : A with A constant that JφK is a constant
object.

Cases of ⊤, ⊥, ∧, ∨ and⇒.
All these cases follow from (the induction hypothesis and) the fact that ∆ induces maps of

Heyting algebras on subobject lattices (Lem. C.8).

Case of [box]φ.
Trivial, since J[box]φK is in the image of ∆.

Case of [next]φ.
This case cannot occur since A is constant.

Case of [fold]φ.
In this case, we have A = Fix(X).B. Since X is guarded in B, it must not occur in B, and we

have JAK ≃ JBK via unfold. Moreover JBK is constant, with say JBK ≃ ∆S and by induction

hypothesis, J[φ]K is a constant subobject of JBK, say J[φ]K ≃ ∆Φ. Now, J[fold]φK lies in the

pullback diagram

unfold∗(JφK) ≃ J[fold]φK
⌟

π //
� _

��

JφK ≃ ∆(Φ)� _

��
JAK

unfold
// JBK ≃ ∆(S)

Since unfold is an iso, the upper arrow π is also an iso, and we are done.

Case of [πi]φ.
We rely on the description of J[πi]φK as J[πi]K(JφK) in §C.6. By induction hypothesis and

recalling that ∆ preserves finite products, consider the pullback

π ∗(JφK) ≃ J[πi]φK
⌟

//
� _

��

JφK ≃ ∆(Φ)� _

��
∆(S0) × ∆(S1) πi

// ∆(Si)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:41

Then one can take the corresponding pullback in Set

Ψ⌟
//

_�

��

Φ� _

��
S0 × S1 πi

// Si

and this implies that J[πi]φK ≃ ∆(Ψ) since ∆ preserves finite limits.

Case of [ini]φ.
We rely on the description of J[ini]φK as J[ini]K(JφK) in §C.6. The result follows from the

induction hypothesis and the fact that ∆ preserves finite limits and colimits, as in:

JφK ≃ ∆(Φ) ↪→ ∆(Si)
∆(ini)=ini
−−→ ∆(S0) + ∆(S1)

Case of [ev(ψ)]φ.
We rely on the description of J[ev(ψ)]φK in §C.6, that is

J[ev(ψ)]φK = ∀JBK

(
π ∗(Jψ K) =⇒JAKJBK×JBK ev∗(JφK)

)
The result then follows from Lem. C.8 and the fact that ∆ thus preserves universal quantifi-

cations (see e.g. [Mac Lane and Moerdijk 1992, Thm. X.3.1 & Lem. X.3.2]).

Cases of θtαφ and θαφ.
By assumption, the occurrences of α in φ should be guarded by a [next]. Since [box] can only

be applied to closed formulae, this imposes α not to appear in φ. But then the result follows

by induction hypothesis. □

C.10 Realizability
We detail the steps toward the Adequacy Theorem 8.12. Full proofs are deferred to App. E.4. The

first basic result we need about our notion of realizability is that it is monotone w.r.t. step indexes.

Lemma C.22 (Monotonicity of Realizability). Let T be a type without free iteration variables. If

x ⊪n T then x ⊪k T for all k ≤ n.

The correctness of subtyping requires two additional lemmas. The first one concerns the rule

T ≤ |T |

Lemma C.23. For a pure type A and x ∈ ΓJAK, we have x ⊪n A for all n > 0.

Second, we need a result of [Clouston et al. 2016] for the correctness of the subtyping rules

{B | ψ } → {A | φ} ≤ {B → A | [ev(ψ)]φ}

Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}

An object X of S is total if all its restriction maps rXn : Xn+1 → Xn are surjective. Hence, if X is

total, then given t ∈ Xn for some n > 0, there is a global section x : 1 →S X such that xn(•) = t .

Lemma C.24 ([Clouston et al. 2016, Cor. 3.8]). For a pure type A, the object JAK is total.

We then obtain the correctness of subtyping as usual. The rules

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

⊢A
c
φ ⇒ ψ

{■A | [box]φ} ≤ {■A | [box]ψ }

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:42 Guilhem Jaber and Colin Riba

rely on Lem. C.13 (Lem. 8.3), while

φ safe

■ {A | φ} ≡ {■A | [box]φ}

is given by Prop. 8.7.

LemmaC.25 (Correctness of Subtyping (Lem. 8.11)). Given typesT ,U without free iteration variable,

if x ⊪n U andU ≤ T then x ⊪n T .

We now have all we need for the Adequacy Theorem 8.12. As usual it requires a stronger inductive

invariant than the statement of Thm. 8.12. Given a typed term

x1 : T1, . . . ,xk : Tk ⊢ M : T

and global sections u1 ∈ ΓJ|T1 |K, . . . ,uk ∈ ΓJ|Tk |K, we obtain a global section

JMK ◦ ⟨u1, . . . ,uk ⟩ : 1 −→ J|T |K

We introduce some notation to manipulate these global sections. Given a typing context Γ = x1 :
T1, . . . ,xk : Tk we write ρ |= Γ if ρ takes each xi for i = 1, . . . ,k to some ρ(xi) ∈ ΓJ|Ti |K. Given a

typing judgment Γ ⊢ M : T , we let

JMKρ := JMK ◦ ⟨ρ(x1), . . . , ρ(xk)⟩

Given ρ |= Γ and n > 0, write ρ ⊪n Γ if ρ(xi) ⊪n Ti for all i = 1, . . . ,k . Thm. 8.12 is proved under

the following form.

Theorem C.26 (Adequacy (Thm. 8.12)). Let Γ,T have free iteration variables among ℓ, and let

m ∈ N. If Γ ⊢ M : T and ρ |= Γ, then

∀n > 0, ρ ⊪n Γ[ℓ/m] =⇒ JMKρ ⊪n T [ℓ/m]

Corollary C.27. (1) Consider a closed term ⊢ M : {A | φ} with φ safe. Then JMK : 1 →S JAK ∈ {|φ |}.
(2) Consider a closed term ⊢ M : {A | ψ } → {A | φ}, with φ, ψ safe. Then JMK induces a function

ΓJMK taking x ∈ {|ψ |} to ΓJMK = JMK ◦ x ∈ {|φ |}.

Corollary C.27 of course extends to any arity. As a consequence of Cor. C.27 and Møgel-

berg’s Theorem 8.13 [Møgelberg 2014], for a closed term M : {■P | [box]φ} with P polynomial,

the unique global section JMKn+1(•) = JMKn(•) ∈ ΓJPK satisfies φ in the standard sense (i.e.

JMKn+1(•) = JMKn(•) ∈ {|φ |}). Moreover a function, sayM : {■Q | [box]ψ } → {■P | [box]φ} with
Q, P polynomial induces a Set-function

ΓJMK : ΓJ■QK −→ ΓJ■PK
x 7−→ JMK ◦ x

such that, if y ∈ ΓJQK ≃ Γ∆ΓJQK = ΓJ■QK satisfiesψ in the standard sense (i.e. y ∈ {|φ |}), then the

unique global section ΓJMK(y)n+1(•) = ΓJMK(y)n(•) ∈ ΓJPK satisfies φ in the standard sense (i.e.

belongs to {|φ |}).

C.11 A Galois Connection
In §8, we indicated that safe formulae over StrgA are safety (i.e. topologically closed) properties.

In view of Møgelberg’s Theorem [Møgelberg 2014] (Thm. 8.13), this generalizes to polynomial

recursive types: safe formulae on polynomial recursive types define closed sets for the usual tree

(or stream) topology.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:43

We briefly elaborate on this. Fix an object X of S. There is a Galois connection between the

subobjects of X in S and the subsets of ΓX in Set:

Pref ⊣ Clos : Sub(X) −→ P(ΓX)

where for S ∈ P(ΓX) and B ∈ Sub(X),

Pref(S) : n 7−→ {xn(•) | x ∈ S}
Clos(B) := {x ∈ ΓX | ∀n > 0, xn(•) ∈ B(n)}

Of course, Clos is the restriction of Γ : S → Set to the subobjects of X .

Let us spell out the fact that Pref ⊣ Clos form a Galois connection. Fix an object X of S. First, it

is trivial that the functions

Pref : P(ΓX) −→ Sub(X)

Clos : Sub(X) −→ P(ΓX)

are monotone w.r.t. the orders of the lattices P(ΓX) and Sub(X). Moreover, we have:

Lemma C.28. We have

(i) S ⊆ Clos(Pref(S)) for S ∈ P(ΓX).

(ii) Pref(Clos(B)) ⊆ B for B ∈ Sub(X).

Proof.

(i) Given x ∈ S , by definition we have xn(•) ∈ Pref(S)(n) for all n > 0, so x ∈ Clos(Pref(S)).
(ii) Given a ∈ Pref(Clos(B))(n), there is some x ∈ Clos(B) such that a = xn(•). But x ∈ Clos(B)

means xk (•) ∈ B(k) for all k > 0, so that a = xn(•) ∈ B(n). □

As usual, we trivially get

Pref(S) ≤ B iff S ⊆ Clos(B)

Say that S ∈ P(ΓX) is closed if S = Clos(B) for some B ∈ Sub(X). It is easy to see that S is closed if

and only if S = Clos(Pref(S)). Note that S = Clos(Pref(S)) unfolds to

∀x ∈ ΓJAK, x ∈ S iff ∀n > 0, ∃y ∈ S, xn(•) = yn(•)

When A is a polynomial recursive type, Thm. 8.13 thus says that S is closed if and only if S is closed

for the corresponding usual tree (or stream) topology. Since Prop. 8.7 can be formulated as

{|φ |} = Clos(JφK)

it indeed says that {|φ |} is closed for the usual topology.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:44 Guilhem Jaber and Colin Riba

D DETAILS OF THE EXAMPLES
D.1 Guarded Streams

D.1.1 The Later Modality on Guarded Streams.

Example D.1. We have the following basic modal refinement types for Consg and tlg:

Consg : A −→ ▶ {StrgA | φ} −→ {StrgA | ⃝φ}
tlg : {StrgA | ⃝φ} −→ ▶ {StrgA | φ}

Proof. We beginwithConsg. Recall thatConsg = λx .λs .fold⟨x , s⟩ and that⃝(−) = [fold][π1][next](−).
The result then follows from the following derivation:

x : A, s : ▶ {StrgA | φ} ⊢ s : ▶ {StrgA | φ}

x : A, s : ▶ {StrgA | φ} ⊢ s : {▶ StrgA | [next]φ}

x : A, s : ▶ {StrgA | φ} ⊢ ⟨x , s⟩ : {A × ▶ StrgA | [π1][next]φ}
x : A, s : ▶ {StrgA | φ} ⊢ fold⟨x , s⟩ : {StrgA | [fold][π1][next]φ}

As for tlg, recalling that tlg = λs .π1(unfold s), the result follows from

s : {StrgA | ⃝φ} ⊢ s : {StrgA | [fold][π1][next]φ}
s : {StrgA | ⃝φ} ⊢ unfold s : {A × ▶ StrgA | [π1][next]φ}
s : {StrgA | ⃝φ} ⊢ π1(unfold s) : {▶ StrgA | [next]φ}

s : {StrgA | ⃝φ} ⊢ π1(unfold s) : ▶ {StrgA | φ}

□

D.1.2 Destructors of Guarded Streams.

Example D.2. The types of hdg and tlg can be refined as follows with the always modality 2:

hdg : {StrgA | 2[hd]φ} −→ {A | φ}
tlg : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

Proof. Recall that [hd]φ = [fold][π0]φ. We begin with the typing of

hdg := λs .π0(unfold s) : {StrgA | 2[hd]φ} −→ {A | φ}

We use ⊢Str
g A 2[hd]φ ⇒ [hd]φ (Ex. 4.7).

s : {StrgA | 2[hd]φ} ⊢ s : {StrgA | 2[hd]φ}
⊢Str

g A 2[hd]φ ⇒ [hd]φ
{StrgA | 2[hd]φ} ≤ {StrgA | [hd]φ}

s : {StrgA | 2[hd]φ} ⊢ s : {StrgA | [hd]φ}
s : {StrgA | 2[hd]φ} ⊢ unfold s : {A × ▶ StrgA | [π0]φ}

s : {StrgA | 2[hd]φ} ⊢ π0(unfold s) : {A | φ}

⊢ λs .π0(unfold s) : {StrgA | 2[hd]φ} −→ {A | φ}

We continue with the typing of

tlg := λs .π1(unfold s) : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:45

We use ⊢Str
g A 2[hd]φ ⇒ ⃝2[hd]φ (Ex.4.7). Recall that ⃝φ = [fold][π1][next]φ.

s : {StrgA | 2[hd]φ} ⊢ s : {StrgA | 2[hd]φ}
⊢Str

g A 2[hd]φ ⇒ ⃝2[hd]φ
{StrgA | 2[hd]φ} ≤ {StrgA | ⃝2[hd]φ}

s : {StrgA | 2[hd]φ} ⊢ s : {StrgA | ⃝2[hd]φ}
s : {StrgA | 2[hd]φ} ⊢ unfold s : {A × ▶ StrgA | [π0][next]2[hd]φ}
s : {StrgA | 2[hd]φ} ⊢ π1(unfold s) : {▶ StrgA | [next]2[hd]φ}

s : {StrgA | 2[hd]φ} ⊢ π1(unfold s) : ▶ {StrgA | 2[hd]φ}
⊢ λs .π1(unfold s) : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

□

D.1.3 Constructor of Guarded Streams.

Example D.3. The type of Consg can be refined as follows with the always modality 2:

Consg : {A | φ} −→ ▶ {StrgA | 2[hd]φ} −→ {StrgA | 2[hd]φ}

Proof. We show

Consg := λx .λs .fold⟨x , s⟩ : {A | φ} −→ ▶ {StrgA | 2[hd]φ} −→ {StrgA | 2[hd]φ}

To this end, we use the following derived rule (see Ex. 5.1):

Γ ⊢ M : {A | φ} Γ ⊢ N : {B | ψ }

Γ ⊢ ⟨M,N ⟩ : {A × B | [π0]φ ∧ [π1]ψ }

Consider the typing context

Γ := x : {A | φ} , s : ▶ {StrgA | 2[hd]φ}

We know from §D.1.1 that

Γ ⊢ fold⟨x , s⟩ : {StrgA | ⃝2[hd]φ}

Since ⊢Str
g A ([hd]φ ∧ ⃝2[hd]φ) ⇒ 2[hd]φ (Ex. 4.7), we are done if we show

Γ ⊢ fold⟨x , s⟩ : {StrgA | [hd]φ}

But this is trivial:

Γ ⊢ x : {A | φ}

Γ ⊢ ⟨x , s⟩ : {A × ▶ StrgA | [π0]φ}

Γ ⊢ fold⟨x , s⟩ : {StrgA | [fold][π0]φ}

□

D.1.4 Map over Guarded Streams.

Example D.4. We have the following:

mapg : ({A | φ} → {B | ψ }) −→ {StrgA | 2[hd]φ} −→ {Strg B | 2[hd]ψ }
:= λf .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:46 Guilhem Jaber and Colin Riba

Proof. We proceed as follows, using §D.1.2 and §D.1.3:

Γ ⊢ s : {StrgA | 2[hd]φ}

Γ ⊢ hdg s : {A | φ}

Γ ⊢ f (hdg s) : {B | ψ }

Γ ⊢ s : {StrgA | 2[hd]φ}

Γ ⊢ tlg s : ▶ {StrgA | 2[hd]φ}

Γ ⊢ д ⊛ (tlg s) : ▶ {Strg B | 2[hd]ψ }

Γ ⊢ (f (hdg s)) ::g (д ⊛ (tlg s)) : {Strg B | 2[hd]ψ }

⊢ λf .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s)) : T

where

T := ({A | φ} → {B | ψ }) −→ {StrgA | 2[hd]φ} −→ {Strg B | 2[hd]ψ }
Γ := f : {A | φ} → {B | ψ } , д : ▶({StrgA | 2[hd]φ} → {Strg B | 2[hd]ψ }), s : {StrgA | 2[hd]φ}

□

D.1.5 Merge over Guarded Streams.

Example D.5. We have the following:

mergeg : {StrgA | 2[φ0]} −→ {StrgA | 2[φ1]} −→ {StrgA | 2([φ0] ∨ [φ1])}
:= fix(д).λs0.λs1.Consg (hdg s0)

(
next

(
Consg (hdg s1) (д ⊛ (tlg s0) ⊛ (tlg s1))

))
Proof. Let Γ be the context

д : ▶
(
{StrgA | 2[φ0]} −→ {StrgA | 2[φ1]} −→ {StrgA | 2([φ0] ∨ [φ1])}

)
,

s0 : {StrgA | 2[φ0]} ,
s1 : {StrgA | 2[φ1]}

We have

Γ ⊢ hdg s0 : {A | φ0}
Γ ⊢ hdg s1 : {A | φ1}

Γ ⊢ tlg s0 : ▶ {StrgA | 2[φ0]}
Γ ⊢ tlg s1 : ▶ {StrgA | 2[φ1]}

We thus get

д ⊛ (tlg s0) ⊛ (tlg s1) : ▶ {StrgA | 2([φ0] ∨ [φ1])}

and we are done since using subtyping we have

Consg : {A | φ0} −→ ▶ {StrgA | 2([φ0] ∨ [φ1])} −→ {StrgA | 2([φ0] ∨ [φ1])}
Consg : {A | φ1} −→ ▶ {StrgA | 2([φ0] ∨ [φ1])} −→ {StrgA | 2([φ0] ∨ [φ1])}

□

D.2 Operations on Coinductive Streams
Example D.6 (Operations on Coinductive Streams). For a safe φ of the appropriate type, we have

hd : {StrA | [box]2[hd]φ} −→ {A | φ}
tl : {StrA | [box]2[hd]φ} −→ {StrA | [box]2[hd]φ}
tl : {StrA | [box] ⃝ φ} −→ {StrA | [box]φ}

Proof.

Case of hd.
Recall that

hd : StrA −→ A
:= λs .hdg (unbox s)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:47

We have

s : {StrA | [box]2[hd]φ} ⊢ s : {StrA | [box]2[hd]φ} 2[hd]φ safe

s : {StrA | [box]2[hd]φ} ⊢ s : ■ {StrgA | 2[hd]φ}
s : {StrA | [box]2[hd]φ} ⊢ unbox s : {StrgA | 2[hd]φ}

s : {StrA | [box]2[hd]φ} ⊢ hdg(unbox s) : {A | φ}

⊢ λs .hdg (unbox s) : {StrA | [box]2[hd]φ} −→ {A | φ}

Cases of tl.
Recall that

tl : StrA −→ StrA
:= λs .boxι (prevι (tl

g (unbox s)))
We have

s : {StrA | [box]2[hd]φ} ⊢ s : {StrA | [box]2[hd]φ}

s : {StrA | [box]2[hd]φ} ⊢ unbox s : {StrgA | 2[hd]φ}

s : {StrA | [box]2[hd]φ} ⊢ tlg (unbox s) : ▶ {StrgA | 2[hd]φ} StrA constant

s : {StrA | [box]2[hd]φ} ⊢ prevι (tl
g (unbox s)) : {StrgA | 2[hd]φ}

s : {StrA | [box]2[hd]φ} ⊢ boxι (prevι (tl
g (unbox s))) : ■ {StrgA | 2[hd]φ} 2[hd]φ safe

s : {StrA | [box]2[hd]φ} ⊢ boxι (prevι(tlg (unbox s))) : {StrA | [box]2[hd]φ}
⊢ λs .boxι (prevι (tl

g (unbox s))) : {StrA | [box]2[hd]φ} −→ {StrA | [box]2[hd]φ}

and

s : {StrA | [box] ⃝ φ} ⊢ s : {StrA | [box] ⃝ φ}

s : {StrA | [box] ⃝ φ} ⊢ unbox s : {StrgA | ⃝φ}

s : {StrA | [box] ⃝ φ} ⊢ tlg (unbox s) : ▶ {StrgA | φ} StrA constant

s : {StrA | [box] ⃝ φ} ⊢ prevι (tl
g (unbox s)) : {StrgA | φ}

s : {StrA | [box] ⃝ φ} ⊢ boxι (prevι(tlg (unbox s))) : ■ {StrgA | φ} φ safe

s : {StrA | [box] ⃝ φ} ⊢ boxι (prevι (tl
g (unbox s))) : {StrA | [box]φ}

⊢ λs .boxι (prevι (tl
g (unbox s))) : {StrA | [box] ⃝ φ} −→ {StrA | [box]φ}

□

D.3 Map over Coinductive Streams
We discuss here the cases of

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]△[hd]ψ } −→ {StrA | [box]△[hd]φ}

where ψ , φ are safe and smooth and where △ ∈ {2,3,32,23}. The case of 2 is handled as in

Ex. 5.4, using that 2[hd]φ and 2[hd]ψ are safe. The case of 3 is detailed in Ex. D.7 (§D.3.1). The

idea is that since3[hd]φ,3[hd]ψ are smooth and since3k [hd]φ,3k [hd]ψ are safe, we can reduce

to typing the guarded mapg as

mapg : ({B | ψ } → {A | φ}) −→ ∀k ·
({
Strg B

�� 3k [hd]ψ
}
−→

{
StrgA

�� 3k [hd]φ
})

The case of32, detailed in Ex. D.8 (§D.3.2), is more involved. Since32[hd]φ,32[hd]ψ are smooth

and 3k2[hd]φ, 3k2[hd]ψ are safe, we similarly reduce to showing (mapg f) : ∀k ·T (k) where

T (k) :=
{
Strg B

�� 3k2[hd]ψ
}
−→

{
StrgA

�� 3k2[hd]φ
}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:48 Guilhem Jaber and Colin Riba

and assuming f of type {B | ψ } → {A | φ}. But this is unfortunately too weak. Similarly as with 3,

it is natural to first assume the type ▶∀k ·T (k) for the recursion variable д and then to apply the

(∀-CI) rule (Fig. 11) on ∀k ·T (k). In the case of T (k+1), we unfold

3k+12[hd]ψ ⇔ 2[hd]ψ ∨ ⃝3k2[hd]ψ

and apply the (∨-E) rule (Fig. 8). But in the branch of 2[hd]ψ , giving д the type, say,{
Strg B

�� 312[hd]ψ
}
−→

{
StrgA

�� 312[hd]φ
}

is not sufficient to derive

s : {Strg B | 2[hd]ψ } ⊢ д ⊛ (tlg s) : ▶ {StrgA | 2[hd]φ}

The reason is that [next] (and thus ⃝) does not satisfy axiom (P) of Table 3 (see §8). The solution is

to use the [ev(−)]/∥→ modality (see Not. 7.1) to encode a kind of “intersection” on arrow types (see

Rem. 4.8), and to type (mapg f) with

∀k ·

{
Strg B → StrgA

��� (3k2[hd]ψ ∥→ 3k2[hd]φ
)
∧

(
2[hd]ψ ∥→ 2[hd]φ

)}
We finally turn to 23. Using that 23[hd]φ and 23[hd]ψ are both smooth, we first unfold the 2’s

using the rules (ν-I) (Fig. 11) and then (ν-E) (Ex. 6.10), thus reducing to

boxι
(
mapg f (unbox s)

)
:

{
StrA

�� [box]2ℓ3[hd]φ
}

assuming f : {B | ψ } → {A | φ} and s :
{
StrB

�� [box]2ℓ3[hd]ψ
}
. Then, since3[hd]φ,3[hd]ψ are

smooth, we can unfold the 3’s using the rules (µ-E) and (µ-I) with the non-trivial smooth context

γ (β) := 2ℓβ

Since the formulae 2ℓ3k [hd]ψ and 2ℓ3k [hd]φ are safe, we can reduce to showing

λs . (f (hdg s)) ::g (д ⊛ (tlg s)) : ∀ℓ · ∀k ·U (ℓ,k)
U (ℓ,k) :=

{
Strg B

�� 2ℓ3k [hd]ψ
}

−→
{
StrgA

�� 2ℓ3k [hd]φ
}

assuming f : {B | ψ } → {A | φ} and д : ▶∀ℓ · ∀k · U (ℓ,k). We apply the (∀-CI) rule on ∀ℓ · ∀k ·

U (ℓ,k). The case of ∀k ·U (0,k) is trivial since 20ϑ ⇔ ⊤. We then apply the (∀-CI) rule, this time

on ∀k · U (ℓ+1,k). The case of U (ℓ+1, 0) can be dealt with using the (ExF) rule. In the case of

U (ℓ+1,k+1), we conclude with a straightforward case analysis based on the unfoldings

2ℓ+13k+1[hd]ϑ ⇔ 3k+1[hd]ϑ ∧ ⃝2ℓ3k+1[hd]ϑ
3k+1[hd]ϑ ⇔ [hd]ϑ ∨ ⃝3k [hd]ϑ

See Ex. D.9 (§D.3.3) for details. Just note that since ⃝⊤ ⇔ ⊤ (Table 3) we have 21ϑ ⇔ ϑ , so that

д : ▶∀ℓ · ∀k ·U (ℓ,k) ⊢ д :

{
Strg B

�� 3k [hd]ψ
}

−→
{
StrgA

�� 3k [hd]φ
}

D.3.1 The Case of Eventually (3[hd]φ).

