
HAL Id: hal-02512655
https://hal.science/hal-02512655v1

Preprint submitted on 19 Mar 2020 (v1), last revised 14 Mar 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Refinements for Guarded Recursive Types
Guilhem Jaber, Colin Riba

To cite this version:
Guilhem Jaber, Colin Riba. Temporal Refinements for Guarded Recursive Types. 2020. �hal-
02512655v1�

https://hal.science/hal-02512655v1
https://hal.archives-ouvertes.fr

Temporal Refinements for Guarded Recursive Types
Guilhem Jaber

∗

guilhem.jaber@univ-nantes.fr
Colin Riba

†

colin.riba@ens-lyon.fr

Abstract
We propose a framework to reason on temporal properties

of higher-order programs with coinductive types. It extends

guarded recursive types with temporal refinements, which

are formulae of the modal µ-calculus. Its semantics is given

inside the topos of trees, and corresponds to the standard

semantics for safety properties (defined as greatest fixpoints).

For more general properties involving least fixpoints, we

accommodate an external semantics, whose interaction with

the internal one is regulated when restricting to the flat µ-
calculus, in which fixpoints can be computed by iteration

over N, and thus can be unfolded syntactically.

Keywords guarded recursive types, µ-calculus, refinement

types

1 Introduction
Programming on infinite objects like streams is crucial to

represent reactive systems. In such settings, programs in

general do not terminate, but always compute a part of their

output in a finite amount of time. For example, if a program

is expected to generate a stream, it should always be able to

produce the next element in finite time: it is productive.
Functional programming offers high-level abstractions to

handle infinite data, with declarative definitions and equa-

tional reasoning. This is exemplified by functional reactive

programming [16], in which datatypes formed of infinite

objects are represented as coinductive types.

The goal of this paper is to be able to specify temporal

properties of higher-order programs that handle coinductive

types. Temporal logics like LTL, CTL or the modal µ-calculus
are widely used to formulate, on infinite objects, specifica-

tions like safety, liveness or fairness properties (see e.g. [6]).

Typically, modalities like 2 (“always”) or 3 (“eventually”)

are used to write properties of streams or infinite trees and

specifications of programs over such data.

We introduce temporal refinement types {A | φ}, where
A is a standard type of our programming language, (e.g.

the type of streams Str), and φ is a formula of the (flat) µ-
calculus. Using refinements [17], temporal connectives are

not reflected in the programming language, and programs

are formally independent from the shape of their temporal

specifications. One can thus give different refinement types

∗
Université de Nantes, LS2N CNRS, Inria, France

†
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

to the same program. For example, the map function on

streams can have the following two types:

({B | ψ } → {A | φ}) → {Str B | 2[ψ]} → {Str A | 2[φ]}
({B | ψ } → {A | φ}) → {Str B | 3[ψ]} → {Str A | 3[φ]}

These types are intended to mean that given f : B → A s.t.

f (b) satisfies φ whenever b satisfies ψ , the function mapf
takes a stream whose elements all (resp. at least one) satisfy

ψ to one whose elements all (resp. at least one) satisfy φ.
Having a type system enables to reason compositionally

on programs, by decomposing a specification to the various

components of a program and pick the right temporal re-

finements for each component in order to prove the global

specification.

Our system is built on top of Nakano’s guarded recursive

types [42]. Guarded recursive types use a type modality ▶T ,
called “later”, to indicate that a value of typeT is not available

now but only after one “time-step”, that could correspond

to performing some computations like unfolding a recursive

definition. Using this modality, one can then have fixpoint

combinators for both terms and types, while ensuring pro-

ductivity of programs by enforcing that recursive definitions

are guarded with ▶ in the type system.

The programming language we consider is the guarded

λ-calculus [13], a higher-order programming language over

both guarded and coinductive types, that uses a modality ■
to transform guarded recursive types into coinductive types.

The adequacy of our modal refinements is proved w.r.t. a

denotational semantics of this language in the topos of trees.

Our main challenge is that the topos of trees has unique

guarded fixpoints [8], and that only safety properties (e.g.

2[φ]) can be correctly represented. In order to correctly

handle liveness properties (e.g. 3[φ]), that are defined as

least fixpoints, one needs to escape the topos of trees and go

to the standard world of sets.

This leads to a two level type system: the lower or “in-

ternal” level, which interacts with guarded recursion and

at which only safety properties are correctly represented,

and the higher or “external” one, at which modal fixpoints

are correctly handled, but without direct access to guarded

recursion. By restricting to flat modal fixpoints [47] (e.g. 2,

3), which can always be computed in ω-steps, one can syn-

tactically reason on finite unfoldings of least fixpoints, thus

allowing for crossing the safety barrier.

Organization of the paper. We first give an overview of

our approach in §2, and describe related work in §3. Then §4

presents the syntax of the guarded λ-calculus. Our temporal

1

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

consg := λx .λs .fd(⟨x , s⟩) : A → ▶ Str
g A → Str

g A
hdg := λs .π0(ufd s) : Str

g A → A
tlg := λs .π1(ufd s) : Str

g A → ▶ Str
g A

mapg := λ f .fix(д).λs .consg (f (hdg s)) (д ⊛ (tlg s))
: (B → A) → Str

g B → Str
gA

Figure 1. Constructor, Destructors and Map on Guarded

Streams.

logic is introduced in §5, and it is used to define our tempo-

rally refined type system (§6). Its semantics, inside the topos

of trees, is defined in §7. Finally, we discuss future possible

work in §8. Full proofs are available in the Appendices.

2 Outline
An Overview of the Guarded λ-Calculus. Guarded recur-

sion enforces productivity of programs using a type system

that has access to a type modality ▶, in order to indicate

that one has access to a value not right now but only “later”.

One can then define guarded streams Str
gA over a type A

via the guarded recursive definition Str
gA = A × ▶ Str

gA.
Streams that inhabit this type have their head available now,

but their tail only one step in the future. The ▶ modality is

reflected in the term language via the next constructor. One
also has a fixpoint constructor on terms fix(x).M for guarded

recursive definitions. They are typed with the rules:

Γ ⊢ M : A

Γ ⊢ next(M) : ▶A
Γ,x : ▶A ⊢ M : A

Γ ⊢ fix(x).M : A

With this syntax, the basic destructors and the constructor

on guarded streams are given in Figure 1. where fd(−) and
ufd(−) are explicit term constructor for folding and unfolding

guarded recursive types. In the following, we use the infix

notation a :: s for consg a s . Using the fact that the type

modality▶ is an applicative functor [38], we can distribute▶
over the arrow type. This is represented in the programming

language by the applicative construction ⊛. With it, one can

define the usual map function on guarded streams.

The Semantics of Guarded Recursive Types in the Topos
of Trees. The types of this language can be interpreted as

sequences of indexed sets (X (n))n>0 where X (n) represents
the values available “at time n”. To navigate through time

via the type modality ▶ and the term construction next, one
also needs to have access to functions rXn : X (n + 1) → X (n).
This means that the objects used to represent types are in

fact presheaves over the poset (N \ {0}, ≤), the functions rXn
being the so-called restriction morphisms.
The category S of such presheaves is called the topos of

trees [8]. The type modality ▶ is interpreted by the endo-

functor on S that maps X (n+ 1) to X (n) (for n > 1) and X (1)

to the singleton set 1.
Considering a guarded recursive type Fix(X).AwhereX is

the only free type variable of A, and whose occurrences are

guarded by a ▶ modality, the open type A is interpreted as

an endofunctor FA overS. This functor has a unique fixpoint

in S, which interprets Fix(X).A.
The guarded streams Str

g B over a finite base type B are

then interpreted as the indexed sequences of sets (Bn)n∈N∗

with the restriction morphism rn mapping (a1, . . . , an , an+1)
to (a1, . . . , an).
Compositional Safety Reasoning on Streams. Given a

property φ on a type A, we would like to consider a sub-

type of Str
gA that selects those streams whose elements

all satisfy φ. To do so, we introduce a temporal modality

“always φ”, written 2[φ], and consider the refinement type

{StrgA | 2[φ]}. Suppose for now that we can give the fol-

lowing refinement types to the basic stream operations:

hdg : {Strg A | 2[φ]} → {A | φ}
tlg : {Strg A | 2[φ]} → ▶ {Strg A | 2[φ]}

consg : {A | φ} → ▶ {Strg A | 2[φ]} → {Strg A | 2[φ]}

By using the standard typing rule for λ-abstraction and ap-

plication, together with the rules to type fix(x).M and ⊛, we

can type the function mapg with

({B | φ} → {A | ψ }) → {Strg B | 2[φ]} → {StrgA | 2[ψ]}

A Coalgebraic Temporal Logic. Our temporal modal logic

is many-sorted, so that in a refinement type {A | φ} the for-
mula φ talks about elements of type A. To do so, following
intuitions of [23], we use basic modalities [πi], [fd] and [next]
to navigate between guarded recursive types.

For instance, a formula φ of typeA0, specifying a property

over the inhabitants of A0, can be lifted to the formula [π0]φ
of typeA0×A1, which intuitively describes those inhabitants

ofA0×A1 whose first component satisfyφ. So given a formula

⊢ φ : A, one can define its “current lift” [hd]φ of type Str
gA,

that enforces φ to be satisfied on the head of the provided

stream. Also, one can define the “next-step” modality⃝ such

that given a formula ⊢ ψ : Str
gA, the formula ⃝ψ : Str

gA
enforcesψ to be satisfied on the tail of the provided stream.

These modalities are obtained as

[hd]φ := [fd][π0]φ ⃝ φ := [fd][π1][next]φ

We also provide a deduction system ⊢A φ on temporal modal

formulae. This deduction system is used to define a subtyping

relation T ≤ U between refinement types, so that {A | φ} ≤
{A | ψ } when ⊢A φ ⇒ ψ . The subtyping relation is thus

crucial in order to incorporate logical reasoning in our type

system.

In addition, we have greatest fixpoints predicates να .φ,
with Kozen-style ([31]) reasoning principles. Using them, we

can form the “always” modality 2, as, for φ : Str
gA,

2φ := να .φ ∧ ⃝α : Str
gA

which intuitively holds on a stream s iff φ holds on every

substream s[n . . .) for n ∈ N. If we rather start with ψ : A,
one then need to lift it to Str

gA. This is what we have written
[ψ] in the previous paragraph. It can simply be defined as

2

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

[hd]ψ . One can then check that 2[hd]ψ indeed means that

all the elements of the stream satisfiesψ , since all its suffixes

satisfies [hd]ψ .

Beyond Safety Reasoning: The Failure of the Internal
Semantics. One would also want to define least fixpoints

predicates µα .φ. For example, one could consider the modal-

ity 3φ defined as the least fixpoint µα .φ ∨ ⃝α . One could
then give the following two types to the guarded stream

constructor consg:
• consg : {A | φ} → ▶ Str

gA → {StrgA | 3[φ]};
• consg : A → ▶ {StrgA | 3φ} → {StrgA | 3[φ]}.

But consider a finite base type A with two distinguished

elements a, b, and suppose that we have access to a modality

[a] on A so that terms inhabiting {A | [a]} must be equal to

a. Using the second least fixpoint rule, we could type the

stream with constant value b, defined as fix(s).b :: s , with the

type {Strg A | 3[a]} that is supposed to enforce the existence
of an occurrence of a in the stream. It is clearly problematic!

This comes from the fact that inside the topos of trees the

recursive definitions that one can compute satisfy a unique

fixpoint theorem [8].

To avoid this problem, one needs to compute least fix-

points externally, directly on the sets of global elements. But

in general one cannot transform back such sets of global ele-

ments into subobjects of the topos of trees. This is apparent

with this property 3a. It is interpreted externally as the set

of streams that contain at least an occurrence of a. There
is no subobject of Str

g A that correspond correctly to this

set of streams, since the only possible one would be Str
gA.

Indeed, such a subobject would be a collection (Cn)n∈N∗
of

subsets of An . But since for any n ∈ N∗, any element of An

can be extended into a stream that contains an occurrence

of a, necessarily Cn would be equal to An .
For safety properties, it is still possible to transform their

external semantics, defined as sets of global elements, into

subobjects of the topos of trees, simply because safety prop-

erties represent topologically closed sets.

The Necessity of an External Semantics. As shown above,
we have a formal system with least and greatest fixpoints

that has a semantics inside the topos of trees. However, this

system does not correspond to the standard way to reason

on least fixpoints. It is thus important to relate the seman-

tics of our system to a standard Set-based semantics of the

coalgebraic µ-calculus. To do so, we need to restrict our-

selves to polynomial types, for which it is possible to rep-

resent guarded recursive types as Set-based final coalgebra.

In this setting, Møgelberg [40], has been able to prove a cor-

respondence between the final coalgebras computed inside

the topos of trees and the Set-based ones.

The Constant Modality. To define correctly least fixpoints

of temporal predicates over a type A we have seen that we

need to access the global elements ofA. However, the internal

semantics is still necessary to handle definitions by guarded

recursion. We thus need to have available in our logic a way

to navigate between the internal and the external semantics.

To do so, we use the constant modality ■ introduced in [13].

It was used in this paper to transform guarded recursive

types into coinductive types, in order to define programs

that are productive but not causal.

To be able to build predicates over ■T , we also use a

modality [bx]φ. We permit to navigate between ■ {A | φ}
and {■A | [bx]φ} via the subtyping relation, but only when

φ is safe. Indeed, for safety properties, one can transform

their external semantics into a subobject, which is equal to

their internal semantics inside S.

Approximating Least Fixpoints. In order to reason on un-

safe properties such as 3φ, one introduces finite approxima-

tion of these properties, that is finite unfolding. Approximat-

ing fixpoints with finite unfolding, à la Kleene, is possible

because we restrict to flat fixpoints [47]. We consider fi-

nite iterations µαkφ of least fixpoints, with k an “iteration

variable”. We can then define approximations of 3φ as

3kφ := µαk .φ ∨ ⃝α

The approximations 3kφ are safe for φ safe. We can type

mapg with

({B | φ} → {A | ψ }) →
{
Str

g B
�� 3k [φ]

}
→

{
Str

gA
�� 3k [ψ]

}
From it, one can prove that the map function, lifted to coin-

ductive streams Str defined as ■ Str
g
, has type

({B | ψ } → {A | φ}) −→

{Str B | [bx]3[hd]ψ } −→ {Str A | [bx]3[hd]φ}

One can even go further, by replacing 3 with 32 or 23.

3 Related Work
Using guarded recursive types, type systems have been de-

signed to enforce good properties of programs handling coin-

ductive types, like causality [33], productivity [4, 40, 13, 19]

or the absence of space leaks [32] and time leaks [5].

Guarded Dependent Type Theory [9, 7], combine depen-

dent types with guarded recursive types. One can thus use

dependent type to give precise specifications. It should thus

be possible to prove safety properties in these theories. How-

ever, it does not seem possible to do the same for liveness

properties, as they do not have access to least fixpoints.

In a different line of work, temporal logics have been used

as type systems for functional reactive programs, starting

from LTL[25, 26] to the intuitionistic modal µ-calculus [11].
These works follow the “proof-as-programs” motto, and re-

flect in the programming languages the constructions of the

temporal logic. In particular, temporal operators are wired

into the structure of types, so that different temporal specifi-

cations for the same program may lead to differences in the

actual code, contrary to our work.

3

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

v ::= M,N ::= v | x E ::= •

| λx .M | MN | EM
| ⟨M0,M1⟩ | π0(M) | π0(E)
| ⟨⟩ | π1(M) | π1(E)
| in0(M) | caseM of | caseE of
| in1(M) (x .N0 |x .N1) (x .N0 |x .N1)

| fd(M) | ufd(M) | ufd(E)
| bxσ (M) | ubx(M) | ubx(E)
| next(M) | prevσ (M) | prev[](E)

| M ⊛ N | E ⊛M
| fix(x).M | v ⊛ E

Figure 2. Values, Terms and Evaluation Contexts.

More generally, verification of higher-order programs has

a vast literature. Higher-order model checking [43, 29] has

been introduced to check automatically that higher-order

recursion schemes, a simple form of higher-order programs

with finite data-types, satisfy a µ-calculus formulas. Auto-

matic verification of higher-order programs with infinite

data-types (integers) has been explored for safety [30, 27],

termination [34], and more generally ω-regular [41] proper-
ties. In this setting, the combination of refinement types with

automatic techniques like predicate abstraction [46] or SMT

solvers [50, 49] has been particularly successful. However,

none of these works has considered coinductive types.

4 The Pure Calculus
This Section presents the guarded λ-calculus of [13], with
an emphasis on the examples relevant to our framework.

Terms. We consider values and terms from the grammar

given in Fig. 2. In both bxσ (M) and prevσ (M), σ is a delayed
substitution of the form σ = [x1 7→ M1, . . . ,xk 7→ Mk] and

such that bxσ (M) and prevσ (M) bind x1, . . . ,xk in M . We

use the convention of [13] that bx(M) and prev(M) (without

indicated substitution) stand resp. for bx[](M) and prev[](M)

i.e. bind no variable ofM .

We consider a weak call-by-name reduction, defined in

Fig. 3. The productivity of the operational semantics is en-

sured by the insertion of next in the reduction rule of fix.

Pure Types (notation A,B, etc.) are the closed types over

A ::= 1 | A +A | A ×A | A → A | ▶A | X | Fix(X).A | ■A

where, (1) in the case Fix(X).A, X does occur in A and each

occurrence of X in A must be guarded by a ▶, and (2) in the

case of ■A, the type A is closed.

We could actually have included primitive infinite base

types (say a type of natural numbers as in [13]), but we

refrain to do so in order to keep the system not too complex.

Example 4.1. Thanks to sum types, we can code a finite

base type B = {b1, . . . , bn} as a sum of unit types

∑n
i=1 1 =

1+ (· · ·+1), where the ith component of the sum is intended

(λx .M)N ; M[N /x]
πi (⟨M0,M1⟩) ; Mi

case ini (M) of (x .N0 |x .N1) ; Ni [M/x]
ufd(fd(M)) ; M

fix(x).M ; M[next(fix(x).M)/x]
next(M)⊛ next(N) ; next(MN)

ubx(bx[x1 7→M1, ...,xn 7→Mn](M)) ; M[M1/x1, . . . ,Mn/xn]
prev(next(M)) ; M

prev[x1 7→M1, ...,xn 7→Mn]
(M) ; prev(M[M1/x1, . . . ,Mn/xn])

(n ≥ 1)
M ; N

E[M] ; E[N]

Figure 3. Operational Semantics.

to represent the element bi of B. At the term level, the el-

ements of B are represented as compositions of injections

inj1 (inj2 (. . . inji ⟨⟩)),

Example 4.2. Guarded recursive definitions are formalized us-

ing the fixpoint constructor Fix(X).A on types, which allows

for X to appear in A both at positive and negative positions,

but only under a ▶. Then one can define the type Str
gA of

guarded streams ofA as Fix(X).A×▶X and the type Tree
gA

of infinite binary trees over A as Fix(X).A × (▶X ×▶X).

Definition 4.3. A pure type A is constant if each occurrence
of ▶ in A is guarded by a ■ modality.

The typing rules of the pure calculus are given in Fig. 4.

Positive and Polynomial Pure Types. A (pure) type is pos-
itive (notation P+,Q+, etc.) if each arrow (→) is guarded by

a ■ modality. So positive types are defined by the grammar

P+ ::= 1 | P+ + P+ | P+ × P+ | ▶P+ | X | Fix(X).P+ | ■A

Positive types are a convenient generalization of polynomial
types. In the context of this paper, we say that a guarded

recursive type Fix(X).P(X) is polynomial if P(X) is induced

by the grammar

P(X) ::= 1 | ▶X | P(X) + P(X) | P(X) × P(X) | ■A

For Q+ a constant positive type, StrgQ+ and Tree
gQ+ are

polynomial types. More generally, polynomial types include

all recursive types Fix(X).P(X) for P(X) of the form

n∑
i=0

ai▶X
i

whereX i
is the product of i copies ofX and aiX

i
(for ai ∈ N)

is the sum of ai copies of X
i
.