Example D.7. We have the following, for safe and smooth φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]3[hd]ψ } −→ {StrA | [box]3[hd]φ}
= λf .λs .boxι

(
mapg f (unbox s)

)
Proof. Since 3[hd]φ and 3[hd]ψ are both smooth, we can first reduce to

Γf , s :
{
StrB

�� [box]3k [hd]ψ
}

⊢ boxι (mapg f (unbox s)) :

{
StrA

�� [box]3k [hd]φ
}

where

Γf := f : {B | ψ } → {A | φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:49

Since the formulae 3k [hd]ψ and 3k [hd]φ are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k ·
({
Strg B

�� 3k [hd]ψ
}

−→
{
StrgA

�� 3k [hd]φ
})

= λf .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k) :=

{
Strg B

�� 3k [hd]ψ
}

−→
{
StrgA

�� 3k [hd]φ
}

Γ := Γf , д : ▶∀k ·T (k)

We show

Γ ⊢ M : ∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)

Case of T (0).
We show

Γ, s :
{
Strg B

�� 30[hd]ψ
}

⊢ N :

{
StrgA

�� 30[hd]φ
}

Since ⊢ 30[ψ] ⇔ ⊥, we conclude with the (ExF) rule

Γ, s :
{
Strg B

�� 30[hd]ψ
}
⊢ s : {Strg B | ⊥} Γ, s :

{
Strg B

�� 30[hd]ψ
}
⊢ N : StrgA

Γ, s : {Strg B | 30[hd]ψ } ⊢ N : {StrgA | 30[hd]φ}

Case of T (k+1).
We show

Γ, s :
{
Strg B

�� 3k+1[hd]ψ
}

⊢ N :

{
StrgA

�� 3k+1[hd]φ
}

Using

⊢ 3k+1[hd]ψ ⇔ ([hd]ψ ∨ ⃝3k [hd]ψ)

we do a case analysis on the refinement type of s .
(Sub)Case of [hd]ψ .

Since ⊢ [hd]φ ⇒ 3k+1[hd]φ, we reduce to showing

Γ, s : {Strg B | [hd]ψ } ⊢ N : {StrgA | [hd]φ}

By §D.1.2 we have

Γ, s : {Strg B | [hd]ψ } ⊢ hdg s : {B | ψ }

But we are done since

Consg : {A | φ} −→ ▶ StrgA −→ {StrgA | [hd]φ}

(Sub)Case of ⃝3k [hd]ψ .
Since ⊢ ⃝3k [hd]φ ⇒ 3k+1[hd]φ, we reduce to showing

Γ, s :
{
Strg B

�� ⃝3k [hd]ψ
}

⊢ N :

{
StrgA

�� ⃝3k [hd]φ
}

By §D.1.1 we have

Γ, s :
{
Strg B

�� ⃝3k [hd]ψ
}

⊢ tlg s : ▶
{
Strg B

�� 3k [hd]ψ
}

Since

Γ ⊢ д : ∀k · ▶
({
Strg B

�� 3k [hd]ψ
}
−→

{
StrgA

�� 3k [hd]φ
})

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:50 Guilhem Jaber and Colin Riba

we have

Γ ⊢ д : ▶
({
Strg B

�� 3k [hd]ψ
}
−→

{
StrgA

�� 3k [hd]φ
})

Since moreover by §D.1.1 we have

Consg : A −→ ▶
{
StrgA

�� 3k [hd]φ
}

−→
{
StrgA

�� ⃝3k [hd]φ
}

we deduce that

Γ, s :
{
Strg B

�� ⃝3k [hd]ψ
}

⊢ N :

{
Strg B

�� ⃝3k [hd]ψ
}

□

D.3.2 The Case of Eventually Always (32[hd]φ).

Example D.8. We have the following, for safe and smooth φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]32[hd]ψ } −→ {StrA | [box]32[hd]φ}
= λf .λs .boxι

(
mapg f (unbox s)

)
Proof. Since 32[hd]φ and 32[hd]ψ are both smooth, we can first reduce to

Γf , s :
{
StrB

�� [box]3k2[hd]ψ
}

⊢ boxι (mapg f (unbox s)) :

{
StrA

�� [box]3k2[hd]φ
}

where

Γf := f : {B | ψ } → {A | φ}

Since the formulae 3k2[hd]ψ and 3k2[hd]φ are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k ·
({
Strg B

�� 3k2[hd]ψ
}

−→
{
StrgA

�� 3k2[hd]φ
})

= λf .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k) :=

{
Strg B → StrgA

�� (3k2[hd]ψ ∥→ 3k2[hd]φ
)
∧

(
2[hd]ψ ∥→ 2[hd]φ

)}
Γ := Γf , д : ▶∀k ·T (k)

We show

Γ ⊢ M : ∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)

Case of T (0).
We have to show

Γ, s : {Strg B | 2[hd]ψ } ⊢ N : {StrgA | 2[hd]φ}
and Γ, s :

{
Strg B

�� 302[hd]ψ
}

⊢ N :

{
StrgA

�� 302[hd]φ
}

We only detail the latter since the former can be dealt-with as in §D.1.5. Since

⊢ 302[ψ] ⇔ ⊥

we conclude with the (ExF) rule

Γ, s :
{
Strg B

�� 302[hd]ψ
}
⊢ s : {Strg B | ⊥} Γ, s :

{
Strg B

�� 302[hd]ψ
}
⊢ N : StrgA

Γ, s : {Strg B | 302[hd]ψ } ⊢ N : {StrgA | 302[hd]φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:51

Case of T (k+1).
We show

Γ, s : {Strg B | 2[hd]ψ } ⊢ N : {StrgA | 2[hd]φ}
and Γ, s :

{
Strg B

�� 3k+12[hd]ψ
}

⊢ N :

{
StrgA

�� 3k+12[hd]φ
}

We only detail the latter since the former can be dealt-with as in §D.1.5. Using

⊢ 3k+12[hd]ψ ⇔ (2[hd]ψ ∨ ⃝3k2[hd]ψ)

we do a case analysis on the refinement type of s .
(Sub)Case of 2[hd]ψ .

We show

Γ, s : {Strg B | 2[hd]ψ } ⊢ N :

{
StrgA

�� 3k+12[hd]φ
}

Note that ⊢ 2[hd]φ ⇒ 3k+12[hd]φ. We can therefore reduce to

Γ, s : {Strg B | 2[hd]ψ } ⊢ N : {StrgA | 2[hd]φ}

and we can conclude as in §D.1.5.

(Sub)Case of ⃝3k2[hd]ψ .
Since ⊢ ⃝3k2[hd]φ ⇒ 3k+12[hd]φ, we reduce to showing

Γ, s :
{
Strg B

�� ⃝3k2[hd]ψ
}

⊢ N :

{
StrgA

�� ⃝3k2[hd]φ
}

By §D.1.1 we have

Γ, s :
{
Strg B

�� ⃝3k2[hd]ψ
}

⊢ tlg s : ▶
{
Strg B

�� 3k2[hd]ψ
}

Since

Γ ⊢ д : ∀k · ▶
({
Strg B

�� 3k2[hd]ψ
}
−→

{
StrgA

�� 3k2[hd]φ
})

we have

Γ ⊢ д : ▶
({
Strg B

�� 3k2[hd]ψ
}
−→

{
StrgA

�� 3k2[hd]φ
})

Since moreover by §D.1.1 we have

Consg : A −→ ▶
{
StrgA

�� 3k2[hd]φ
}

−→
{
StrgA

�� ⃝3k2[hd]φ
}

we deduce that

Γ, s :
{
Strg B

�� ⃝3k2[hd]ψ
}

⊢ N :

{
Strg B

�� ⃝3k2[hd]ψ
}

□

D.3.3 The Case of Always Eventually (23[hd]φ).

Example D.9. We have the following, for safe and smooth φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [box]23[hd]ψ } −→ {StrA | [box]23[hd]φ}
:= λf .λs .boxι

(
mapg f (unbox s)

)
Notation D.10. We let

3tφ := µtα .φ ∨ ⃝α
2tφ := νtα .φ ∧ ⃝α

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:52 Guilhem Jaber and Colin Riba

Proof. We start in the same spirit as in §D.3.1 and §D.3.2. Using that 23[hd]φ and 23[hd]ψ
are both smooth, we first unfold the 2 using the rules (ν-I) and (ν-E). Then, since 3[hd]φ and

3[hd]ψ are both smooth, we can unfold the 3 using the rules (µ-E) and (µ-I) with the non-trivial

smooth context

γ (β) := 2ℓβ

We are thus led to deriving

Γf , s :
{
StrB

�� [box]2ℓ3k [hd]ψ
}

⊢ boxι (mapg f (unbox s)) :

{
StrA

�� [box]2ℓ3k [hd]φ
}

where

Γf := f : {B | ψ } → {A | φ}

Since the formulae 2ℓ3k [hd]ψ and 2ℓ3k [hd]φ are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k · ∀ℓ · ({Strg B �� 2ℓ3k [hd]ψ
}

−→
{
StrgA

�� 2ℓ3k [hd]φ
})

= λf .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k, ℓ) :=

{
Strg B

�� 2ℓ3k [hd]ψ
}

−→
{
StrgA

�� 2ℓ3k [hd]φ
}

Γ := Γf , д : ▶∀k · ∀ℓ ·T (k, ℓ)
We show

Γ ⊢ M : ∀k · ∀ℓ ·T (k, ℓ)
We reason by cases on k and ℓ. This amounts to the derived rule

Γ ⊢ M : T (0, 0) Γ ⊢ M : T (0, ℓ+1) Γ ⊢ M : T (k+1, 0) Γ ⊢ M : T (k+1, ℓ+1)

Γ ⊢ M : ∀k · ∀ℓ ·T (k, ℓ)
Cases of T (u, 0).

We have ⊢ 20θ ⇔ ⊤, and we are done since

Γ, s : {Strg B | ⊤} ⊢ N : {StrgA | ⊤}

Case of T (0, ℓ+1).
We have ⊢ 30[θ] ⇔ ⊥, and we reduce to showing

Γ, s :
{
Strg B

�� 2ℓ+1⊥
}

⊢ N :

{
StrgA

�� 2ℓ+1⊥
}

But since ⊢ 2ℓ+1⊥ ⇒ ⊥, we have

Γ, s :
{
Strg B

�� 2ℓ+1⊥
}

⊢ s : {Strg B | ⊥}

and we conclude with the (ExF) rule

Γ, s :
{
Strg B

�� 2ℓ+1⊥
}
⊢ s : {Strg B | ⊥} Γ, s :

{
Strg B

�� 2ℓ+1⊥
}
⊢ N : StrgA

Γ, s :
{
Strg B

�� 2ℓ+1⊥
}
⊢ N :

{
StrgA

�� 2ℓ+1⊥
}

Case of T (k+1, ℓ+1).
Using ⊢Str

g A 2ℓ+1θ ⇔ (θ ∧ ⃝2ℓθ), we show

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ N :

{
StrgA

�� 3k+1[hd]φ ∧ ⃝2ℓ3k+1[hd]φ
}

We consider each conjunct separately.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:53

(Sub)Case of 3k+1[hd]φ.
We show

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ N :

{
StrgA

�� 3k+1[hd]φ
}

Using

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ s :

{
Strg B

�� 3k+1[hd]ψ
}

and ⊢ 3k+1[hd]ψ ⇔ ([hd]ψ ∨ ⃝3k [hd]ψ) we do a case analysis on the refinement type

of s .
(SubSub)Case of [hd]ψ .

Since (by §D.1.1)

Γ, s : {Strg B | [hd]ψ } ⊢ hdg s : {Strg B | [hd]ψ }

we easily deduce that

Γ, s : {Strg B | [hd]ψ } ⊢ N : {StrgA | [hd]φ}

and we are done since ⊢ [hd]φ ⇒ 3k+1[hd]φ.
(SubSub)Case of ⃝3k [hd]ψ .

By §D.1.1 we have

Γ, s :
{
Strg B

�� ⃝3k [hd]ψ
}

⊢ tlg s : ▶
{
Strg B

�� 3k [hd]ψ
}

Since

Γ ⊢ д : ∀k · ∀ℓ · ▶ ({
Strg B

�� 2ℓ3k [hd]ψ
}
−→

{
StrgA

�� 2ℓ3k [hd]φ
})

we have

Γ ⊢ д : ▶
({
Strg B

�� 213k [hd]ψ
}
−→

{
StrgA

�� 213k [hd]φ
})

But ⊢ (θ ∧ ⃝⊤) ⇔ θ , so that ⊢ 21θ ⇔ θ , and thus

Γ ⊢ д : ▶
({
Strg B

�� 3k [hd]ψ
}
−→

{
StrgA

�� 3k [hd]φ
})

Since moreover by §D.1.1 we have

Consg : A −→ ▶
{
StrgA

�� 3k [hd]φ
}

−→
{
StrgA

�� ⃝3k [hd]φ
}

we deduce that

Γ, s :
{
Strg B

�� ⃝3k [hd]ψ
}

⊢ N :

{
Strg B

�� ⃝3k [hd]ψ
}

and we are done since ⊢ ⃝3k [hd]φ ⇒ 3k+1[hd]φ.
(Sub)Case of ⃝2ℓ3k+1[hd]φ.

We show

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ N :

{
StrgA

�� ⃝2ℓ3k+1[hd]φ
}

Since

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ s :

{
Strg B

�� ⃝2ℓ3k+1[hd]ψ
}

by §D.1.1 we have

Γ, s :
{
Strg B

�� 2ℓ+13k+1[hd]ψ
}

⊢ tlg s : ▶
{
Strg B

�� 2ℓ3k+1[hd]ψ
}

But now since

Γ ⊢ д : ∀k · ∀ℓ · ▶ ({
Strg B

�� 2ℓ3k [hd]ψ
}
−→

{
StrgA

�� 2ℓ3k [hd]φ
})

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:54 Guilhem Jaber and Colin Riba

we have

Γ ⊢ д : ▶
({
Strg B

�� 2ℓ3k+1[hd]ψ
}
−→

{
StrgA

�� 2ℓ3k+1[hd]φ
})

and we conclude with §D.1.1, namely

Consg : A −→ ▶
{
StrgA

�� 2ℓ3k+1[hd]φ
}

−→
{
StrgA

�� ⃝2ℓ3k+1[hd]φ
}

□

D.4 The Diagonal Function
Consider a stream of streams s . We have s = (si | i ≥ 0)where each si is itself a stream si = (si, j | j ≥

0). The diagonal of s is then the stream (si,i | i ≥ 0). Note that si,i = hd(tli (hd(tli (s))). Indeed, tli (s)
is the stream of streams (sk | k ≥ i), so that hd(tli (s)) is the stream si and tli (hd(tli (s))) is the stream
(si,k | k ≥ i). Taking its the head thus gives si,i .

We implement the diagonal function as follows:

diag := λs .boxι
(
diagg (unbox s)

)
: Str(StrA) −→ StrA

diagg := diagauxg id : Strg(StrA) −→ StrgA

diagauxg : (StrA → StrA) −→ Strg(StrA) −→ StrgA
:= fix(д).λt .λs . Consg

(
(hd ◦ t)(hdg s)

) (
д ⊛ next(t ◦ tl) ⊛ (tlg s)

)
The auxiliary higher-order function diagauxg iterates the coinductive tl over the head of the

stream of streams s . We write ◦ for function composition, so that assuming s : Strg(StrA) and
t : StrA → StrA, we have

(hdg s) : StrA (hd ◦ t) : StrA → A
(hd ◦ t)(hdg s) : A (t ◦ tl) : StrA → StrA

This requires the coinductive type StrA. In Ex. D.11 (§D.4.1) below, for a safe φ we obtain

diagg : {Strg(StrA) | 2[hd][box]2[hd]φ} −→ {StrgA | 2[hd]φ}

This easily follows from the fact that using Ex. 5.3 and Ex. 5.4, we can type diagauxg with(
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]φ} −→ {StrgA | 2[hd]φ}

In Ex. D.12 (§D.4.2) we show that for a safe and smooth φ, we have

diag : {Str(StrA) | [box]32[hd][box]2[hd]φ} −→ {StrA | [box]32[hd]φ}

Similarly as for map in §D.3.2, we reduce to

diagauxg : ∀k ·
((
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→ U (k)

)
where U (k) := {Strg(StrA) → StrgA | ψ0(k) ∧ ψ1}

ψ0(k) := 3k2[hd][box]2[hd]φ ∥→ 3k2[hd]φ
ψ1 := 2[hd][box]2[hd]φ ∥→ 2[hd]φ

D.4.1 The Guarded Diagonal Function.

Example D.11 (The Guarded Diagonal Function). For a safe φ, we have

diagg : {Strg(StrA) | 2[hd][box]2[hd]φ} −→ {StrgA | 2[hd]φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:55

Recall that

diagg : Strg(StrA) −→ StrgA
:= diagauxg id

diagauxg : (StrA → StrA) −→ Strg(StrA) −→ StrgA
:= fix(д).λt .λs .Consg

(
(hd ◦ t)(hdg s)

) (
д ⊛ next(t ◦ tl) ⊛ (tlg s)

)
Proof. We reduce to

diagauxg :

(
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]φ} −→ {StrgA | 2[hd]φ}

Let Γ be the context

д : ▶T ,
t : {StrA | [box]2[hd]φ} −→ {StrA | [box]2[hd]φ} ,
s : {Strg(StrA) | 2[hd][box]2[hd]φ}

where T is the type(
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→

{Strg(StrA) | 2[hd][box]2[hd]φ} −→ {StrgA | 2[hd]φ}

The result directly follows from the following typings, which are themselves given by §D.1.2, §D.1.3

and §D.2:

Γ ⊢ hd ◦ t : {StrA | [box]2[hd]φ} −→ {A | φ}
Γ ⊢ hdg s : {StrA | [box]2[hd]φ}
Γ ⊢ t ◦ tl : {StrA | [box]2[hd]φ} −→ {StrA | [box]2[hd]φ}
Γ ⊢ tlg s : ▶ {Strg(StrA) | 2[hd][box]2[hd]φ}

□

D.4.2 The Coinductive Diagonal Function.

Example D.12 (The Coinductive Diagonal Function). For a safe and smooth φ, we have

diag : {Str(StrA) | [box]32[hd][box]2[hd]φ} −→ {StrA | [box]32[hd]φ}
:= λs .boxι (diagg (unbox s))

Proof. Using that3k2[hd][box]2[hd]φ and3k2[hd]φ are both smooth, we can first reduce to

s :
{
Str(StrA)

�� [box]3k2[hd][box]2[hd]φ
}

⊢ boxι (diagg (unbox s)) :

{
StrA

�� [box]3k2[hd]φ
}

Since the formulae 3k2[hd][box]2[hd]φ and 3k2[hd]φ are safe, we are done if we show

diagg : ∀k ·
({
Strg(StrA)

�� 3k2[hd][box]2[hd]φ
}

−→
{
StrgA

�� 3k2[hd]φ
})

Consider the types

U (k) := {Strg(StrA) → StrgA | ψ0 ∧ ψ1}

T (k) :=
(
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→ U (k)

where

ψ0 := 3k2[hd][box]2[hd]φ ∥→ 3k2[hd]φ
ψ1 := 2[hd][box]2[hd]φ ∥→ 2[hd]φ

We show

diagauxg : ∀k ·T (k)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:56 Guilhem Jaber and Colin Riba

Let

N := Consg
(
(hd ◦ t)(hdg s)

) (
д ⊛ next(t ◦ tl) ⊛ (tlg s)

)
M := λд.λs .N
Γ := д : ▶∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)

Let

Γ′ := Γ, t : {StrA | [box]2[hd]φ} −→ {StrA | [box]2[hd]φ}

We omit the proof of

Γ′ ⊢ λs .N : {Strg(StrA) → StrgA | [ev(2[hd][box]2[hd]φ)]2[hd]φ}

since it follows that of §D.4.1.

Case of T (0).
Since ⊢ 30θ ⇔ ⊥, we reduce to showing

Γ ⊢ λt .λs .N :

(
{StrA | [box]2[hd]φ} → {StrA | [box]2[hd]φ}

)
−→ {Strg(StrA) | ⊥}

−→
{
StrgA

�� 302[hd]φ
}

and we conclude using the (ExF) rule.

Case of T (k+1).
We show

Γ′, s :
{
Strg(StrA)

�� 3k+12[hd][box]2[hd]φ
}

⊢ N :

{
StrgA

�� 3k+12[hd]φ
}

Using

⊢ 3k+1θ ⇐⇒ θ ∨ ⃝3kθ

we reason by cases on the refinement of s . This leads to two subcases.

(Sub)Case of 2[hd][box]2[hd]φ.
We show

Γ′, s : {Strg(StrA) | 2[hd][box]2[hd]φ} ⊢ N :

{
StrgA

�� 3k+12[hd]φ
}

Since ⊢ 2[hd]φ ⇒ 3k+12[hd]φ, we can reduce to

Γ′, s : {Strg(StrA) | 2[hd][box]2[hd]φ} ⊢ N : {StrgA | 2[hd]φ}

which is proved as in §D.4.1.

(Sub)Case of ⃝3k2[hd][box]2[hd]φ.
We show

Γ′, s :
{
Strg(StrA)

�� ⃝3k2[hd][box]2[hd]φ
}

⊢ N :

{
StrgA

�� ⃝3k2[hd]φ
}

Let

Γ′′ := Γ′, s :
{
Strg(StrA)

�� ⃝3k2[hd][box]2[hd]φ
}

Note that Γ′′ ⊢ д : ▶T (k), so that by §D.2 we have

Γ′′ ⊢ д ⊛ next(t ◦ tl) : ▶
({
Strg(StrA)

�� 3k2[hd][box]2[hd]φ
}
→

{
StrgA

�� 3k2[hd]φ
})

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:57

Using §D.1.1, we derive

Γ′′ ⊢ s :
{
Strg(StrA)

��� ⃝3k2[hd][box]2[hd]φ
}

Γ′′ ⊢ tlg s : ▶
{
Strg(StrA)

��� 3k2[hd][box]2[hd]φ
}

Γ′′ ⊢ д ⊛ next(t ◦ tl) ⊛ (tlg s) : ▶
{
StrgA

��� 3k2[hd]φ
}

Γ′′ ⊢ Consg
(
(hd ◦ t)(hdg s)

) (
д ⊛ next(t ◦ tl) ⊛ (tlg s)

)
:

{
StrgA

��� ⃝3k2[hd]φ
}

□

D.5 Fair Streams
We discuss here an adaptation of the fair streams of [Bahr et al. 2020; Cave et al. 2014]. We rely on

the basic datatypes presented in §D.5.1. In §D.5.2 we discuss a function

fb : CoNat −→ CoNat −→ Str Bool

such that, writing 0 for Z and 1 for (S Z) (see Ex. D.15), the non-regular stream (fb 0 1), adapted
from [Bahr et al. 2020; Cave et al. 2014], is of the form

ff tt ff tt tt ff tt tt tt ff tt tt tt tt ff . . .

This stream thus contains infinitely many tt’s and infinitely many ff’s. This is expressed with the

formula [box]23[hd][tt] ∧ [box]23[hd][ff] where [tt], [ff] represent the value of a Boolean, as in

tt : {Bool | [tt]} and ff : {Bool | [ff]}

Examples D.20 and D.22 show that we indeed have

(fb 0 1) : {Str Bool | [box]23[hd][tt] ∧ [box]23[hd][ff]}

The key are the following refinement typings for the guarded fbg, discussed in Ex. D.19 and Ex. D.21:

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}
fbg : ∀k · ∀ℓ · ({CoNatg �� 3ℓ[Z]

}
→

{
CoNatg

�� 3ℓ+1[Z]
}
→

{
Strg Bool

�� 2k3k+ℓ[hd][ff]
})

where, as in Not. D.10 (§D.3.3), we let

2tφ := νtα .φ ∧ ⃝α

Finally, in §D.5.3 we discuss a stream scheduler

sched : Str Bool −→ StrA −→ StrB −→ Str(A + B)

such that sched can be typed as follows (Ex. D.25):

{Str Bool | [box]23[hd][tt]} −→ StrA −→ StrB −→ {Str(A + B) | [box]23[hd][in0]⊤}
{Str Bool | [box]23[hd][ff]} −→ StrA −→ StrB −→ {Str(A + B) | [box]23[hd][in1]⊤}

and thus

sched (fb 0 1) : {Str(A + B) | [box]23[hd][in0]⊤ ∧ [box]23[hd][in1]⊤}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:58 Guilhem Jaber and Colin Riba

D.5.1 Basic Datatypes.

Example D.13 (Booleans). Let

Bool := 1 + 1

with constructors

tt := in0(⟨⟩) : Bool
ff := in1(⟨⟩) : Bool

Example D.14 (Formulae on Booleans).

[tt] := [in0]⊤ : Bool
[ff] := [in1]⊤ : Bool

Example D.15 (CoNatural Numbers). Let

CoNat := ■CoNatg

CoNatg := Fix(X).1 + ▶X

with constructors

Z := boxι (Zg) : CoNat S := λn.boxι (Sg (unbox n)) : CoNat → CoNat
Zg

:= fold(in0⟨⟩) : CoNatg Sg := λn.fold(in1 n) : ▶CoNatg → CoNatg

Example D.16 (Formulae on CoNatural Numbers).

[Z] := [fold][in0] : CoNatg

[S] := [fold][in1] : CoNatg

⃝φ := [fold][in1][next]φ : CoNatg

3φ := µα . φ ∨ ⃝α : CoNatg

3tφ := µtα . φ ∨ ⃝α : CoNatg

where φ : CoNatg.

D.5.2 A Fair Stream of Booleans.

Example D.17.

fb : CoNat −→ CoNat −→ Str Bool
:= λc .λm. boxι (fbg (unbox c) (unboxm))

fbg : CoNatg −→ CoNatg −→ Strg Bool
:= fix(д).λc .λm. case c of

| Zg 7→ ff ::
g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sgn 7→ tt ::
g д ⊛ n ⊛ (nextm)

Example D.18.

fb : {CoNat | [box]3[Z]} −→ CoNat −→ {Str Bool | [box]3[hd][ff]}
fbg : ∀k ·

({
CoNatg

�� 3k [Z]
}
−→ CoNatg −→

{
Strg Bool

�� 3k [hd][ff]
})

Proof. Let

T (k) :=
{
CoNatg

�� 3k [Z]
}
−→ CoNatg −→

{
Strg Bool

�� 3k [hd][ff]
}

and assume

д : ▶∀k ·T (k)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:59

Let

M(д, c,m) := case c of
| Zg 7→ ff ::

g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sg n 7→ tt ::
g д ⊛ n ⊛ (nextm)

We show

λc .λm.M(д, c,m) : ∀k ·T (k)

We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of T (0). We get the result from the (ExF) rule since

30[Z] ⇔ ⊥

Case of T (k+1). We show

M(д, c,m) :

{
Strg Bool

�� 3k+1[hd][ff]
}

assuming

c :

{
CoNatg

�� 3k+1[Z]
}

m : CoNatg

Using

3k+1[Z] ⇔ [Z] ∨ ⃝3k [Z]

we reason by cases on the refinement type of c . This leads to two subcases.

(Sub)Case of [Z]. We apply the (Inj0-E) rule on the refinement type of (unfold c). Since

[hd][ff] ⇒ 3k+1[hd][ff]

the result follows from the fact that

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) : {Strg Bool | [hd][ff]}

(Sub)Case of ⃝3k [Z]. We have

unfold c :

{
1 + ▶CoNatg

�� [in1][next]3k [Z]
}

By applying the (Inj1-E) rule on the refinement type of (unfold c), we are left with showing

tt ::
g д ⊛ n ⊛ (nextm) :

{
Strg Bool

�� 3k+1[hd][ff]
}

assuming

n : ▶
{
CoNatg

�� 3k [Z]
}

Using

⃝3k [hd][ff] ⇒ 3k+1[hd][ff]

we are done since

д ⊛ n ⊛ (nextm) : ▶
{
Strg Bool

�� 3k [hd][ff]
}

□

Example D.19. Consider a function

f : N × N −→ N

such that

• 1 ≤ f (k + 1, ℓ + 1)
• f (k, ℓ + 2) ≤ f (k + 1, ℓ + 1)
• ℓ + 1 ≤ f (k + 1, ℓ + 1)
• f (k, ℓ + 1) ≤ f (k + 1, ℓ + 1)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:60 Guilhem Jaber and Colin Riba

for instance f (k, ℓ) = k + ℓ. Then we can give the following refined type to fbg:

∀k · ∀ℓ ·
({
CoNatg

�� 3ℓ[Z]
}
−→

{
CoNatg

�� 3ℓ+1[Z]
}
−→

{
Strg Bool

��� 2k3f(k, ℓ)[hd][ff]
})

Proof. Let

U (k, ℓ) := {CoNatg → CoNatg → Strg Bool | φ(k, ℓ) ∧ψ (ℓ)}
φ(k, ℓ) := 3ℓ[Z] ∥→ 3ℓ+1[Z] ∥→ 2k3f(k, ℓ)[hd][ff]
ψ (ℓ) := 3ℓ[Z] ∥→ ⊤ ∥→ 3ℓ[hd][ff]

and assume

д : ▶∀k · ∀ℓ ·U (k)

Let

M(д, c,m) := case c of
| Zg 7→ ff ::

g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sgn 7→ tt ::
g д ⊛ n ⊛ (nextm)

We show

λc .λm.M(д, c,m) : ∀k · ∀ℓ ·U (k)

First, proceeding similarly as in Ex. D.18,

λc .λm.M(д, c,m) : ∀ℓ · {CoNatg → CoNatg → Strg Bool
�� 3ℓ[Z] ∥→ ⊤ ∥→ 3ℓ[hd][ff]

}
Let

T (k, ℓ) :=
{
CoNatg

�� 3ℓ[Z]
}
−→

{
CoNatg

�� 3ℓ+1[Z]
}
−→

{
Strg Bool

�� 2k3f(k, ℓ)[hd][ff]
}

We show

λc .λm.M(д, c,m) : ∀k · ∀ℓ ·T (k)
We apply the (∀-CI) rule on ∀k . In the case of ∀ℓ ·T (0, ℓ), the result is trivial since

203f(0, ℓ)[hd][ff] ⇔ ⊤

In the case of ∀ℓ · T (k+1, ℓ), we apply the (∀-CI) rule, this time on ∀ℓ. The case of T (k+1, 0) is
dealt-with using the (ExF) rule since

30[Z] ⇔ ⊥

In the case of T (k+1, ℓ+1), we show

M(д, c,m) :

{
Strg Bool

�� 2k+13f(k+1, ℓ+1)[hd][ff]
}

assuming

c :

{
CoNatg

�� 3ℓ+1[Z]
}

m :

{
CoNatg

�� 3ℓ+2[Z]
}

We apply the typing rule for case (Fig. 4). This leads to two branches, one for (unfold c) = fold(in0⟨)⟩
(denoted Zg

), and one for (unfold c) = fold(in1 n) (denoted Sgn).

Case of Zg.
We have to show

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) :

{
Strg Bool

�� 2k+13f(k+1, ℓ+1)[hd][ff]
}

We have

2k+13f(k+1, ℓ+1)[hd][ff] ⇔ 3f(k+1, ℓ+1)[hd][ff] ∧ ⃝2k3f(k+1, ℓ+1)[hd][ff]

and we consider each conjunct separately.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:61

(Sub)Case of 3f(k+1, ℓ+1)[hd][ff].
We have

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) : {Strg Bool | [hd][ff]}

and as f (k + 1, ℓ + 1) ≥ 1 we are done with

[hd][ff] ⇒ 3f(k+1, ℓ+1)[hd][ff]

(Sub)Case of ⃝2k3f(k+1, ℓ+1)[hd][ff].
Since

m :

{
CoNatg

�� 3ℓ+2[Z]
}

Sg (nextm) :

{
CoNatg

�� 3ℓ+3[Z]
}

we have

д ⊛ (nextm) ⊛ next(S (nextm)) : ▶
{
Strg Bool

�� 2k3f(k, ℓ+2)[hd][ff]
}

so that

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) :

{
Strg Bool

�� ⃝2k3f(k, ℓ+2)[hd][ff]
}

But since f (k, ℓ + 2) ≤ f (k + 1, ℓ + 1), we have

3f(k, ℓ+2)[hd][ff] ⇒ 3f(k+1, ℓ+1)[hd][ff]

and we obtain

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) :

{
Strg Bool

�� ⃝2k3f(k+1, ℓ+1)[hd][ff]
}

Case of Sgn.
We have to show

tt ::
g д ⊛ n ⊛ (nextm) :

{
Strg Bool

�� 2k+13f(k+1, ℓ+1)[hd][ff]
}

assuming

n :

{
CoNatg

�� 3ℓ[Z]
}

We have

2k+13f(k+1, ℓ+1)[hd][ff] ⇔ 3f(k+1, ℓ+1)[hd][ff] ∧ ⃝2k3f(k+1, ℓ+1)[hd][ff]

and we consider each conjunct separately.

(Sub)Case of 3f(k+1, ℓ+1)[hd][ff].
Using

д : ▶
{
CoNatg → CoNatg → Strg Bool

�� 3ℓ[Z] ∥→ ⊤ ∥→ 3ℓ[hd][ff]
}

we get

tt ::
g д ⊛ n ⊛ (nextm) :

{
Strg Bool

�� 3ℓ+1[hd][ff]
}

and the result follows from the fact that

ℓ + 1 ≤ f (k + 1, ℓ + 1)

(Sub)Case of ⃝2k3f(k+1, ℓ+1)[hd][ff].
Since ℓ ≤ ℓ + 1, we have

n :

{
CoNatg

�� 3ℓ+1[Z]
}

and thus

д ⊛ n ⊛ (nextm) : ▶
{
Strg Bool

�� 2k3f(k, ℓ+1)[hd][ff]
}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:62 Guilhem Jaber and Colin Riba

so that

tt ::
g д ⊛ n ⊛ (nextm) :

{
Strg Bool

�� ⃝2k3f(k, ℓ+1)[hd][ff]
}

But since f (k, ℓ + 1) ≤ f (k + 1, ℓ + 1) we have

3f(k, ℓ+1)[hd][ff] ⇒ 3f(k+1, ℓ+1)[hd][ff]

and we obtain

tt ::
g д ⊛ n ⊛ (nextm) :

{
Strg Bool

�� ⃝2k3f(k+1, ℓ+1)[hd][ff]
}

□

Example D.20. We have

fb Z (S Z) : {Str Bool | [box]23[hd][ff]}

Proof. Recall that

fb : CoNat −→ CoNat −→ Str Bool
:= λc .λm. boxι (fbg (unbox c) (unboxm))

We show

fb : ∀ℓ · ({CoNat �� [box]3ℓ[Z]
}
−→

{
CoNat

�� [box]3ℓ+1[Z]
}
−→ {Str Bool | [box]23[hd][ff]}

)
We apply the (∀-I) rule. Assume

c :

{
CoNat

�� [box]3ℓ[Z]
}

m :

{
CoNat

�� [box]3ℓ+1[Z]
}

Since the formulae 3ℓ[Z] and 3ℓ+1[Z] are safe we have

c : ■
{
CoNatg

�� 3ℓ[Z]
}

m : ■
{
CoNatg

�� 3ℓ+1[Z]
}

and thus

(unbox c) :

{
CoNatg

�� 3ℓ[Z]
}

(unboxm) :

{
CoNatg

�� 3ℓ+1[Z]
}

Now, it follows from Ex. D.19 that

fbg (unbox c) (unboxm) :

{
Strg Bool

�� 2k3f(k, ℓ)[hd][ff]
}

so that

boxι (fbg (unbox c) (unboxm)) : ■
{
Strg Bool

�� 2k3f(k, ℓ)[hd][ff]
}

Since the formula 2k3f(k, ℓ)[hd][ff] is safe we have

boxι (fbg (unbox c) (unboxm)) :

{
Str Bool

�� [box]2k3f(k, ℓ)[hd][ff]
}

The (µ-I) rule then gives

boxι (fbg (unbox c) (unboxm)) :

{
Str Bool

�� [box]2k3[hd][ff]
}

and the (ν-I) rule gives

boxι (fbg (unbox c) (unboxm)) : {Str Bool | [box]23[hd][ff]}

The result then follows from the fact that

Z :

{
CoNat

�� [box]31[Z]
}

S Z :

{
CoNat

�� [box] ⃝ 31[Z]
}

□

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:63

Example D.21. We have

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

Proof. Let

T := {CoNatg → CoNatg → Strg Bool | φ ∧ ψ }
φ := [S] ∥→ ⊤ ∥→ [hd][tt]
ψ := ⊤ ∥→ [S] ∥→ 2 ([hd][tt] ∨ ⃝[hd][tt])

and assume

д : ▶T

Let

M(д, c,m) := case c of
| Zg 7→ ff ::

g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sgn 7→ tt ::
g д ⊛ n ⊛ (nextm)

We show

λc .λm.M(д, c,m) : T

First, by using the (Inj1-E) rule we easily get

λc .λm.M(д, c,m) : {CoNatg → CoNatg → Strg Bool | [S] ∥→ ⊤ ∥→ [hd][tt]}

It remains to show

λc .λm.M(д, c,m) : {CoNatg → CoNatg → Strg Bool | ⊤ ∥→ [S] ∥→ 2 ([hd][tt] ∨ ⃝[hd][tt])}

Assume

c : CoNatg

m : {CoNatg | [S]}
We apply the typing rule for case (Fig. 4). This leads to two branches, one for (unfold c) = fold(in0⟨)⟩
(denoted Zg

), and one for (unfold c) = fold(in1 n) (denoted Sgn).
Case of Zg.

We have to show

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) : {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

We have

2 ([hd][tt] ∨ ⃝[hd][tt]) ⇔ ([hd][tt] ∨ ⃝[hd][tt]) ∧ ⃝2 ([hd][tt] ∨ ⃝[hd][tt])

and we consider each conjunct separately.

(Sub)Case of ([hd][tt] ∨ ⃝[hd][tt]).
Since

m : {CoNatg | [S]}
д : ▶ ({CoNatg | [S]} −→ CoNatg −→ {Strg Bool | [hd][tt]})

we get

д ⊛ (nextm) ⊛ next(S (nextm)) : ▶ {Strg Bool | [hd][tt]}

and the result follows.

(Sub)Case of ⃝2 ([hd][tt] ∨ ⃝[hd][tt]).
Since

Sg(nextm) : {CoNatg | [S]}
д : ▶ (CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])})

we get

д ⊛ (nextm) ⊛ next(S (nextm)) : ▶ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:64 Guilhem Jaber and Colin Riba

and the result follows.

Case of Sgn.
We have to show

tt ::
g д ⊛ n ⊛ (nextm) : {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

assuming

n : CoNatg

We have

2 ([hd][tt] ∨ ⃝[hd][tt]) ⇔ ([hd][tt] ∨ ⃝[hd][tt]) ∧ ⃝2 ([hd][tt] ∨ ⃝[hd][tt])

and we consider each conjunct separately.

(Sub)Case of ([hd][tt] ∨ ⃝[hd][tt]).
We have

tt ::
g д ⊛ n ⊛ (nextm) : {Strg Bool | [hd][tt]}

(Sub)Case of ⃝2 ([hd][tt] ∨ ⃝[hd][tt]).
Since

m : {CoNatg | [S]}
д : ▶ (CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])})

we get

д ⊛ (nextm) ⊛ next(S (nextm)) : ▶ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

and the result follows. □

Example D.22. We have

fb Z (S Z) : {Str Bool | [box]23[hd][tt]}

Proof. By Ex. D.21 we have

fbg (unbox Z) (unbox (S Z)) : {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

so that

fb Z (S Z) : ■ {Strg Bool | 2 ([hd][tt] ∨ ⃝[hd][tt])}

Since the formula 2 ([hd][tt] ∨ ⃝[hd][tt]) is safe we get

fb Z (S Z) : {Str Bool | [box]2 ([hd][tt] ∨ ⃝[hd][tt])}

Now, the result follows from the fact that

([hd][tt] ∨ ⃝[hd][tt]) ⇒ 3[hd][tt]

□

The following uses the rule

⊢B→A ([ev(ψ0)]φ ∧ [ev(ψ1)]φ) ⇒ [ev(ψ0 ∨ψ1)]φ

Example D.23. We have

fbg : CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | [hd][tt] ∨ ⃝[hd][tt]}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:65

Proof. Let T be the type

{CoNatg → CoNatg → Strg Bool | [S] ∥→ ⊤ ∥→ [hd][tt] ∧ [Z] ∥→ [S] ∥→ ⃝[hd][tt]}

Note that

T ≤ CoNatg −→ {CoNatg | [S]} −→ {Strg Bool | [hd][tt] ∨ ⃝[hd][tt]}

Assume

д : ▶T

Let

M(д, c,m) := case c of
| Zg 7→ ff ::

g д ⊛ (nextm) ⊛ next(Sg (nextm))

| Sgn 7→ tt ::
g д ⊛ n ⊛ (nextm)

We show

λc .λm.M(д, c,m) : T

We consider each conjunct separately.

Case of [S] ∥→ ⊤ ∥→ [hd][tt].
Assume

c : {CoNatg | [S]}

Applying the (Inj1-E) rule, we are done since

tt ::
g д ⊛ n ⊛ (nextm) : {Strg Bool | [hd][tt]}

assuming

n : CoNatg

Case of [Z] ∥→ [S] ∥→ ⃝[hd][tt].
Assume

c : {CoNatg | [Z]}
m : {CoNatg | [S]}

Applying the (Inj0-E) rule, we are left with showing

ff ::
g д ⊛ (nextm) ⊛ next(S (nextm)) : {Strg Bool | ⃝[hd][tt]}

But the result is trivial since

д : ▶ {CoNatg → CoNatg → Strg Bool | [S] ∥→ ⊤ ∥→ [hd]tt}

□

D.5.3 A Scheduler.

Example D.24.

sched : Str Bool −→ StrA −→ StrB −→ Str(A + B)
:= λb .λs .λt . boxι (schedg (unbox b) (unbox s) (unbox t))

schedg : Strg Bool −→ StrgA −→ Strg B −→ Strg(A + B)
:= fix(д).λb .λs .λt . case (hdg b) of

| tt 7→ (in0 (hdg s)) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t)
| ff 7→ (in1 (hdg t)) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t)

Example D.25. We can give the following refinement types to sched :

{Str Bool | [box]23[hd][tt]} −→ StrA −→ StrB −→ {Str(A + B) | [box]23[hd][in0]⊤}
{Str Bool | [box]23[hd][ff]} −→ StrA −→ StrB −→ {Str(A + B) | [box]23[hd][in1]⊤}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:66 Guilhem Jaber and Colin Riba

Proof. Direct, using the following Ex. D.26. □

Example D.26. We can give the following refinement types to schedg :

∀k · ∀ℓ · ({Strg Bool �� 2k3ℓ[hd][tt]
}
−→ StrgA −→ Strg B −→

{
Strg(A + B)

�� 2k3ℓ[hd][in0]⊤
})

∀k · ∀ℓ · ({Strg Bool �� 2k3ℓ[hd][ff]
}
−→ StrgA −→ Strg B −→

{
Strg(A + B)

�� 2k3ℓ[hd][in1]⊤
})

Proof. We only discuss the first type, since the second one is completely similar. Let T (k, ℓ) be
the type{

Strg Bool
��� 2k3ℓ[hd][tt]

}
−→ StrgA −→ Strg B −→

{
Strg(A + B)

��� 2k3ℓ[hd][in0]⊤
}

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д,b, s, t) := case (hdg b) of
| tt 7→ (in0 (hdg s)) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t)
| ff 7→ (in1 (hdg t)) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t)

We show

λb .λs .λt .M(д,b, s, t) : ∀k · ∀ℓ ·T (k, ℓ)
We apply the (∀-CI) rule on ∀k . In the case of ∀ℓ ·T (0, ℓ), the result is trivial since

203ℓ[hd][in0]⊤ ⇔ ⊤

As for ∀ℓ ·T (k+1, ℓ), we apply the (∀-CI) rule, this time on ∀ℓ. In the case of T (k+1, 0), since

2k+130[hd][tt] ⇔ 30[hd][tt] ∧ ⃝2k30[hd][tt]
and 30[hd][tt] ⇔ ⊥

we get

2k+130[hd][tt] ⇔ ⊥

and we can conclude using the (ExF) rule. It remains to deal with the case ofT (k+1, ℓ+1). We have

to show

M(д,b, s, t) :

{
Strg(A + B)

�� 2k+13ℓ+1[hd][in0]⊤
}

assuming

b :

{
Strg Bool

�� 2k+13ℓ+1[hd][tt]
}

s : StrgA
t : Strg B

We have

2k+13ℓ+1[hd][in0]⊤ ⇔ 3ℓ+1[hd][in0]⊤ ∧ ⃝2k3ℓ+1[hd][in0]⊤

and we consider each conjunct separately.

Case of 3ℓ+1[hd][in0]⊤.
Since

2k+13ℓ+1[hd][tt] ⇔ 3ℓ+1[hd][tt] ∧ ⃝2k3ℓ+1[hd][tt]

we have

b :

{
Strg Bool

�� 3ℓ+1[hd][tt]
}

Using

3ℓ+1[hd][tt] ⇔ [hd][tt] ∨ ⃝3ℓ[hd][tt]

we reason by cases on the refinement type of b.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:67

(Sub)Case of [hd][tt].
We apply the (Inj0-E) rule on b and we are done since

(in0 (hdg s)) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t) : {Strg(A + B) | [hd][in0]⊤}

(Sub)Case of ⃝3ℓ[hd][tt].
We have

tlg b : ▶
{
Strg Bool

�� 3ℓ[hd][tt]
}

We apply the case-elimination rule on b. In both branches, since (by subtyping) д has type

▶
({
Strg Bool

�� 213ℓ[hd][tt]
}
−→ StrgA −→ Strg B −→

{
Strg(A + B)

�� 213ℓ[hd][in0]⊤
})

and since, according to Table 3,

21θ ⇔ θ

we get

д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t) : ▶
{
Strg(A + B)

�� 3ℓ[hd][in0]⊤
}

so that

(−) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t) :

{
Strg(A + B)

�� ⃝3ℓ[hd][in0]⊤
}

and we are done since

⃝3ℓ[hd][in0]⊤ ⇒ 3ℓ+1[hd][in0]⊤

Case of ⃝2k3ℓ+1[hd][in0]⊤.
Since

2k+13ℓ+1[hd][tt] ⇔ 3ℓ+1[hd][tt] ∧ ⃝2k3ℓ+1[hd][tt]

we have

b :

{
Strg Bool

�� ⃝2k3ℓ+1[hd][tt]
}

so that

tlg b : ▶
{
Strg Bool

�� 2k3ℓ+1[hd][tt]
}

We apply the case-elimination rule on b. In both branches, since (by subtyping) д has type

▶
({
Strg Bool

��� 2k3ℓ+1[hd][tt]
}
−→ StrgA −→ Strg B −→

{
Strg(A + B)

��� 2k3ℓ+1[hd][in0]⊤
})

we get

д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t) : ▶
{
Strg(A + B)

�� 2k3ℓ+1[hd][in0]⊤
}

so that

(−) ::g д ⊛ (tlg b) ⊛ (tlg s) ⊛ (tlg t) :

{
Strg(A + B)

�� ⃝2k3ℓ+1[hd][in0]⊤
}

□

D.6 Colists
We detail here the refinement types given to the guarded and coinductive append functions on

colists in Table 2. We present some basic material in §D.6.2. The append function itself is detailed

in §D.6.3, and we give sharper refinements with iteration terms in §D.6.4. We begin in §D.6.1 with

an overview of the main examples on colists.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:68 Guilhem Jaber and Colin Riba

D.6.1 Overview. The cases of

appendg : {CoListgA | [¬nil]} −→ CoListgA −→ {CoListgA | [¬nil]}
appendg : CoListgA −→ {CoListgA | [¬nil]} −→ {CoListgA | [¬nil]}

are detailed in Ex. D.33.