Examples. We have seen in Fig. 1 how to define constructor,

destructors and the map function over guarded streams. One

can also define a merge function that takes two guarded

4

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

(x : A) ∈ Γ

Γ ⊢ x : A

Γ,x : B ⊢ M : A

Γ ⊢ λx .M : B → A

Γ ⊢ M : B → A Γ ⊢ N : B

Γ ⊢ MN : A

Γ ⊢ ⟨⟩ : 1
Γ ⊢ M0 : A0 Γ ⊢ M1 : A1

Γ ⊢ ⟨M0,M1⟩ : A0 ×A1

Γ ⊢ M : A0 ×A1

Γ ⊢ πi (M) : Ai

Γ ⊢ M : Ai

Γ ⊢ ini (M) : A0 +A1

for i ∈ {0, 1},
Γ ⊢ M : A0 +A1 Γ,x : Ai ⊢ Ni : B

Γ ⊢ caseM of (x .N0 |x .N1) : B

Γ ⊢ M : A[Fix(X).A/X]

Γ ⊢ fd(M) : Fix(X).A

Γ ⊢ M : Fix(X).A

Γ ⊢ ufd(M) : A[Fix(X).A/X]

for 1 ≤ i ≤ k ,
x1 : A1, . . . ,xk : Ak ⊢ M : A Γ ⊢ Mi : Ai with Ai const.

Γ ⊢ bx[x1 7→M1, ...,xk 7→Mk](M) : ■A

Γ ⊢ M : ■A
Γ ⊢ ubx(M) : A

Γ ⊢ M : A

Γ ⊢ next(M) : ▶A

for 1 ≤ i ≤ k ,
x1 : A1, . . . ,xk : Ak ⊢ M : ▶A Γ ⊢ Mi : Ai with Ai const.

Γ ⊢ prev[x1 7→M1, ...,xk 7→Mk]
(M) : A

Γ ⊢ M : ▶(B → A) Γ ⊢ N : ▶B

Γ ⊢ M ⊛ N : ▶A
Γ,x : ▶A ⊢ M : A

Γ ⊢ fix(x).M : A

Figure 4. Typing Rules of the Pure Calculus.

streams and interleaves them:

mergeg : Str
gA −→ Str

gA −→ Str
gA

:= fix(f).λs0.λs1. (hdg s0) ::g

next
(
(hdg s1) ::g (f ⊛ (tlg s0)⊛ (tlg s1))

)
Coinductive streams are guarded streams under a ■:

StrA := ■ Str
gA

The basic operations on guarded streams lift to coinductive

ones (for A a constant type):

cons := λx .λs .bx
(
x ::

g (ubx s)
)

: A → StrA → StrA
hd := λs .hdg (ubx s) : StrA → A
tl := λs .bx

(
prev (tlg (ubx s))

)
: StrA → StrA

These definitions follow a general pattern to lift a function

over guarded streams into one over coinductive streams, by

performing an η-expansion with some bx and ubx inserted
in the right places. For example, one can define the map

function on coinductive streams as:

map : (B → A) −→ StrB −→ StrA
:= λ f .λs .bx

(
mapg f (ubx s)

)
Example 4.4 (The Diagonal Stream Function). Coalgebraic
streams allow for more functions than guarded streams, as

for instance the following diagonal stream function

diag : Str(StrA) −→ StrA
:= λs .bx

(
diagg (ubx s)

)
diagg : Str

g(StrA) −→ Str
gA

:= diagauxg id

diagauxg : (StrA → StrA) → Str
g(StrA) → Str

gA
:= fix(f).λд.λs . (hd ◦ д)(hdg s) ::g

f ⊛ next(д ◦ tl)⊛ (tlg s)

The auxiliary higher-order function diagauxg iterates coin-
ductive tl functions over the head of the stream of streams s .

5 A Temporal Modal Logic
This Section presents our logic of (modal) temporal speci-

fications. We focus on syntactic aspects. The semantics is

discussed in §7.

Iteration terms. We assume given a first-order signature of

iteration terms t, u, etc., with iteration variables k, ℓ, etc., and
for each iteration term t(k1, . . . ,km)with variables as shown,
a given primitive recursive function JtK : Nm → N. We

assume a term 0 for 0 ∈ N and a term k+1 for the successor

function N→ N.

Manysorted Modal Temporal Formulae. Our logical lan-
guage, that we took with minor adaptations from [23], is

manysorted: for each pure type A we have formulae of type
A (notation ⊢ φ : A) as defined in Fig. 5. For every pure type

A, formulae of type A are closed under usual propositional

connectives. Moreover (and that is the key ingredient we

took from [23]), formulae of compound types (sayA0 ×A1 or

A0 +A1) may be obtained from formulae of the component

types. For instance a formula φ of typeA0, specifying a prop-

erty over the inhabitants of A0, can be lifted to the formula

[π0]φ of type A0 × A1, which selects those inhabitants of

A0 ×A1 whose first component satisfies φ.

Example 5.1. Given a finite base type B = {b1, . . . , bn} as in
Ex. 4.1, with element bi represented by inj1 (inj2 (. . . inji ⟨⟩)),
the formula [inj1][inj2] . . . [inji](⊤). represents the singleton
subset {bk } of B.

Example 5.2. (a) On guarded streams, have the modalities

[hd] and ⃝ mentioned in §2, with [hd]φ : Str
gA and

⃝ψ : Str
gA provided φ : A andψ : Str

gA:

[hd]φ (= [φ]) := [fd][π0]φ ⃝ψ := [fd][π1][next]ψ

(b) On (guarded) infinite binary trees over A, we also have

a modality [rt]φ := [fd][π0]φ : Tree
gA (provided φ : A).

Moreover, we have modalities ⃝0 and ⃝1 defined on

formulae φ : Tree
gA as ⃝iφ := [fd][π1][πi][next]φ.

Intuitively, [rt]φ should hold on a tree t over A iff the

root label of t satisfies φ, and ⃝iφ should hold on t iff φ
holds on the ith son of t .

5

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

(α : A) ∈ Σ

Σ ⊢ α : A Σ ⊢ ⊥ : A Σ ⊢ ⊤ : A

⊢ φ : A

α : B ⊢ φ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ⇒ ψ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ∧ψ : A

Σ ⊢ φ : A Σ ⊢ ψ : A

Σ ⊢ φ ∨ψ : A

Σ ⊢ φ : Ai

Σ ⊢ [πi]φ : A0 ×A1

Σ ⊢ φ : Ai

Σ ⊢ [ini]φ : A0 +A1

⊢ ψ : B ⊢ φ : A

⊢ [ev(ψ)]φ : B → A

Σ ⊢ φ : A[Fix(X).A/X]

Σ ⊢ [fd]φ : Fix(X).A

Σ ⊢ φ : A

Σ ⊢ [next]φ : ▶A

⊢ φ : A

⊢ [bx]φ : ■A

α : A ⊢ φ : A α Pos φ

⊢ ναtωφ : A
(α guarded in φ, tω iteration term or ω)

α : A ⊢ φ : A α Pos φ

⊢ µαtωφ : A
(α guarded in φ, tω iteration term or ω)

Figure 5. Formation Rules of Flat Formulae.

Our logic has greatest and least flat fixpoints, notation
ναωφ and µαωφ. The rules of Fig. 5 thus allow for the for-

mation of formulae with free typed propositional variables

(ranged over by α , β , . . .), and thus involve contexts Σ of the

form α1 : A1, . . . ,αn : An . In the formation of a fixpoint, the

side condition “α guarded in φ” asks that each occurrence of

α is beneath a [next] modality. We assume a usual positivity

condition of α in φ, represented as usual by an inductive

predicate α Pos φ.

Remark 5.3. Note that formulae [bx]φ and [ev(ψ)]φ can only

be formed for closed formulae φ,ψ .

Example 5.4. The modality 2 makes it possible to express

a range of safety properties. For instance, assuming φ,ψ :

Str
gA, the formula 2(ψ ⇒ ⃝φ) is intended to hold on a

stream s iff, for all n ∈ N, if the substream s(n).s(n + 1). · · ·
satisfiesψ , then s(n + 1).s(n + 2). · · · satisfies φ.

Example 5.5. The modality2 extends to infinite binary trees

over A, with 2φ := να .φ ∧ (⃝0α ∧ ⃝1α) : Tree
gA. For

e.g.ψ : A, 2[rt]ψ is intended to hold on a tree t over A iff all

node-labels of t satisfyψ .

The restriction to flat fixpoints [47] means that greatest

(resp. least) fixpoints ναωφ(α) (resp. µαωφ(α)) have no free

propositional variable (i.e. φ(α) has at most α free). This

implies that greatest (resp. least) fixpoints can be thought

about as ∧
m∈N

φm(⊤) resp.

∨
m∈N

φm(⊥)

Iteration terms allow for formal reasoning about such iter-

ations. Assuming JtK = m ∈ N, the formula ναtφ(α) (resp.
µαtφ(α)) can be read as φm(⊤) (resp. φm(⊥)).

Modal Theories. Formulae are equipped with a modal de-

duction system which enters the type system via a subtyping

relation (§6). For each pure type A, we have an intuitionistic

theory ⊢A (the general case) and a classical theory ⊢A
c
(which

is only assumed under ■/[bx]), summarized in Fig. 6 and

Table 1. The atomic modalities [πi], [fd], [next], [ini] and
[bx] have unbouded deterministic branching (see Fig. 9, §7).

In any case, ⊢A
(c)
φ is only defined when ⊢ φ : A (and so when

φ has no free propositional variable).

We can get the axioms of the intuitionistic (normal) modal

logic IK [45] (see also e.g. [48, 37]) for [πi], [fd] and [bx]
but not for [ini] nor for the intuitionistic [next]. For [next],
in the intuitionistic case this is due to semantic issues with

step indexing (discussed in §7) which are absent from the

classical case. As for [ini], we have a logical theory allowing

for a coding of finite base types as finite sum types, which

in particular allows to derive, for a finite base type B

⊢B
∨

a∈B

(
[a] ∧

∧
b∈B
b,a

¬[b]
)

This implies that the necessitation rule (see Rem. 5.7) does

not hold for [ini].
Fixpoints ναωφ and µαωφ are equipped with their usual

Kozen axioms [31]. In addition, iteration formulae ναtφ(α)
and µαtφ(α) have axioms expressing that they are indeed

iterations of φ(α) from resp. ⊤ and ⊥.

Definition 5.6 (Modal Theories). For each pure type A, the
intuitionistic and classical modal theories ⊢A and ⊢A

c
are de-

fined by mutual induction as follows:
• The theory ⊢A is deduction for intuitionistic propositional
logic augmented with the checkmarked (✓) axioms and
rules of Table 1 and the rules of Fig. 6 (for ⊢A).

• The theory ⊢A
c
is ⊢A augmented with the axioms (P) and

(C⇒) for [next] and with the axiom (CL) (Fig. 6).
In any case, ⊢A φ and ⊢A

c
φ are only defined when ⊢ φ : A.

Remark 5.7. All modalities ([πi], [fd], [next], [ini], [ev(ψ)]
and [bx]) satisfy the monotonicity rule (RM) and are thus

monotone in the sense of [12], from which we borrowed

the terminology used in Table 1 (see also [20, 18]). With

our adaptation to unbounded deterministic branching, the

normal intuitionistic modal logic IK of [45] is (RM) + (C) +
(N) + (P) + (C∨) + (C⇒), while the normal modal logic K is

IK + (CL) (see e.g. [10]).

Example 5.8. Using the rules to reason on greatest fixpoints,

one can prove the following implications:

⊢Str
g A 2ψ ⇒ ψ ∧ ⃝2ψ ⊢Str

g A (ψ ∧ ⃝2ψ) ⇒ 2ψ

The Safe Fragment. The safe fragment plays a crucial role,

because it reconciliates the internal and external semantics of

our system (see §7). The safe fragment impacts the subytping

relation (Fig. 7, §6).

Definition 5.9 (Safe Formula). A formula α1 : A1, . . . ,αn :

An ⊢ φ : A is safe if A1, . . . ,An ,A are positive types and if
moreover all occurrences in φ of least fixpoints (µαω (−)) and
implications (⇒) are guarded by [bx].

6

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Name Formulation [πi] [fd] [next] [ini] [ev(ψ)] [bx] [hd] ⃝

(RM)
⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(C) [△]φ ∧ [△]ψ =⇒ [△](φ ∧ψ) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(N) [△]⊤ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(P) [△]⊥ =⇒ ⊥ ✓ ✓ (C) ✓ ✓ ✓ (C)

(C∨) [△](φ ∨ψ) =⇒ [△]φ ∨ [△]ψ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(C⇒) ([△]ψ ⇒ [△]φ) =⇒ [△](ψ ⇒ φ) ✓ ✓ (C) ✓ ✓ (C)

Table 1. Modal Axioms and Rules (with types omitted in ⊢ and where (C) marks axioms assumed for ⊢c but not for ⊢).

⊢A
c
((φ ⇒ ψ) ⇒ φ) ⇒ φ

(CL)

⊢A
c
φ

⊢■A [bx]φ

⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ

⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
⊢A0+A1 ([ini]⊤) ⇒ (¬[ini]φ ⇔ [ini]¬φ)

⊢A να0φ ⇔ ⊤ ⊢A ναt+1φ ⇔ φ[ναtφ/α]

⊢A µα0φ ⇔ ⊥ ⊢A µαt+1φ ⇔ φ[µαtφ/α]

JtK ≥ JuK
⊢A ναtφ ⇒ ναuφ

JtK ≤ JuK
⊢A µαtφ ⇒ µαuφ

⊢A ναωφ ⇒ φ[ναωφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναωφ

⊢A φ[µαωφ/α] ⇒ µαωφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαωφ ⇒ ψ

Figure 6.Modal Axioms and Rules.

Recalling that the theory under a [bx] is ⊢A
c
, the only proposi-

tional connectives accessible to ⊢A in safe formulae are those

on which ⊢A and ⊢A
c
coincide.

Example 5.10. Any formula without fixpoint is equivalent

in ⊢c to a safe formulae. Given safe formulae ψ : A and

φ : Str
gA, the formulae 2[hd]ψ and 2φ are both safe.

6 A Temporally Refined Type System
Temporal Refinement Types. Temporal refinement types

(or simply types), ranged over byT ,U ,V , etc., are defined by
the grammar:

T ::= A | {A | φ} | ∀k ·T | T +T | T ×T | T → T | ▶T | ■T

So types are built from (closed) pure typesA and temporal re-

finements {A | φ}, where ⊢ φ : A. They allow all the type con-

structors of pure types (whereT has no free type variables in

■T). Types furthermore allow for universal quantifications

over iteration variables with ∀k ·T .

Subtyping. As a refined type {A | φ} intuitively represents a
subset of the inhabitants ofA, it is natural to equip our system
with a notion of subtyping. In addition to the usual rules

for product, arrow and sum types, our subtyping relation is

made of two more ingredients. The first follows the principle

that our refined type system is meant to prove properties

of programs, and not to type more programs, so that (say) a

type of the form {A | φ} → {B | ψ } is a subtype of A → B.
We formalize this with the notion of underlying pure type |T |
of a type T . The second ingredient is an intuitionistic modal

theory (notation ⊢A φ for provability of a formula φ of type

A), discussed in §5.

The subtyping rules for concerning refinements are given

in Fig. 7, where T ≡ U enforces both T ≤ U and U ≤ T .
The full set of rules is given in Figure 12 in the Appendix B.

Notice that we do not incorporate folding and unfolding of

guarded recursive types in subtyping.

Typing with Temporal Refinement Types. Typing for re-
fined types is given by the rules of Fig. 8, together with the

rules of Fig. 4 extended to refinement types, where T is con-
stant if |T | is constant. Modalities [πi], [ini], [fd] and [ev(−)]
(but [next]) have introduction rules extending those of the

corresponding term formers.

7

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

T ≤ |T | A ≤ {A | ⊤}

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

{B | ψ } → {A | φ} ≡ {B → A | [ev(ψ)]φ}

▶ {A | φ} ≡ {▶A | [next]φ} ∀k ·▶T ≡ ▶∀k ·T

φ safe

■ {A | φ} ≡ {■A | [bx]φ}
⊢A
c
φ ⇒ ψ

{■A | [bx]φ} ≤ {■A | [bx]ψ }

Figure 7. Subtyping Rules (excerpt).

Example 6.1. Using the fact that φ ⇒ ψ ⇒ (φ ∧ψ) and two

times the rule (MP), one gets the derived rule:

Γ ⊢ M : {A | φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ ∧ψ }

from which one can deduce the rule:

Γ ⊢ M : {A | φ} Γ ⊢ N : {B | ψ }

Γ ⊢ ⟨M,N ⟩ : {A × B | [π0]φ ∧ [π1]ψ }

Example 6.2 (Operations on Guarded Streams). The follow-
ing typings, mentioned in §2, are easy to derive:

consg : {A | φ} → ▶ {StrgA | 2[hd]φ} → {StrgA | 2[hd]φ}
hdg : {StrgA | 2[hd]φ} −→ {A | φ}
tlg : {StrgA | 2[hd]φ} −→ ▶ {StrgA | 2[hd]φ}

For e.g. consg, direct applications of the rules give

Γ ⊢ fd⟨x , s⟩ : {StrgA | ⃝2[hd]φ}
Γ ⊢ fd⟨x , s⟩ : {StrgA | [hd]φ}

where Γ = x : {A | φ} , s : ▶ {StrgA | 2[hd]φ}. We conclude

with Ex. 6.1 and Ex. 5.8. The cases of hdg and tlg are similar

and simpler. One can then type mapg with

({B | ψ } → {A | φ}) → {Strg B | 2[hd]ψ } → {Strg A | 2[hd]φ}

Indeed, the above types for consg, hdg and tlg give

Γ′ ⊢ consg (f (hdg s)) (д ⊛ (tlg s)) : {Strg B | 2[hd]ψ }

with Γ′ := f : {A | φ} → {B | ψ } , д : ▶({StrgA | 2[φ]} →
{Strg B | 2[ψ]}), s : {StrgA | 2[φ]}.
Similarly, one can type the function mergeg with

{StrgA | 2[hd]φ0} −→ {StrgA | 2[hd]φ1} −→

{StrgA | 2([hd]φ0 ∨ [hd]φ1)}

Example 6.3. For a safe φ : A, we can type map with

({B | ψ } → {A | φ}) −→

{Str B | [bx]△[hd]ψ } −→ {Str A | [bx]△[hd]φ}

with △ ∈ {3,32,23}. In the case of 3, one starts, using

the rules (µ-E) and (µ-E), to reduce to a typing of the form

Γf , s :
{
StrB

��� [bx]3k [ψ]
}
⊢

bx(mapg f (ubx s)) :
{
StrA

��� [bx]3k [φ]
}

Since3k [φ] and3k [ψ] are safe, one can apply the subtyping
rule for 2 to get the type■

{
Str

gA
�� 3k [φ]

}
. Then we apply

the typing rule for bx presentend in Figure 4 (and extended

to refinement types), so that one can conclude by typing

guarded mapg as

({B | ψ } → {A | φ}) →

∀k · ({Strg B | 2[hd]ψ } → {Strg A | 2[hd]φ})

Using the rules (∀-CI) and (ExF), we are left with

Γ ⊢ consg (f (hdg s)) (д ⊛ (tlg s)) : {Strg B | 2[hd]ψ }

where Γ is f : {A | φ} → {B | ψ } , s :
{
Str

gA
�� 3k+1[φ]

}
, д :

▶∀ℓ · ({StrgA �� 3ℓ[φ]
}
→

{
Str

g B
�� 3ℓ[ψ]

}
). Using subtyp-

ing, one can instantiate ℓ with k . Unfolding 3k+1[φ] and
then reasoning by cases with (∨-E) gives the result.

The case of 32 is similar, but the type of mapg has to be

strengthened. Since [next] (and thus⃝) do not satisfy axiom

(P) of Table 1 (see §7), giving д the type, say,{
Str

gA
�� 312[φ]

}
→

{
Str

g B
�� 312[ψ]

}
in the branch of s : {StrgA | 2[φ]} is not sufficient. The

solution is provided by the [ev(−)] modality, used to encode

a kind of “intersection” on arrow types, to type mapg with

({B | ψ } → {A | φ}) →

∀k · {Strg B → Str
gA | θ (k) ∧ [ev(2[ψ])]2[φ]}

where θ (k) is [ev(3k2[ψ])]3k2[φ]. The case of23 is more

intricate. See App. D.2 for details.