We now discuss

append : {CoListA | [box][fin]} −→ {CoListA | [box][fin]} −→ {CoListA | [box][fin]}

which says that append takes finite colists to a finite colist. Recall that [fin] = 3[nil]. Details are
given in Ex. D.35. The other refinement types for append are detailed in Ex. D.36 and Ex. D.37.

We refer here to the code of the append function as defined in Table 4 and Ex. D.32. First, since

3[nil] is smooth, we can apply the rule (µ-E) (Fig. 11) twice and reduce to

Γ ⊢ boxι (appendg (unbox s) (unbox t)) : {CoListA | [box]3[nil]}

where Γ assumes s of type
{
CoListA

�� [box]3k [nil]
}
and t of type

{
CoListA

�� [box]3ℓ[nil]
}
. Using

the derived rule (µ-I) (Ex. 6.10), we further reduce to

Γ ⊢ boxι (appendg (unbox s) (unbox t)) :

{
CoListA

�� [box]3k+ℓ[nil]
}

Now, since the formulae 3t[nil] are safe, by subtyping (Fig. 11) we have

Γ ⊢ s : ■
{
CoListA

�� 3k [nil]
}

and Γ ⊢ t : ■
{
CoListA

�� 3ℓ[nil]
}

and we can reduce to showing that the guarded appendg has type ∀k · ∀ℓ ·T (k, ℓ), where
T (k, ℓ) :=

{
CoListgA

�� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ[nil]
}
−→

{
CoListgA

�� 3k+ℓ[nil]
}

Let N (д, s, t) be such that appendg = fix(д).λs .λt .N (д, s, t). We show

λs .λt .N (д, s, t) : ∀k · ∀ℓ ·T (k, ℓ)
in a typing context (leaved implicit) which assumes д of type ▶∀k · ∀ℓ ·T (k, ℓ). We apply the (∀-CI)
rule on ∀k · ∀ℓ ·T (k, ℓ). Since 30[nil] ⇔ ⊥, the branch of ∀ℓ ·T (0, ℓ) can be dealt with using the

(ExF) rule. In the branch of ∀ℓ ·T (k+1, ℓ), we apply the (∀-I) rule. We are thus left with showing

N (д, s, t) :

{
CoListgA

�� 3k+ℓ+1[nil]
}

assuming further s :
{
CoListgA

�� 3k+1[nil]
}
and t :

{
CoListgA

�� 3ℓ[nil]
}
. We unfold 3k+1[nil] as

3k+1[nil] ⇔ [nil] ∨ ⃝3k [nil]

Using the (∨-E) rule, we have two cases for the refinement type of s . In the case of {CoListA | [nil]},
since [nil] = [fold][in0]⊤, we have (unfold s) : [in0]⊤. Thanks to the (Inj0) rule, we are left with

showing

t :
{
CoListA

�� 3ℓ[nil]
}

⊢ t :

{
CoListA

�� 3k+1+ℓ[nil]
}

But we are done since JℓK ≤ Jk+ℓ+1K so that

3ℓ[nil] ⇒ 3k+1+ℓ[nil]

Assume now that s has type
{
CoListA

�� ⃝3k [nil]
}
. By unfolding3k+ℓ+1[nil]we reduce to showing

N (д, s, t) :

{
CoListgA

�� ⃝3k+ℓ[nil]
}

Since, on colists, ⃝(−) = [fold][in1][π1][next](−), we can apply the (Inj1-E) rule on (unfold s). This
amounts to showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListA

�� ⃝3k+ℓ[nil]
}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:69

where, since

(unfold s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [nil]
}

we can assume xs : ▶
{
CoListgA

�� 3k [nil]
}
. By subtyping and (∀-E) we have д : ▶T (k, ℓ), so that

д ⊛ xs ⊛ (next t) : ▶
{
CoListA

�� 3k+ℓ[nil]
}

and we conclude by the analogue of Ex. 5.3 for colists. The other typings for append are dealt with

similarly. Let us finally just mention that the type of appendg can be sharpened to

∀k · ∀ℓ ·
({
CoListgA

��� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[nil]
}
−→

{
CoListgA

��� 3k+ℓ[nil]
})

reflecting that on finite colists, appendg removes one constructor Nilg from its arguments (see

Ex. D.38).

D.6.2 The Type of CoLists. The type of colists is

CoListA := ■CoListgA
CoListgA := Fix(X).1 +A × ▶X

Its usual guarded constructors are represented as

Nilg := fold(in0⟨⟩) : CoListgA
Consg := λx .λxs .fold(in1⟨x ,xs⟩) : A → ▶CoListgA → CoListgA

Their coinductive (for A a constant type) variants are

Nil := boxι (Nilg) : CoListA
Cons := λx .λxs .boxι (Consg x (next (unbox xs))) : A → CoListA → CoListA

Notation D.27. Extending the notation for (guarded) streams, we often write

(x ::
g xs) := Consg x xs []g := Nilg [x0,x1, . . . ,xn]

g
:= x0 ::

g [x1, . . . ,xn]
g

(x :: xs) := Cons x xs [] := Nil [x0,x1, . . . ,xn] := x0 :: [x1, . . . ,xn]

Notation D.28 (Syntactic Sugar for Pattern Matching). Assuming s : CoListgA, we often write

case s of
| Nilg 7→ N
| Consg x xs 7→ M

for

case (unfold s) of
| y. N [⟨⟩/y]
| y. M[π0(y)/x , π1(y)/xs]

Example D.29 (Formulae over CoListg). Assumingψ : A and φ : CoListgA,

[nil] := [fold][in0]⊤ : CoListgA
[¬nil] := [fold][in1]⊤ : CoListgA
[hd]ψ := [fold][in1][π0]φ : CoListgA
⃝φ := [fold][in1][π1][next]φ : CoListgA
3φ := µα . φ ∨ ⃝α : CoListgA
3tφ := µtα . φ ∨ ⃝α : CoListgA
2φ := να . φ ∧ ⃝α : CoListgA
2finφ := να . [nil] ∨ (φ ∧ ⃝α) : CoListgA
[inf] := 2[¬nil] : CoListgA
[fin] := 3[nil] : CoListgA

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:70 Guilhem Jaber and Colin Riba

Example D.30.

Consg : A −→ ▶CoListgA −→ {CoListgA | [¬nil]}
Consg : A −→ ▶ {CoListgA | [inf]} −→ {CoListgA | [inf]}
Nilg : {CoListgA | [nil]}

Note that

⊢CoList
g A [nil] ⇒ 2finφ

Example D.31. Similarly as in §D.1.2 and §D.1.3, assuming φ : A we have

Consg : {A | φ} −→ ▶
{
CoListgA

�� 2fin[hd]φ
}
−→

{
CoListgA

�� 2fin[hd]φ
}

Consg : {A | φ} −→ ▶ {CoListgA | [nil]} −→
{
CoListgA

�� 2fin[hd]φ
}

Nilg :

{
CoListgA

�� 2fin[hd]φ
}

Consg : {A | φ} −→ ▶ {CoListgA | 2[hd]φ} −→ {CoListgA | 2[hd]φ}

D.6.3 The Append Function on Colists.

Example D.32 (The Append Function on Colists).

appendg : CoListgA → CoListgA → CoListgA
:= fix(д).λs .λt .case s of

| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

append : CoListA → CoListA → CoListA
:= λs .λt .boxι (appendg (unbox s) (unbox t))

Example D.33 (Properties of Append).

appendg : {CoListgA | [¬nil]} −→ CoListgA −→ {CoListgA | [¬nil]}
appendg : CoListgA −→ {CoListgA | [¬nil]} −→ {CoListgA | [¬nil]}

Example D.34. Assuming φ : A,

appendg :

{
CoListgA

�� 2fin[hd]φ
}
−→

{
CoListgA

�� 2fin[hd]φ
}
−→

{
CoListgA

�� 2fin[hd]φ
}

Proof. Let

T :=
{
CoListgA

�� 2fin[hd]φ
}
−→

{
CoListgA

�� 2fin[hd]φ
}
−→

{
CoListgA

�� 2fin[hd]φ
}

and assume

д : ▶T
s :

{
CoListgA

�� 2fin[hd]φ
}

t :

{
CoListgA

�� 2fin[hd]φ
}

Note that

2fin[hd]φ ⇔ [nil] ∨
(
[hd]φ ∧ ⃝2fin[hd]φ

)
We reason by cases on the refinement type of s , applying the (∨-E) rule (Fig. 8).

Case of [nil].
We thus have

unfold(s) : {1 +A × ▶CoListgA | [in0]⊤}

We apply the (Inj0-E) rule and get the result by

t :

{
CoListgA

�� 2fin[hd]φ
}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:71

Case of [hd]φ ∧ ⃝2fin[hd]φ.
We thus have

s :

{
CoListgA

�� [hd]φ ∧ ⃝2fin[hd]φ
}

Since the modalities [fold] and [in1] preserve ∧ this gives

s :

{
CoListgA

�� [fold][in1] ([π0]φ ∧ [π1][next]2fin[hd]φ
)}

so that

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1] ([π0]φ ∧ [π1][next]2fin[hd]φ
)}

We then apply the (Inj1-E) rule. Assume

y :

{
A × ▶CoListgA

�� [π0]φ ∧ [π1][next]2fin[hd]φ
}

and let

x := π0(y) : {A | φ}
xs := π1(y) : ▶

{
CoListgA

�� 2fin[hd]φ
}

Then Ex. D.31 easily gives

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 2fin[hd]φ
}

□

Example D.35.

append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]} −→ {CoListA | [box]3[nil]}
appendg : ∀k · ∀ℓ · ({CoListgA �� 3k [nil]

}
−→

{
CoListgA

�� 3ℓ[nil]
}
−→

{
CoListgA

�� 3k+ℓ[nil]
})

Proof. Let

T (k, ℓ) :=
({
CoListgA

�� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ[nil]
}
−→

{
CoListgA

�� 3k+ℓ[nil]
})

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д, s, t) := case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

We show

λs .λt .M(д, s, t) : ∀k · ∀ℓ ·T (k, ℓ)
We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of ∀ℓ ·T (0, ℓ).
Apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 30[nil]
}

Since

30[nil] ⇔ ⊥

the result follows using the rule (ExF).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:72 Guilhem Jaber and Colin Riba

Case of ∀ℓ ·T (k+1, ℓ).
Apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 3k+1[nil]
}

t :

{
CoListgA

�� 3ℓ[nil]
}

We have to show

M(д, s, t) :

{
CoListgA

�� 3k+1+ℓ[nil]
}

Using

3k+1[nil] ⇔ [nil] ∨ ⃝3k [nil]

we apply the (∨-E) rule on the refinement type of s . This leads to two subcases.

(Sub)Case of [nil].
We have

unfold(s) : {1 +A × ▶CoListgA | [in0]⊤}

Since JℓK ≤ Jk+1 + ℓK, the result then follows by applying the (Inj0-E) rule.

(Sub)Case of ⃝3k [nil].
We have

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3(k+ℓ)+1[nil]
}

where

x := π0(y) : A
xs := π1(y) : ▶

{
CoListgA

�� 3k [nil]
}

assuming

y :

{
A × ▶CoListgA

�� [π1][next]3k [nil]
}

We have

д ⊛ xs ⊛ (next t) : ▶
{
CoListgA

�� 3k+ℓ[nil]
}

It follows that

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� ⃝3k+ℓ[nil]
}

and we are done since

⃝3k+ℓ[nil] ⇒ 3(k+ℓ)+1[nil]

□

Example D.36. Assuming φ : A,

append : {CoListA | [box]3[hd]φ} −→ CoListA −→ {CoListA | [box]3[hd]φ}

appendg : ∀k ·
({
CoListgA

�� 3k [hd]φ
}
−→ CoListgA −→

{
CoListgA

�� 3k [hd]φ
})

where, in the case of append, φ : A is safe and smooth.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:73

Proof. Let

T (k) :=
{
CoListgA

�� 3k [hd]φ
}
−→ CoListgA −→

{
CoListgA

�� 3k [hd]φ
}

and assume

д : ▶∀k ·T (k)

Let

M(д, s, t) := case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

We show

λs .λt .M(д, s, t) : ∀k ·T (k)

We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of T (0).
Assume

s :

{
CoListgA

�� 30[hd]φ
}

Since

30[hd]φ ⇔ ⊥

the result follows using the rule (ExF).

Case of T (k+1).
Assume

s :

{
CoListgA

�� 3k+1[hd]φ
}

t : CoListgA

Using

3k+1[hd]φ ⇔ [hd]φ ∨ ⃝3k [hd]φ

we apply the (∨-E) rule on the refinement type of s . This leads to two subcases.

(Sub)Case of [hd]φ.
We have

unfold(s) : {1 +A × ▶CoListgA | [in1][π0]φ}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3k+1[hd]φ
}

where

x := π0(y) : {A | φ}
xs := π1(y) : ▶CoListgA

assuming

y : {A × ▶CoListgA | [π0]φ}

We have

Consg x (д ⊛ xs ⊛ (next t)) : {CoListgA | [hd]φ}

and we are done since

[hd]φ ⇒ 3k+1[hd]φ

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:74 Guilhem Jaber and Colin Riba

(Sub)Case of ⃝3k [hd]φ.
We have

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [hd]φ
}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3k+1[hd]φ
}

where

x := π0(y) : A
xs := π1(y) : ▶

{
CoListgA

�� 3k [hd]φ
}

assuming

y :

{
A × ▶CoListgA

�� [π1][next]3k [hd]φ
}

We have

д ⊛ xs ⊛ (next t) : ▶
{
CoListgA

�� 3k [hd]φ
}

It follows that

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� ⃝3k [hd]φ
}

and we are done since

⃝3k [hd]φ ⇒ 3k+1[hd]φ

□

Example D.37. Assuming φ : A, we have

append : {CoListA | [box]3[nil]} −→ {CoListA | [box]3[hd]φ} −→ {CoListA | [box]3[hd]φ}

appendg : ∀k · ∀ℓ · ({CoListgA �� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ[hd]φ
}
−→

{
CoListgA

�� 3k+ℓ[hd]φ
})

where, in the case of append, φ : A is safe and smooth.

Proof. Let

T (k, ℓ) :=
({
CoListgA

�� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ[hd]φ
}
−→

{
CoListgA

�� 3k+ℓ[hd]φ
})

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д, s, t) := case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

We show

λs .λt .M(д, s, t) : ∀k · ∀ℓ ·T (k, ℓ)
We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of ∀ℓ ·T (0, ℓ).
We apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 30[nil]
}

Since

30[nil] ⇔ ⊥

the result follows using the rule (ExF).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:75

Case of ∀ℓ ·T (k+1, ℓ).
We apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 3k+1[nil]
}

t :

{
CoListgA

�� 3ℓ[hd]φ
}

Using

3k+1[nil] ⇔ [nil] ∨ ⃝3k [nil]
we apply the (∨-E) rule on the refinement type of s . This leads to two subcases.

(Sub)Case of [nil].
We have

unfold(s) : {1 +A × ▶CoListgA | [in0]⊤}
Since JℓK ≤ Jk + 1 + ℓK, the result then follows by applying the (Inj0-E) rule.

(Sub)Case of ⃝3k [nil].
We have

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3(k+ℓ)+1[hd]φ
}

where

x := π0(y) : A
xs := π1(y) : ▶

{
CoListgA

�� 3k [nil]
}

assuming

y :

{
A × ▶CoListgA

�� [π1][next]3k [nil]
}

We have

д ⊛ xs ⊛ (next t) : ▶
{
CoListgA

�� 3k+ℓ[hd]φ
}

It follows that

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� ⃝3k+ℓ[hd]φ
}

and we are done since

⃝3k+ℓ[hd]φ ⇒ 3(k+ℓ)+1[hd]φ

□

D.6.4 Sharper Refinements for the Append Function on Colists.

Example D.38.

appendg : ∀k · ∀ℓ · ({CoListgA �� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[nil]
}
−→

{
CoListgA

�� 3k+ℓ[nil]
})

Proof. Let

T (k, ℓ) :=
({
CoListgA

�� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[nil]
}
−→

{
CoListgA

�� 3k+ℓ[nil]
})

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д, s, t) := case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

We show

λs .λt .M(д, s, t) : ∀k · ∀ℓ ·T (k, ℓ)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:76 Guilhem Jaber and Colin Riba

We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of ∀ℓ ·T (0, ℓ).
Apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 30[nil]
}

Since

30[nil] ⇔ ⊥

the result follows using the rule (ExF).

Case of ∀ℓ ·T (k+1, ℓ).
Apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 3k+1[nil]
}

t :

{
CoListgA

�� 3ℓ+1[nil]
}

We have to show

M(д, s, t) :

{
CoListgA

�� 3k+1+ℓ[nil]
}

Using

3k+1[nil] ⇔ [nil] ∨ ⃝3k [nil]

we apply the (∨-E) rule on the refinement type of s . This leads to two subcases.

(Sub)Case of [nil].
We have

unfold(s) : {1 +A × ▶CoListgA | [in0]⊤}

Since Jℓ+1K ≤ Jk + 1 + ℓK, the result then follows by applying the (Inj0-E) rule.

(Sub)Case of ⃝3k [nil].
We have

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3k+1+ℓ[nil]
}

where

x := π0(y) : A
xs := π1(y) : ▶

{
CoListgA

�� 3k [nil]
}

assuming

y :

{
A × ▶CoListgA

�� [π1][next]3k [nil]
}

We have

д ⊛ xs ⊛ (next t) : ▶
{
CoListgA

�� 3k+ℓ[nil]
}

It follows that

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� ⃝3k+ℓ[nil]
}

and we are done since

⃝3k+ℓ[nil] ⇒ 3k+1+ℓ[nil]

□

Example D.39. Assuming φ : A, we have

appendg : ∀k · ∀ℓ · ({CoListgA �� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[hd]φ
}
−→

{
CoListgA

�� 3k+ℓ[hd]φ
})

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:77

Proof. Let

T (k, ℓ) :=
({
CoListgA

�� 3k [nil]
}
−→

{
CoListgA

�� 3ℓ+1[hd]φ
}
−→

{
CoListgA

�� 3k+ℓ[hd]φ
})

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д, s, t) := case s of
| Nilg 7→ t
| Consg x xs 7→ Consg x (д ⊛ xs ⊛ (next t))

We show

λs .λt .M(д, s, t) : ∀k · ∀ℓ ·T (k, ℓ)
We apply the (∀-CI) rule on ∀k . This leads to two cases.

Case of ∀ℓ ·T (0, ℓ).
We apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 30[nil]
}

Since

30[nil] ⇔ ⊥

the result follows using the rule (ExF).

Case of ∀ℓ ·T (k+1, ℓ).
We apply the (∀-I) rule on ∀ℓ and assume

s :

{
CoListgA

�� 3k+1[nil]
}

t :

{
CoListgA

�� 3ℓ+1[hd]φ
}

We have to show

M(д, s, t) : {CoListgA | 3k + 1 + ℓ[hd]φ}

Using

3k+1[nil] ⇔ [nil] ∨ ⃝3k [nil]
we apply the (∨-E) rule on the refinement type of s . This leads to two subcases.

(Sub)Case of [nil].
We have

unfold(s) : {1 +A × ▶CoListgA | [in0]⊤}

Since Jℓ+1K ≤ Jk + 1 + ℓK, the result then follows by applying the (Inj0-E) rule.

(Sub)Case of ⃝3k [nil].
We have

unfold(s) :

{
1 +A × ▶CoListgA

�� [in1][π1][next]3k [nil]
}

Using the (Inj1-E) rule we are left with showing

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� 3k+1+ℓ[hd]φ
}

where

x := π0(y) : A
xs := π1(y) : ▶

{
CoListgA

�� 3k [nil]
}

assuming

y :

{
A × ▶CoListgA

�� [π1][next]3k [nil]
}

We have

д ⊛ xs ⊛ (next t) : ▶
{
CoListgA

�� 3k+ℓ[hd]φ
}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:78 Guilhem Jaber and Colin Riba

It follows that

Consg x (д ⊛ xs ⊛ (next t)) :

{
CoListgA

�� ⃝3k+ℓ[hd]φ
}

and we are done since

⃝3k+ℓ[hd]φ ⇒ 3k+1+ℓ[hd]φ

□

D.7 Resumptions
This example is adapted from [Krishnaswami 2013]. Fix a constant type O and a finite base type I.
Let

ResA := ■ResgA
ResgA := Fix(X).A + (O × ▶X)I

Retg := λa. fold(in0 a) : A −→ ResgA
Contg := λk . fold(in1 k) : (O × ▶ ResgA)I −→ ResgA

Example D.40 (A Scheduler on Resumptions).

sched : ResA −→ ResA −→ ResA
:= λp.λq. boxι (schedg (unbox p) (unbox q))

schedg : ResgA −→ ResgA −→ ResgA
:= fix(д).λp.λq. case p of

| Retg a 7→ Retg a
| Contg k 7→

let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

Example D.41 (Formulae on ResgA). Assumingψ : A, φ : ResgA, ϑ : O and i ∈ I,

[Ret] := [fold][in0]⊤ : ResgA
[Cont] := [fold][in1]⊤ : ResgA

[now]ψ := [fold][in0]ψ : ResgA
[outi]ϑ := [fold][in1] ([i] ∥→ [π0]ϑ) : ResgA
[∧out]ϑ := ∧i∈I[outi]ϑ : ResgA
[∨out]ϑ := ∨i∈I[outi]ϑ : ResgA

⃝iφ := [fold][in1] ([i] ∥→ [π1][next]φ) : ResgA
Tφ := ∧i∈I ⃝i φ : ResgA
Uφ := ∨i∈I ⃝i φ : ResgA

∃2φ := να . φ ∧ Uα : ResgA
∀2φ := να . φ ∧ Tα : ResgA

∃3φ := µα . φ ∨ Uα : ResgA
∀3φ := µα . φ ∨ Tα : ResgA

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:79

We moreover let

∀2tψ := νtα . ψ ∧ Tα : ResgA ∀3tψ := µtα . ψ ∨ Tα : ResgA
∃2tψ := νtα . ψ ∧ Uα : ResgA ∃3tψ := µtα . ψ ∨ Uα : ResgA

Example D.42. Letψ : A be a safe and smooth formula and let φ ∈ {[Ret], [now]ψ }. We have

sched : {ResA | [box]∃3φ} −→ {ResA | [box]∃3φ} −→ {ResA | [box]∃3φ}
sched : {ResA | [box]∀3φ} −→ {ResA | [box]∀3φ} −→ {ResA | [box]∀3φ}

schedg : ∀k · ∀ℓ · ({ResgA �� ∃3kφ
}
−→

{
ResgA

�� ∃3ℓφ
}
−→

{
ResgA

�� ∃3k+ℓφ
})

schedg : ∀k · ∀ℓ · ({ResgA �� ∀3kφ
}
−→

{
ResgA

�� ∀3ℓφ
}
−→

{
ResgA

�� ∀3k+ℓφ
})

Proof. Let 3 ∈ {∃3,∀3} and

T (k, ℓ) :=
{
ResgA

�� 3kφ
}
−→

{
ResgA

�� 3ℓφ
}
−→

{
ResgA

�� 3k+ℓφ
}

and assume

д : ▶∀k · ∀ℓ ·T (k, ℓ)
Let

M(д,p,q) := case p of
| Retg a 7→ Retg a
| Contg k 7→

let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

We show

λp.λq.M(д,p,q) : ∀k · ∀ℓ ·T (k, ℓ)
We apply the (∀-CI) rule on ∀k . In the case of ∀ℓ · T (0, ℓ), we get the result using the (ExF) rule

since

30φ ⇔ ⊥

As for ∀ℓ ·T (k+1, ℓ), we apply the (∀-I) rule on ∀ℓ. We have to show

M(д,p,q) :

{
ResgA

�� 3k+ℓ+1φ
}

assuming

p :

{
ResgA

�� 3k+1φ
}

q :

{
ResgA

�� 3ℓφ
}

Using

∃3k+1φ ⇔ φ ∨ U∃3kφ
∀3k+1φ ⇔ φ ∨ T∀3kφ

we reason by cases on the refinement type of p.