Remark 6.4. The [ev(−)](−) modalities provide a mean to

incorporate properties of functions. This is instrumental in

giving good refined typings with a 3 modality. As we shall

see in §7, the [ev(−)](−) modalities can be seen as a form of

internalized logical predicates in the sense of [22, §9.2].

Example 6.5 (The Diagonal Stream Function). For a safe φ : A,
we have the following (see App. D.3):

diagg : {Strg(StrA) | 2[hd][bx]2[hd]φ} −→

{StrgA | 2[hd]φ}

diag : {Str(StrA) | [bx]2[hd][bx]2[hd]φ} −→

{StrA | [bx]2[hd]φ}

diag : {Str(StrA) | [bx]32[hd][bx]2[hd]φ} −→

{StrA | [bx]32[hd]φ}

7 Semantics
The Section progressively presents the main ingredients of

the semantics of our type system. We take as base the deno-

tational semantics of guarded recursion in the topos of trees,

that we briefly sketch.

8

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

(Sub)
Γ ⊢ M : T T ≤ U

Γ ⊢ M : U
(MP)

Γ ⊢ M : {A | ψ ⇒ φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ}

(∨-E)

for i ∈ {0, 1},
Γ ⊢ M : {A | φ0 ∨ φ1} Γ,x : {A | φi } ⊢ N : U

Γ ⊢ N [M/x] : U
(ExF)

Γ ⊢ M : {A | ⊥} Γ ⊢ N : |U |

Γ ⊢ N : U

(Pii -I)
Γ ⊢ Mi : {Ai | φ} Γ ⊢ M1−i : A1−i

Γ ⊢ ⟨M0,M1⟩ : {A0 ×A1 | [πi]φ}
(Pii -E)

Γ ⊢ M : {A0 ×A1 | [πi]φ}

Γ ⊢ πi (M) : {Ai | φ}
(Inji -I)

Γ ⊢ M : {Ai | φ}

Γ ⊢ ini (M) : {A0 +A1 | [ini]φ}

(Inji -E)
Γ ⊢ M : {A0 +A1 | [ini]φ} Γ,x : {Ai | φ} ⊢ Ni : U Γ,x : A1−i ⊢ N1−i : U

Γ ⊢ caseM of (x .N0 |x .N1) : U

(Ev-I)
Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}
(Ev-E)

Γ ⊢ M : {B → A | [ev(ψ)]φ} Γ ⊢ N : {B | ψ }

Γ ⊢ MN : {A | φ}

(Fd-I)
Γ ⊢ M : {A[Fix(X).A/X] | φ}

Γ ⊢ fd(M) : {Fix(X).A | [fd]φ}
(Fd-E)

Γ ⊢ M : {Fix(X).A | [fd]φ}
Γ ⊢ ufd(M) : {A[Fix(X).A/X] | φ}

(∀-CI) Γ ⊢ M : T [0/k] Γ ⊢ M : T [k+1/k]

Γ ⊢ M : ∀k ·T
(∀-I) Γ ⊢ M : T

Γ ⊢ M : ∀k ·T
(∀-E) Γ ⊢ M : ∀k ·T

Γ ⊢ M : T [t/k]

(ν-I)
Γ ⊢ M :

{
■A

�� [bx]γ [ναkφ/β]}
Γ ⊢ M : {■A | [bx]γ [ναωφ/β]}

(ν-E)
Γ ⊢ M : {■A | [bx]γ [ναωφ/β]}
Γ ⊢ M : {■A | [bx]γ [ναtφ/β]}

(µ-I)
Γ ⊢ M :

{
■A

�� [bx]γ [µαtφ/β]
}

Γ ⊢ M : {■A | [bx]γ [µαωφ/β]}

(µ-E)
Γ ⊢ M : {■A | [bx]γ [µαωφ/β]} Γ,x :

{
■A

�� [bx]γ [µαkφ/β]} ⊢ N : U

Γ ⊢ N [M/x] : U

Figure 8. Typing Rules for Refined Modal Types, (where k is fresh and β is positive in γ).

Denotational Semantics in the Topos of Trees. The topos
of trees [8] provides a natural model of guarded recursion.

Definition 7.1 (The Topos of Trees). The topos of trees S
is the category of presheaves over (N \ {0}, ≤).

In words, the objects of S are indexed sets X = (X (n))n>0
equipped with restriction maps rXn : X (n + 1) → X (n). In-
tuitively, X (n) represents the values available “at time n”,
and rXn tells how values “at n + 1” can be restricted (ac-

tually most often truncated) to values “at n”. Excluding 0

from the indexes is a customary notational convenience [8].

The morphisms from X to Y are families of functions f =
(fn : X (n) → Y (n))n>0 which commute with restriction:

X1

f1
��

X2

rX
1oo

f2
��

· · ·oo Xn

fn
��

oo Xn+1
rXnoo

fn+1
��

· · ·oo

Y1 Y2
rY
1

oo · · ·oo Ynoo Yn+1
rYn

oo · · ·oo

As any presheaf category, S has (pointwise) limits and col-

imits, and is Cartesian closed (see e.g. [36, §I.6]). We write

Γ : S → Set for the global section functor, which takes X

to S[1,X], the set of S morphisms 1 −→ X , where 1 =
({•})n>0 is the terminal object of S.

A typed term Γ ⊢ M : T is to be interpreted as a morphism

JMK : J|Γ |K −→S J|T |K

where J|Γ |K = J|T1 |K× · · · × J|Tn |K for Γ = x1 : T1, . . . ,xn : Tn .
In particular, a closed term M : T is to be interpreted as a

global section JMK ∈ ΓJ|T |K. The ×/+/→ fragment of the

calculus is interpreted by the corresponding structure in S.

The ▶ modality is interpreted by the functor ▶ : S → S

of [8]. This functor shifts indexes by 1 and inserts a singleton

set 1 at index 1. The term constructor next is interpreted by

the natural map with component nextX : X → ▶X as in:

X

nextX

��

X1

1
��

X2

rX
1oo

rX
1

��

Xn

rXn−1
��

oo Xn+1
rXnoo

rXn
��

oo

▶X 1 X11
oo Xn−1oo Xn

rXn−1

oo oo

The guarded fixpoint combinator fix is interpreted by the

morphism fixX : X▶X → X , natural in X , such that given

f : ▶X ×Y → X with exponential transpose f t : Y → X▶X
,

9

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

the morphism fixX ◦ f t : Y → X is unique s.t.:

Y
⟨next fix f t , id⟩ // ▶X × Y

f // X = Y
fix f t // X

Together with an interpretation of guarded recursive types

(see [8]) this gives an denotational semantics of the whole

calculus but for the ■ modality. See [8, 13] for details.

We write fd : JA[Fix(X).A/X]K → JFix(X).AK and ufd :

JFix(X).AK → JA[Fix(X).A/X]K for the two isomorphisms

of JFix(X).AK ≃ JA[Fix(X).A/X]K.

Internal Semantics of Formulae. Each formula φ over A
has a S interpretation, in the form of a subobject JφK of JAK.

A subobject S of a S object X , notation S ↪→ X , is a family

of subsets S(n) ⊆ X (n) such that rXn (t) ∈ S(n) whenever
t ∈ S(n + 1). The set of subobjects of a S object X , denoted
Sub(X), is a complete lattice w.r.t. pointwise inclusions (see

e.g. [36, Prop. I.8.5]), and in particular a (complete) Heyting

algebra. Following e.g. [36, 35], we say that x ∈ ΓX satisfies
a property S ∈ Sub(X) if x factors through S , as in

S � _

��
1 x //

55

X

Note that this means

∀n > 0, xn(•) ∈ S(n)

By adequacy of theS semantics, wemean that for each closed

termM : {A | φ}, the global section JMK ∈ ΓJAK satisfies the
property JφK ∈ Sub(JAK).

Formulae without free iteration variables are interpreted

by induction as expected. The propositional connectives are

interpreted by the Heyting algebra structure on subobjects.

This validates the rules of intuitionistic logic.

We now turn to the interpretation of modalities. Let [△]

be a modality of the form [πi], [ini], [next] or [fd], and as-

sume [△]φ : B whenever φ : A. Standard topos theoretic

constructions give posets morphisms

J[△]K : Sub(JAK) −→ Sub(JBK)

such that:

• J[πi]K and J[fd]K are maps of Heyting algebras,

• J[ini]K preserves ∨,⊥ and ∧,

• J[next]K preserves ∧,⊤ and ∨.

With J[△]φK := J[△]K(JφK), all the axioms and rules of Ta-

ble 1 are validated for these modalities. To handle guarded

recursion, it is crucial to have

J[next]φK := ▶(JφK)

with J[next]φK true at time 1, independently from φ. As con-
sequence, [next] and ⃝ do not validate axiom (P) (Table 1),
and 3[hd]φ can “lie” about the next time step.

The modality [ev(ψ)] is a bit more complex. For ψ : B
and φ : A, the formula [ev(ψ)]φ is interpreted as a logical
predicate in the sense of [22, §9.2 & Prop. 9.2.4]. The idea is

H[πi]φI :=
{
x ∈ ΓJA0 ×A1K

�� πi ◦ x ∈ HφI
}

H[next]φI :=
{
next ◦ x ∈ ΓJ▶AK

�� x ∈ HφI
}

H[fd]φI :=
{
x ∈ ΓJFix(X).AK

�� ufd ◦ x ∈ HφI
}

H[ini]φI :={
x ∈ ΓJA0 +A1K

�� ∃y ∈ ΓJAiK
(
x = ini ◦ y and y ∈ HφI

)}
H[ev(ψ)]φI :={
x ∈ ΓJB → AK

�� ∀y ∈ ΓJBK, y ∈ HψI =⇒ ev ◦ ⟨x ,y⟩ ∈ HφI
}

Figure 9. External Semantics (■-free formulae).

that for a term M : {B → A | [ev(ψ)]φ}, the global section
ev ◦ ⟨JMK,x⟩ ∈ ΓJAK should satisfy φ whenever x ∈ ΓJBK
satisfiesψ . We refer to App. C for details.

The interpretations of ναtφ(α) and µαtφ(α) (for t closed)

are defined to be the interpretations resp. of φJtK(⊤) and

φJtK(⊥), where e.g. φ0(⊤) := ⊤ and φn+1(⊤) := φ(φn(⊤)).
We turn to fixpoints ναωφ(α) and µαωφ(α). A naive pos-

sibility would be to rely on Kaster-Tarski Fixpoint Theorem

and the fact that when α is positive in φ (i.e. α Pos φ), the
typing α : A ⊢ φ : A induces a poset morphism

JφK : Sub(JAK) −→ Sub(JAK)

This, however, is to some extent meaningless in our setting,

because S has unique guarded fixpoints [8, §2.5].

Proposition 7.2. Given α : A ⊢ φ(α) : A with α positive and
guarded by ▶ in φ, there is a unique Jναωφ(α)K ∈ Sub(JAK)
such that Jναωφ(α)K = Jφ(ναωφ(α))K.

In particular, the typing fix(s).consg a s : {StrgA | 3[φ]}
for arbitrary a : A and φ : Str

gA of §2 is not problematic

w.r.t. the S semantics J−K!

The External Semantics. The above issue suggests to look

for semantics closer to the intended meaning of the logic.

Møgelberg [40] has shown that for polynomial types such

as Str
g B with B a finite base type, the set of global sections

ΓJStrg BK is equipped with the usual final coalgebra structure
of streams over B in Set.
This suggests, for a formula φ : A, to devise a proper Set

interpretation HφI ∈ P(ΓJAK). For propositional connectives
and fixpoints, this interpretation is defined similarly as the

S interpretation, but using the Boolean algebra structure of

powersets rather than the Heyting algebra structure of sub-

objects. We give the cases of the modalities [πi], [ini], [next]
and [fd] in Fig. 9 (where for simplicity we assume formulae

to be closed). It can be checked that, when restricting to

polynomial functors, one recovers the expected coalgebraic

semantics of [23] (with sums treated as in [24]) extended

with fixpoints.

The Safe Fragment. We would like to have adequacy w.r.t.

the Set semantics, namely that givenM : {A | φ}, the global
section JMK ∈ ΓJAK satisfies HφI ∈ P(ΓJAK) in the sense

10

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

that JMK ∈ HφI. The odd typing of §2 tells us that this is

impossible in general. But this is possible for safe formulae

since in this case we have:

HφI = ΓJφK

Let us sketch the key ingredients for this property. First note

that on ■-free types, safe formulae do not contain implica-

tions (⇒). For this fragment, intuitionistic and classical logic

coincide, making HφI = ΓJφK plausible.
Second, for a safe formula α : A ⊢ φ : A, the poset mor-

phisms

JφK : Sub(JAK) −→ Sub(JAK)
HφI : P(ΓJAK) −→ P(ΓJAK)

are Scott cocontinuous, in the sense that they preserve codi-

rected meets. As a consequence, greatest fixpoints ναωφ(α)
can be interpreted, both in Set and S, as the meets of the

interpretations of

⊤ , φ(⊤) , φ(φ(⊤)) , · · · φn(⊤) , φn+1(⊤) , · · ·

This leads to the expected coincidence of the two semantics.

In particular, the Set semantics is adequate for safe formulae.

Let us step back to the cases of 2[φ] and3[φ] on guarded

streams Str
g B. Assume that φ is safe. The equality

H2[φ]I = ΓJ2[φ]K

implies that the usual Set semantics of 2[φ] is in the image

of Γ. But a subset of ΓJStrg BK which is in the image of Γ is

necessarily a closed set w.r.t. the usual product topology on

streams in Set, i.e. a safety property. Formulae of the form

2[φ] do define safety properties on streams. On the other

hand, liveness properties of the form 3[φ] are not closed
(for non-trivial φ), and as such cannot be in the image of Γ.

The Constant Modality. In order to safely handle unsafe

formulae, we rely on the constant type modality■ of [13]. At

the semantic level, ■ is interpreted as the composite functor

∆Γ : S → S, where the constant object functor ∆ : Set → S

takes a set S to the constant family (S)n>0. In words, all

components J■AK(n) are equal to ΓJAK, and the restriction

maps of J■AK are identities. In particular, a global section

x ∈ ΓJ■AK is a constant family (xn)n describing a unique

global section xn+1(•) = xn(•) ∈ ΓJAK. We refer to [13] and

App. C for the interpretation of the term constructors prev,
bx and ubx.
Consider now an arbitrary formula φ over A. In order

to accommodate its Set semantics HφI within S, we can

syntactically lift φ to the formula [bx]φ over ■A and impose

J[bx]φK := ∆
(
HφI

)
This definition is justified by simple and standard facts of

topos theory,
1
namely that for each set S , the functor ∆

1
Namely, ∆ is left adjoint to Γ and the pair ∆ ⊣ Γ : S → Set is an open
geometric morphism (see e.g. [36, 28]).

induces a map of (complete) Heyting algebras

A ∈ P(S) 7−→ ∆A ∈ Sub(∆S)

This means that the Set interpretation HφI ∈ P(ΓJAK) can
be taken to the subobject ∆HφI ∈ Sub(∆ΓJAK) = Sub(J■AK)
in S while respecting the usual Set semantics of logical con-

nectives. In particular, we can allow the logical theory under

a [bx] to be classical, while the S semantics imposes the

ambient logical theory to be intuitionistic.

On the other hand, for the interpretation of [bx] in the

external semantics we can trivially let

H[bx]φI :=
{
x ∈ ΓJ■AK

�� x1(•) ∈ HφI
}

We can now state the correctness of our semantics w.r.t.

the modal theories of Def. 5.6.

Lemma 7.3. (1) If ⊢A
c
φ then HφI = ΓJAK.

(2) If ⊢A φ then JφK = JAK.

Safe Formulae: The General Case. The property we use

on safe formulae, seen as lattice operators, is the following.

Definition 7.4 (Scott Cocontinuity). Let L be a complete lat-
tice. A set S ⊆ L is codirected if it is non-empty and for all
a,b ∈ S , there is some c ∈ S such that c ≤ a,b. A function
f : L → L is Scott cocontinuous if it is monotone and pre-
serves meets of codirected sets (for S ⊆ L codirected, we have
f (
∧
S) =

∧
f (S)).

In other words, a Scott cocontinuous function L → L is a

Scott continuous function Lop → Lop. Dually as with Scott

continuity, we have the following.

Lemma 7.5. The greatest fixpoint of a Scott cocontinuous
function f : L → L is given by

ν (f) :=
∧

m∈N f m(⊤)

Safe formulae indeed induce Scott cocontinuous operators.

Lemma 7.6. Given a safe formula α : A ⊢ φ(α) : A, the
functions

JφK : Sub(JAK) −→ Sub(JAK)
HφI : P(ΓJAK) −→ P(ΓJAK)

are Scott cocontinuous.

The key for Lem. 7.6 is the usual fact that codirected meets

commute with finite joins and meets.

Proposition 7.7. If φ : A is safe then HφI = ΓJφK.

Recall that in safe formulae, implications can only occur

under a [bx] modality and thus in closed subformulae. It is

crucial for Prop. 7.7 that meets and joins are pointwise in the

subobject lattices of S, so that conjunctions and disjunctions

are interpreted as with the usual classical Kripke seman-

tics (see e.g. [36, §VI.7]). This of course does not hold for

implications!

11

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

The key case of Prop. 7.7 is that of ναωφ(α) : A. We have

Hναωφ(α)I =
⋂
m∈N

Hφm(⊤)I Jναωφ(α)K =
∧
m∈N

Jφm(⊤)K

Given a global section x ∈ ΓJναωφ(α)K, we have

∀n > 0, ∀m ∈ N, xn(•) ∈ Jφm(⊤)K(n)

We then easily conclude x ∈ Hναωφ(α)I from Hφm(⊤)I =
ΓJφm(⊤)K. Note that this relies on the commutation of the

universal quantifications over n andm.

Flat Fixpoints. The situation due to flat fixpoints general-
izes the safe case. Recall that a Scott continuous function

L → L is a Scott cocontinuous function Lop → Lop.

Lemma 7.8. Given α : A ⊢ φ(α) : A with α positive in
φ, the function HφI : P(ΓJAK) −→ P(ΓJAK) is Scott
continuous as well as cocontinuous.

Dually as in the cocontinuous case, the least fixpoint of a

Scott continuous function f : L → L can be computed as

µ(f) =
∨

m∈N f m(⊥)

Corollary 7.9. Given ναωφ(α) : A and µαωφ(α) : Awe have

Hναωφ(α)I =
⋂
n∈N

Hφn(⊤)I Hµαωφ(α)I =
⋃
n∈N

Hφn(⊥)I

Corollary 7.9 implies the correctness of the typing rules (ν-I)
and (µ-E) of Fig. 8.

The Realizability Semantics. The correctness of the type
system w.r.t. its semantics in S is proved with a realizability

relation. This relation is formulated with global sections.

Definition 7.10 (Realizability). Given a type T without free
iteration variable, a global section x ∈ ΓJ|T |K and n > 0,
we define the realizability relation x ⊪n T by induction on
lexicographicaly ordered pairs (n,T) as follows:

• x ⊪n {A | φ} iff xn(•) ∈ JφKA(n).
• x ⊪n 1.
• x ⊪n T0+T1 iff there are some i ∈ {0, 1} andy ∈ ΓJ|Ti |K
s.t. x = ini ◦ y and y ⊪n Ti .

• x ⊪n T0 ×T1 iff π0 ◦ x ⊪n T0 and π1 ◦ x ⊪n T1.
• x ⊪n U → T iff for all k ≤ n and for all y ∈ ΓJ|U |K
such that y ⊪k U , we have ev ◦ ⟨x ,y⟩ ⊪k T .

• x ⊪1 ▶T .
• x ⊪n+1 ▶T iff there isy ∈ ΓJ|T |K such that x = next◦y
and y ⊪n T .

• x ⊪n Fix(X).A iff ufd ◦ x ⊪n A[Fix(X).A/A].
• x ⊪n ■T iff xn(•) ⊪m T for all m > 0 (where x ∈

ΓJ|■T |K).
• x ⊪n ∀k ·T iff x ⊪n T [t/k] for all t.

Note that we have x ⊪n A for x ∈ ΓA. It is easy to see that if
x ⊪n T , then x ⊪k T for all k ≤ n. Moreover, the subtyping

relation is correct in the following sense.