Case of [Ret].
We have

unfold p :

{
A + (O × ▶ ResgA)I

�� [in0]⊤}
We apply the (Inj0-E) rule on p and we are done since

Retg a : {ResgA | [Ret]}

assuming

a : A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:80 Guilhem Jaber and Colin Riba

Case of [now]ψ .
We have

unfold p :

{
A + (O × ▶ ResgA)I

�� [in0]ψ }
We apply the (Inj0-E) rule on p and we are done since

Retg a : {ResgA | [now]ψ }

assuming

a : {A | ψ }

Case of U∃3kφ.
We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p :

{
ResgA

�� ⃝i∃3kφ
}

We have

unfold p :

{
A + (O × ▶ ResgA)I

�� [in1] ([i] ∥→ [π1][next]∃3kφ
)}

We apply the (Inj1-E) rule on the refinement type of p. Let

N (д,k,q) := let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

We show

N (д,k,q) :

{
ResgA

�� ⃝i∃3k+ℓφ
}

assuming

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∃3kφ
}

Assuming

i : {I | [i]}

we thus have

ki :

{
O × ▶ ResgA

�� [π1][next]∃3kφ
}

It follows that

⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
O × ▶ ResgA

�� [π1][next]∃3k+ℓφ
}

and thus

λi . ⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∃3k+ℓφ
}

Now we are done since

⃝i∃3k+ℓφ = [fold][in1]
(
[i] ∥→ [π1][next]∃3k+ℓφ

)
and Contg = λh. fold(in1 h)

Case of T∀3kφ.
Using

∀3k+ℓ+1φ ⇔ φ ∨ T∀3k+ℓφ

for each i ∈ I we show

M(д,p,q) :

{
ResgA

�� ⃝i∀3k+ℓφ
}

So let i ∈ I. Since
p :

{
ResgA

�� T∃3kφ
}

We have

unfold p :

{
A + (O × ▶ ResgA)I

�� [in1] ([i] ∥→ [π1][next]∃3kφ
)}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:81

and we conclude similarly as in the case of U∃3kφ. □

Example D.43. Let ϑ : O be a safe and smooth formula. Furthermore, let 2 ∈ {∀2,∃2}, 3 ∈

{∀3,∃3} and [out] ∈ {[∧out], [∨out]}. We have

sched : {ResA | [box]23[out]ϑ } −→ {ResA | [box]23[out]ϑ } −→ {ResA | [box]23[out]ϑ }

Proof. We show that we can give the following refinement type to schedg:

∀k ·∀ℓ0·∀ℓ1·
({
ResgA

��� 2k3ℓ0 [out]ϑ
}
−→

{
ResgA

��� 2k3ℓ1 [out]ϑ
}
−→

{
ResgA

��� 2k3ℓ0+ℓ1 [out]ϑ
})

Let T (k, ℓ0, ℓ1) be the type{
ResgA

��� 2k3ℓ0 [out]ϑ
}
−→

{
ResgA

��� 2k3ℓ1 [out]ϑ
}
−→

{
ResgA

��� 2k3ℓ0+ℓ1 [out]ϑ
}

and assume

д : ▶∀k · ∀ℓ0 · ∀ℓ1 ·T (k, ℓ0, ℓ1)
Let

M(д,p,q) := case p of
| Retg a 7→ Retg a
| Contg k 7→

let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

We show

λp.λq.M(д,p,q) : ∀k · ∀ℓ0 · ∀ℓ1 ·T (k, ℓ0, ℓ1)
We apply the (∀-CI) rule on ∀k . The case of ∀ℓ0 · ∀ℓ1 ·T (0, ℓ0, ℓ1) is trivial since

203ℓ0+ℓ1 [out]ϑ ⇔ ⊤

As for ∀ℓ0 · ∀ℓ1 · T (k+1, ℓ0, ℓ1), we apply the (∀-CI) rule, this time on ∀ℓ0. In the case of ∀ℓ1 ·
T (k+1, 0, ℓ1), since 2

k+130[out]ϑ is of the form

30[out]ϑ ∧ ψ

while

30[out]ϑ ⇔ ⊥

we can conclude using the (ExF) rule. It remains to deal with the case of ∀ℓ1 ·T (k+1, ℓ0+1, ℓ1). We

apply the (∀-I) rule on ∀ℓ1. We show

M(д,p,q) :

{
ResgA

�� 2k+13ℓ0+ℓ1+1[out]ϑ
}

assuming

p :

{
ResgA

�� 2k+13ℓ0+1[out]ϑ
}

q :

{
ResgA

�� 2k+13ℓ1 [out]ϑ
}

We will apply the (Inj1-E) rule on (unfold p) and show

N (д,k,q) :

{
ResgA

�� 2k+13ℓ0+ℓ1+1[out]ϑ
}

where

N (д,k,q) := let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:82 Guilhem Jaber and Colin Riba

and under suitable assumption on the refinement type of k . We have

∀2k+13ℓ0+ℓ1+1[out]ϑ ⇔ 3ℓ0+ℓ1+1[out]ϑ ∧ T∀2k3ℓ0+ℓ1+1[out]ϑ
∃2k+13ℓ0+ℓ1+1[out]ϑ ⇔ 3ℓ0+ℓ1+1[out]ϑ ∧ U∃2k3ℓ0+ℓ1+1[out]ϑ

and we consider each conjunct separately.

Cases of 3ℓ0+ℓ1+1[out]ϑ .
We have

p :

{
ResgA

�� 3ℓ0+1[out]ϑ
}

Using

∃3ℓ0+1[out]ϑ ⇔ [out]ϑ ∨ U∃3ℓ0 [out]ϑ
∀3ℓ0+1[out]ϑ ⇔ [out]ϑ ∨ T∀3ℓ0 [out]ϑ

we reason by cases on the refinement type of p.
(Sub)Cases of [out]ϑ .

We show

N (д,k,q) : {ResgA | [out]ϑ }

We handle the cases of [∨out] and [∧out] separately.
(SubSub)Case of [∨out].

We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p : {ResgA | [outi]ϑ }

This amounts to

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π0]ϑ
}

Hence assuming

i : {A | [i]}

we have

⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ : {O × ▶ ResgA | [π0]ϑ }

It follows that

λi . ⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π0]ϑ
}

and we are done since

Contg = λh. fold(in1 h)

(SubSub)Case of [∧out].
For each i ∈ I we have to show

N (д,k,q) : {ResgA | [outi]ϑ }

So let i ∈ I. Since

p : {ResgA | [outi]ϑ }

we have

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π0]ϑ
}

and we conclude similarly as in the case of [∨out].

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:83

(Sub)Case of U∃3ℓ0 [out]ϑ .
We show

N (д,k,q) :

{
ResgA

�� U∃3ℓ0+ℓ1 [out]ϑ
}

We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p :

{
ResgA

�� ⃝i∃3ℓ0 [out]ϑ
}

This amounts to

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∃3ℓ0 [out]ϑ
}

Assuming

i : {I | [i]}

we thus have

ki :

{
O × ▶ ResgA

�� [π1][next]∃3ℓ0 [out]ϑ
}

since (by subtyping) д has type

▶
({
ResgA

�� 21∃3ℓ0 [out]ϑ
}
−→

{
ResgA

�� 21∃3ℓ1 [out]ϑ
}
−→

{
ResgA

�� 21∃3ℓ0+ℓ1 [out]ϑ
})

and since, according to Table 3,

21θ ⇔ θ

it follows that

⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
O × ▶ ResgA

�� [π1][next]∃3ℓ0+ℓ1 [out]ϑ
}

We thus get

λi . ⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∃3ℓ0+ℓ1 [out]ϑ
}

Now we are done since

⃝i∃3ℓ0+ℓ1 [out]ϑ = [fold][in1]
(
[i] ∥→ [π1][next]∃3ℓ0+ℓ1 [out]ϑ

)
and Contg = λh. fold(in1 h)

(Sub)Case of T∀3ℓ0 [out]ϑ .
We show

N (д,k,q) :

{
ResgA

�� T∀3ℓ0+ℓ1 [out]ϑ
}

Hence, for each i ∈ I we have to show

N (д,k,q) :

{
ResgA

�� ⃝i∀3ℓ0+ℓ1 [out]ϑ
}

So let i ∈ I. Since

p :

{
ResgA

�� ⃝i∀3ℓ0 [out]ϑ
}

we have

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∀3ℓ0 [out]ϑ
}

and we conclude similarly as in the case of U∃3ℓ0 [out]ϑ .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:84 Guilhem Jaber and Colin Riba

Case of T∀2k3ℓ0+ℓ1+1[out]ϑ .
For each i ∈ I we have to show

N (д,k,q) :

{
ResgA

�� ⃝i∀2k3ℓ0+ℓ1+1[out]ϑ
}

So let i ∈ I. Since

p :

{
ResgA

�� ⃝i∀2k3ℓ0+1[out]ϑ
}

we have

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∀2k3ℓ0+1[out]ϑ
}

Assuming

i : {I | [i]}

we thus have

ki :

{
O × ▶ ResgA

�� [π1][next]∀2k3ℓ0+1[out]ϑ
}

and it follows that

λi . ⟨π0(ki) , д ⊛ (next q) ⊛ (π1(ki))⟩ :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∀2k3ℓ0+ℓ1+1[out]ϑ
}

Now we are done since

⃝i∀2k∃3ℓ0+ℓ1+1[out]ϑ = [fold][in1]
(
[i] ∥→ [π1][next]∀2k∃3ℓ0+ℓ1+1[out]ϑ

)
and Contg = λh. fold(in1 h)

Case of U∃2k3ℓ0+ℓ1+1[out]ϑ .
We have to show

N (д,k,q) :

{
ResgA

�� U∃2k3ℓ0+ℓ1+1[out]ϑ
}

We apply the (∨-E) rule on the refinement type of p. So let i ∈ I and assume

p :

{
ResgA

�� ⃝i∃2k3ℓ0+1[out]ϑ
}

We have

k :

{
(O × ▶ ResgA)I

�� [i] ∥→ [π1][next]∃2k3ℓ0+1[out]ϑ
}

and we conclude similarly as in the case of T∀2k3ℓ0+ℓ1+1[out]ϑ . □

Example D.44. Let 2 ∈ {∀2,∃2} and 3 ∈ {∀3,∃3}. We have

sched : {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]} −→ {ResA | [box]23[Ret]}

Proof. We show that we can give the following refinement type to schedg:

∀k · ∀ℓ0 · ∀ℓ1 ·
({
ResgA

��� 2k3ℓ0 [Ret]
}
−→

{
ResgA

��� 2k3ℓ1 [Ret]
}
−→

{
ResgA

��� 2k3ℓ0+ℓ1 [Ret]
})

Let T (k, ℓ0, ℓ1) be the type{
ResgA

��� 2k3ℓ0 [Ret]
}
−→

{
ResgA

��� 2k3ℓ1 [Ret]
}
−→

{
ResgA

��� 2k3ℓ0+ℓ1 [Ret]
}

and assume

д : ▶∀k · ∀ℓ0 · ∀ℓ1 ·T (k, ℓ0, ℓ1)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:85

Let

M(д,p,q) := case p of
| Retg a 7→ Retg a
| Contg k 7→

let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

We show

λp.λq.M(д,p,q) : ∀k · ∀ℓ0 · ∀ℓ1 ·T (k, ℓ0, ℓ1)
We apply the (∀-CI) rule on ∀k . The case of ∀ℓ0 · ∀ℓ1 ·T (0, ℓ0, ℓ1) is trivial since

203ℓ0+ℓ1 [Ret] ⇔ ⊤

As for ∀ℓ0 · ∀ℓ1 · T (k+1, ℓ0, ℓ1), we apply the (∀-CI) rule, this time on ∀ℓ0. In the case of ∀ℓ1 ·
T (k+1, 0, ℓ1), since 2

k+130[Ret] is of the form

30[Ret] ∧ ψ

while

30[Ret] ⇔ ⊥

we can conclude using the (ExF) rule. It remains to deal with the case of ∀ℓ1 ·T (k+1, ℓ0+1, ℓ1). We

apply the (∀-I) rule on ∀ℓ1. We show

M(д,p,q) :

{
ResgA

�� 2k+13ℓ0+ℓ1+1[Ret]
}

assuming

p :

{
ResgA

�� 2k+13ℓ0+1[Ret]
}

q :

{
ResgA

�� 2k+13ℓ1 [Ret]
}

We have

∀2k+13ℓ0+ℓ1+1[Ret] ⇔ 3ℓ0+ℓ1+1[Ret] ∧ T∀2k3ℓ0+ℓ1+1[Ret]
∃2k+13ℓ0+ℓ1+1[Ret] ⇔ 3ℓ0+ℓ1+1[Ret] ∧ U∃2k3ℓ0+ℓ1+1[Ret]

and we consider each conjunct separately.

Cases of 3ℓ0+ℓ1+1[Ret].
We have

p :

{
ResgA

�� 3ℓ0+1[out]ϑ
}

Using

∃3ℓ0+1[Ret] ⇔ [Ret] ∨ U∃3ℓ0 [Ret]
∀3ℓ0+1[Ret] ⇔ [Ret] ∨ T∀3ℓ0 [Ret]

we reason by cases on the refinement type of p. In the case of [Ret], apply the (Inj0-E) rule on
(unfold p), and we conclude similarly as in Ex. D.42. In the other cases, we apply the (Inj1-E)

rule on (unfold p) and show

N (д,k,q) :

{
ResgA

�� 3ℓ0+ℓ1+1[Ret]
}

where

N (д,k,q) := let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

and under suitable assumption on the refinement type of k . We can then conclude similarly

as in Ex. D.43.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:86 Guilhem Jaber and Colin Riba

Cases of ⃝2k3ℓ0+ℓ1+1[Ret].
We apply the (Inj1-E) rule on (unfold p) and show

N (д,k,q) :

{
ResgA

�� 2k+13ℓ0+ℓ1+1[Ret]
}

where

N (д,k,q) := let h = λi . let ⟨o, t⟩ = ki
in ⟨o,д ⊛ (next q) ⊛ t⟩

in Contg h

and under suitable assumption on the refinement type of k . We can then conclude similarly

as in Ex. D.43. □

D.8 Breadth-First Tree Traversal
D.8.1 Infinite Binary Trees. The guarded recursive type of binary trees is

TreegA := Fix(X).A × (▶X × ▶X)

TreeA := ■ TreegA

The usual guarded constructors and destructors on TreegA are represented as

Nodeg := λv .λℓ.λr .fold(⟨v, ⟨ℓ, r ⟩⟩) : A → ▶ TreegA → ▶ TreegA → TreegA
labelg := λt .π0(unfold t) : TreegA → A
song

ℓ
:= λt .π0(π1(unfold t)) : TreegA → ▶ TreegA

songr := λt .π1(π1(unfold t)) : TreegA → ▶ TreegA

Their coinductive (for A a constant type) variants are

Node := λv .λℓ.λr . : A → TreeA → TreeA → TreeA
boxι (Nodeg v (next (unbox ℓ)) (next (unbox ℓ)))

label := λt .labelg (unbox t) : TreeA → A
sonℓ := λt .song

ℓ
(unbox t) : TreeA → TreegA

sonr := λt .songr (unbox t) : TreeA → TreeA

Example D.45 (Tree Formulae). Assuming φ : TreegA,

∀2φ : TreegA
:= να . φ ∧ (⃝ℓα ∧ ⃝rα)

∃3φ : TreegA
:= µα . φ ∨ (⃝ℓα ∨ ⃝rα)

Example D.46. Assuming φ : A, we have

Nodeg : {A | φ} → ▶ {TreegA | ∀2[lbl]φ} → ▶ {TreegA | ∀2[lbl]φ} → {TreegA | ∀2[lbl]φ}

labelg : {TreegA | ∀2[lbl]φ} −→ {A | φ}

song
ℓ

: {TreegA | ∀2[lbl]φ} −→ ▶ {TreegA | ∀2[lbl]φ}

songr : {TreegA | ∀2[lbl]φ} −→ ▶ {TreegA | ∀2[lbl]φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:87

D.8.2 Breadth-First Traversal of Guarded Trees Using Forests.

Example D.47.

bft : TreeA → CoListA
:= λt . boxι (bftg (unbox t))

bftg
: TreegA → CoListgA
:= λt .bftauxg [t]g

bftauxg : CoListg(TreegA) → CoListgA
:= fix(д).λs . case s of

| Nilg 7→ Nilg

| Consg x xs 7→ (labelg x) ::g д ⊛
(
next(appendg) ⊛ xs ⊛ [(song

ℓ
x), (songr x)]g

▶
)

where

[]g▶ := next([]g)
[y0,y1, . . . ,yn]

g▶
:= next(Consg) ⊛ y0 ⊛ next[y1, . . . ,yn]g▶

Example D.48.

bftg
: TreegA −→ {CoListgA | [¬nil]}

bftauxg : {CoListg(TreegA) | [¬nil]} −→ {CoListgA | [¬nil]}

Example D.49.

bftg
: TreeA −→ {CoListgA | [inf]}

bftauxg : {CoListg(TreeA) | [¬nil]} −→ {CoListgA | [inf]}

Example D.50. Assuming φ : A,

bftg
: {TreegA | ∀2[lbl]φ} −→ {CoListgA | 2[hd]φ}

Proof. Thanks to Ex. D.30 and Ex. D.31, we can reduce to showing

bftauxg :

{
CoListg(TreegA)

�� [¬nil] ∧2fin[hd]∀2[lbl]φ} −→ {CoListgA | 2[hd]φ}

Let

T :=
{
CoListg(TreegA)

�� [¬nil] ∧2fin[hd]∀2[lbl]φ} −→ {CoListgA | 2[hd]φ}

and assume

д : ▶T
s :

{
CoListg(TreegA)

�� [¬nil] ∧2fin[hd]∀2[lbl]φ}
Note that we have, at type CoListg(TreegA),

[¬nil] ∧2fin[hd]∀2[lbl]φ ⇔ [¬nil] ∧
(
[nil] ∨

(
[hd]∀2[lbl]φ ∧ ⃝2fin[hd]∀2[lbl]φ))

⇔
(
[¬nil] ∧ [nil]

)
∨
(
[¬nil] ∧ [hd]∀2[lbl]φ ∧ ⃝2fin[hd]∀2[lbl]φ)

Since the modality [fold] preserves ∧ and ⊥ (Table 3), we have(
[¬nil] ∧ [nil]

)
⇒ ⊥

We apply the (∨-E) rule on the refinement type of s . The branch of [¬nil] ∧ [nil] is dealt-with using

the rule (ExF). It remains to handle the case of

s :

{
CoListg(TreegA)

�� [¬nil] ∧ [hd]∀2[lbl]φ ∧ ⃝2fin[hd]∀2[lbl]φ}
Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:88 Guilhem Jaber and Colin Riba

Since the modalities [fold] and [in1] preserve ∧ we have

unfold(s) :

{
1 + TreegA × ▶CoListg(TreegA)

�� [in1]([π0]φ ∧ [π1][next]2fin[hd]∀2[lbl]φ)}
Using the typing rule (Inj1-E) (Fig. 8) and Ex. D.46 we are left with showing

v ::
g д ⊛

(
next(appendg) ⊛ xs ⊛ [ℓ, r]g▶

)
: {CoListgA | 2[hd]φ}

where

xs := π1 y : ▶
{
CoListg(TreegA)

�� 2fin[hd]∀2[lbl]φ}
v := labelg (π0 y) : {A | φ}
ℓ := song

ℓ
(π0 y) : ▶ {TreegA | ∀2[lbl]φ}

r := songr (π0 y) : ▶ {TreegA | ∀2[lbl]φ}
assuming

y :

{
TreegA × ▶CoListg(TreegA)

�� [π0]φ ∧ [π1][next]2fin[hd]∀2[lbl]φ}
It follows from Ex. D.30 and Ex. D.31 that

[ℓ, r]g▶ : ▶
{
CoListg(TreeA)

�� [¬nil] ∧2fin[hd]∀2[lbl]φ}
Hence, by Ex. D.33 and Ex. D.34 we obtain

next(appendg) ⊛ xs ⊛ [ℓ, r]g▶ : ▶
{
CoListg(TreeA)

�� [¬nil] ∧2fin[hd]∀2[lbl]φ}
and the result follows. □

D.8.3 Martin Hofmann’s Algorithm. We follow the presentation of [Berger et al. 2019] with

some slight changes in terminology and notation. Consider the non-strictly positive type

RougA := Fix(X). 1 + ((▶X → ▶A) → A)

so that

Roug(CoListgA) := Fix(X). 1 + ((▶X → ▶CoListgA) → CoListgA)

The constructors of RougA are

Overg := fold(in0⟨⟩) : RougA
Contg := λf .fold(in1 f) :

(
(▶ RougA → ▶A) → A

)
→ RougA

The following are two basic important functions on Roug:

unfold : RougA −→ (▶ RougA → ▶A) −→ ▶A
:= λc . case c of

| Overg 7→ λk . k (next Overg)
| Contg f 7→ λk . next(f k)

extract : Roug(CoListgA) −→ CoListgA
:= fix(д).λc . case c of

| Overg 7→ Nilg

| Contg f 7→ f д⊛

where

д⊛ := λx .д ⊛ x

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:89

We then let

bftg
: TreegA −→ CoListgA
:= λt . extract (bftaux t Overg)

bftaux : TreegA −→ Roug(CoListgA) −→ Roug(CoListgA)
:= fix(д).λt .λc .

Cont
(
λk . (labelg t) ::g unfold c

(
k ◦ (д ⊛ (song

ℓ
t))⊛ ◦ (д ⊛ (songr t))⊛

))
Example D.51 ((Non) Emptiness).

[ov] := [fold][in0]⊤ : RougA
[ct] := [fold][in1]⊤ : RougA

Example D.52. Assuming φ : A, we let

[Rou]φ := να . [fold][in1](([next]α ∥→ [next]φ) ∥→ φ) : RougA

Then for φ : CoListgA we have

extract : {Roug(CoListgA) | [Rou]φ} −→ {CoListgA | φ}

Proof. Assume

д : ▶ ({Roug(CoListgA) | [Rou]φ} −→ {CoListgA | φ})
c : {Roug(CoListgA) | [Rou]φ}

and let

B := CoListgA

Since

[Rou]φ = να . [fold][in1](([next]α ∥→ [next]φ) ∥→ φ)

we have

(unfold c) : {1 + (▶ Roug B → ▶B) → B | [in1](([next][Rou]φ ∥→ [next]φ) ∥→ φ)}

We can thus apply the (Inj1-E) rule, which leads us to showing

f (λx . д ⊛ x) : {B | φ}

assuming

f : {(▶ Roug B → ▶B) → B | ([next][Rou]φ ∥→ [next]φ) ∥→ φ}

that is

f : (▶ {Roug B | [Rou]φ} → ▶ {B | φ}) −→ {B | φ}

But this is trivial, by assumption on the type of д. □

Example D.53. Assuming φ : A we have

unfold : RougA −→
(
▶ RougA −→ ▶ {A | φ}

)
−→ ▶ {A | φ}

Proof. Assume

c : RougA
k : ▶ RougA −→ ▶ {A | φ}
f :

(
▶ {RougA | [Rou]φ} −→ ▶ {A | φ}

)
−→ {A | φ}

Then we have

k (next Overg) : ▶ {A | φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:90 Guilhem Jaber and Colin Riba

Moreover, by subtyping we have

k : ▶ {RougA | [Rou]φ} −→ ▶ {A | φ}

so that

next(f k) : ▶ {A | φ}

□

Example D.54. Assuming φ : A we have

bftg
: {TreegA | ∀2[lbl]φ} −→ {CoListgA | 2[hd]φ}

Proof. It follows from the type of extract in Ex. D.52 that we are done if we show

bftaux : {TreegA | ∀2[lbl]ψ } −→ Roug(CoListgA) −→ {Roug(CoListgA) | [Rou]2[hd]ψ }

Let

T := {TreegA | ∀2[lbl]ψ } −→ Roug(CoListgA) −→ {Roug(CoListgA) | [Rou]2[hd]ψ }

and assume

д : ▶T
t : {TreegA | ∀2[lbl]φ}
c : Roug(CoListgA)

Using Ex. D.46, let

ℓ := song
ℓ
t : ▶ {TreegA | ∀2[lbl]φ}

r := songr t : ▶ {TreegA | ∀2[lbl]φ}
Since (labelg t) : {A | φ}, it follows from Ex. D.31 that we are done if we show

unfold c
(
k ◦ (д ⊛ ℓ)⊛ ◦ (д ⊛ r)⊛

)
: ▶ {CoListgA | 2[hd]φ}

assuming

k : ▶ {Roug (CoListgA) | [Rou]2[hd]φ} −→ ▶ {CoListgA | 2[hd]φ}

But by Ex. D.53 we are done since

k ◦ (д ⊛ ℓ)⊛ ◦ (д ⊛ r)⊛ : ▶ Roug (CoListA) −→ ▶ {CoListgA | 2[hd]φ}

□

E PROOFS OF §8
Warning. In §E.1–E.3 we assume formulae to have no free iteration variables. Free iteration variables

in types are then always instantiated in the Adequacy Theorem E.14 (Thm. C.26, Thm. 8.12).

E.1 Correctness of the External and Internal Semantics
E.1.1 Proof of Lem. C.13.(1) (Lem. 8.3).

Lemma E.1. If ⊢A
c
φ in full modal theory of Def. 6.2, then {|φ |} = ΓJAK.

Lemma C.19 gives almost all the axioms and rules of Table 3 and Fig. 6, but for the [ev(−)]
modality that we treat separately. We first treat the axioms of Table 3.

Lemma E.2. If φ : A is an axiom of Table 3, then {|φ |}A = JAK.

Proof. Most of the axioms follow from Lem. C.19. Following Def. 4.5, we include the axioms

marked (C) in Table 3. The cases of [box] are trivial and omitted.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:91

Case of (C). Since in each case, the map {|[△]|} preserves ∧.

The case of [ev(−)] is treated directly:

⊢B→A
(
[ev(ϕ)]ψ ∧ [ev(ϕ)]φ

)
=⇒ [ev(ϕ)](ψ ∧ φ)

Let x ∈ ΓJB → AK and assume that x ∈ {|[ev(ϕ)]ψ |} ∩ {|[ev(ϕ)]φ |}. Let now y ∈ ΓJBK such
that y ∈ {|ϕ |}. We then have ev ◦ ⟨x ,y⟩ ∈ {|ψ |} ∩ {|φ |}.

Case of (N). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting algebras.

The case of [ev(−)] is treated directly:

⊢B→A [ev(ϕ)]⊤

Let x ∈ ΓJB → AK. Given y ∈ ΓJBK such that y ∈ {|ϕ |}, we have ev ◦ ⟨x ,y⟩ ∈ ΓJAK = {|⊤|}.

Case of (P). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting algebras. As for [ini],
this follows from Lem. C.19.

Case of (C∨). By Lem. C.19.

Case of (C⇒). Since {|[πi]|}, {|[next]|} and {|[fold]|} are maps of Heyting algebras. □

In order to handle fixpoints, we have the usual monotonicity lemma w.r.t. set inclusion.

Lemma E.3. Consider, for a formula α1 : A1, . . . ,αk : Ak ⊢ φ, the map

{|φ |} : P(ΓJA1K) × · · · × P(ΓJAk K) −→ P(ΓJAK), v 7−→ {|φ |}v

For i ∈ {1, . . . ,k}, if αi Pos φ (resp. αi Neg φ), then w.r.t. set inclusion, {|φ |} is monotone (resp.

anti-monotone) in its ith argument.

We can now turn to the proof of Lemma E.1.

Proof of Lemma E.1. By induction on ⊢A φ. The rules of intuitionistic propositional logic

(Fig. 14) as well as of (CL) are trivial and omitted.

Case of
(RM)

⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ
By Lem. C.19, this holds for [πi], [next] and [fold] since {|[πi]|}, {|[next]|} and {|[fold]|} are
maps of Heyting algebras. As for [ini], this follows from the fact that {|[ini]|} preserves

implications as it preserves ∨.

The case of [ev(−)] is treated directly:

⊢A ψ ⇒ φ

⊢B→A [ev(ϕ)]ψ ⇒ [ev(ϕ)]φ

Let x ∈ ΓJB → AK. Given y ∈ ΓJBK such that y ∈ {|ϕ |}, we have ev ◦ ⟨x ,y⟩ ∈ {|ψ |}, so that

ev ◦ ⟨x ,y⟩ ∈ {|φ |} since {|ψ |} ⊆ {|φ |}.
Case of

⊢A
c
φ

⊢■A [box]φ
Trivial.

Case of
⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ
Let x ∈ ΓJB → AK and assume that x ∈ {|[ev(ϕ)]φ |}. Let furthermore y ∈ ΓJBK such that

y ∈ {|ψ |}. We have to show ev◦⟨x ,y⟩ ∈ {|φ |}. By induction hypothesis we havey ∈ {|ψ ⇒ ϕ |},
so that y ∈ {|ϕ |}. But this implies ev ◦ ⟨x ,y⟩ ∈ {|φ |} since x ∈ {|[ev(ϕ)]φ |}.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:92 Guilhem Jaber and Colin Riba

Case of

⊢B→A ([ev(ψ0)]φ ∧ [ev(ψ1)]φ) ⇒ [ev(ψ0 ∨ψ1)]φ

Let x ∈ ΓJB → AK and assume that x ∈ {|([ev(ψ0)]φ ∧ [ev(ψ1)]φ)|}. Let furthermore y ∈ ΓJBK
such that y ∈ {|ψ0 ∨ψ1 |}. We have to show ev ◦ ⟨x ,y⟩ ∈ {|φ |}. But if y ∈ {|ψ0 |} then we are

done since x ∈ {|[ev(ψ0)]φ |}, and similarly if y ∈ {|ψ1 |}.

Case of

⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
Consider x ∈ ΓJA0+A1K ≃ ΓJA0K+ΓJA1K (via Lem. C.2). Hence x = ini (y) for somey ∈ ΓJAiK
and we have x ∈ {|[ini]⊤|}. Moreover, since the injections in0 and in1 have disjoint images,

we have {|[in0]⊤ ∧ [in1]⊤|} = ∅ so x ∈ {|¬([in0]⊤ ∧ [in1]⊤)|}.
Case of

⊢A0+A1 [ini]⊤ ⇒ (¬[ini]φ ⇔ [ini]¬φ)
Let x ∈ ΓJA0 +A1K ≃ ΓJA0K + ΓJA1K, and assume x ∈ {|[ini]⊤|}, so that x = ini (y) for some

(unique) y ∈ ΓJAiK. We show

x ∈ {|¬[ini]φ ⇒ [ini]¬φ |} and x ∈ {|[ini]¬φ ⇒ ¬[ini]φ |}

For the former, assume x < {|[ini]φ |}. Sincey is unique such that x = ini (y), we havey < {|φ |}.
But this implies y ∈ {|¬φ |} and we are done.

For the latter, assume x ∈ {|[ini]¬φ |}. Assume toward a contradiction that x ∈ {|[ini]φ |}.
Since y is unique such that x = ini (y), we have both y < {|φ |} and y ∈ {|φ |}, a contradiction.

Cases of

⊢A ν0αφ ⇔ ⊤ ⊢A νt+1αφ ⇔ φ[νtαφ/α] ⊢A µ0αφ ⇔ ⊥ ⊢A µt+1αφ ⇔ φ[µtαφ/α]

By definition of

{��θtαφ��}.
Cases of

JtK ≥ JuK
⊢A νtαφ ⇒ νuαφ

JtK ≤ JuK
⊢A µtαφ ⇒ µuαφ

These cases follows from Lem. E.3 (in θtαφ we assume that α is positive in φ) and the

definition of

{��θtαφ��}.
Cases of

⊢A ναφ ⇒ φ[ναφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναφ ⊢A φ[µαφ/α] ⇒ µαφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαφ ⇒ ψ

By Lem. E.3 and the Knaster-Tarski Theorem.

Cases of

⊢A µtαφ(α) ⇒ µαφ(α) ⊢A ναφ(α) ⇒ νtαφ(α)

We show by induction onm ∈ N that

{|µmαφ(α)|} ⊆ {|µαφ(α)|} and {|ναφ(α)|} ⊆ {|νmαφ(α)|}

The base casem = 0 is trivial since{��µ0αφ(α)��} = {|⊥|} and

{��ν0αφ(α)��} = {|⊤|}

For the induction step we have{��µm+1αφ(α)��} = {|φ(µmαφ(α))|} and

{��νm+1αφ(α)��} = {|φ(νmαφ(α)|}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:93

So the induction hypothesis together with Lem. E.3 gives{��µm+1αφ(α)��} ⊆ {|φ(µαφ(α))|} and {|φ(ναφ(α))|} ⊆ {|φ(νmαφ(α))|}

and we are done since by the Knaster-Tarski Theorem, we have

{|φ(µαφ(α))|} = {|µαφ(α)|} and {|φ(ναφ(α))|} = {|ναφ(α)|}

□

E.1.2 Proof of Lem. C.13.(2) (Lem. 8.3).

Lemma E.4. If ⊢A φ in full modal theory of Def. 6.2, then JφK = JAK.

Corollary C.17 gives almost everything we need for the semantic correctness of the modal theory.

We begin with the axioms of Table 3.

Lemma E.5. If φ : A is an axiom of Table 3, then JφKA = JAK.

Proof. Most of the axioms follow from Cor. C.17.

Case of (C). Since in each case, the map J[△]K preserves ∧.
Case of (N). Since in each case, the map J[△]K preserves ⊤ (recall that axiom is not assumed

for [ini]).
Case of (P). The result for [πi], [fold] and [box] follows from the fact that J[πi]K, J[fold]K and

J[box]K are maps of Heyting algebras.

As for [ini], it follows from the fact that J[ini]K preserves ⊥ (Cor. C.17).

Case of (C∨). By Cor. C.17.

Case of (C⇒). Since J[πi]K, J[fold]K and J[box]K are maps of Heyting algebras. □

In order to handle fixpoints, we have the usual monotonicity property w.r.t. subobject posets.

Lemma E.6. Consider, for a formula α1 : A1, . . . ,αk : Ak ⊢ φ, the map

JφK : Sub(JA1K) × · · · × Sub(JAk K) −→ Sub(JAK), v 7−→ JφKv

For i ∈ {1, . . . ,k}, if αi Pos φ (resp. αi Neg φ), then w.r.t. subobjects posets, JφK is monotone (resp.

anti-monotone) in its ith argument.

We can now turn to the proof of Lemma E.4.

Proof of Lemma E.4. By induction on ⊢A φ. The rules of Fig. 14 follow from the fact that in a

topos, the subobjects of a given object form a Heyting algebra.

Case of

(RM)
⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ

The result holds for [πi], [fold] and [box] since J[πi]K, J[fold]K and J[box]K are maps of Heyting

algebras.

As for [ini], [next] and [ev(−)], this follows from the fact that the maps J[ini]K, J[next]K and
J[ev(−)]K preserve implications since they preserve ∧.

Case of
⊢A
c
φ

⊢■A [box]φ
By Cor. C.17.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:94 Guilhem Jaber and Colin Riba

Case of
⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ
This case can be seen as following (via Lem. C.15) from the definition of J[ev(−)]K. A direct

argument is nevertheless possible. Let t ∈ JB → AK(n). Let k ≤ n such that t↑k ⊩k [ev(ϕ)]φ.
Let furthermore ℓ ≤ k andu ∈ JBK(ℓ) such thatu ⊩B

ℓ
ψ . We have to show ev◦⟨t↑ℓ,u⟩ ⊩A

ℓ
φ. By

induction hypothesis we have u ⊩B
ℓ
ψ ⇒ ϕ, so that u ⊩B

ℓ
ϕ. But this implies ev ◦ ⟨t↑ℓ,u⟩ ⊩A

ℓ
φ

since t↑k ⊩k [ev(ϕ)]φ.
Case of

⊢B→A ([ev(ψ0)]φ ∧ [ev(ψ1)]φ) ⇒ [ev(ψ0 ∨ψ1)]φ

Let t ∈ JB → AK(n). Let k ≤ n such that t↑k ⊩k ([ev(ψ0)]φ ∧ [ev(ψ1)]φ). Let furthermore

ℓ ≤ k and u ∈ JBK(ℓ) such that u ⊩B
ℓ
ψ0 ∨ψ1. We have to show ev ◦ ⟨t↑ℓ,u⟩ ⊩A

ℓ
φ. If u ⊩B

ℓ
ψ0,

then we are done since t ⊩k [ev(ψ0)]φ, and similarly if u ⊩B
ℓ
ψ1.

Case of

⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
Write A = A0 +A1 and consider t ∈ JA0 +A1K(n). Hence t = ini (u) for some u ∈ JAiK(n) and
we have t ⊩n [ini]⊤. Moreover, since the injections in0 and in1 have disjoint images, we have

J[in0]⊤ ∧ [in1]⊤K(k) = ∅ for all k > 0 so t ⊩n ¬([in0]⊤ ∧ [in1]⊤).
Case of

⊢A0+A1 [ini]⊤ ⇒ (¬[ini]φ ⇔ [ini]¬φ)
Write A = A0 + A1. Let t ∈ JA0 + A1K(n), and let k ≤ n such that t↑k ⊩k [ini]⊤, so that we

have t↑k = ini (u) for some (unique) u ∈ JAiK(k). We show

t ⊩A0+A1

k ¬[ini]φ ⇒ [ini]¬φ and t ⊩A0+A1

k [ini]¬φ ⇒ ¬[ini]φ

For the former, let ℓ ≤ k such that t↑ℓ = (t↑k)↑ℓ ⊩ℓ ¬[ini]φ, that is such that t↑m ̸⊩m [ini]φ
for allm ≤ ℓ. We show t↑ℓ ⊩ℓ [ini]¬φ. Hence we are done if u↑m ̸⊩m φ for allm ≤ ℓ. But if
u↑m ⊩m φ, then we would have t↑m = ini (u↑m) ⊩m [ini]φ, a contradiction.
For the latter, let ℓ ≤ k such that t↑ℓ ⊩ℓ [ini]¬φ. We have to show t↑ℓ ⊩ℓ ¬[ini]φ, that is
t↑m ̸⊩m [ini]φ for all m ≤ ℓ. So assume t↑m̃ ⊩m̃ [ini]φ for some m̃ ≤ ℓ. Hence, there is

u ′ ∈ JAiK(m̃) such that t↑m̃ = ini (u ′) and u ′ ⊩m̃ φ. But we have u ′ = u↑m̃. On the other hand,

since t↑ℓ ⊩ℓ [ini]¬φ, there is some u ′′ ∈ JAiK(ℓ) such that t↑ℓ = ini (u ′′) and u ′′↑m ̸⊩m φ for

allm ≤ ℓ. But we also have u ′′↑m̃ = u↑m̃, thus contradicting u↑m̃ ⊩m̃ φ.
Cases of

⊢A ν0αφ ⇔ ⊤ ⊢A νt+1αφ ⇔ φ[νtαφ/α] ⊢A µ0αφ ⇔ ⊥ ⊢A µt+1αφ ⇔ φ[µtαφ/α]

By definition of JθtαφK.
Cases of

JtK ≥ JuK
⊢A νtαφ ⇒ νuαφ

JtK ≤ JuK
⊢A µtαφ ⇒ µuαφ

These cases follows from Lem. E.6 (in θtαφ we assume that α is positive in φ) and the

definition of JθtαφK.
Cases of

⊢A ναφ ⇒ φ[ναφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναφ ⊢A φ[µαφ/α] ⇒ µαφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαφ ⇒ ψ

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:95

By Lem. E.6 and the Knaster-Tarski Theorem, since subobject lattices of S are complete

([Mac Lane and Moerdijk 1992, Prop. I.8.5]).

Cases of

⊢A µtαφ(α) ⇒ µαφ(α) ⊢A ναφ(α) ⇒ νtαφ(α)

Similar to the same case in the proof of Lem. E.1. □

E.2 The Safe Fragment
Lemma E.7 (Lem. 8.5). The greatest fixpoint of a Scott cocontinuous function f : L → L is given by

ν (f) :=
∧

n∈N f n(⊤)

Proof. That ν (f) is a fixpoint of f follows from the continuity of f and the fact that the set

{ f n(⊤) | ∈ N} is codirected, which in turn follows from the fact that f is monotone. In order to

show that ν (f) is the greatest fixpoint of f , recall that the greatest fixpoint of f is in any case given

by

b :=
∨

{a ∈ L | a ≤ f (a)}

We trivially have ν (f) ≤ b as ν (f) is a fixpoint of f . For the revere inequality, for all a such that

a ≤ f (a), it follows by induction on n ∈ N and from the monotony of f that we have a ≤ f n(⊤)
for all n ∈ N. Hence a ≤ ν (f) for all a such that a ≤ f (a), which in turn gives b ≤ ν (f). □

Lemma E.8 (Lem. 8.6). Consider a safe formula α1 : P
+
1
, . . . ,αk : P+k ⊢ φ : P+. The following two

functions are Scott-cocontinuous:

JφK : Sub(JP+
1
K) × · · · × Sub(JP+k K) −→ Sub(JP+K), v 7−→ JφKv

{|φ |} : P(ΓJP+
1
K) × · · · × P(ΓJP+k K) −→ P(ΓJP+K), v 7−→ {|φ |}v

Proof. In both cases, monotony w.r.t. lattice order follows by an easy induction from the

positivity of safe formulae. We now turn to preservation of codirected meets. We first consider the

case of {|φ |}. We reason by induction on φ.

Cases of α , ⊤, ⊥.
Trivial.

Case of φ ∧ψ .
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. By induction hypothesis we obtain

{|φ ∧ψ |} (
⋂

D1, . . . ,
⋂

Dk) =
⋂

{|φ |} (D1, . . . ,Dk) ∩
⋂

{|ψ |} (D1, . . . ,Dk)

and the result is trivial.

Case of φ ∨ψ .
This is the interesting case. Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. By

induction hypothesis we obtain

{|φ ∧ψ |} (
⋂

D1, . . . ,
⋂

Dk) =
⋂

{|φ |} (D1, . . . ,Dk) ∪
⋂

{|ψ |} (D1, . . . ,Dk)

We then trivially get⋂
{|φ |} (D1, . . . ,Dk) ∪

⋂
{|ψ |} (D1, . . . ,Dk) ⊆

⋂
{|φ ∨ψ |} (D1, . . . ,Dk)

It remains to show the converse direction⋂
{|φ ∨ψ |} (D1, . . . ,Dk) ⊆

⋂
{|φ |} (D1, . . . ,Dk) ∪

⋂
{|ψ |} (D1, . . . ,Dk)

So let x ∈ ΓJP+K such that x ∈ {|φ ∨ψ |} (S1, . . . , Sk) for every S1 ∈ D1, . . . , Sk ∈ Dk . Assume

toward a contradiction that there are S1 ∈ D1, . . . , Sk ∈ Dk such that x < {|φ |} (S1, . . . , Sk)
and that there are S ′

1
∈ D1, . . . , S

′
k ∈ Dk such that x < {|ψ |} (S ′

1
, . . . , S ′k). Since the Di ’s are

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:96 Guilhem Jaber and Colin Riba

codirected for inclusion, there are S ′′
1
∈ D1, . . . , S

′′
k ∈ Dk such that S

′′
i ⊆ Si∩S

′
i for i = 1, . . . ,k .

By monotonicity w.r.t. inclusion, we have x < {|φ |} (S ′′
1
, . . . , S ′′k) and x < {|ψ |} (S ′′

1
, . . . , S ′′k).

But this implies x < {|φ ∨ψ |} (S ′′
1
, . . . , S ′′k), a contradiction.

Case of [πi]φ.
LetD1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Letx ∈ ΓJP+K andwrite P+ = Q+

0
×Q+

1
.

Then we are done since by induction hypothesis

x ∈ {|[πi]φ |} (
⋂

D1, . . . ,
⋂

Dk) iff πi ◦ x ∈ {|φ |} (
⋂

D1, . . . ,
⋂

Dk)

iff πi ◦ x ∈
⋂

{|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , πi ◦ x ∈ {|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ {|[πi]φ |} (D1, . . . ,Dk)

iff x ∈
⋂

{|[πi]φ |} (D1, . . . ,Dk)

Case of [ini]φ.
LetD1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Letx ∈ ΓJP+K andwrite P+ = Q+

0
+Q+

1
.

By Lem. C.2, we have x = inj ◦ y for some unique j ∈ {0, 1} and y ∈ ΓJQ+j K. Then we are

done since by induction hypothesis we have x ∈ {|[ini]φ |} (
⋂

D1, . . . ,
⋂

Dk)

iff j = i and y ∈ {|φ |} (
⋂

D1, . . . ,
⋂

Dk)

iff j = i and y ∈
⋂

{|φ |} (D1, . . . ,Dk)

iff j = i and ∀S1 ∈ D1, . . . , Sk ∈ Dk , y ∈ {|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ {|[ini]φ |} (D1, . . . ,Dk)

iff x ∈
⋂

{|[ini]φ |} (D1, . . . ,Dk)

Case of [next]φ.
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Let x ∈ ΓJP+K and write P+ = ▶Q+.

By Lem. C.2, we have x = next ◦ y for some unique y ∈ ΓJQ+K. Then we are done since by

induction hypothesis we have

x ∈ {|[next]φ |} (
⋂

D1, . . . ,
⋂

Dk) iff y ∈ {|φ |} (
⋂

D1, . . . ,
⋂

Dk)

iff y ∈
⋂

{|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , y ∈ {|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ {|[next]φ |} (D1, . . . ,Dk)

iff x ∈
⋂

{|[next]φ |} (D1, . . . ,Dk)

Case of [fold]φ.
This case is dealt-with similarly as that of [πi].

Case of [box]φ.
Trivial since φ is required to be closed.