Lemma7.11. Given typesT ,U without free iteration variable,
if x ⊪n U andU ≤ T then x ⊪n T .

The correctness of typing is the following.

Theorem 7.12 (Adequacy). If ⊢ M : T where T has no free
iteration variable, then JMK ⊪n T for all n > 0.

A closed term M : {A | φ} for φ safe thus induces a global

section JMK ∈ ΓJAK which satisfies HφI. Moreover a func-

tion, say M : {B | ψ } → {A | φ} with ψ ,φ safe, induces by

composition a Set-function

ΓJMK : ΓJBK → ΓJAK, x 7→ JMK ◦ x

such that ΓJMK(x) satisfies HφI whenever x satisfies HψI.

Polynomial Types. We give the statement of Møgelberg’s

Theorem [40] for our context. To each polynomial recursive

type Fix(X).P(X), we associate a polynomial functor PSet in
the obvious way: 1Set is {•}, (−)Set commutes over × and

+, (▶X)Set is the identity and (■A)Set is the constant func-
tor with value ΓJAK. It is well-known that each polynomial

functor F has a final coalgebra (see e.g. [24]).

Theorem 7.13 ([40] (see also [13])). Given a polynomial
type Fix(X).P(X), the pair (ΓJFix(X).P(X)K, ΓJufdK) is a final
Set-coalgebra for the polynomial functor PSet.

Let φ, ψ be safe. Then map : (B → A) → Str B → Str A
induces a standard stream function which, when provided

with some f : B → A taking b ∈ B satisfying ψ to f (y) ∈ A
satisfying φ, gives a stream with all (resp. some, almost all,

infinitely many) elements satisfying φ whenever its stream

argument has all (resp. some, almost all, infinitely many)

elements satisfying ψ . Similarly, diag : Str(Str B) → Str B
induces a function which gives a streamwith all (resp. almost

all) elements satisfyingφ whenever its argument has all (resp.

almost all) elements whose elements all satisfy φ.

8 Conclusion
Guarded recursion has been used as an abstraction of the

step-indexing techniques [2], used to define realizability and

logical relations for programming languages [3, 1]. In this

setting, logics have been defined to reason over of such step-

indexed Kripke logical relations (LSLR [14], LADR [15]). We

would like to explore extention of our framework to define

such logics, particularly modalities used in LADR to reason

about the evolution of worlds (defined as transition systems

of heap invariants).

We also want to explore application of our refinement

types to reasoning over coinductively defined resumption
monads [44], which formalizes the notion of resumption [39]

used to reason on interaction agents in concurrency the-

ory. We would be particularly interested by applying our

framework to reason over recently introduced interaction

trees [51], that generalize resumption monads. General the-

ory of weak bisimulation for them is defined using paramet-

ric coinduction (Paco) [21, 52], it would be a good opportu-

nity to compare it to guarded recursion.

12

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. nnnnnnn and Grant

No. mmmmmmm. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author and do not necessarily reflect the views of the

National Science Foundation.

References
[1] A. Ahmed. 2006. Step-indexed syntactic logical relations for recur-

sive and quantified types. In European Symposium on Programming.
Springer, 69–83.

[2] A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. 2007. A Very

Modal Model of a Modern, Major, General Type System. SIGPLAN Not.
42, 1 (Jan. 2007), 109?122. https://doi.org/10.1145/1190215.1190235

[3] Andrew W. Appel and David McAllester. 2001. An Indexed Model of

Recursive Types for Foundational Proof-Carrying Code. ACM Trans.
Program. Lang. Syst. 23, 5 (2001), 657?683. https://doi.org/10.1145/
504709.504712

[4] R. Atkey and C. McBride. 2013. Productive Coprogramming with

Guarded Recursion. In Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP ’13). ACM, New

York, NY, USA, 197–208. https://doi.org/10.1145/2500365.2500597
[5] P. Bahr, C. Graulund, and R. Møgelberg. 2019. Simply RaTT: A

Fitch-style Modal Calculus for Reactive Programming. arXiv preprint
arXiv:1903.05879 (2019).

[6] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT

Press.

[7] L. Birkedal, A. Bizjak, R. Clouston, H. B. Grathwohl, B. Spitters, and

A. Vezzosi. 2019. Guarded Cubical Type Theory. Journal of Auto-
mated Reasoning 63, 2 (01 Aug 2019), 211–253. https://doi.org/10.1007/
s10817-018-9471-7

[8] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. 2012.

First steps in synthetic guarded domain theory: step-indexing in the

topos of trees. Logical Methods in Computer Science 8, 4 (2012).
[9] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L.

Birkedal. 2016. Guarded Dependent Type Theory with Coinductive

Types. In Foundations of Software Science and Computation Structures,
Bart Jacobs and Christof Löding (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 20–35.

[10] P. Blackburn,M. de Rijke, and Y. Venema. 2002.Modal Logic. Cambridge

University Press.

[11] A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. 2014. Fair Reac-

tive Programming. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’14). ACM,

New York, NY, USA, 361–372.

[12] B. F. Chellas. 1980. Modal Logic: An Introduction. Cambridge University

Press.

[13] R. Clouston, A. Bizjak, H. Bugge Grathwohl, and L. Birkedal. 2016.

The Guarded Lambda-Calculus: Programming and Reasoning with

Guarded Recursion for Coinductive Types. Logical Methods in Com-
puter Science 12, 3 (2016).

[14] D. Dreyer, A. Ahmed, and L Birkedal. 2011. Logical Step-Indexed

Logical Relations. Logical Methods in Computer Science Volume 7, Issue

2 (2011). https://doi.org/10.2168/LMCS-7(2:16)2011
[15] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. 2010. A Relational

Modal Logic for Higher-order Stateful ADTs. In Proceedings POPL’10.
ACM, 185–198.

[16] C. Elliott and P. Hudak. 1997. Functional Reactive Animation. In

Proceedings of the Second ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97). ACM, New York, NY, USA, 263–273.

https://doi.org/10.1145/258948.258973
[17] T. Freeman and F. Pfenning. 1991. Refinement Types for ML. In Proceed-

ings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation (PLDI ?91). Association for Computing

Machinery, New York, NY, USA, 268?277. https://doi.org/10.1145/
113445.113468

[18] S. Frittella. 2014. Monotone Modal Logics & Friends. Ph.D. Dissertation.
Aix-Marseille Univ.

[19] A. Guatto. 2018. A Generalized Modality for Recursion. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’18). ACM, New York, NY, USA, 482–491. https://doi.org/10.

13

https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/3209108.3209148

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

1145/3209108.3209148
[20] H. H. Hansen. 2003. Monotonic Modal Logics. Master’s thesis. ILLC,

Amsterdam.

[21] C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. 2013. The Power of

Parameterization in Coinductive Proof. In Proceedings of the 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ?13). Association for Computing Machinery, New

York, NY, USA, 193?206. https://doi.org/10.1145/2429069.2429093
[22] B. Jacobs. 2001. Categorical Logic and Type Theory. Elsevier.
[23] B. Jacobs. 2001. Many-Sorted Coalgebraic Modal Logic: a Model-

theoretic Study. ITA 35, 1 (2001), 31–59.

[24] B. Jacobs. 2016. Introduction to Coalgebra: Towards Mathematics of
States and Observation. Cambridge University Press.

[25] A. Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic Propo-

sitions As Types, Proofs As Functional Reactive Programs. In Pro-
ceedings of the Sixth Workshop on Programming Languages Meets
Program Verification (PLPV ’12). ACM, New York, NY, USA, 49–60.

https://doi.org/10.1145/2103776.2103783
[26] W. Jeltsch. 2014. An Abstract Categorical Semantics for Functional

Reactive Programming with Processes. In Proceedings of the ACM
SIGPLAN 2014 Workshop on Programming Languages Meets Program
Verification (PLPV ’14). ACM, New York, NY, USA, 47–58. https:
//doi.org/10.1145/2541568.2541573

[27] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. 2011. HMC:

Verifying functional programs using abstract interpreters. In Interna-
tional Conference on Computer Aided Verification. Springer, 470–485.

[28] P.T. Johnstone. 2002. Sketches of an Elephant: A Topos Theory Com-
pendium. Clarendon Press.

[29] N. Kobayashi and C-H L. Ong. 2009. A type system equivalent to the

modal mu-calculus model checking of higher-order recursion schemes.

In 2009 24th Annual IEEE Symposium on Logic In Computer Science.
IEEE, 179–188.

[30] N. Kobayashi, R. Sato, and H. Unno. 2011. Predicate abstraction and

CEGAR for higher-order model checking. In ACM SIGPLAN Notices,
Vol. 46. ACM, 222–233.

[31] D. Kozen. 1983. Results on the propositional µ-calculus. Theoretical
Computer Science 27, 3 (1983), 333 – 354. Special Issue Ninth Interna-

tional Colloquium on Automata, Languages and Programming (ICALP)

Aarhus, Summer 1982.

[32] N. R. Krishnaswami. 2013. Higher-order Functional Reactive Program-

ming Without Spacetime Leaks. In Proceedings of ICFP’13. ACM, New

York, NY, USA, 221–232.

[33] N. R. Krishnaswami and N. Benton. 2011. Ultrametric Semantics of

Reactive Programs. In 2011 IEEE 26th Annual Symposium on Logic in
Computer Science. 257–266. https://doi.org/10.1109/LICS.2011.38

[34] T. Kuwahara, T. Terauchi, H. Unno, and N. Kobayashi. 2014. Automatic

termination verification for higher-order functional programs. In Eu-
ropean Symposium on Programming Languages and Systems. Springer,
392–411.

[35] J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical
Logic. CUP.

[36] S. Mac Lane and I. Moerdijk. 1992. Sheaves in geometry and logic: A
first introduction to topos theory. Springer.

[37] S. Marin. 2018. Modal proof theory through a focused telescope. PhD
Thesis. Université Paris Saclay. https://hal.archives-ouvertes.fr/
tel-01951291

[38] C. McBride and R. Paterson. 2008. Applicative programming with

effects. Journal of Functional Programming 18, 1 (2008), 1?13. https:
//doi.org/10.1017/S0956796807006326

[39] R. Milner. 1975. Processes: a mathematical model of computing agents.

In Studies in Logic and the Foundations of Mathematics. Vol. 80. Elsevier,
157–173.

[40] R. E. Møgelberg. 2014. A Type Theory for Productive Coprogramming

via Guarded Recursion. In Proceedings of CSL-LICS 2014 (CSL-LICS ’14).

ACM.

[41] A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno. 2016. Tem-

poral Verification of Higher-Order Functional Programs. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ?16). Association for Computing Ma-

chinery, New York, NY, USA, 57?68. https://doi.org/10.1145/2837614.
2837667

[42] H. Nakano. 2000. A Modality for Recursion. In Proceedings of LICS’00.
IEEE Computer Society, 255–266.

[43] C.-H. L. Ong. 2006. On Model-Checking Trees Generated by Higher-

Order Recursion Schemes. In Proceedings of LICS 2006. IEEE Computer

Society, 81–90.

[44] M. Piróg and J. Gibbons. 2014. The coinductive resumption monad.

Electronic Notes in Theoretical Computer Science 308 (2014), 273–288.
[45] G. Plotkin and C. Stirling. 1986. A Framework for Intuitionistic Modal

Logics: Extended Abstract. In Proceedings of the 1986 Conference on
Theoretical Aspects of Reasoning About Knowledge (TARK ’86). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 399–406.

[46] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liq-

uid Types. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ?08). As-
sociation for Computing Machinery, New York, NY, USA, 159?169.

https://doi.org/10.1145/1375581.1375602
[47] L. Santocanale and Y. Venema. 2010. Completeness for flat modal

fixpoint logics. Ann. Pure Appl. Logic 162, 1 (2010), 55–82.
[48] A. K. Simpson. 1994. The Proof Theory and Semantics of Intuitionistic

Modal Logic. PhD Thesis. University of Edinburgh. https://www.era.
lib.ed.ac.uk/handle/1842/407

[49] Niki Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D.
Dissertation. UC San Diego.

[50] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2014. Refinement Types for Haskell. In Proceedings of
the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ?14). Association for Computing Machinery, New

York, NY, USA, 269?282. https://doi.org/10.1145/2628136.2628161
[51] L.-Y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and

S. Zdancewic. 2019. Interaction Trees: Representing Recursive and

Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article
Article 51 (Dec. 2019), 32 pages. https://doi.org/10.1145/3371119

[52] Y. Zakowski, P. He, C.-K. Hur, and S. Zdancewic. [n. d.]. An Equa-

tional Theory for Weak Bisimulation via Generalized Parameterized

Coinduction. ([n. d.]).

14

https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2541568.2541573
https://doi.org/10.1145/2541568.2541573
https://doi.org/10.1109/LICS.2011.38
https://hal.archives-ouvertes.fr/tel-01951291
https://hal.archives-ouvertes.fr/tel-01951291
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/1375581.1375602
https://www.era.lib.ed.ac.uk/handle/1842/407
https://www.era.lib.ed.ac.uk/handle/1842/407
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3371119

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

A Additional Material for Section 5
The full definition of the variance predicates α Pos φ and

α Neg φ is given in Fig. 10. The intuitionistic propositional

deduction rules are given in Fig. 11.

Remark A.1 (Rem. 5.7). All modalities ([πi], [fd], [next], [ini],
[ev(ψ)] and [bx]) satisfy the monotonicity rule (RM) and are

thus monotone in the sense of [12], fromwhich we borrowed

the terminology used in Table 1 (see also [20, 18]). Assuming

the rule (RM), we easily get the following:

(1) Axiom (N) implies the usual necessitation rule:

⊢ φ

⊢ [△]φ
(RN)

Proof. Indeed, one can derive

(N)
⊢ [△]⊤

φ

⊢ ⊤ ⇒ φ
(RM)

⊢ [△]⊤ ⇒ [△]φ

[△]φ

□

(2) Axiom (C) implies the usual axiom (K):

[△](φ ⇒ ψ) =⇒ ([△]φ ⇒ [△]ψ)

Proof. Indeed, one has

(
(φ ⇒ ψ) ∧ φ

)
=⇒ ψ

(RM)
[△]

(
(φ ⇒ ψ) ∧ φ

)
=⇒ [△]ψ

(C)
[△](φ ⇒ ψ) ∧ [△]φ =⇒ [△]ψ

[△](φ ⇒ ψ) =⇒ ([△]φ ⇒ [△]ψ)

□

(3) We have the monotonicity axioms

[△](φ ∧ψ) =⇒ [△]φ ∧ [△]ψ
[△]φ ∨ [△]ψ =⇒ [△](φ ∨ψ)

Hence, with our adaptation to unbounded linear branching,

the normal intuitionistic modal logic IK of [45] is (RM) +

(C)+ (N)+ (P)+ (C∨)+ (C⇒), while the normal modal logic

K is IK + (CL) (see e.g. [10]).

B Additional Material for Section 6
The full definition of the subtyping relation ≤ is given in

Fig. 12.

The underlying pure type |T | of a refinement type T is

inductively defined as follows:

|A| := A
| {A | φ} | := A
|∀k ·T | := |T |
|T +U | := |T | + |U |

|T ×U | := |T | × |U |

U → T	:=	U	→	T
▶T	:= ▶	T		
■T	:= ■	T		

C Additional Material for Section 7
This Appendix presents material that we omitted in §7 for

space reasons. We follow roughly he same plan. All proofs a

deferred to App. E. We often use θ as a generic notation for

µ and ν .

C.1 The Topos of Trees (Basic Structure)
Notation C.1. Given an object X of S and 0 < k ≤ n, we
write t↑k for the restriction of t ∈ X (n) into X (k), obtained
by composing restriction functions rXi for i = k, . . . ,n − 1.

Full definitions and proofs of the semantic require the explicit

manipulation of some of the structure ofS. We refer to [8, 13]

for details.

First, as in any presheaf category, limits and colimits are

computed pointwise. In particular binary sums and products

are given by

(X + Y)(n) = X (n) + Y (n)
(X × Y)(n) = X (n) × Y (n)

Moreover, exponentials are induced by the Yoneda Lemma

see e.g. [36, §I.6]. Explicitly, given S object X and Y , the ex-
ponentYX

atn is the set of all sequences (fℓ)ℓ≤n of functions
fℓ : X (ℓ) → Y (ℓ) which are compatible with restriction (i.e.
rY
ℓ
◦ fℓ+1 = fℓ ◦ r

X
ℓ
).

The morphism fixX : X▶X → X is defined as

fixXn ((fm)m≤n) := (fn ◦ · · · ◦ f1)(•)

Since we do not require the explicit constructions, we

refer to [8] for the interpretation of guarded recursive types

Fix(X).A(X) and for the definition of the isos

fd : JA(Fix(X).A(X))K −→ JFix(X).A(X)K
ufd : JFix(X).A(X)K −→ JA(Fix(X).A(X))K

Wenow have all the structure we need for the denotational

semantics of the ■-free fragment of the pure calculus.

C.2 Global Sections and Constant Objects
As for any presheaf topos, the global section functor Γ : S →

Set is right adjoint to the constant object functor ∆ : Set →
15

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

α Pos α α Pos ⊤ α Pos ⊥

α Pos φ α Pos ψ

α Pos φ ∨ψ

α Pos φ α Pos ψ

α Pos φ ∧ψ

α Neg ψ α Pos φ

α Pos ψ ⇒ φ

α Pos φ

α Pos [πi]φ

α Pos φ

α Pos [ini]φ
α Pos φ

α Pos [fd]φ
α Pos φ

α Pos [next]φ

α Neg ⊤ α Neg ⊥

α Neg φ α Neg ψ

α Neg φ ∨ψ

α Neg φ α Neg ψ

α Neg φ ∧ψ

α Pos ψ α Neg φ

α Neg ψ ⇒ φ

α Neg φ

α Neg [πi]φ

α Neg φ

α Neg [ini]φ
α Neg φ

α Neg [fd]φ
α Neg φ

α Neg [next]φ

Figure 10. Positive and Negative Occurrences in a Formula.

⊢A φ ∨ φ ⇒ φ ⊢A φ ⇒ φ ∧ φ ⊢A φ ⇒ φ ∨ψ ⊢A φ ∧ψ ⇒ φ

⊢A φ ∨ψ ⇒ ψ ∨ φ ⊢A φ ∧ψ ⇒ ψ ∧ φ

⊢A φ ∧ψ ⇒ θ

⊢A φ ⇒ (ψ ⇒ θ)

⊢A φ ⇒ (ψ ⇒ θ)

⊢A φ ∧ψ ⇒ θ

⊢A φ ⊢A φ ⇒ ψ

⊢A ψ

⊢A φ ⇒ ψ ⊢A ψ ⇒ θ

⊢A φ ⇒ θ ⊢A ⊥ ⇒ φ

⊢A φ ⇒ ψ

⊢A θ ∨ φ ⇒ θ ∨ψ

Figure 11. Intuitionistic Propositional Deduction Rules.

T ≤ T

T ≤ U U ≤ V

T ≤ V

T ≤ U

▶T ≤ ▶U
U ≤ T

■U ≤ ■T

T0 ≤ U0 T1 ≤ U1

T0 ×T1 ≤ U0 ×U1

T0 ≤ U0 T1 ≤ U1

T0 +T1 ≤ U0 +U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ |T | A ≤ {A | ⊤}

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

{B | ψ } → {A | φ} ≡ {B → A | [ev(ψ)]φ}

▶ {A | φ} ≡ {▶A | [next]φ} ∀k ·▶T ≡ ▶∀k ·T

φ safe

■ {A | φ} ≡ {■A | [bx]φ}
⊢A
c
φ ⇒ ψ

{■A | [bx]φ} ≤ {■A | [bx]ψ }

Figure 12. Subtyping Rules (full version).

S (see e.g. [36, §I.6]):

S

Γ
))

⊤ Set
∆

ii

We state the following for the record.

Lemma C.2. For X , Y objects of S, we have Γ(X + Y) ≃

ΓX +ΓY , Γ(X ×Y) ≃ ΓX ×ΓY and Γ(▶X) ≃ ΓX (via Γ(next)).