Case of [ev(ψ)]φ.
Note that ψ is assumed to be closed since [ev(ψ)]φ is safe. Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆

P(ΓJP+k K) be codirected. Let x ∈ ΓJP+K and write P+ = R+ → Q+. Then we are done since by

induction hypothesis we have

x ∈ {|[ev(ψ)]φ |} (
⋂

D1, . . . ,
⋂

Dk) iff ∀y ∈ {|ψ |} , ev ◦ ⟨x ,y⟩ ∈ {|φ |} (
⋂

D1, . . . ,
⋂

Dk)

iff ∀y ∈ {|ψ |} , ev ◦ ⟨x ,y⟩ ∈
⋂

{|φ |} (D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , ∀y ∈ {|ψ |} , ev ◦ ⟨x ,y⟩ ∈ {|φ |} (S1, . . . , Sk)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ {|[ev(ψ)]φ |} (S1, . . . , Sk)
iff x ∈

⋂
{|[ev(ψ)]φ |} (D1, . . . ,Dk)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:97

Cases of θtαφ.
By induction hypothesis, the function

{|φ |} : P(ΓJP+
1
K) × · · · × P(ΓJP+k K) × P(ΓJP+K) −→ P(ΓJP+K), v, S 7−→ {|φ |}v[S/α]

is Scott-cocontinuous. Hence by Lem. E.7, for S1 ∈ P(ΓJP+
1
K), . . . , Sk ∈ P(ΓJP+k K) we have

{|νmαφ |} (S1, . . . , Sk) = ({|φ |} (S1, . . . , Sk))
m(⊤)

where

({|φ |} (S1, . . . , Sk))
m+1(⊤) := {|φ |}

(
S1, . . . , Sk , ({|φ |} (S1, . . . , Sk))

m(⊤)
)

and where ({|φ |} (S1, . . . , Sk))
0(⊤) := ⊤ and ({|φ |} (S1, . . . , Sk))

0(⊥) := ⊥. An easy induction

onm ∈ N then shows that each function

({|φ |} (−, . . . ,−))m(⊤) : P(ΓJP+
1
K) × · · · × P(ΓJP+k K) −→ P(ΓJP+K)

is Scott-cocontinuous.

Cases of θαφ.
Trivial since φ is required to have at most α as free variable.

We now turn to the case of JφK. Most of cases are similar to those for {|φ |}. Also, note that

JφK : Sub(JP+
1
K) × · · · × Sub(JP+k K) −→ Sub(JP+K)

being Scott-continuous means that for D1 ⊆ Sub(JP+
1
K), . . . ,Dk ⊆ Sub(JP+k K) codirected w.r.t.

subobject lattice orders, we have

JφK(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk)

But since meets in subobject lattices of S are pointwise, the above is equivalent to have, for all

n > 0 that

JφK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

JφK(D1, . . . ,Dk)(n)

Cases of α , ⊤, ⊥.
Trivial.

Case of φ ∧ψ .
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. By induction hypothesis we obtain

Jφ ∧ψ K(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk) ∧
∧

Jψ K(D1, . . . ,Dk)

and the result is trivial.

Case of φ ∨ψ .
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. By induction hypothesis we obtain

Jφ ∧ψ K(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk) ∨
∧

Jψ K(D1, . . . ,Dk)

By monotonicity w.r.t. subobject lattice orders, we trivially get∧
JφK(D1, . . . ,Dk) ∨

∧
Jψ K(D1, . . . ,Dk) ⊆

∧
Jφ ∨ψ K(D1, . . . ,Dk)

It remains to show the converse direction∧
Jφ ∨ψ K(D1, . . . ,Dk) ⊆

∧
JφK(D1, . . . ,Dk) ∨

∧
Jψ K(D1, . . . ,Dk)

Since meets and joins are computed pointwise in subobject lattices, we are done if for each

n > 0 we show⋂
Jφ ∨ψ K(D1, . . . ,Dk)(n) ⊆

⋂
JφK(D1, . . . ,Dk)(n) ∪

⋂
Jψ K(D1, . . . ,Dk)(n)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:98 Guilhem Jaber and Colin Riba

We can then conclude as in the case of {|−|}. Fix n > 0 and let t ∈ JP+K such that t ∈

Jφ ∨ψ K(A1, . . . ,Ak)(n) for every A1 ∈ D1, . . . ,Ak ∈ Dk . Assume toward a contradiction that

there are A1 ∈ D1, . . . ,Ak ∈ Dk such that t < JφK(A1, . . . ,Ak)(n) and that there are A′
1
∈

D1, . . . ,A
′
k ∈ Dk such that t < Jψ K(A′

1
, . . . ,A′

k)(n). Since the Di ’s are codirected for inclusion,

there are A′′
1
∈ D1, . . . ,A

′′
k ∈ Dk such that A′′

i ≤ Ai ∧ A′
1
for i = 1, . . . ,k . By monotonicity

w.r.t. subobject lattice orders, we have t < JφK(A′′
1
, . . . ,A′′

k)(n) and t < Jψ K(A′′
1
, . . . ,A′′

k)(n).
But this implies t < Jφ ∨ψ K(A′′

1
, . . . ,A′′

k)(n), a contradiction.
Case of [πi]φ.

Let D1 ⊆ Sub(JP+
1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. We show that for all n > 0 we have

J[πi]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[πi]φK(D1, . . . ,Dk)(n)

and this goes similarly as for {|−|}.

Case of [ini]φ.
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. We show that for all n > 0 we have

J[ini]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[ini]φK(D1, . . . ,Dk)(n)

and this goes similarly as for {|−|} since the pointwise maps (inj)n : JQ+j K(n) → JQ+
0
K(n) +

JQ+
1
K(n) are injective.

Case of [next]φ.
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. Write P+ = ▶Q+. We show that for

all n > 0 we have

J[next]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[next]φK(D1, . . . ,Dk)(n)

The result is trivial if n = 1. For n > 1, it reduces to

JφK(
∧

D1, . . . ,
∧

Dk)(n − 1) =
⋂

JφK(D1, . . . ,Dk)(n − 1)

which follows from the induction hypothesis.

Case of [fold]φ.
This case is handled similarly as that of [πi].

Case of [box]φ.
Trivial since φ is required to be closed.

Case of [ev(ψ)]φ.
Note that ψ is assumed to be closed since [ev(ψ)]φ is safe. Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆

Sub(JP+k K) be codirected. Write P+ = R+ → Q+. We show that for all n > 0 we have

J[ev(ψ)]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[ev(ψ)]φK(D1, . . . ,Dk)(n)

Let n > 0 and t ∈ JP+K(n). Then we are done since by induction hypothesis we have:

t ∈ J[ev(ψ)]φK(
∧

D1, . . . ,
∧

Dk)(n)
iff ∀ℓ ≤ n, ∀u ∈ Jψ K(ℓ), ev ◦ ⟨t↑ℓ,u⟩ ∈ JφK(

∧
D1, . . . ,

∧
Dk)(ℓ)

iff ∀ℓ ≤ n, ∀u ∈ Jψ K(ℓ), ev ◦ ⟨t↑ℓ,u⟩ ∈
⋂

JφK(D1, . . . ,Dk)(ℓ)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , ∀ℓ ≤ n, ∀u ∈ Jψ K(ℓ), ev ◦ ⟨t↑ℓ,u⟩ ∈ JφK(S1, . . . , Sk)(ℓ)
iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , t ∈ J[ev(ψ)]φK(S1, . . . , Sk)(n)
iff t ∈

⋂
J[ev(ψ)]φK(D1, . . . ,Dk)(n)

Cases of θtαφ and θαφ.
These cases are handled exactly as for {|−|}.

Cases of θαφ.
Trivial since φ is required to have at most α as free variable. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:99

Proposition E.9 (Prop. 8.7). Let α1 : P+
1
, . . . ,αk : P+k ⊢ φ : P+ be a safe formula. Given S1 ∈

Sub(JP+
1
K), . . . , Sk ∈ Sub(JP+k K), we have

{|φ |} (Γ(S1), . . . , Γ(Sk)) = Γ
(
JφK(S1, . . . , Sk)

)
Proof. We reason by induction on the derivation of α1 : P

+
1
, . . . ,αk : P+k ⊢ φ : P+. In all cases

but ναφ, the parameters are irrelevant and we omit them.

Cases of α , ⊤ and ⊥.
Trivial.

Case of φ ∧ψ .
Let x ∈ ΓJP+K. Then we are done since by induction hypothesis we have

x ∈ {|φ ∧ψ |} iff x ∈ {|φ |} and x ∈ {|ψ |}
iff (∀n > 0, xn(•) ∈ JφK(n)) and (∀n > 0, xn(•) ∈ Jψ K(n))
iff ∀n > 0, xn(•) ∈ JφK(n) and xn(•) ∈ Jψ K(n)
iff ∀n > 0, xn(•) ∈ Jφ ∧ψ K(n)

Case of φ ∨ψ .
Let x ∈ ΓJP+K. Assume first that x ∈ {|φ ∨ψ |}. If (say) x ∈ {|φ |}, then by induction hypothesis

we get xn(•) ∈ JφK(n) for all n > 0, which implies xn(•) ∈ Jφ ∨ψ K(n) for all n > 0.

Conversely, assume that xn(•) ∈ Jφ ∨ψ K(n) for all n > 0. Assume toward a contradiction

that there are k, ℓ > 0 with (say) k ≤ ℓ such that xk (•) < JφK(n) and xℓ(•) < Jψ K(n). Since
k ≤ ℓ, by Lem. C.16 we have xk (•) < Jψ K(n), but this contradicts xk (•) ∈ Jφ ∨ψ K(n). Hence,
we have either xn(•) ∈ JφK(n) for all n > 0 or xn(•) ∈ Jψ K(n) for all n > 0, and the result

follows by induction hypothesis.

Case ofψ ⇒ φ.
This case cannot occur sinceψ ⇒ φ is not safe.

Case of [πi]φ.
Let x ∈ ΓJP+K and write P+ = Q+

0
×Q+

1
. Then we are done since (πi ◦ x)n(•) = πi (xn(•)) so

that by induction hypothesis we have

x ∈ {|[πi]φ |} iff πi ◦ x ∈ {|φ |}
iff ∀n > 0, (πi ◦ x)n(•) ∈ JφK(n)
iff ∀n > 0, xn(•) ∈ J[πi]φK(n)

Case of [ini]φ.
Let x ∈ ΓJP+K and write P+ = Q+

0
+Q+

1
. By Lem. C.2, we have x = inj ◦ y for some unique

j ∈ {0, 1} and y ∈ ΓJQ+j K. Then we are done since xn(•) = (inj ◦ y)n(•) = inj (yn(•)) so that

by induction hypothesis we have

x ∈ {|[ini]φ |} iff j = i and y ∈ {|φ |}
iff j = i and ∀n > 0, yn(•) ∈ JφK(n)
iff ∀n > 0, xn(•) ∈ J[ini]φK(n)

Case of [next]φ.
Let x ∈ ΓJP+K and write P+ = ▶Q+. By Lem. C.2, we have x = next ◦ y for some unique

y ∈ ΓJQ+K. Assume first x ∈ {|[next]φ |}. Hence we have y ∈ {|φ |}, which by induction

hypothesis implies yn(•) ∈ JφK(n) for all n > 0. Now, we trivially have x1(•) ∈ J[next]φK(1).
Moreover, for n > 1, we have xn(•) = yn−1(•), so that xn(•) ∈ J[next]φK(n) = JφK(n − 1).

Assume conversely that xn(•) ∈ J[next]φK(n) for all n > 0. This implies xn(•) ∈ JφK(n− 1) for

all n > 1, which in turn implies yn−1(•) ∈ JφK(n−1) for all n > 1. But by induction hypothesis

this implies y ∈ {|φ |} so that x ∈ {|[next]φ |}.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:100 Guilhem Jaber and Colin Riba

Case of [fold]φ.
This case is handled similarly as that of [πi].

Case of [box]φ.
Recall that φ is required to be closed. Also, by definition we have

J[box]φK■A(n) :=
{
t ∈ J■AK(n) = ΓJAK

�� t ∈ {|φ |}A
}

{|[box]φ |}■A :=
{
x ∈ ΓJ■AK

�� x1(•) ∈ {|φ |}A
}

It follows that given x ∈ ΓJ■AK, we have

x ∈ {|[box]φ |}■A iff x1(•) ∈ {|φ |}A

iff ∀n > 0, xn(•) ∈ {|φ |}A

iff ∀n > 0, xn(•) ∈ J[box]φK■A(n)

Case of [ev(ψ)]φ.
This case cannot occur since P+ is assumed to be strictly positive.

Cases of θtαφ(α).
Assume α : P+ ⊢ φ(α) : P+. We show by induction onm ∈ N that

{|φm(⊤)|} = ΓJφm(⊤)K and {|φm(⊥)|} = ΓJφm(⊥)K

The base casem = 0 is trivial. As for the inductive case we have{��φm+1(⊤)��} = {|φ(φm(⊤))|} and Jφm+1(⊤)K = Jφ(φm(⊤))K{��φm+1(⊥)��} = {|φ(φm(⊥))|} and Jφm+1(⊥)K = Jφ(φm(⊥))K

By induction hypothesis onm we have

{|φm(⊤)|} = ΓJφm(⊤)K and {|φm(⊥)|} = ΓJφm(⊥)K

and we conclude by induction hypothesis on φ.
Case of ναφ.

Assume α : P+ ⊢ φ : P+. Reasoning as above, for allm ∈ N we have

{|φm(⊤)|} = ΓJφm(⊤)K

It then directly follows that for all x ∈ ΓJP+K, we have

x ∈
⋂
m∈N

{|φm(⊤)|} iff ∀n > 0, xn(•) ∈
⋂
m∈N

Jφm(⊤)K(n)

and we conclude by Lem. E.8 and Lem. E.7. □

E.3 The Smooth Fragment
Lemma E.10 (Lem. 8.8). Let α1 : P+1 , . . . ,αk : P+k ,α : Q+ ⊢ φ : P+ be a smooth formula and let v be

a valuation taking each propositional variable αi for i = 1, . . . ,k to a set v(αi) ∈ P(ΓJAiK). Consider
the function

{|φ |} : P(ΓJBK) −→ P(ΓJAK), S 7−→ {|φ |}v[S/α]

• If α is positive in φ (i.e. α Pos φ), then {|φ |} is Scott-continuous as well as Scott-cocontinuous.
• If α is negative in φ (i.e. α Neg φ) , then {|φ |} is (antimonotone and) takes joins of directed sets

to meets of codirected sets and takes meets of codirected sets to joins of directed sets.

Proof. The proof is by induction on formation of formulae α : B ⊢ φ : A. Monotonicity and

antimonotonicity follow from Lem. E.3. Note that since formulae of the form θαφ and [box]φ are

necessarily closed, nothing has to be proved for these. Some cases are already handled by Lem. 8.6

(Lem. E.8), and we do not repeat them.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:101

Cases of α ,⊤,⊥.
Trivial.

Case of φ ∧ψ (monotone).
Preservation of codirected meets is trivial (see Lem. 8.6 (Lem. E.8)). As for the preservation of

directed joins, assume α : B ⊢ φ ∧ψ : A, and let D ⊆ P(ΓJBK) be directed. Then by induction

hypothesis we have

{|φ ∧ψ |} (
⋃

D) =
⋃

{|φ |} (D) ∩
⋃

{|ψ |} (D) ⊇
⋃

{|φ ∧ψ |} (D)

For the converse inclusion, consider some x both in

⋃
{|φ |} (D) and

⋃
{|ψ |} (D). Hence there

are S, S ′ ∈ D such that x ∈ {|φ |} (S) and x ∈ {|ψ |} (S ′). Now since D is directed and by

monotonicity, there is some S ′′ ∈ D such that x ∈ {|φ |} (S ′′) ∩ {|ψ |} (S ′′).
Case of φ ∧ψ (antimonotone).

Assume α : B ⊢ φ∧ψ : A. That {|φ ∧ψ |} turns directed joins into codirected meets is trivial (as

codirected meets commute over binary meets) and omitted. Let us show that {|φ ∧ψ |} turns
codirected meets into directed joins. So let D ⊆ P(ΓJBK) be codirected. Then by induction

hypothesis we have

{|φ ∧ψ |} (
⋂

D) =
⋃

{|φ |} (D) ∩
⋃

{|ψ |} (D) ⊇
⋃

{|φ ∧ψ |} (D)

We then conclude as for preservation of directed joins in the monotone case. Given x both in⋃
{|φ |} (D) and

⋃
{|ψ |} (D), there are S, S ′ ∈ D such that x ∈ {|φ |} (S) and x ∈ {|ψ |} (S ′). Now

since D is codirected there is some S ′′ ∈ D such that S ′′ ⊆ S ∩ S ′, and by antimonotonicity

we have x ∈ {|φ |} (S ′′) ∩ {|ψ |} (S ′′).
Case of φ ∨ψ (monotone).

Preservation of codirected meets is handled in Lem. 8.6 (Lem. E.8) while preservation of

directed join is trivial.

Case of φ ∨ψ (antimonotone).
Assume α : B ⊢ φ ∧ψ : A. That {|φ ∨ψ |} turns codirected meets into directed joins is trivial

(as directed joins commute over binary joins) and omitted. Let us show that {|φ ∨ψ |} turns
directed joins into codirected meets. So let D ⊆ P(ΓJBK) be directed. By induction hypothesis

we have

{|φ ∨ψ |} (
⋃

D) =
⋂

{|φ |} (D) ∪
⋂

{|ψ |} (D) ⊆
⋂

{|φ ∨ψ |} (D)

We can then conclude similarly as in Lem. 8.6 (Lem. E.8). Let x ∈
⋂

{|φ ∨ψ |} (D) and assume

toward a contradiction that there are S, S ′ ∈ D such that x < {|φ |} (S) and x < {|ψ |} (S ′). Then
since D is directed, there is some S ′′ ∈ D such that S ∪ S ′ ⊆ S ′′, and by antimonotonicity we

get x < {|φ ∨ψ |} (S ′′), a contradiction.
Case ofψ ⇒ φ.

With the classical semantics, the interpretation of⇒ can be decomposed into ∨ and ¬, where

{|¬φ |} is the complement of {|φ |} (at the appropriate type). Let α be positive in φ and negative

inψ , with α : B ⊢ φ,ψ : A, and let furthermore by D and D ′
(of the appropriate type) be resp.

directed and codirected. We then trivially have

{|¬φ |} (
⋃

D) = P(ΓJAK) \ {|φ |} (
⋃

D)
= P(ΓJAK) \

⋃
{|φ |} (D)

=
⋂ (

P(ΓJAK) \ {|φ |} (D)
) {|¬φ |} (

⋂
D ′) = P(ΓJAK) \ {|φ |} (

⋂
D ′)

= P(ΓJAK) \
⋂

{|φ |} (D ′)

=
⋃ (

P(ΓJAK) \ {|φ |} (D ′)
)

{|¬ψ |} (
⋃

D) = P(ΓJAK) \ {|ψ |} (
⋃

D)
= P(ΓJAK) \

⋂
{|ψ |} (D)

=
⋃ (

P(ΓJAK) \ {|ψ |} (D)
) {|¬ψ |} (

⋂
D ′) = P(ΓJAK) \ {|ψ |} (

⋂
D ′)

= P(ΓJAK) \
⋃

{|ψ |} (D ′)

=
⋂ (

P(ΓJAK) \ {|ψ |} (D ′)
)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:102 Guilhem Jaber and Colin Riba

Cases of [πi]φ, [ini]φ, [next]φ and [fold]φ.
These modalities are handled similarly as in Lem. 8.6 (Lem. E.8).

Cases of [ev(ψ)]φ.
Since [ev(ψ)]φ is smooth, the formulaψ is closed and we have Q+ = B → R+ with B a finite

base type. Since B is constant, by Lem. C.4 there is a finite set A such that JBK ≃ ∆A, so that

ΓJBK ≃ A by Lem. C.2. Now, given x ∈ ΓJP+K and S ⊆ ΓJQ+K we have

x ∈ {|[ev(ψ)]φ |} (S) iff ∀y ∈ A (y ∈ {|ψ |} ⇒ ev ◦ ⟨x ,y⟩ ∈ {|φ |} (S))

Since A is finite, we can then reason similarly as in the cases of conjunction (∧) above.

Cases of θtβφ.
We have α1 : P

+
1
, . . . ,αk : P+k , β : P+,α : Q+ ⊢ φ : P+ with β Pos φ. Since for S ⊆ ΓJQ+K and

m ∈ N we have {��θm+1βφ��} (S) = {|φ[θmβφ/β]|} (S)

it follows from Lem. 8.6 (Lem. E.8), that the function

{��θtβφ��} is monotone (resp. antimonotone)

if α Pos φ (resp. α Neg φ). We can then reason as in Lem. 8.6 (Lem. E.8). □

E.4 Realizability
Lemma E.11 (Monotonicity of Realizability (Lem. C.22)). Let T be a type without free iteration

variables. If x ⊪n T then x ⊪k T for all k ≤ n.

Proof. By induction on the definition of ⊪.

Case of a refinement type {A | φ}.
The result follows from monotony of forcing (i.e. that JφK is a subobject of JAK) .

Case of 1.
The result is trivial as x ⊪n 1 for all n > 0.

Case of T0 +T1.
Assume x ⊪n T0 + T1 and let k ≤ n. Then we have x = ini ◦ y for some i = 0, 1 and some

y ∈ ΓJ|Ti |K such that y ⊪n Ti . By induction hypothesis we get y ⊪k Ti , so that x ⊪k T0 +T1.
Case of T0 ×T1.
Assume x ⊪n T0 × T1 and let k ≤ n. Then for each i = 0, 1 we have πi ◦ x ⊪n Ti , so that

πi ◦ x ⊪k Ti by induction hypothesis, and it follows that x ⊪k T0 ×T1.
Case ofU → T .
Assume x ⊪n U → T and let k ≤ n. But given ℓ ≤ k and y ∈ ΓJ|U |K such that y ⊪ℓ U we

have ev ◦ ⟨x ,y⟩ ⊪ℓ T since ℓ ≤ n.
Case of ▶T .

Assume x ⊪n ▶T and let k ≤ n. If k = 1 then we are done since always x ⊪1 ▶T . Otherwise,
k = ℓ + 1, so that n =m + 1 with ℓ ≤ m. Moreover, there is y ∈ ΓJT K such that x = next ◦ y
and y ⊪m T . We get y ⊪ℓ T by induction hypothesis, so that x ⊪k ▶T .

Case of Fix(X).A .

Assume x ⊪n Fix(X).A and let k ≤ n. We have unfold ◦ x ⊪n A[Fix(X).A/X], so that

unfold ◦ x ⊪k A[Fix(X).A/X] by induction hypothesis and thus x ⊪k Fix(X).A.
Case of ■T .

Trivial. □

Lemma E.12 (Lem. C.23). For a pure type A and x ∈ ΓJAK, we have x ⊪n A for all n > 0.

Proof. The proof is by induction on pairs (n,A), using implicitly Lem. C.2 whenever required.

Case of 1.
Trivial.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:103

Case of A0 +A1.
Given x ∈ ΓJA0 + A1K ≃ ΓJA0K + ΓJA1K, we have x = ini ◦ y for some y ∈ ΓJAiK. Then we

are done since y ⊪n Ai by induction hypothesis.

Case of A0 ×A1.
Given x ∈ ΓJA0 ×A1K ≃ ΓJA0K× ΓJA1K, we have π0 ◦x ⊪n A0 and π1 ◦x ⊪n A1 by induction

hypothesis, and the result follows.

Case of B → A.
Fix x ∈ ΓJB → AK. Given y ∈ ΓJBK and k ≤ n, we have y ⊪k B by induction hypothesis, so

that ev ◦ ⟨x ,y⟩ ⊪k A. Hence x ⊪n B → A.
Case of ▶A.

The result is trivial if n = 1, so assume n > 1. Given x ∈ ΓJ▶AK, we have x = next ◦ y for

some y ∈ ΓJAK. But then y ⊪n−1 A by induction hypothesis, so that x ⊪n ▶A.
Case of Fix(X).A.

Let x ∈ ΓJFix(X).AK. It follows by induction on A from the induction hypothesis on n and

the guardedness of X in A that unfold ◦ x ⊪n A[Fix(X).A/X], and we are done.

Case of ■T .
Let x ∈ ΓJ■T K. Given n > 0, we have xn(•) ∈ ΓJT K, so that xn(•) ⊪m T for allm > 0 by

induction hypothesis. But this implies x ⊪n ■T . □

LemmaE.13 (Correctness of Subtyping (Lem. C.25)). Given typesT ,U without free iteration variable,

if x ⊪n U andU ≤ T then x ⊪n T .