Following [13], for a (closed) pure type A, we have

J■AK := ∆ΓJAK

In words, all components J■AK(n) are equal to ΓJAK, and the
restriction maps of J■AK are identities. In particular, a global

section x ∈ ΓJ■AK is a constant family (xn)n>0 describing a

unique global section xn+1(•) = xn(•) ∈ ΓJAK.
The term constructor ubx(−) is interpreted as the counit ε

of the adjunction ∆ ⊣ Γ: given Γ ⊢ M : ■A, we let Jubx(M)K
be the composite

JΓK
JMK
−→ J■AK = ∆ΓJAK

ε
−→ JAK

The term constructors bx and prev rely on a strong seman-

tic property of constant types, namely that their interpreta-

tion lie in the image of the constant object functor ∆.

Definition C.3. An object X of S is constant if X = ∆S for
some set S .

Lemma C.4 ([13, Lem. 2.6]). If A is a constant (pure) type,
then JAK is a constant object of S.

16

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

We now give the interpretations of bxσ (M) and prevσ (M)

(where σ stands for [x1 7→ M1, . . . ,xk 7→ Mk]). Assuming

in both cases JMK to be defined, for n > 0 we let

Jbxσ (M)K(n) : JΓK(n) −→ ∆ΓJAK(n) = ΓJAK
γ 7−→

(
m 7→ JMKm

(
JM1Kn(γ) , . . . , JMk Kn(γ)

))
Jprevσ (M)K(n) : JΓK(n) −→ ▶JAK(n) = JAK(n + 1)

γ 7−→

(
JMKn+1

(
JM1Kn(γ) , . . . , JMk Kn(γ)

))
where the mismatches between n andm and between n and

n + 1 are legal since JA1K, . . . , JAk K are constant by Lem. C.4.

C.3 External and Internal Semantics: Global
Definitions

We can now give the full Set and S interpretations of the

logical language. In contrast with §7, we discuss the external

semantics H−I in Set before the internal semantics J−K in S.

In both cases, for α : A ⊢ φ : A(α), we let

φ0(⊤) := ⊤

φm+1(⊤) := φ(φm(⊤))
φ0(⊥) := ⊥

φm+1(⊥) := φ(φm(⊥))

(Recall that θαtφ is only allowed when φ as at most α as free

variable.)

Definition C.5 (External Semantics). Consider a formula
α1 : A1, . . . ,αk : Ak ⊢ φ : A without free iteration variable.
Assume given a valuationv taking each propositional variable
αi for i = 1, . . . ,k to a setv(αi) ∈ P(ΓJAiK). We define HφIAv ∈

P(ΓJAK) by induction on φ in Fig. 13.

As for the internal S semantics J−K, we give a global

definition, in a form similar to Def. C.5.

Definition C.6 (Internal Semantics). Consider a formula
α1 : A1, . . . ,αk : Ak ⊢ φ : A without free iteration variable.
Assume given a valuationv taking each propositional variable
αi for i = 1, . . . ,k to a subobject v(αi) of JAiK. The subobject
JφKAv of JAK is defined by induction on φ in Fig. 14.

The correctness of Def. C.6, namely that we indeed have

JφKA ∈ Sub(JAK), as well as the correspondence with the

presentation of §7 are discussed in App. C.6.

Remark C.7. For closed formulae we can rephrase Def. C.6

as t ∈ JφKA(n) iff t ⊩A
n φ, where the forcing relation t ⊩A

n φ
is inductively defined as follows.

• t ̸⊩A
n ⊥.

• t ⊩A
n ⊤.

• t ⊩A
n φ ∨ψ iff t ⊩A

n φ or t ⊩A
n ψ .

• t ⊩A
n φ ∧ψ iff t ⊩A

n φ and t ⊩A
n ψ .

• t ⊩A
n ψ ⇒ φ iff for all k ≤ n, t↑k ⊩A

k φ whenever

t↑k ⊩A
k ψ .

• t ⊩A0×A1

n [πi]φ iff πi (t) ⊩
Ai
n φ.

• t ⊩A0+A1

n [ini]φ iff there is u ∈ JAiK(n) such that t =

ini (u) and u ⊩Ai
n φ.

• t ⊩B→A
n [ev(ψ)]φ iff for all k ≤ n and all u ∈ JBK(k),

(t↑k)(u) ⊩A
k φ whenever u ⊩B

k ψ .

• t ⊩Fix(X).A
n [fd]φ iff ufd ◦ t ⊩A[Fix(X).A/X]

n φ.
• t ⊩▶A

0
[next]φ.

• t ⊩▶A
n+1 [next]φ iff t ⊩A

n φ.

• t ⊩■A
n [bx]φ iff t ∈ HφIA.

C.4 An Open Geometric Morphism
Key properties of the internal semantics of [bx] rely on some

further facts on the adjunction ∆ ⊣ Γ. We refer to [36, 28].

The functor ∆ : Set → S preserves limits (in particular,

∆ ⊣ Γ : S → Set is a geometric morphism). It follows that ∆
preserves monos, so that for each set S the function

A ∈ P(S) 7−→ ∆A ∈ Sub(∆S)

is a meet preserving (and thus monotone) map. It is easy to

see that this map has a posetal left adjoint

f! : Sub(∆S) −→ P(S)

Proof. A subobject A of ∆S is a family of subsets A = (An)n
with An ⊆ S . Hence we can let f!(A) ∈ P(S) be the set of
all a ∈ S such that a ∈ An for some n > 0. Then assuming

f!(A) ⊆ B for some set B ∈ P(S), it follows that if a ∈ An
then a ∈ f!(A) ⊆ B so that a ∈ (∆B)n and thus A ≤ ∆B.
Conversely, ifA ≤ ∆B, then for every a ∈ f!(A), since a ∈ An
for some n > 0, we must have a ∈ (∆B)n = B, so that

f!(A) ⊆ B. □

As a consequence, the adjoint pair ∆ ⊣ Γ : S → Set is an
open geometric morphism (in the sense of [36, Def. IX.6.2]),

from which it follows that ∆ induces maps of (complete)

Heyting algebras P(S) → Sub(∆S) (see e.g. [36, Thm. X.3.1

& Lem. X.3.2]). We state this for later use.

Lemma C.8. For each set S , the functor ∆ induces a map of
(complete) Heyting algebras P(S) → Sub(∆S).

C.5 Abstract Modalities
We present here some well-known basic material which will

help us proving the correctness of the internal and external

semantics.

Definition C.9. Let C be a category with pullbacks and con-
sider a morphism k : X →C Y .

• The functor k∗ : C/Y → C/X is defined by pullbacks

A′

⌟
//

k∗(д)
��

A

д
��

X
k
// Y

• The functor (∃k) : C/X → C/Y is defined by postcom-
position:

(д : A → X) 7−→ (k ◦ д : A → Y)

The following is a basic property of toposes.

17

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

H⊥IAv := ∅ H⊤IAv := ΓJAK HαiIAv := v(αi)

Hφ ∨ψIAv := HφIAv ∪ HψIAv Hφ ∧ψIAv := HφIAv ∩ HψIAv
Hψ ⇒ φIAv :=

(
ΓJAK \ HψIAv

)
∪ HφIAv

H[πi]φIA0×A1

v :=
{
x ∈ ΓJA0 ×A1K

��� πi ◦ x ∈ HφIAiv
}

H[ini]φIA0+A1

v :=
{
x ∈ ΓJA0 +A1K

��� ∃y ∈ ΓJAiK
(
x = ini ◦ y and y ∈ HφIAiv

)}
H[fd]φIFix(X).A

v :=
{
x ∈ ΓJFix(X).AK

��� ufd ◦ x ∈ HφIA[Fix(X).A/X]
v

}
H[ev(ψ)]φIB→A

:=
{
x ∈ ΓJB → AK

�� ∀y ∈ ΓJBK, y ∈ HψIB =⇒ ev ◦ ⟨x ,y⟩ ∈ HφIA
}

H[bx]φI■A
:=

{
x ∈ ΓJ■AK

�� x1(•) ∈ HφIA
}

H[next]φI▶A
v :=

{
next ◦ x ∈ ΓJ▶AK

�� x ∈ HφIAv
}

Hναtφ(α)IA := Hφm(⊤)IA (JtK =m)

Hµαtφ(α)IA := Hφm(⊥)IA (JtK =m)

HναωφIA :=
⋃ {

S
��� S ∈ P(ΓJAK) and S ⊆ HφIA

[S/α]

}
HµαωφIA :=

⋂ {
S
��� S ∈ P(ΓJAK) and HφIA

[S/α] ⊆ S
}

Figure 13. External Semantics.

J⊥KAv (n) := ∅ J⊤KAv := JAK JαiKAv := v(αi)

Jφ ∨ψ KAv (n) := JφKAv (n) ∪ Jψ KAv (n) Jφ ∧ψ KAv (n) := JφKAv (n) ∩ Jψ KAv (n)

Jψ ⇒ φKAv (n) :=
{
t ∈ JAK(n)

�� ∀k ≤ n, t↑k ∈ Jψ KAv (k) =⇒ t↑k ∈ JφKAv (k)
}

J[πi]φKA0×A1

v (n) :=
{
t ∈ JA0 ×A1K(n)

��� πi (t) ∈ JφKAiv (n)
}

J[ini]φKA0+A1

v (n) :=
{
t ∈ JA0 +A1K(n)

��� ∃u ∈ JAiK(n), t = ini (u) and u ∈ JφKAiv (n)
}

J[fd]φKFix(X).A
v (n) :=

{
t ∈ JFix(X).AK(n)

��� ufdn(t) ∈ JφKA[Fix(X).A/X]
v (n)

}
J[ev(ψ)]φKB→A(n) :=

{
t ∈ JB → AK(n)

�� ∀k ≤ n, ∀u ∈ JBK(k), u ∈ Jψ KB (k) =⇒ (t↑k)(u) ∈ JφKA(k)
}

J[bx]φK■A(n) :=
{
t ∈ J■AK(n) = ΓJAK

�� t ∈ HφIA
}

J[next]φK▶A
v (1) := 1

J[next]φK▶A
v (n) := JφKAv (n − 1) (n > 1)

Jναtφ(α)KA := Jφm(⊤)KA (JtK =m)

Jµαtφ(α)KA := Jφm(⊥)KA (JtK =m)

JναωφKA :=
∨ {

S
��� S ∈ Sub(JAK) and S ≤ JφKA

[S/α]

}
JµαωφKA :=

∧ {
S
��� S ∈ Sub(JAK) and JφKA

[S/α] ≤ S
}

Figure 14. Internal Semantics.

Lemma C.10 ([36, Thm. IV.7.2]). Let E be a topos and fix
a map k : X →E Y . The functor (∃k) is left adjoint to
k∗ : E/Y → E/X . Moreover, k∗ has a right adjoint (∀k)
and preserves exponentials, and thus preserves subobjects.

Lemma C.11.

(1) The map (∃ini) : Set/Si → Set/(S0 + S1) induces a map
P(Si) → P(S0 + S1).

(2) The map (∃ini) : S/Xi → S/(X0 + X1) induces a map
Sub(Xi) → Sub(X0 + X1).

Proof. Since in both cases the morphism ini is a mono. □
18

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Lemma C.12. The map S/X → S/▶X taking д : Y → X
to ▶(д) : ▶Y → ▶X induces a map Sub(X) → Sub(▶X).

Proof. The functor ▶ preserves limits since it has a left ad-

joint ([8, §2.1]). It thus follows that ▶ preserves monos. □

C.6 External and Internal Semantics: Local
Definitions

Some key properties of the Set and S interpretations are

easier to get if one goes through a local presentation, as

operations on subobject and powerset lattices, similar to

that of J−K in §7. The goal is to pave the way toward the

correctness of both semantics:

Lemma C.13 (Lem. 7.3).

(1) If ⊢A
c
φ then HφI = ΓJAK.

(2) If ⊢A φ then JφK = JAK.

The detailed proof of Lem. C.13 is deferred to App. E.1. It

relies on the following material.

C.6.1 Internal Semantics
We use the material of §C.5 to devise operations on subob-

ject lattices corresponding to our modalities. This formally

extends the presentation given in §7.

Definition C.14.

(1) Given S-objects X0 and X1, define J[πi]K : Sub(Xi) →

Sub(X0 × X1) as π ∗
i , where πi : X0 × X1 →S Xi is the ith

projection.
(2) Given S-objects X0 and X1, define J[ini]K : Sub(Xi) →

Sub(X0 +X1) as (∃ini), where ini : Xi →S X0 +X1 is the
ith injection.

(3) Given a locally contractive functor T on S, define J[fd]K :
Sub(T (Fix(T))) → Sub(Fix(T)) as ufd∗, where we have
ufd : Fix(T) →S T (Fix(T)).

(4) Given a S-object X , define J[next]K : Sub(X) → Sub(▶X)

as ▶(−).
(5) Given a set S , define J[bx]K : P(S) → Sub(∆S) as ∆(−).

We now discuss the case of [ev(ψ)]φ, which is actually

interpreted as a logical predicate, in the categorical general-

ization of the usual sense discussed in [22, §9.2 & Prop. 9.2.4].

We follow here [36, VI.5].

• First, extending the above discussion, for an object X
of S, the (Heyting algebra) exponent

(−) ⇒X (−) : Sub(X) × Sub(X) −−→ Sub(X)

is given by

(A ⇒X B)(n) =

{t ∈ X (n) | ∀k ≤ n, t↑k ∈ A(k) =⇒ t↑k ∈ B(k)}

(see e.g. [36, Prop. I.8.5]).

• Second, it follows from Lem. C.10 that for objects X ,
Y of S, taking the pullback of the evaluation map ev :
XY × Y → X gives a map of subobjects, as in

ev∗(A)
⌟

//

��

A��

XY × Y ev
// X

which in particular preserves limits and colimits.

• Third, in the internal logic of S, universal quantifica-

tion over an object Y w.r.t. a predicate A ∈ Sub(X ×Y)
is given (again via Lem. C.10) by the right adjoint

∀Y := ∀(π) to π ∗
, where π is the projectionX ×Y → X

([36, §VI.5, p. 300]). Moreover, via the Kripke-Joyal se-

mantics for a presheaf topos ([36, §VI.7, p. 318]), for

A ∈ Sub(X × Y), the presheaf ∀Y (A) at n is

{t ∈ X (n) | ∀k ≤ n, ∀u ∈ Y (k), (t↑k,u) ∈ A}

We therefore let, for each pure types A and B,

J[ev(−)]K : Sub(JBK) −→
(
Sub(JAK) → Sub(JB → AK)

)
take S ′ ∈ Sub(JBK) to

J[ev(S ′)]K := S ∈ Sub(JAK) 7−→

∀JBK

(
π ∗(S ′) ⇒JAKJBK×JBK ev∗(S)

)
where π : XY × Y → XY

is a projection.

Now, note that we actually have

Lemma C.15. Consider a formula Σ ⊢ φ : A and v as in
Def. C.6, such that JφKv ∈ Sub(JAK). We have
(a) J[πi]φKv = J[πi]K(JφKv)
(b) J[ini]φKv = J[ini]K(JφKv)
(c) J[fd]φKv = J[fd]K(JφKv)
(d) J[next]φKv = J[next]K(JφKv)
(e) J[bx]φK = J[bx]K(JφK)
(f) J[ev(ψ)]φK = J[ev(Jψ Kv)]K(JφKv) for each ⊢ ψ : B such

that Jψ K ∈ Sub(JBK).

Proof.
(a) Since limits are computed pointwise in presheaves, we

have

J[πi]K(JφKAi)(n) ={
(t ,u) ∈ JA0 ×A1K(n) × JφK(n)

�� u = πi (t)}
which is clearly in bijection with J[πi]φKA0×A1 (n).

(b) Trivial.

(c) Similar to the case of [πi].
(d) Trivial.

(e) Trivial.

(f) Immediate from the above discussion. □

We thus have done almost all the work to obtain the fol-

lowing basic fact.

19

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Lemma C.16. Given α1 : A1, . . . ,αk : Ak ⊢ φ : A, and
v taking αi for i = 1, . . . ,k to v(αi) ∈ Sub(JAiK), we have
JφKAv ∈ Sub(JAK).

Proof. The proof is by induction on formulae. The interpreta-

tion of the propositional connectives follows the correspond-

ing structures in presheaf toposes [36, Prop. I.8.5]. The cases

of the modalities [△] follow from the induction hypothesis

and Lem. C.15. The cases of θαωφ simply amount to the fact

that for presheaf toposes, subobjects lattices are complete

([36, Prop. I.8.5]). The cases of θαtφ for t an iteration term

are trivial. □

We now turn to the logical theory. We immediately get

from the above:

Corollary C.17.

(a) The maps J[πi]K, J[fd]K and J[bx]K are maps of Heyting
algebras.

(b) The maps J[ini]K preserve ∨,⊥ and ∧.
(c) The maps J[next]K preserve ∧,⊤ and ∨.
(d) For each objectX of S and each fixed S ∈ Sub(X), the map

J[ev(S)]K preserves ∧,⊤.

Proof.

(a) This directly follows from Lem. C.10 and Lem. C.8.

(b) Preservation of ∨,⊥ follows from that fact that J[ini]K is
a left adjoint by Lem. C.10. For binary conjunctions, first

note that meets in partial orders are given by pullbacks.

In a subobject lattice Sub(Xi), this can be expressed as

A ∧ B⌟
//

��

B

��
A // Xi

(where arrows are inclusions maps). Since ini : Xi →

X0 + X1 is a mono, the following is also a pullback in

Sub(X0 + X1):

A ∧ B⌟
//

��

B

��
Xi

ini
��

A // Xi ini
// X0 + X1

(c) Preservation of ∧,⊤ follows from the fact that ▶(−) is a

right adjoint ([8, §2.1]). As for preservation of∨, we check

the details. Consider an object X of S and subobjects

A,B ∈ Sub(X). We have to show▶(A∨B) = ▶(A)∨▶(B).
But we have

▶(A ∨ B)0 = 1 = 1 ∪ 1 = (▶(A) ∨▶(B))0

and

▶(A ∨ B)n+1 = (A ∨ B)n = An ∪ Bn
= ▶(A)n+1 ∪▶(B)n+1
= (▶(A) ∨▶(B))n+1

(d) This directly follows from Lem. C.10, via Lem. C.15 and

the definition of J[ev(−)]K. □

C.6.2 External Semantics
We now turn to operations on powerset lattices for the ex-

ternal semantics.

Definition C.18.

(1) Given sets S0 and S1, define H[πi]I : P(Si) → P(S0 × S1)
as π ∗

i , where πi : S0 × S1 → Si is the ith projection.
(2) Given sets S0 and S1, define H[ini]I : P(Si) → P(S0 + S1)

as (∃ini), where ini : Si → S0 + S1 is the ith injection.
(3) Given a S object X , define H[next]I : P(ΓX) → P(Γ▶X)

as ((Γnext)−1)∗, where (Γnext)−1 : Γ(▶X) → ΓX is the
inverse of Γ(next) (Lem. C.2).

(4) Given a locally contractive functor T on S, define H[fd]I :

P(Γ(T (Fix(T)))) → P(ΓFix(T)) as Γ(ufd)∗, where ufd :

Fix(T) →S T (Fix(T)).

We trivially have (at appropriate types):

H[πi]φI = H[πi]I(HφI)
H[ini]φI = H[ini]I(HφI)

H[next]φI = H[next]I(HφI)
H[fd]φI = H[fd]I(HφI)

Similarly as in Cor. C.17, we obtain the following.

Lemma C.19.

(a) The functions H[πi]I, H[next]I, H[fd]I are maps of Boolean
algebras.

(b) The function H[ini]I preserves ∨,⊥ and ∧.

C.7 The Safe Fragment
The proofs of Lem. 7.5, Lem. 7.6 and Prop. 7.7 are deferred

to App. E.2.

C.8 Flat Fixpoints
The proof of Lem. 7.8 is deferred to App. E.3.

C.9 Constant Objects, Again
For the adequacy of the typing rules of the term construc-

tors bx and prev, we need to generalize Lem. C.4 (§C.2) to

refinement types. To this end, it is convenient to extend the

notation J−K to refined types.

20

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Definition C.20. For T is a type without free iteration vari-
ables, we define JT K by induction as follows:

J{A | φ}K := JφK
J∀k ·T K :=

∧
n∈NJT [n/k]K

JT0 +T1K := JT0K + JT1K
JT0 ×T1K := JT0K × JT1K
JU → T K := JU K → JT K

J▶T K := ▶JT K
J■T K := ∆ΓJT K

We can now extend Lem. C.4. We crucially rely on the fact

that ∆ preserves limits (see e.g. [28, Ex. 4.1.4]).