Proof. By induction onU ≤ T .

Cases of

T ≤ T

T ≤ U U ≤ V

T ≤ V

Trivial.

Cases of
T0 ≤ U0 T1 ≤ U1

T0 ×T1 ≤ U0 ×U1

T0 ≤ U0 T1 ≤ U1

T0 +T1 ≤ U0 +U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ U

▶T ≤ ▶U

Trivial

Case of
U ≤ T

■U ≤ ■T

Let x : 1 →S ∆ΓJU K such that x ⊪n ■U , so that xn(•) ⊪m U for allm > 0. By induction

hypothesis we get xn(•) ⊪m T for allm > 0 and we are done.

Case of

T ≤ |T |

By Lem. C.23.

Case of

A ≤ {A | ⊤}

Trivial

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:104 Guilhem Jaber and Colin Riba

Case of

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

By Lem. E.4 (Lem. C.13.(2)).

Case of

{B → A | [ev(ψ)]φ} ≤ {B | ψ } → {A | φ}

Let x ∈ ΓJB → AK andn > 0. Assume x ⊪n {B → A | [ev(ψ)]φ}, that is xn(•) ∈ J[ev(ψ)]φK(n).
Let further y ∈ ΓJBK and k ≤ n such that y ⊪k {B | ψ }, that is yk (•) ∈ Jψ K(k). Then by

monotonicity of J−K (Lem. C.16) we have xk (•) ∈ J[ev(ψ)]φK(k), from which it follows that

(xk (•))(yk (•)) ∈ JφK(k). But this means ev ◦ ⟨x ,y⟩ ⊪k {A | φ} and we are done.

Case of

{B | ψ } → {A | φ} ≤ {B → A | [ev(ψ)]φ}

Let x ∈ ΓJBK → A and n > 0. Assume x ⊪n {B | ψ } → {A | φ}. Let furthermore k ≤ n and

u ∈ Jψ K(k). By Lem. C.24 ([Clouston et al. 2016, Cor. 3.8]) there is some y ∈ ΓJBK such that

yk (•) = u. We thus have y ⊪k {B | ψ }, and it follows that ev ◦ ⟨x ,y⟩ ⊪k {A | φ}, that is
xk (•)(yk (•)) ∈ JφK(k), and we are done.

Case of

▶ {A | φ} ≡ {▶A | [next]φ}

Let x ∈ ΓJ▶AK. First, we always have x ⊪1 ▶A, as well as x1 ∈ J[next]φK▶A. Let now n > 1.

By Lem. C.2 we have x = next ◦ y for some y ∈ ΓJAK. Since xn(•) = yn−1(•), we have

x ⊪n ▶ {A | φ} iff y ⊪n−1 {A | φ}
iff yn−1(•) ∈ JφKA(n − 1)

iff xn(•) = yn−1(•) ∈ J[next]φK▶A(n)
iff x ⊪n {▶A | [next]φ} .

Case of

∀k · ▶T ≡ ▶∀k ·T

Let x ∈ ΓJ▶ |T |K.
Assume first that x ⊪n ∀k · ▶T . We have to show x ⊪n ▶∀k ·T . The result is trivial if n = 1.

So assume n > 1. By Lem. C.2, there some unique y ∈ ΓJ|T |K such that x = next ◦y. We have

to show y ⊪n−1 T [m/k] for allm ∈ N. But by assumption we have x ⊪n ▶T [m/k], so that by

uniqueness of y we get y ⊪n−1 T [m/k].
Conversely, assume that x ⊪n ▶∀k · T . We have to show x ⊪n ∀k · ▶T . Let m ∈ N. If
n = 1, then we trivially have x ⊪n ▶T [m/k]. Otherwise, by Lem. C.2 let y ∈ ΓJ|T |K such that

x = next ◦ y. But since x ⊪n ▶∀k ·T , we get y ⊪n−1 T [m/k], so that x ⊪n ▶T [m/k] and we

are done.

Case of
φ safe

■ {A | φ} ≡ {■A | [box]φ}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:105

Let x : 1 →S ∆ΓJAK. Since φ is safe we have {|φ |}A = Clos(JφKA) by Prop. E.9 (Prop. 8.7).

Then we are done since:

x ⊪n ■ {A | φ} iff xn(•) ⊪m {A | φ} for allm > 0

iff (xn(•))m(•) ∈ JφKA(m) for allm > 0

iff xn(•) ∈ {|φ |}A

iff xn(•) ∈ J[box]φK■A(n)
iff x ⊪n {■A | [box]φ}

Case of
⊢A
c
φ ⇒ ψ

{■A | [box]φ} ≤ {■A | [box]ψ }
By Lem. E.1 (Lem. C.13.(1)). □

Theorem E.14 (Adequacy (Thm. C.26)). Let Γ,T have free iteration variables among ℓ, and let

m ∈ N. If Γ ⊢ M : T and ρ |= Γ, then

∀n > 0, ρ ⊪n Γ[ℓ/m] =⇒ JMKρ ⊪n T [ℓ/m]

Proof. The proof is by induction on typing derivations. We implicitly use Lem. C.2 whenever

required. We omit iteration variables when possible.

Case of
Γ,x : ▶T ⊢ M : T

Γ ⊢ fix(x).M : T

Let ρ |= Γ and write y := Jfix(x).MKρ ∈ ΓJT K. Note that

y = JM[next(fix(x).M)/x]Kρ = JMKρ[next◦y/x]

We show by induction on n > 0 that ρ ⊪n Γ implies y ⊪n T . In the base case n = 1, since

next ◦ y ⊪1 ▶T , we have ρ[next ◦ y/x] ⊪1 Γ,x : ▶T , so that the induction hypothesis on

typing derivations gives y = JMKρ[next◦y/x] ⊪1 T .
As for induction step, assume ρ ⊪n+1 Γ. By Monotonicity of Realizability (Lem. E.11), we have

ρ ⊪n Γ, and the induction hypothesis on n gives y ⊪n T . It follows that next ◦y ⊪n+1 ▶T , so
that ρ[next ◦ y/x] ⊪n+1 Γ,x : ▶T and the induction hypothesis on typing derivations gives

y = JMKρ[next◦y/x] ⊪n+1 T .
Case of

Γ ⊢ M : T

Γ ⊢ next(M) : ▶T

Let ρ |= Γ and write x := Jnext(M)Kρ ∈ ΓJ▶T K. Let n > 0 such that ρ ⊪n T . If n = 1 then we

trivially have x ⊪1 ▶T . Assume n > 1. Writey := JMKρ , so that x = next◦y. By Monotonicity

of Realizability (Lem. E.11), we have ρ ⊪n−1 Γ, so that the induction hypothesis on typing

derivations gives y ⊪n−1 T and we are done.

Case of
x1 : T1, . . . ,xk : Tk ⊢ M : T Γ ⊢ M1 : T1 . . . Γ ⊢ Mk : Tk

Γ ⊢ box[x1 7→M1, ...,xk 7→Mk](M) : ■T
(T1, . . . ,Tk constant)

Let ρ |= Γ and write x := Jboxσ (M)Kρ where σ = [x1 7→ M1, . . . ,xk 7→ Mk]. Let n > 0 such

that ρ ⊪n Γ. We show x ⊪n ■T , i.e. that xm(•) ⊪m T for allm > 0. Fixm > 0. We have by

definition

xm(•) : ℓ 7−→ JMKℓ
(
JM1Km(ρm(•)) , . . . , JMk Km(ρm(•))

))
Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:106 Guilhem Jaber and Colin Riba

For i = 1, . . . ,k , since the type Ti is constant, we have by Lem. C.21 that JMiKm(ρm(•)) =
JMiKℓ(ρℓ(•)) for all ℓ > 0, so that

xm(•) = ℓ 7−→ JMKℓ
(
JM1Kℓ(ρℓ(•)) , . . . , JMk Kℓ(ρℓ(•))

))
Now, by induction hypothesis, since ρ ⊪n Γ by assumption, for each i = 1, . . . ,k we have

JMiKρ ⊪n Ti and since Ti is constant, by Lem. C.21 this implies JMiKρ ⊪ℓ Ti for all ℓ > 0. By

induction hypothesis again, this in turn gives JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩ ⊪ℓ T for each ℓ > 0.

But then we are done since

xm(•) = ℓ 7−→ JMKℓ
(
JM1Kℓ(ρℓ(•)) , . . . , JMk Kℓ(ρℓ(•))

))
= JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩

Case of
Γ ⊢ M : ■T

Γ ⊢ unbox(M) : T

Let ρ |= Γ and write x := Junbox(M)Kρ . Let n > 0 such that ρ ⊪n Γ. By induction hypothesis

we get JMKρ ⊪n ■T , that is (JMKρ)m(•) ⊪m T for allm > 0, so in particular (JMKρ)n(•) ⊪n T .
But now we are done since xm(•) = (JMKρ)n(•)m(•) for eachm > 0.

Case of
x1 : T1, . . . ,xk : Tk ⊢ M : ▶T Γ ⊢ M1 : T1 . . . Γ ⊢ Mk : Tk

Γ ⊢ prev[x1 7→M1, ...,xk 7→Mk]
(M) : T

(T1, . . . ,Tk constant)

Let ρ |= Γ and write x := Jboxσ (M)Kρ where σ = [x1 7→ M1, . . . ,xk 7→ Mk]. Let n > 0 such

that ρ ⊪n Γ. We show x ⊪n ▶T . If n = 1 then the result trivially holds. Assume n > 1. For

eachm > 0, we have by definition

xm(•) = JMKm+1
(
JM1Km(ρm(•)) , . . . , JMk Km(ρm(•))

))
For i = 1, . . . ,k , since the type Ti is constant, we have by Lem. C.21 that JMiKm(ρm(•)) =
JMiKm+1(ρm+1(•)), so that

xm(•) = JMKm+1
(
JM1Km+1(ρm+1(•)) , . . . , JMk Km+1(ρm+1(•))

))
and it follows that

x = next ◦ JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩

Now, by induction hypothesis, since ρ ⊪n Γ by assumption, for each i = 1, . . . ,k we have

JMiKρ ⊪n Ti and since Ti is constant, by Lem. C.21 this implies JMiKρ ⊪n−1 Ti . By induction

hypothesis again, this in turn gives JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩ ⊪n−1 T and we are done.

Case of
Γ ⊢ M : T T ≤ U

Γ ⊢ M : U

By Lem. C.25 (Lem. E.13).

Case of
Γ ⊢ M : {A | ψ ⇒ φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ}

Let ρ |= Γ and write x := JMKρ ∈ ΓJAK. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis,

the right premise gives xn(•) ∈ Jψ KA(n) and the left premise implies xn(•) ∈ JφKA(n).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:107

Case of
for i ∈ {0, 1},

Γ ⊢ M : {A | φ0 ∨ φ1} Γ,x : {A | φi } ⊢ N : U

Γ ⊢ N [M/x] : U

Let ρ |= Γ and write y := JMKρ ∈ ΓJAK and z := JN Kρ[y/x] ∈ ΓJ|U |K. Let n > 0 and assume

ρ ⊪n Γ. By induction hypothesis we have y ∈ JφiK for some i ∈ {0, 1}. It follows that
ρ[y/x] ⊪n Γ,x : {A | φi }, from which we get z ⊪n B by induction hypothesis.

Case of
Γ ⊢ M : {A | ⊥} Γ ⊢ N : |U |

Γ ⊢ N : U
Let ρ |= Γ and write x := JMKρ ∈ ΓJAK. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis,

the left premise gives xn(•) ∈ J⊥K(n) = ∅, a contradiction. Hence ρ ̸⊪n Γ, and the result

follows.

Case of
Γ ⊢ Mi : {Ai | φ} Γ ⊢ M1−i : A1−i

Γ ⊢ ⟨M0,M1⟩ : {A0 ×A1 | [πi]φ}

Let ρ |= Γ. Write y0 := JM0Kρ ∈ ΓJA0K, y1 := JM1Kρ ∈ ΓJA1K, and x := J⟨M0,M1⟩Kρ =
⟨y0,y1⟩. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis on typing derivations we have

(yi)n(•) ∈ JφK. But since πi (xn(•)) = (yi)n(•), this gives xn(•) ∈ J[πi]φK.
Case of

Γ ⊢ M : {A0 ×A1 | [πi]φ}

Γ ⊢ πi (M) : {Ai | φ}

Let ρ |= Γ. Write y := JMKρ ∈ ΓJA0 × A1K and x := Jπi (M)Kρ = πi ◦ y. Let n > 0 such that

ρ ⊪n Γ. By induction hypothesis on typing derivations we have yn(•) ∈ J[πi]φK, so that

πi (yn(•)) ∈ JφK. But then we are done since xn(•) = πi (yn(•)).
Case of

Γ ⊢ M : {Ai | φ}

Γ ⊢ ini (M) : {A0 +A1 | [ini]φ}
Let ρ |= Γ. Write y := JMKρ ∈ ΓJAiK, and x := Jini (M)Kρ = ini ◦ y. Let n > 0 such that

ρ ⊪n Γ. Hence by induction hypothesis on typing derivations we have yn(•) ∈ JφK. But since
xn(•) = ini (yn(•)), this implies xn(•) ∈ J[ini]φK.

Case of
Γ ⊢ M : {A0 +A1 | [ini]φ} Γ,x : {Ai | φ} ⊢ Ni : U Γ,x : A1−i ⊢ N1−i : U

Γ ⊢ caseM of (x .N0 |x .N1) : U

Let ρ |= Γ. Write y := JMKρ ∈ ΓJA0 + A1K ≃ ΓJA0K + ΓJA1K. Hence y = inj ◦ z for some

(unique) j ∈ {0, 1} and z ∈ ΓJAjK. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis, the

left premise gives yn(•) ∈ J[ini]φK(n), so that yn(•) = ini (u) for some u ∈ JφK(n). But this
implies j = i and u = zn(•), so that z ⊪n {Ai | φ}. It follows that ρ[z/x] ⊪n Γ,x : {Ai | φ},
and the induction hypothesis on typing derivations gives JNiKρ[z/x] ⊪n U . But then we are

done since

JcaseM of (x .N0 |x .N1)Kρ = JNiKρ[z/x]
Case of

Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}
Let ρ |= Γ. Write y := Jλx .MKρ ∈ ΓJB → AK. Let n > 0 such that ρ ⊪n Γ. We show

yn(•) ∈ J[ev(ψ)]φK(n). So let k ≤ n and u ∈ ΓJBK(k) such that u ∈ Jψ K(k). By [Clouston et al.

2016, Cor. 3.8] there is some z ∈ ΓJBK such that zk (•) = t . By Monotonicity of Realizability

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:108 Guilhem Jaber and Colin Riba

(Lem. E.11), we have ρ ⊪k Γ, so that ρ[z/x] ⊪k Γ,x : {B | ψ }. The induction hypothesis on

typing derivations thus gives (JMKρ[z/x])k (•) ∈ JφK, and we are done since (yk (•))(zk (•)) =
(JMKρ[z/x])k (•).

Case of
Γ ⊢ M : {B → A | [ev(ψ)]φ} Γ ⊢ N : {B | ψ }

Γ ⊢ MN : {A | φ}

Let ρ |= Γ. Write y := JMKρ ∈ ΓJB → AK, z := JN Kρ ∈ ΓJBK and x := JMN Kρ = ev ◦ ⟨y, z⟩.
Let n > 0 such that ρ ⊪n Γ. By induction on typing derivations, the right premise gives

zn(•) ∈ Jψ K(n), so that the left premise gives (yn(•))(zn(•)) ∈ JφK(n). But then we are done

since xn(•) = (yn(•))(zn(•)).
Case of

Γ ⊢ M : {A[Fix(X).A/X] | φ}

Γ ⊢ fold(M) : {Fix(X).A | [fold]φ}
Let ρ |= Γ. Write y := JMKρ ∈ ΓJA[Fix(X).A/X]K and x := Jfold(M)Kρ = fold ◦ y. Let n > 0

such that ρ ⊪n Γ. By induction hypothesis on typing derivations we have yn(•) ∈ JφK. But
then we are done since unfoldn(xn(•)) = yn(•).

Case of
Γ ⊢ M : {Fix(X).A | [fold]φ}

Γ ⊢ unfold(M) : {A[Fix(X).A/X] | φ}

Let ρ |= Γ. Write y := JMKρ ∈ ΓJFix(X).AK and x := Junfold(M)Kρ = unfold ◦ y. Let n > 0

such that ρ ⊪n Γ. By induction hypothesis on typing derivations we have yn(•) ∈ J[fold]φK.
Hence unfoldn(yn(•)) ∈ JφK and we are done since xn(•) = unfoldn(yn(•)).

Cases of
Γ ⊢ M : T [0/ℓ] Γ ⊢ M : T [ℓ+1/ℓ]

Γ ⊢ M : ∀ℓ ·T (ℓ not free in Γ)
Γ ⊢ M : T

Γ ⊢ M : ∀ℓ ·T (ℓ not free in Γ)

Let ρ |= Γ and write x := JMKρ ∈ ΓJ|T |K. Let n > 0 and assume ρ ⊪n Γ. Letm ∈ N. We have

to showM ⊪n T [m/ℓ]. Since ℓ does not occur free in Γ, we have ρ ⊪n Γ[m′/ℓ] for allm′ ∈ N.
For both rules we can conclude from the induction hypothesis.

Case of
Γ ⊢ M : ∀ℓ ·T
Γ ⊢ M : T [t/ℓ]

Let ρ |= Γ and write x := JMKρ ∈ ΓJ|T |K. Let n > 0 and assume ρ ⊪n Γ. By induction

hypothesis we have x ⊪n T [m/ℓ] form = JtK and the result follows.

Cases of
Γ ⊢ M :

{
■A

�� [box]γ [ν ℓαφ/β]} β Pos γ

Γ ⊢ M : {■A | [box]γ [ναφ/β]}

Γ ⊢ M : {■A | [box]γ [µαφ/β]} Γ,x :

{
■A

�� [box]γ [µℓαφ/β]} ⊢ N : U β Pos γ

Γ ⊢ N [M/x] : U

where ℓ is not free in Γ,U ,γ , and γ , φ are smooth. First, since φ is smooth by Cor. 8.9 we have

{|ναφ(α)|} =
⋂

m∈N {|φ
m(⊤)|}

and {|µαφ(α)|} =
⋃

m∈N {|φ
m(⊤)|}

Moreover, since β is positive in γ and γ is smooth, it follows from Lem. E.10 (Lem. 8.8) that

{|γ |} is continuous and cocontinuous in β . We thus get

{|γ [ναφ(α)/β]|} =
⋂

m∈N {|γ [φ
m(⊤)/β]|}

and {|γ [µαφ(α)/β]|} =
⋃

m∈N {|γ [φ
m(⊤)/β]|}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:109

and the result follows. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:110 Guilhem Jaber and Colin Riba

Contents

Abstract 1

1 Introduction 1

Organization of the paper. 2

2 Outline 2

An Overview of the Guarded λ-Calculus. 2

Compositional Safety Reasoning on Streams. 3

A Manysorted Temporal Logic. 3

Beyond Safety 4

“Internal” Semantics in the Topos of Trees. 4

The Necessity of an “External” Semantics. 4

The Constant Type Modality. 4

Approximating Least Fixpoints. 5

Overview of Some Examples. 5

3 The Pure Calculus 7

Terms 7

Pure Types 7

4 A Temporal Modal Logic 9

Manysorted Modal Temporal Formulae. 9

Modal Theories. 10

5 A Temporally Refined Type System 11

Temporal Refinement Types. 11

Subtyping. 11

Typing with Temporal Refinement Types. 12

6 Polynomial Types, Liveness Properties and the Safe Fragment 13

Strictly Positive and Polynomial Types 13

The Full Temporal Modal Logic 14

The Safe and Smooth Fragments 14

The Full System 15

7 Examples 15

8 Semantics 19

Denotational Semantics in the Topos of Trees. 19

Internal Semantics of Formulae. 20

The External Semantics. 21

The Safe Fragment. 21

The Constant Modality. 22

Safe Formulae: The General Case. 22

The Smooth Fragment. 23

The Realizability Semantics. 23

9 Related Work 24

10 Conclusion and Future Work 25

Acknowledgments. 25

References 26

A Additional Material for §4 29

B Additional Material for §5 29

C Additional Material for §8 31

C.1 The Topos of Trees (Basic Structure) 31

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Temporal Refinements for Guarded Recursive Types 1:111

C.2 Global Sections and Constant Objects 32

C.3 External and Internal Semantics: Global Definitions 33

C.4 An Open Geometric Morphism 35

C.5 Abstract Modalities 35

C.6 External and Internal Semantics: Local Definitions 36

C.6.1 Internal Semantics 36

C.6.2 External Semantics 39

C.7 The Safe Fragment 39

C.8 The Smooth Fragment 39

C.9 Constant Objects, Again 39

C.10 Realizability 41

C.11 A Galois Connection 42

D Details of the Examples 44

D.1 Guarded Streams 44

D.1.1 The Later Modality on Guarded Streams 44

D.1.2 Destructors of Guarded Streams 44

D.1.3 Constructor of Guarded Streams 45

D.1.4 Map over Guarded Streams 45

D.1.5 Merge over Guarded Streams 46

D.2 Operations on Coinductive Streams 46

D.3 Map over Coinductive Streams 47

D.3.1 The Case of Eventually (3[hd]φ) 48

D.3.2 The Case of Eventually Always (32[hd]φ) 50

D.3.3 The Case of Always Eventually (23[hd]φ) 51

D.4 The Diagonal Function 54

D.4.1 The Guarded Diagonal Function 54

D.4.2 The Coinductive Diagonal Function 55

D.5 Fair Streams 57

D.5.1 Basic Datatypes 58

D.5.2 A Fair Stream of Booleans 58

D.5.3 A Scheduler 65

D.6 Colists 67

D.6.1 Overview 68

D.6.2 The Type of CoLists 69

D.6.3 The Append Function on Colists 70

D.6.4 Sharper Refinements for the Append Function on Colists 75

D.7 Resumptions 78

D.8 Breadth-First Tree Traversal 86

D.8.1 Infinite Binary Trees 86

D.8.2 Breadth-First Traversal of Guarded Trees Using Forests 87

D.8.3 Martin Hofmann’s Algorithm 88

E Proofs of §8 90

E.1 Correctness of the External and Internal Semantics 90

E.1.1 Proof of Lem. C.13.(1) (Lem. 8.3) 90

E.1.2 Proof of Lem. C.13.(2) (Lem. 8.3) 93

E.2 The Safe Fragment 95

E.3 The Smooth Fragment 100

E.4 Realizability 102

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:112 Guilhem Jaber and Colin Riba

Contents 110

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Outline
	3 The Pure Calculus
	4 A Temporal Modal Logic
	5 A Temporally Refined Type System
	6 Polynomial Types, Liveness Properties and the Safe Fragment
	7 Examples
	8 Semantics
	9 Related Work
	10 Conclusion and Future Work
	References
	A Additional Material for §4
	B Additional Material for §5
	C Additional Material for §8
	C.1 The Topos of Trees (Basic Structure)
	C.2 Global Sections and Constant Objects
	C.3 External and Internal Semantics: Global Definitions
	C.4 An Open Geometric Morphism
	C.5 Abstract Modalities
	C.6 External and Internal Semantics: Local Definitions
	C.7 The Safe Fragment
	C.8 The Smooth Fragment
	C.9 Constant Objects, Again
	C.10 Realizability
	C.11 A Galois Connection

	D Details of the Examples
	D.1 Guarded Streams
	D.2 Operations on Coinductive Streams
	D.3 Map over Coinductive Streams
	D.4 The Diagonal Function
	D.5 Fair Streams
	D.6 Colists
	D.7 Resumptions
	D.8 Breadth-First Tree Traversal

	E Proofs of §8
	E.1 Correctness of the External and Internal Semantics
	E.2 The Safe Fragment
	E.3 The Smooth Fragment
	E.4 Realizability

	Contents