Lemma C.21. If T is a constant type, then JT K is a constant
object of S.

Proof. The proof is by induction on types. The cases of the

type constructors +, ×,→ are easy and discussed in [13, Lem.

2.6]. The case of ■T is trivial. As for ∀k · T , assuming by

induction that for each n ∈ N we have JT [n/k]K = ∆Sn for

some Sn , since ∆ preserves limits we get

∆ (
⋂

n Sn) =
∧

n ∆Sn = J∀k ·T K

As for refined types, we show by induction on ⊢ φ : A with

A constant that JφK is a constant object.
Cases of ⊤, ⊥, ∧, ∨ and ⇒.

All these cases follow from (the induction hypothesis

and) the fact that ∆ induces maps of Heyting algebras

on subobject lattices (Lem. C.8).

Case of [bx]φ.
Trivial, since J[bx]φK is in the image of ∆.

Case of [next]φ.
This case cannot occur since A is constant.

Case of [fd]φ.
In this case, we must have A = Fix(X).B(X). Since X
is guarded in B(X), it must not occur in B(X) (recall

that ■T is only allowed for a closed type T). But this
is forbidden.

Case of [πi]φ.
We rely on the description of J[πi]φK as J[πi]K(JφK)
in §C.6. By induction hypothesis and recalling that ∆
preserves finite products, consider the pullback

π ∗(JφK) ≃ J[πi]φK
⌟

//

��

JφK ≃ ∆(S)
��

∆(S0) × ∆(S1) πi
// ∆(Si)

Then one can take the corresponding pullback in Set

S ′⌟
//

��

S��

S0 × S1 πi
// Si

and this implies that J[πi]φK ≃ ∆(S ′) since∆ preserves

finite limits.

Case of [ini]φ.
We rely on the description of J[ini]φK as J[ini]K(JφK)
in §C.6. The result follows from the induction hypoth-

esis and the fact that ∆ preserves finite limits and

colimits, as in:

JφK ≃ ∆(S) ↪→ ∆(Si)
∆(ini)=ini
−−→ ∆(S0) + ∆(S1)

Case of [ev(ψ)]φ.
We rely on the description of J[ev(ψ)]φK in §C.6, that

is

J[ev(ψ)]φK = ∀JBK

(
π ∗(Jψ K) =⇒JAKJBK×JBK ev∗(JφK)

)
The result then follows from Lem. C.8 and the fact that

∆ thus preserves universal quantifications (see e.g. [36,

Thm. X.3.1 & Lem. X.3.2]).

Cases of θαtφ and θαωφ.
By assumption, the occurrences of α in φ should be

guarded by a [next]. Since [bx] can only be applied to

closed formulae, this imposes α not to appear in φ. But
then the result follows by induction hypothesis. □

C.10 Realizability
We detail the steps toward the Adequacy Theorem 7.12. Full

proofs are deferred to App. E.4. The first basic result we need

about our notion of realizability is that it is monotone w.r.t.

step indexes.

Lemma C.22 (Monotonicity of Realizability). If x ⊪n T
then x ⊪k T for all k ≤ n.

The correctness of subtyping requires two additional lem-

mas. The first one concerns the rule

T ≤ |T |

Lemma C.23. For a pure type A and x ∈ ΓJAK, we have
x ⊪n A for all n > 0.

Second, we need a result of [13] for the correctness of the

subtyping rules

{B | ψ } → {A | φ} ≤ {B → A | [ev(ψ)]φ}

Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}

An object X of S is total if all its restriction maps rXn :

Xn+1 → Xn are surjective. Hence, if X is total, then given

t ∈ Xn for some n > 0, there is a global section x : 1 →S X
such that xn(•) = t .

Lemma C.24 ([13, Cor. 3.8]). For a pure type A, the object
JAK is total.

We then obtain the correctness of subtyping as usual. The

rules

⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

⊢A
c
φ ⇒ ψ

{■A | [bx]φ} ≤ {■A | [bx]ψ }
21

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

rely on Lem. C.13 (Lem. 7.3), while

φ safe

■ {A | φ} ≡ {■A | [bx]φ}

is given by Prop. 7.7.

Lemma C.25 (Correctness of Subtyping (Lem. 7.11)). Given
types T ,U without free iteration variable, if x ⊪n U and
U ≤ T then x ⊪n T .

We now have all we need for the Adequacy Theorem 7.12.

As usual it requires a stronger inductive invariant than the

statement of Thm. 7.12. Given a typed term

x1 : T1, . . . ,xk : Tk ⊢ M : T

and global sectionsu1 ∈ ΓJ|T1 |K, . . . ,uk ∈ ΓJ|Tk |K, we obtain
a global section

JMK ◦ ⟨u1, . . . ,uk ⟩ : 1 −→ J|T |K

We introduce some notation to manipulate these global sec-

tions. Given a typing context Γ = x1 : T1, . . . ,xk : Tk we

write ρ |= Γ if ρ takes each xi for i = 1, . . . ,k to some

ρ(xi) ∈ ΓJ|Ti |K. Given a typing judgment Γ ⊢ M : T , we let

JMKρ := JMK ◦ ⟨ρ(x1), . . . , ρ(xk)⟩

Given ρ |= Γ and n > 0, write ρ ⊪n Γ if ρ(xi) ⊪n Ti for all
i = 1, . . . ,k . Thm. 7.12 is proved under the following form.

Theorem C.26 (Adequacy (Thm. 7.12)). Let Γ,T have free
iteration variables among ℓ, and letm ∈ N. If Γ ⊢ M : T and
ρ |= Γ, then

∀n > 0, ρ ⊪n Γ[ℓ/m] =⇒ JMKρ ⊪n T [ℓ/m]

Corollary C.27. (a) Consider a closed term ⊢ M : {A | φ}
with φ safe. Then JMK : 1 →S JAK ∈ HφI.

(b) Consider a closed term ⊢ M : {A | ψ } → {A | φ}, with φ,
ψ safe. Then JMK induces a function ΓJMK taking x ∈ HψI
to ΓJMK = JMK ◦ x ∈ HφI.

Corollary C.27 of course extends to any arity. As a con-

sequence of Cor. C.27, a closed term M : {P | φ} for P
polynomial recursive and φ safe induces a global section

JMK : 1 →S JPK which satisfies φ is the standard sense.

Moreover a function, say M : {Q | ψ } → {P | φ} with Q, P
polynomial recursive andψ ,φ safe, induces by composition

a Set-function

ΓJMK : ΓJQK → ΓJPK, x 7→ JMK ◦ x

such that, in the standard sense, ΓJMK(x) satisfies φ when-

ever x satisfiesψ .

C.11 A Galois Connection
In §7, we indicated that safe formulae over Str

gA are safety

(i.e. topologically closed) properties. In view of Møgelberg’s

Theorem [40] (Thm. 7.13), this generalizes to polynomial

recursive types: safe formulae on polynomial recursive types

define closed sets for the usual tree (or stream) topology.

We briefly elaborate on this. Fix an object X of S. There

is a Galois connection between the subobjects of X in S and

the subsets of ΓX in Set:

Pref ⊣ [−] : Sub(X) → P(ΓX)

where for S ∈ P(ΓX) and B ∈ Sub(X),

Pref(S) : n 7−→ {xn(•) | x ∈ S}
[B] := {x ∈ ΓX | ∀n ∈ N∗, xn(•) ∈ B(n)}

Of course, [−] is the restriction of Γ : S → Set to the subob-

jects of X .

Let us spell out the fact that Pref ⊣ [−] form a Galois

connection. Fix an object X of S. First, it is trivial that the

functions

Pref : P(ΓX) −→ Sub(X)

[−] : Sub(X) −→ P(ΓX)

are monotone w.r.t. the orders of the lattices P(ΓX) and

Sub(X). Moreover, we have:

Lemma C.28. We have
(i) S ⊆ [Pref(S)] for S ∈ P(ΓX).
(ii) Pref([B]) ⊆ B for B ∈ Sub(X).

Proof.
(i) Given x ∈ S , by definition we have xn(•) ∈ Pref(S)(n)

for all n > 0, so x ∈ [Pref(S)].
(ii) Given a ∈ Pref([B])(n), there is some x ∈ [B] such that

a = xn(•). But x ∈ [B] means xk (•) ∈ B(k) for all k > 0,

so that a = xn(•) ∈ B(n). □

As usual, we trivially get

Pref(S) ≤ B iff S ⊆ [B]

Say that S ∈ P(ΓX) is closed if S = [B] for some B ∈ Sub(X).

It is easy to see that S is closed if and only if S = [Pref(S)].
Note that S = [Pref(S)] unfolds to

∀x ∈ ΓJAK, x ∈ S iff ∀n > 0, ∃y ∈ S, xn(•) = yn(•)

When A is a polynomial recursive type, Thm. 7.13 thus says

that S is closed if and only if S is closed for the correspond-

ing usual tree (or stream) topology. Since Prop. 7.7 can be

formulated as

HφI = [JφK]
it indeed says that HφI is closed for the usual topology.

22

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

D Details of the Examples
D.1 Guarded Streams
D.1.1 The Later Modality on Guarded Streams
Example D.1. We have the following basic modal refinement types for consg and tlg:

consg : A −→ ▶ {StrgA | φ} −→ {StrgA | ⃝φ}
tlg : {StrgA | ⃝φ} −→ ▶ {StrgA | φ}

Proof. We begin with consg. Recall that consg = λx .λs .fd⟨x , s⟩ and that ⃝(−) = [fd][π1][next](−). The result then follows from

the following derivation:

x : A, s : ▶ {StrgA | φ} ⊢ s : ▶ {StrgA | φ}

x : A, s : ▶ {StrgA | φ} ⊢ s : {▶ Str
gA | [next]φ}

x : A, s : ▶ {StrgA | φ} ⊢ ⟨x , s⟩ : {A ×▶ Str
gA | [π1][next]φ}

x : A, s : ▶ {StrgA | φ} ⊢ fd⟨x , s⟩ : {StrgA | [fd][π1][next]φ}
As for tlg, recalling that tlg = λs .π1(ufd s), the result follows from

s : {StrgA | ⃝φ} ⊢ s : {StrgA | [fd][π1][next]φ}
s : {StrgA | ⃝φ} ⊢ ufd s : {A ×▶ Str

gA | [π1][next]φ}
s : {StrgA | ⃝φ} ⊢ π1(ufd s) : {▶ Str

gA | [next]φ}

s : {StrgA | ⃝φ} ⊢ π1(ufd s) : ▶ {StrgA | φ}

□

D.1.2 Destructors of Guarded Streams
Example D.2. The types of hdg and tlg can be refined as follows with the always modality 2:

hdg : {StrgA | 2[φ]} −→ {A | φ}
tlg : {StrgA | 2[φ]} −→ ▶ {StrgA | 2[φ]}

Proof. Recall that [φ] = [hd]φ = [fd][π0]φ. We begin with the typing of

hdg := λs .π0(ufd s) : {StrgA | 2[φ]} −→ {A | φ}

We use ⊢Str
g A 2[φ] ⇒ [φ] (Ex. 5.8).

s : {StrgA | 2[φ]} ⊢ s : {StrgA | 2[φ]}

⊢Str
g A 2[φ] ⇒ [φ]

{StrgA | 2[φ]} ≤ {StrgA | [φ]}

s : {StrgA | 2[φ]} ⊢ s : {StrgA | [φ]}

s : {StrgA | 2[φ]} ⊢ ufd s : {A ×▶ Str
gA | [π0]φ}

s : {StrgA | 2[φ]} ⊢ π0(ufd s) : {A | φ}

⊢ λs .π0(ufd s) : {StrgA | 2[φ]} −→ {A | φ}

We continue with the typing of

tlg := λs .π1(ufd s) : {StrgA | 2[φ]} −→ ▶ {StrgA | 2[φ]}

We use ⊢Str
g A 2[φ] ⇒ ⃝2[φ] (Ex.5.8). Recall that ⃝φ = [fd][π1][next]φ.

s : {StrgA | 2[φ]} ⊢ s : {StrgA | 2[φ]}

⊢Str
g A 2[φ] ⇒ ⃝2[φ]

{StrgA | 2[φ]} ≤ {StrgA | ⃝2[φ]}

s : {StrgA | 2[φ]} ⊢ s : {StrgA | ⃝2[φ]}

s : {StrgA | 2[φ]} ⊢ ufd s : {A ×▶ Str
gA | [π0][next]2[φ]}

s : {StrgA | 2[φ]} ⊢ π1(ufd s) : {▶ Str
gA | [next]2[φ]}

s : {StrgA | 2[φ]} ⊢ π1(ufd s) : ▶ {StrgA | 2[φ]}

⊢ λs .π1(ufd s) : {StrgA | 2[φ]} −→ ▶ {StrgA | 2[φ]}

□
23

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

D.1.3 Constructor of Guarded Streams
Example D.3. The type of consg can be refined as follows with the always modality 2:

consg : {A | φ} −→ ▶ {StrgA | 2[φ]} −→ {StrgA | 2[φ]}

Proof. We show

consg := λx .λs .fd⟨x , s⟩ : {A | φ} −→ ▶ {StrgA | 2[φ]} −→ {StrgA | 2[φ]}

To this end, we use the following derived rule (see Ex. 6.1):

Γ ⊢ M : {A | φ} Γ ⊢ N : {B | ψ }

Γ ⊢ ⟨M,N ⟩ : {A × B | [π0]φ ∧ [π1]ψ }

Consider the typing context

Γ := x : {A | φ} , s : ▶ {StrgA | 2[φ]}

We know from §D.1.1 that

Γ ⊢ fd⟨x , s⟩ : {StrgA | ⃝2[φ]}

Since ⊢Str
g A ([φ] ∧ ⃝2[φ]) ⇒ 2[φ] (Ex. 5.8), we are done if we show

Γ ⊢ fd⟨x , s⟩ : {StrgA | [φ]}

But this is trivial:

Γ ⊢ x : {A | φ}

Γ ⊢ ⟨x , s⟩ : {A ×▶ Str
gA | [π0]φ}

Γ ⊢ fd⟨x , s⟩ : {StrgA | [fd][π0]φ}
□

D.1.4 Map over Guarded Streams
Example D.4. We have the following:

mapg : ({A | φ} → {B | ψ }) −→ {StrgA | 2[φ]} −→ {Strg B | 2[ψ]}
:= λ f .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Proof. We proceed as follows, using §D.1.2 and §D.1.3:

Γ ⊢ s : {StrgA | 2[φ]}

Γ ⊢ hdg s : {A | φ}

Γ ⊢ f (hdg s) : {B | ψ }

Γ ⊢ s : {StrgA | 2[φ]}

Γ ⊢ tlg s : ▶ {StrgA | 2[φ]}

Γ ⊢ д ⊛ (tlg s) : ▶ {Strg B | 2[ψ]}

Γ ⊢ (f (hdg s)) ::g (д ⊛ (tlg s)) : {Strg B | 2[ψ]}

⊢ λ f .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s)) : T

where

T := ({A | φ} → {B | ψ }) −→ {StrgA | 2[φ]} −→ {Strg B | 2[ψ]}
Γ := f : {A | φ} → {B | ψ } , д : ▶({StrgA | 2[φ]} → {Strg B | 2[ψ]}), s : {StrgA | 2[φ]}

□

D.1.5 Merge over Guarded Streams
Example D.5. We have the following:

mergeg : {StrgA | 2[φ0]} −→ {StrgA | 2[φ1]} −→ {StrgA | 2([φ0] ∨ [φ1])}
:= fix(f).λs0.λs1.consg (hdg s0)

(
next

(
consg (hdg s1) (f ⊛ (tlg s0)⊛ (tlg s1))

))
Proof. Let Γ be the context

f : ▶
(
{StrgA | 2[φ0]} −→ {StrgA | 2[φ1]} −→ {StrgA | 2([φ0] ∨ [φ1])}

)
,

s0 : {Str
gA | 2[φ0]} ,

s1 : {Str
gA | 2[φ1]}

We have

Γ ⊢ hdg s0 : {A | φ0}
Γ ⊢ hdg s1 : {A | φ1}

Γ ⊢ tlg s0 : ▶ {StrgA | 2[φ0]}
Γ ⊢ tlg s1 : ▶ {StrgA | 2[φ1]}

24

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

We thus get

f ⊛ (tlg s0)⊛ (tlg s1) : ▶ {StrgA | 2([φ0] ∨ [φ1])}

and we are done since using subtyping we have

consg : {A | φ0} −→ ▶ {StrgA | 2([φ0] ∨ [φ1])} −→ {StrgA | 2([φ0] ∨ [φ1])}
consg : {A | φ1} −→ ▶ {StrgA | 2([φ0] ∨ [φ1])} −→ {StrgA | 2([φ0] ∨ [φ1])}

□

D.2 Map over Coinductive Streams
D.2.1 The Case of Eventually (3[φ])
Example D.6. We have the following, for safe φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [bx]3[ψ]} −→ {StrA | [bx]3[φ]}
= λ f .λs .bx

(
mapg f (ubx s)

)
Proof. We first reduce to

Γf , s :
{
StrB

�� [bx]3k [ψ]
}

⊢ bx(mapg f (ubx s)) :

{
StrA

�� [bx]3k [φ]
}

where

Γf := f : {B | ψ } → {A | φ}

Since the formulae 3k [ψ] and 3k [φ] are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k ·
({
Str

g B
�� 3k [ψ]

}
−→

{
Str

gA
�� 3k [φ]

})
= λ f .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k) :=

{
Str

g B
�� 3k [ψ]

}
−→

{
Str

gA
�� 3k [φ]

}
Γ := Γf , д : ▶∀k ·T (k)

We show

Γ ⊢ M : ∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)

Case of T (0). We show

Γ, s :
{
Str

g B
�� 30[ψ]

}
⊢ N :

{
Str

gA
�� 30[φ]

}
Since ⊢ 30[ψ] ⇔ ⊥, we conclude with the Ex Falso rule

Γ, s :
{
Str

g B
�� 30[ψ]

}
⊢ s : {Strg B | ⊥} Γ, s :

{
Str

g B
�� 30[ψ]

}
⊢ N : Str

gA

Γ, s : {Strg B | 30[ψ]} ⊢ N : {StrgA | 30[φ]}

Case of T (k+1). We show

Γ, s :
{
Str

g B
�� 3k+1[ψ]

}
⊢ N :

{
Str

gA
�� 3k+1[φ]

}
Using ⊢ 3k+1[ψ] ⇔ ([ψ] ∨ ⃝3k [ψ]), we do a case analysis on the refinement type of s .
Subcase of [ψ]. Since ⊢ [φ] ⇒ 3k+1[φ], we reduce to showing

Γ, s : {Strg B | [ψ]} ⊢ N : {StrgA | [φ]}

By §D.1.2 we have

Γ, s : {Strg B | [ψ]} ⊢ hdg s : {B | ψ }

But we are done since

consg : {A | φ} −→ ▶ Str
gA −→ {StrgA | [φ]}

25

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Subcase of ⃝3k [ψ]. Since ⊢ ⃝3k [φ] ⇒ 3k+1[φ], we reduce to showing

Γ, s :
{
Str

g B
�� ⃝3k [ψ]

}
⊢ N :

{
Str

gA
�� ⃝3k [φ]

}
By §D.1.1 we have

Γ, s :
{
Str

g B
�� ⃝3k [ψ]

}
⊢ tlg s : ▶

{
Str

g B
�� 3k [ψ]

}
Since

Γ ⊢ д : ∀k ·▶
({
Str

g B
�� 3k [ψ]

}
−→

{
Str

gA
�� 3k [φ]

})
we have

Γ ⊢ д : ▶
({
Str

g B
�� 3k [ψ]

}
−→

{
Str

gA
�� 3k [φ]

})
Since moreover by §D.1.1 we have

consg : A −→ ▶
{
Str

gA
�� 3k [φ]

}
−→

{
Str

gA
�� ⃝3k [φ]

}
we deduce that

Γ, s :
{
Str

g B
�� ⃝3k [ψ]

}
⊢ N :

{
Str

g B
�� ⃝3k [ψ]

}
□

D.2.2 The Case of Eventually Always (32[φ])
Example D.7. We have the following, for safe φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [bx]32[ψ]} −→ {StrA | [bx]32[φ]}
= λ f .λs .bx

(
mapg f (ubx s)

)
Proof. We first reduce to

Γf , s :
{
StrB

�� [bx]3k2[ψ]
}

⊢ bx(mapg f (ubx s)) :

{
StrA

�� [bx]3k2[φ]
}

where

Γf := f : {B | ψ } → {A | φ}

Since the formulae 3k2[ψ] and 3k2[φ] are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k ·
({
Str

g B
�� 3k2[ψ]

}
−→

{
Str

gA
�� 3k2[φ]

})
= λ f .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k) :=

{
Str

g B → Str
gA

�� [ev(3k2[ψ])]3k2[φ] ∧ [ev(2[ψ])]2[φ]
}

Γ := Γf , д : ▶∀k ·T (k)

We show

Γ ⊢ M : ∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)
Case of T (0). We have to show

Γ, s : {Strg B | 2[ψ]} ⊢ N : {StrgA | 2[φ]}
and Γ, s :

{
Str

g B
�� 302[ψ]

}
⊢ N :

{
Str

gA
�� 302[φ]

}
We only detail the latter since the former can be dealt-with as in §D.1.5. Since ⊢ 302[ψ] ⇔ ⊥, we conclude with the Ex
Falso rule

Γ, s :
{
Str

g B
�� 302[ψ]

}
⊢ s : {Strg B | ⊥} Γ, s :

{
Str

g B
�� 302[ψ]

}
⊢ N : Str

gA

Γ, s : {Strg B | 302[ψ]} ⊢ N : {StrgA | 302[φ]}

Case of T (k+1). We show

Γ, s : {Strg B | 2[ψ]} ⊢ N : {StrgA | 2[φ]}
and Γ, s :

{
Str

g B
�� 3k+12[ψ]

}
⊢ N :

{
Str

gA
�� 3k+12[φ]

}
We only detail the latter since the former can be dealt-with as in §D.1.5. Using ⊢ 3k+12[ψ] ⇔ (2[ψ] ∨ ⃝3k2[ψ]), we
do a case analysis on the refinement type of s .

26

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Subcase of 2[ψ]. We show

Γ, s : {Strg B | 2[ψ]} ⊢ N :

{
Str

gA
�� 3k+12[φ]

}
Note that ⊢ 2[φ] ⇒ 3k+12[φ]. We can therefore reduce to

Γ, s : {Strg B | 2[ψ]} ⊢ N : {StrgA | 2[φ]}

and we can conclude as in §D.1.5.

Subcase of ⃝3k2[ψ]. Since ⊢ ⃝3k2[φ] ⇒ 3k+12[φ], we reduce to showing

Γ, s :
{
Str

g B
�� ⃝3k2[ψ]

}
⊢ N :

{
Str

gA
�� ⃝3k2[φ]

}
By §D.1.1 we have

Γ, s :
{
Str

g B
�� ⃝3k2[ψ]

}
⊢ tlg s : ▶

{
Str

g B
�� 3k2[ψ]

}
Since

Γ ⊢ д : ∀k ·▶
({
Str

g B
�� 3k2[ψ]

}
−→

{
Str

gA
�� 3k2[φ]

})
we have

Γ ⊢ д : ▶
({
Str

g B
�� 3k2[ψ]

}
−→

{
Str

gA
�� 3k2[φ]

})
Since moreover by §D.1.1 we have

consg : A −→ ▶
{
Str

gA
�� 3k2[φ]

}
−→

{
Str

gA
�� ⃝3k2[φ]

}
we deduce that

Γ, s :
{
Str

g B
�� ⃝3k2[ψ]

}
⊢ N :

{
Str

g B
�� ⃝3k2[ψ]

}
□

D.2.3 The Case of Always Eventually (23[φ])
Example D.8. We have the following, for safe φ andψ :

map : ({B | ψ } → {A | φ}) −→ {StrB | [bx]23[ψ]} −→ {StrA | [bx]23[φ]}
:= λ f .λs .bx

(
mapg f (ubx s)

)
Notation D.9. We let

3tφ := µαt.φ ∨ ⃝α
2tφ := ναt.φ ∧ ⃝α

Proof. We start in the same spirit as in §D.2.1 and §D.2.2 but we now use the rules

Γ ⊢ M : {■A | [bx]ψ [µαωφ/β]} Γ,x :

{
■A

�� [bx]ψ [µαkφ/β]} ⊢ N : U β Pos ψ

Γ ⊢ N [M/x] : U
(k not free in Γ,U)

Γ ⊢ M :

{
■A

�� [bx]ψ [µαtφ/β]
}

β Pos ψ

Γ ⊢ M : {■A | [bx]ψ [µαωφ/β]}

with the non-trivial context

ψ (β) := 2β

We then similarly unfold the 2. We are thus led to deriving

Γf , s :
{
StrB

�� [bx]2ℓ3k [ψ]
}

⊢ bx(mapg f (ubx s)) :

{
StrA

�� [bx]2ℓ3k [φ]
}

where

Γf := f : {B | ψ } → {A | φ}

Since the formulae 2ℓ3k [ψ] and 2ℓ3k [φ] are safe, we are done if we show

mapg : ({B | ψ } → {A | φ}) −→ ∀k · ∀ℓ · ({Strg B �� 2ℓ3k [ψ]
}

−→
{
Str

gA
�� 2ℓ3k [φ]

})
= λ f .fix(д).λs .(f (hdg s)) ::g (д ⊛ (tlg s))

Let

N := (f (hdg s)) ::g (д ⊛ (tlg s))
M := λs .N
T (k, ℓ) :=

{
Str

g B
�� 2ℓ3k [ψ]

}
−→

{
Str

gA
�� 2ℓ3k [φ]

}
Γ := Γf , д : ▶∀k · ∀ℓ ·T (k, ℓ)

27

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

We show

Γ ⊢ M : ∀k · ∀ℓ ·T (k, ℓ)
We reason by cases on k and ℓ. This amounts to the derived rule

Γ ⊢ M : T (0, 0) Γ ⊢ M : T (0, ℓ+1) Γ ⊢ M : T (k+1, 0) Γ ⊢ M : T (k+1, ℓ+1)

Γ ⊢ M : ∀k · ∀ℓ ·T (k, ℓ)
Cases of T (u, 0). We have ⊢ 20θ ⇔ ⊤, and we are done since

Γ, s : {Strg B | ⊤} ⊢ N : {StrgA | ⊤}

Case of T (0, ℓ+1). We have ⊢ 30[θ] ⇔ ⊥, and we reduce to showing

Γ, s :
{
Str

g B
�� 2ℓ+1⊥

}
⊢ N :

{
Str

gA
�� 2ℓ+1⊥

}
But since ⊢ 2ℓ+1⊥ ⇒ ⊥, we have

Γ, s :
{
Str

g B
�� 2ℓ+1⊥

}
⊢ s : {Strg B | ⊥}

and we conclude with the Ex Falso rule

Γ, s :
{
Str

g B
�� 2ℓ+1⊥

}
⊢ s : {Strg B | ⊥} Γ, s :

{
Str

g B
�� 2ℓ+1⊥

}
⊢ N : Str

gA

Γ, s :
{
Str

g B
�� 2ℓ+1⊥

}
⊢ N :

{
Str

gA
�� 2ℓ+1⊥

}
Case of T (k+1, ℓ+1). Using ⊢Str

g A 2ℓ+1θ ⇔ (θ ∧ ⃝2ℓθ), we show

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ N :

{
Str

gA
�� 3k+1[φ] ∧ ⃝2ℓ3k+1[φ]

}
We consider each conjunct separately.

(Sub)Case of 3k+1[φ]. We show

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ N :

{
Str

gA
�� 3k+1[φ]

}
Using

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ s :

{
Str

g B
�� 3k+1[ψ]

}
and ⊢ 3k+1[ψ] ⇔ ([ψ] ∨ ⃝3k [ψ]) we do a case analysis on the refinement type of s .
(SubSub)Case of [ψ]. Since (by §D.1.1)

Γ, s : {Strg B | [ψ]} ⊢ hdg s : {Strg B | ψ }

we easily deduce that

Γ, s : {Strg B | [ψ]} ⊢ N : {StrgA | [φ]}

and we are done since ⊢ [φ] ⇒ 3k+1[φ].
(SubSub)Case of ⃝3k [ψ]. By §D.1.1 we have

Γ, s :
{
Str

g B
�� ⃝3k [ψ]

}
⊢ tlg s : ▶

{
Str

g B
�� 3k [ψ]

}
Since

Γ ⊢ д : ∀k · ∀ℓ ·▶ ({
Str

g B
�� 2ℓ3k [ψ]

}
−→

{
Str

gA
�� 2ℓ3k [φ]

})
we have

Γ ⊢ д : ▶
({
Str

g B
�� 213k [ψ]

}
−→

{
Str

gA
�� 213k [φ]

})
But ⊢ (θ ∧ ⃝⊤) ⇔ θ , so that ⊢ 21θ ⇔ θ , and thus

Γ ⊢ д : ▶
({
Str

g B
�� 3k [ψ]

}
−→

{
Str

gA
�� 3k [φ]

})
Since moreover by §D.1.1 we have

consg : A −→ ▶
{
Str

gA
�� 3k [φ]

}
−→

{
Str

gA
�� ⃝3k [φ]

}
we deduce that

Γ, s :
{
Str

g B
�� ⃝3k [ψ]

}
⊢ N :

{
Str

g B
�� ⃝3k [ψ]

}
and we are done since ⊢ ⃝3k [φ] ⇒ 3k+1[φ].

28

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

(Sub)Case of ⃝2ℓ3k+1[φ]. We show

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ N :

{
Str

gA
�� ⃝2ℓ3k+1[φ]

}
Since

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ s :

{
Str

g B
�� ⃝2ℓ3k+1[ψ]

}
by §D.1.1 we have

Γ, s :
{
Str

g B
�� 2ℓ+13k+1[ψ]

}
⊢ tlg s : ▶

{
Str

g B
�� 2ℓ3k+1[ψ]

}
But now since

Γ ⊢ д : ∀k · ∀ℓ ·▶ ({
Str

g B
�� 2ℓ3k [ψ]

}
−→

{
Str

gA
�� 2ℓ3k [φ]

})
we have

Γ ⊢ д : ▶
({
Str

g B
�� 2ℓ3k+1[ψ]

}
−→

{
Str

gA
�� 2ℓ3k+1[φ]

})
and we conclude with §D.1.1, namely

consg : A −→ ▶
{
Str

gA
�� 2ℓ3k+1[φ]

}
−→

{
Str

gA
�� ⃝2ℓ3k+1[φ]

}
□

D.3 The Diagonal Function
D.3.1 Operations on Coinductive Streams
Example D.10 (Operations on Coinductive Streams). For a safe φ of the appropriate type, we have

hd : {StrA | [bx]2[φ]} −→ {A | φ}
tl : {StrA | [bx]2[φ]} −→ {StrA | [bx]2[φ]}
tl : {StrA | [bx] ⃝ φ} −→ {StrA | [bx]φ}

Proof.

Case of hd. Recall that
hd : StrA −→ A

:= λs .hdg (ubx s)

We have

s : {StrA | [bx]2[φ]} ⊢ s : {StrA | [bx]2[φ]} 2[φ] safe

s : {StrA | [bx]2[φ]} ⊢ s : ■ {StrgA | 2[φ]}

s : {StrA | [bx]2[φ]} ⊢ ubx s : {StrgA | 2[φ]}

s : {StrA | [bx]2[φ]} ⊢ hdg(ubx s) : {A | φ}

⊢ λs .hdg (ubx s) : {StrA | [bx]2[φ]} −→ {A | φ}

Cases of tl. Recall that
tl : StrA −→ StrA

:= λs .bx(prev(tlg (ubx s)))

We have

s : {StrA | [bx]2[φ]} ⊢ s : {StrA | [bx]2[φ]}

s : {StrA | [bx]2[φ]} ⊢ ubx s : {StrgA | 2[φ]}

s : {StrA | [bx]2[φ]} ⊢ tlg (ubx s) : ▶ {StrgA | 2[φ]} StrA constant

s : {StrA | [bx]2[φ]} ⊢ prev(tlg (ubx s)) : {StrgA | 2[φ]}

s : {StrA | [bx]2[φ]} ⊢ bx(prev(tlg (ubx s))) : ■ {StrgA | 2[φ]} 2[φ] safe

s : {StrA | [bx]2[φ]} ⊢ bx(prev(tlg (ubx s))) : {StrA | [bx]2[φ]}
⊢ λs .bx(prev(tlg (ubx s))) : {StrA | [bx]2[φ]} −→ {StrA | [bx]2[φ]}

29

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

and

s : {StrA | [bx] ⃝ φ} ⊢ s : {StrA | [bx] ⃝ φ}

s : {StrA | [bx] ⃝ φ} ⊢ ubx s : {StrgA | ⃝φ}

s : {StrA | [bx] ⃝ φ} ⊢ tlg (ubx s) : ▶ {StrgA | φ} StrA constant

s : {StrA | [bx] ⃝ φ} ⊢ prev(tlg (ubx s)) : {StrgA | φ}

s : {StrA | [bx] ⃝ φ} ⊢ bx(prev(tlg (ubx s))) : ■ {StrgA | φ} φ safe

s : {StrA | [bx] ⃝ φ} ⊢ bx(prev(tlg (ubx s))) : {StrA | [bx]φ}
⊢ λs .bx(prev(tlg (ubx s))) : {StrA | [bx] ⃝ φ} −→ {StrA | [bx]φ}

□

D.3.2 The Guarded Diagonal Function
Example D.11 (The Guarded Diagonal Function). For a safe φ, we have

diagg : {Strg(StrA) | 2[hd][bx]2[φ]} −→ {StrgA | 2[φ]}

Recall that

diagg : Str
g(StrA) −→ Str

gA
:= diagauxg id

diagauxg : (StrA → StrA) −→ Str
g(StrA) −→ Str

gA
:= fix(f).λд.λs .(hd ◦ д)(hdg s) ::g (f ⊛ next(д ◦ tl)⊛ (tlg s))

Proof. We reduce to

diagauxg :

(
{StrA | [bx]2[φ]} → {StrA | [bx]2[φ]}

)
−→ {Strg(StrA) | 2[hd][bx]2[φ]} −→ {StrgA | 2[φ]}

Let Γ be the context

f : ▶T ,
д : {StrA | [bx]2[φ]} −→ {StrA | [bx]2[φ]} ,
s : {Strg(StrA) | 2[hd][bx]2[φ]}

where T is the type(
{StrA | [bx]2[φ]} → {StrA | [bx]2[φ]}

)
−→ {Strg(StrA) | 2[hd][bx]2[φ]} −→ {StrgA | 2[φ]}

The result directly follows from the following typings, which are themselves given by §D.1.2, §D.1.3 and §D.3.1:

Γ ⊢ hd ◦ д : {StrA | [bx]2[φ]} −→ {A | φ}
Γ ⊢ hdg s : {StrA | [bx]2[φ]}
Γ ⊢ д ◦ tl : {StrA | [bx]2[φ]} −→ {StrA | [bx]2[φ]}
Γ ⊢ tlg s : ▶ {Strg(StrA) | 2[hd][bx]2[φ]}

□

D.3.3 The Coinductive Diagonal Function
Example D.12 (The Coinductive Diagonal Function). For a safe φ, we have

diag : {Str(StrA) | [bx]32[hd][bx]2[φ]} −→ {StrA | [bx]32[φ]}
:= λs .bx(diagg (ubx s))

Proof. We first reduce to

s :
{
Str(StrA)

�� [bx]3k2[hd][bx]2[φ]
}

⊢ bx(diagg (ubx s)) :

{
StrA

�� [bx]3k2[φ]
}

Since the formulae 3k2[hd][bx]2[φ] and 3k2[φ] are safe, we are done if we show

diagg :

{
Str

g(StrA)
�� 3k2[hd][bx]2[φ]

}
−→

{
Str

gA
�� 3k2[φ]

}
Consider the types

U (k) :=
{
Str

g(StrA) → Str
gA

�� [ev(3k2[hd][bx]2[φ])]3k2[φ] ∧ [ev(2[hd][bx]2[φ])]2[φ]
}

T (k) :=
(
{StrA | [bx]2[φ]} → {StrA | [bx]2[φ]}

)
−→ U (k)

30

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

We show

diagauxg : ∀k ·T (k)

Let

N := (hd ◦ д)(hdg s) ::g (f ⊛ next(д ◦ tl)⊛ (tlg s))
M := λд.λs .N
Γ := f : ▶∀k ·T (k)

We reason by cases on k with the rule

Γ ⊢ M : T (0) Γ ⊢ M : T (k+1)

Γ ⊢ M : ∀k ·T (k)

Let

Γ′ := Γ, д : {StrA | [bx]2[φ]} −→ {StrA | [bx]2[φ]}

We omit the proof of

Γ′ ⊢ λs .N : {Strg(StrA) → Str
gA | [ev(2[hd][bx]2[φ])]2[φ]}

since it follows that of §D.3.2.

Case of T (0). Since ⊢ 30θ ⇔ ⊥, we reduce to showing

Γ ⊢ λд.λs .N :

(
{StrA | [bx]2[φ]} → {StrA | [bx]2[φ]}

)
−→ {Strg(StrA) | ⊥} −→

{
Str

gA
�� 302[φ]

}
and we conclude using the Ex Falso rule.

Case of T (k+1). We show

Γ′, s :
{
Str

g(StrA)
�� 3k+12[hd][bx]2[φ]

}
⊢ N :

{
Str

gA
�� 3k+12[φ]

}
Using

⊢ 3k+1θ ⇐⇒ θ ∨ ⃝3kθ

we reason by cases on the refinement of s . This leads to two subcases.

Subcase of 2[hd][bx]2[φ]. We show

Γ′, s : {Strg(StrA) | 2[hd][bx]2[φ]} ⊢ N :

{
Str

gA
�� 3k+12[φ]

}
Since ⊢ 2[φ] ⇒ 3k+12[φ], we can reduce to

Γ′, s : {Strg(StrA) | 2[hd][bx]2[φ]} ⊢ N : {StrgA | 2[φ]}

which is proved as in §D.3.2.

Subcase of ⃝3k2[hd][bx]2[φ]. We show

Γ′, s :
{
Str

g(StrA)
�� ⃝3k2[hd][bx]2[φ]

}
⊢ N :

{
Str

gA
�� ⃝3k2[φ]

}
Let

Γ′′ := Γ′, s :
{
Str

g(StrA)
�� ⃝3k2[hd][bx]2[φ]

}
Note that Γ′′ ⊢ f : ▶T (k), so that by §D.3.1 we have

Γ′′ ⊢ f ⊛ next(д ◦ tl) : ▶
({
Str

g(StrA)
�� 3k2[hd][bx]2[φ]

}
→

{
Str

gA
�� 3k2[φ]

})
Using §D.1.1, we derive

Γ′′ ⊢ s :
{
Str

g(StrA)
��� ⃝3k2[hd][bx]2[φ]

}
Γ′′ ⊢ tlg s : ▶

{
Str

g(StrA)
��� 3k2[hd][bx]2[φ]

}
Γ′′ ⊢ f ⊛ next(д ◦ tl)⊛ (tlg s) : ▶

{
Str

gA
��� 3k2[φ]

}
Γ′′ ⊢ (hd ◦ д)(hdg s) ::g (f ⊛ next(д ◦ tl)⊛ (tlg s)) :

{
Str

gA
��� ⃝3k2[φ]

}
□

31

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

E Proofs of Section 7
E.1 Correctness of the External and Internal Semantics
E.1.1 Proof of Lem. C.13.(1) (Lem. 7.3.(1))
Lemma E.1. If ⊢A

c
φ then HφI = ΓJAK.

Lemma C.19 gives almost all the axioms and rules of Table 1 and Fig. 6, but for the [ev(−)] modality that we treat separately.

We first treat the axioms of Table 1.

Lemma E.2. If φ : A is an axiom of Table 1, then HφIA = JAK.

Proof. Most of the axioms follow from Lem. C.19. Following Def. 5.6, we include the axioms marked (C) in Table 1. The cases

of [bx] are trivial and omitted.

Case of (C). Since in each case, the map H[△]I preserves ∧.
The case of [ev(−)] is treated directly:

⊢B→A
(
[ev(ϕ)]ψ ∧ [ev(ϕ)]φ

)
=⇒ [ev(ϕ)](ψ ∧ φ)

Let x ∈ ΓJB → AK and assume that x ∈ H[ev(ϕ)]ψI ∩ H[ev(ϕ)]φI. Let now y ∈ ΓJBK such that y ∈ HϕI. We then have

ev ◦ ⟨x ,y⟩ ∈ HψI ∩ HφI.
Case of (N). Since H[πi]I, H[next]I and H[fd]I are maps of Heyting algebras.

The case of [ev(−)] is treated directly:

⊢B→A [ev(ϕ)]⊤

Let x ∈ ΓJB → AK. Given y ∈ ΓJBK such that y ∈ HϕI, we have ev ◦ ⟨x ,y⟩ ∈ ΓJAK = H⊤I.
Case of (P). Since H[πi]I, H[next]I and H[fd]I are maps of Heyting algebras. As for [ini], this follows from Lem. C.19.

Case of (C∨). By Lem. C.19.

Case of (C⇒). Since H[πi]I, H[next]I and H[fd]I are maps of Heyting algebras. □

In order to handle fixpoints, we have the usual monotonicity lemma w.r.t. set inclusion.

Lemma E.3. Consider, for a formula α1 : A1, . . . ,αk : Ak ⊢ φ, the map

HφI : P(ΓJA1K) × · · · × P(ΓJAk K) −→ P(ΓJAK), v 7−→ HφIv

For i ∈ {1, . . . ,k}, if αi Pos φ (resp. αi Neg φ), then w.r.t. set inclusion, HφI is monotone (resp. anti-monotone) in its ith argument.

We can now turn to the proof of Lemma E.1.

Proof of Lemma E.1. By induction on ⊢A φ. The rules of intuitionistic propositional logic (Fig. 11) as well as of (CL) are trivial
and omitted.

Case of

(RM)
⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ

By Lem. C.19, this holds for [πi], [next] and [fd] since H[πi]I, H[next]I and H[fd]I are maps of Heyting algebras. As for

[ini], this follows from the fact that H[ini]I preserves implications as it preserves ∨.

The case of [ev(−)] is treated directly:

⊢A ψ ⇒ φ

⊢B→A [ev(ϕ)]ψ ⇒ [ev(ϕ)]φ

Let x ∈ ΓJB → AK. Giveny ∈ ΓJBK such thaty ∈ HϕI, we have ev◦ ⟨x ,y⟩ ∈ HψI, so that ev◦ ⟨x ,y⟩ ∈ HφI since HψI ⊆ HφI.
Case of

⊢A
c
φ

⊢■A [bx]φ

Trivial.

32

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Case of
⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ

Let x ∈ ΓJB → AK and assume that x ∈ H[ev(ϕ)]φI. Let furthermore y ∈ ΓJBK such that y ∈ HψI. We have to show

ev ◦ ⟨x ,y⟩ ∈ HφI. By induction hypothesis we have y ∈ Hψ ⇒ ϕI, so that y ∈ HϕI. But this implies ev ◦ ⟨x ,y⟩ ∈ HφI since
x ∈ H[ev(ϕ)]φI.

Case of

⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
Consider x ∈ ΓJA0+A1K ≃ ΓJA0K+ ΓJA1K (via Lem. C.2). Hence x = ini (y) for some y ∈ ΓJAiK and we have x ∈ H[ini]⊤I.
Moreover, since the injections in0 and in1 have disjoint images, we have H[in0]⊤∧[in1]⊤I = ∅ so x ∈ H¬([in0]⊤∧[in1]⊤)I.

Case of

⊢A0+A1 [ini]⊤ ⇒ (¬[ini]φ ⇔ [ini]¬φ)

Let x ∈ ΓJA0 +A1K ≃ ΓJA0K+ ΓJA1K, and assume x ∈ H[ini]⊤I, so that x = ini (y) for some (unique) y ∈ ΓJAiK. We show

x ∈ H¬[ini]φ ⇒ [ini]¬φI and x ∈ H[ini]¬φ ⇒ ¬[ini]φI

For the former, assume x < H[ini]φI. Since y is unique such that x = ini (y), we have y < HφI. But this implies y ∈ H¬φI
and we are done.

For the latter, assume x ∈ H[ini]¬φI. Assume toward a contradiction that x ∈ H[ini]φI. Since y is unique such that

x = ini (y), we have both y < HφI and y ∈ HφI, a contradiction.
Cases of

⊢A να0φ ⇔ ⊤ ⊢A ναt+1φ ⇔ φ[ναtφ/α] ⊢A µα0φ ⇔ ⊥ ⊢A µαt+1φ ⇔ φ[µαtφ/α]

By definition of HθαtφI.
Cases of

JtK ≥ JuK
⊢A ναtφ ⇒ ναuφ

JtK ≤ JuK
⊢A µαtφ ⇒ µαuφ

These cases follows from Lem. E.3 (in θαtφ we assume that α is positive in φ) and the definition of HθαtφI.
Cases of

⊢A ναωφ ⇒ φ[ναωφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναωφ ⊢A φ[µαωφ/α] ⇒ µαωφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαωφ ⇒ ψ

By Lem. E.3 and Knaster-Tarski Theorem. □

E.1.2 Proof of Lem. C.13.(2) (Lem. 7.3.(2))
Lemma E.4. If ⊢A φ then JφK = JAK.

Corollary C.17 gives almost everything we need for the semantic correctness of the modal theory. We begin with the axioms

of Table 1.

Lemma E.5. If φ : A is an axiom of Table 1, then JφKA = JAK.

Proof. Most of the axioms follow from Cor. C.17.

Case of (C). Since in each case, the map J[△]K preserves ∧.
Case of (N). Since in each case, the map J[△]K preserves ⊤ (recall that axiom is not assumed for [ini]).
Case of (P). The result for [πi], [fd] and [bx] follows from the fact that J[πi]K, J[fd]K and J[bx]K are maps of Heyting

algebras.

As for [ini], it follows from the fact that J[ini]K preserves ⊥ (Cor. C.17).

Case of (C∨). By Cor. C.17.

Case of (C⇒). Since J[πi]K, J[fd]K and J[bx]K are maps of Heyting algebras. □

In order to handle fixpoints, we have the usual monotonicity property w.r.t. subobject posets.

33

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Lemma E.6. Consider, for a formula α1 : A1, . . . ,αk : Ak ⊢ φ, the map

JφK : Sub(JA1K) × · · · × Sub(JAk K) −→ Sub(JAK), v 7−→ JφKv
For i ∈ {1, . . . ,k}, if αi Pos φ (resp. αi Neg φ), then w.r.t. subobjects posets, JφK is monotone (resp. anti-monotone) in its ith
argument.

We can now turn to the proof of Lemma E.4.

Proof of Lemma E.4. By induction on ⊢A φ. The rules of Fig. 11 follow from the fact that in a topos, the subobjects of a given

object form a Heyting algebra.

Case of
(RM)

⊢ ψ ⇒ φ

⊢ [△]ψ ⇒ [△]φ

The result holds for [πi], [fd] and [bx] since J[πi]K, J[fd]K and J[bx]K are maps of Heyting algebras.

As for [ini], [next] and [ev(−)], this follows from the fact that themaps J[ini]K, J[next]K and J[ev(−)]K preserve implications

since they preserve ∧.

Case of
⊢A
c
φ

⊢■A [bx]φ
By Cor. C.17.

Case of
⊢B ψ ⇒ ϕ ⊢ φ : A

⊢B→A [ev(ϕ)]φ ⇒ [ev(ψ)]φ
This case can be seen as following (via Lem. C.15) from the definition of J[ev(−)]K. A direct argument is nevertheless

possible. Let t ∈ JB → AK(n). Let k ≤ n such that t↑k ⊩k [ev(ϕ)]φ. Let furthermore ℓ ≤ k and u ∈ JBK(ℓ) such that

u ⊩B
ℓ
ψ . We have to show ev ◦ ⟨t↑ℓ,u⟩ ⊩A

ℓ
φ. By induction hypothesis we have u ⊩B

ℓ
ψ ⇒ ϕ, so that u ⊩B

ℓ
ϕ. But this

implies ev ◦ ⟨t↑ℓ,u⟩ ⊩A
ℓ
φ since t↑k ⊩k [ev(ϕ)]φ.

Case of

⊢A0+A1

(
[in0]⊤ ∨ [in1]⊤

)
∧ ¬

(
[in0]⊤ ∧ [in1]⊤

)
Write A = A0 + A1 and consider t ∈ JA0 + A1K(n). Hence t = ini (u) for some u ∈ JAiK(n) and we have t ⊩n [ini]⊤.
Moreover, since the injections in0 and in1 have disjoint images, we have J[in0]⊤ ∧ [in1]⊤K(k) = ∅ for all k > 0 so

t ⊩n ¬([in0]⊤ ∧ [in1]⊤).
Case of

⊢A0+A1 [ini]⊤ ⇒ (¬[ini]φ ⇔ [ini]¬φ)
Write A = A0 +A1. Let t ∈ JA0 +A1K(n), and let k ≤ n such that t↑k ⊩k [ini]⊤, so that we have t↑k = ini (u) for some

(unique) u ∈ JAiK(k). We show

t ⊩A0+A1

k ¬[ini]φ ⇒ [ini]¬φ and t ⊩A0+A1

k [ini]¬φ ⇒ ¬[ini]φ

For the former, let ℓ ≤ k such that t↑ℓ = (t↑k)↑ℓ ⊩ℓ ¬[ini]φ, that is such that t↑m ̸⊩m [ini]φ for all m ≤ ℓ. We

show t↑ℓ ⊩ℓ [ini]¬φ. Hence we are done if u↑m ̸⊩m φ for all m ≤ ℓ. But if u↑m ⊩m φ, then we would have

t↑m = ini (u↑m) ⊩m [ini]φ, a contradiction.
For the latter, let ℓ ≤ k such that t↑ℓ ⊩ℓ [ini]¬φ. We have to show t↑ℓ ⊩ℓ ¬[ini]φ, that is t↑m ̸⊩m [ini]φ for allm ≤ ℓ. So
assume t↑m̃ ⊩m̃ [ini]φ for some m̃ ≤ ℓ. Hence, there is u ′ ∈ JAiK(m̃) such that t↑m̃ = ini (u ′) and u ′ ⊩m̃ φ. But we have
u ′ = u↑m̃. On the other hand, since t↑ℓ ⊩ℓ [ini]¬φ, there is some u ′′ ∈ JAiK(ℓ) such that t↑ℓ = ini (u ′′) and u ′′↑m ̸⊩m φ
for allm ≤ ℓ. But we also have u ′′↑m̃ = u↑m̃, thus contradicting u↑m̃ ⊩m̃ φ.

Cases of

⊢A να0φ ⇔ ⊤ ⊢A ναt+1φ ⇔ φ[ναtφ/α] ⊢A µα0φ ⇔ ⊥ ⊢A µαt+1φ ⇔ φ[µαtφ/α]

By definition of JθαtφK.
Cases of

JtK ≥ JuK
⊢A ναtφ ⇒ ναuφ

JtK ≤ JuK
⊢A µαtφ ⇒ µαuφ

These cases follows from Lem. E.6 (in θαtφ we assume that α is positive in φ) and the definition of JθαtφK.
34

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Cases of

⊢A ναωφ ⇒ φ[ναωφ/α]

⊢A ψ ⇒ φ[ψ/α]

⊢A ψ ⇒ ναωφ ⊢A φ[µαωφ/α] ⇒ µαωφ

⊢A φ[ψ/α] ⇒ ψ

⊢A µαωφ ⇒ ψ

By Lem. E.6 and Knaster-Tarski Theorem, since subobject lattices of S are complete ([36, Prop. I.8.5]). □

E.2 The Safe Fragment
Lemma E.7 (Lem. 7.5). The greatest fixpoint of a Scott cocontinuous function f : L → L is given by

ν (f) :=
∧

n∈N f n(⊤)

Proof. That ν (f) is a fixpoint of f follows from the continuity of f and the fact that the set { f n(⊤) | ∈ N} is codirected, which
in turn follows from the fact that f is monotone. In order to show that ν (f) is the greatest fixpoint of f , recall that the greatest
fixpoint of f is in any case given by

b :=
∨

{a ∈ L | a ≤ f (a)}

We trivially have ν (f) ≤ b as ν (f) is a fixpoint of f . For the revere inequality, for all a such that a ≤ f (a), it follows by
induction on n ∈ N and from the monotony of f that we have a ≤ f n(⊤) for all n ∈ N. Hence a ≤ ν (f) for all a such that

a ≤ f (a), which in turn gives b ≤ ν (f). □

Lemma E.8 (Lem. 7.6). Consider a safe formula α1 : P+1 , . . . ,αk : P+k ⊢ φ : P+. The following two functions are Scott-cocontinuous:

JφK : Sub(JP+
1
K) × · · · × Sub(JP+k K) −→ Sub(JP+K), v 7−→ JφKv

HφI : P(ΓJP+
1
K) × · · · × P(ΓJP+k K) −→ P(ΓJP+K), v 7−→ HφIv

Proof. In both cases, monotony w.r.t. lattice order follows by an easy induction from the positivity of safe formulae. We now

turn to preservation of codirected meets. We first consider the case of HφI. We reason by induction on φ.

Cases of α , ⊤, ⊥.
Trivial.

Case of φ ∧ψ .
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. By induction hypothesis we obtain

Hφ ∧ψI(
⋂

D1, . . . ,
⋂

Dk) =
⋂

HφI(D1, . . . ,Dk) ∩
⋂

HψI(D1, . . . ,Dk)

and the result is trivial.

Case of φ ∨ψ .
This is the interesting case. Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. By induction hypothesis we obtain

Hφ ∧ψI(
⋂

D1, . . . ,
⋂

Dk) =
⋂

HφI(D1, . . . ,Dk) ∪
⋂

HψI(D1, . . . ,Dk)

We then trivially get⋂
HφI(D1, . . . ,Dk) ∪

⋂
HψI(D1, . . . ,Dk) ⊆

⋂
Hφ ∨ψI(D1, . . . ,Dk)

It remains to show the converse direction⋂
Hφ ∨ψI(D1, . . . ,Dk) ⊆

⋂
HφI(D1, . . . ,Dk) ∪

⋂
HψI(D1, . . . ,Dk)

So let x ∈ ΓJP+K such that x ∈ Hφ ∨ ψI(S1, . . . , Sk) for every S1 ∈ D1, . . . , Sk ∈ Dk . Assume toward a contradiction

that there are S1 ∈ D1, . . . , Sk ∈ Dk such that x < HφI(S1, . . . , Sk) and that there are S ′
1
∈ D1, . . . , S

′
k ∈ Dk such that

x < HψI(S ′
1
, . . . , S ′k). Since the Di ’s are codirected for inclusion, there are S ′′

1
∈ D1, . . . , S

′′
k ∈ Dk such that S ′′i ⊆ Si ∩ S ′i

for i = 1, . . . ,k . By monoticity w.r.t. inclusion, we have x < HφI(S ′′
1
, . . . , S ′′k) and x < HψI(S ′′

1
, . . . , S ′′k). But this implies

x < Hφ ∨ψI(S ′′
1
, . . . , S ′′k), a contradiction.

Case of [πi]φ.
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Let x ∈ ΓJP+K and write P+ = Q+

0
×Q+

1
. Then we are done since

by induction hypothesis

x ∈ H[πi]φI(
⋂

D1, . . . ,
⋂

Dk) iff πi ◦ x ∈ HφI(
⋂

D1, . . . ,
⋂

Dk)

iff πi ◦ x ∈
⋂

HφI(D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , πi ◦ x ∈ HφI(D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ H[πi]φI(D1, . . . ,Dk)

iff x ∈
⋂

H[πi]φI(D1, . . . ,Dk)

35

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Case of [ini]φ.
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Let x ∈ ΓJP+K and write P+ = Q+

0
+ Q+

1
. By Lem. C.2, we

have x = inj ◦ y for some unique j ∈ {0, 1} and y ∈ ΓJQ+j K. Then we are done since by induction hypothesis we have

x ∈ H[ini]φI(
⋂

D1, . . . ,
⋂

Dk)

iff j = i and y ∈ HφI(
⋂

D1, . . . ,
⋂

Dk)

iff j = i and y ∈
⋂

HφI(D1, . . . ,Dk)

iff j = i and ∀S1 ∈ D1, . . . , Sk ∈ Dk , y ∈ HφI(D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ H[ini]φI(D1, . . . ,Dk)

iff x ∈
⋂

H[ini]φI(D1, . . . ,Dk)

Case of [next]φ.
Let D1 ⊆ P(ΓJP+

1
K), . . . ,Dk ⊆ P(ΓJP+k K) be codirected. Let x ∈ ΓJP+K and write P+ = ▶Q+. By Lem. C.2, we have

x = next ◦ y for some unique y ∈ ΓJQ+K. Then we are done since by induction hypothesis we have

x ∈ H[next]φI(
⋂

D1, . . . ,
⋂

Dk) iff y ∈ HφI(
⋂

D1, . . . ,
⋂

Dk)

iff y ∈
⋂

HφI(D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , y ∈ HφI(D1, . . . ,Dk)

iff ∀S1 ∈ D1, . . . , Sk ∈ Dk , x ∈ H[next]φI(D1, . . . ,Dk)

iff x ∈
⋂

H[next]φI(D1, . . . ,Dk)

Case of [fd]φ.
This case is dealt-with similarly as that of [πi].

Case of [bx]φ.
Trivial since φ is required to be closed.

Case of [ev(ψ)]φ.
Trivial sinceψ and φ are required to be closed.

Cases of θαtφ and θαωφ.
Trivial since φ is required to have at most α as free variable.

We now turn to the case of JφK. Most of cases are similar to those for HφI. Also, note that

JφK : Sub(JP+
1
K) × · · · × Sub(JP+k K) −→ Sub(JP+K)

being Scott-continuous means that for D1 ⊆ Sub(JP+
1
K), . . . ,Dk ⊆ Sub(JP+k K) codirected w.r.t. subobject lattice orders, we have

JφK(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk)

But since meets in subobject lattices of S are pointwise, the above is equivalent to have, for all n > 0 that

JφK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

JφK(D1, . . . ,Dk)(n)

Cases of α , ⊤, ⊥.
Trivial.

Case of φ ∧ψ .
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. By induction hypothesis we obtain

Jφ ∧ψ K(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk) ∧
∧

Jψ K(D1, . . . ,Dk)

and the result is trivial.

Case of φ ∨ψ .
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. By induction hypothesis we obtain

Jφ ∧ψ K(
∧

D1, . . . ,
∧

Dk) =
∧

JφK(D1, . . . ,Dk) ∨
∧

Jψ K(D1, . . . ,Dk)

By monotonicity w.r.t. subobject lattice orders, we trivially get∧
JφK(D1, . . . ,Dk) ∨

∧
Jψ K(D1, . . . ,Dk) ⊆

∧
Jφ ∨ψ K(D1, . . . ,Dk)

It remains to show the converse direction∧
Jφ ∨ψ K(D1, . . . ,Dk) ⊆

∧
JφK(D1, . . . ,Dk) ∨

∧
Jψ K(D1, . . . ,Dk)

36

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Since meets and joins are computed pointwise in subobject lattices, we are done if for each n > 0 we show⋂
Jφ ∨ψ K(D1, . . . ,Dk)(n) ⊆

⋂
JφK(D1, . . . ,Dk)(n) ∪

⋂
Jψ K(D1, . . . ,Dk)(n)

We can then conclude as in the case of H−I. Fix n > 0 and let t ∈ JP+K such that t ∈ Jφ∨ψ K(A1, . . . ,Ak)(n) for everyA1 ∈

D1, . . . ,Ak ∈ Dk . Assume toward a contradiction that there are A1 ∈ D1, . . . ,Ak ∈ Dk such that t < JφK(A1, . . . ,Ak)(n)
and that there are A′

1
∈ D1, . . . ,A

′
k ∈ Dk such that t < Jψ K(A′

1
, . . . ,A′

k)(n). Since the Di ’s are codirected for inclusion,

there are A′′
1
∈ D1, . . . ,A

′′
k ∈ Dk such that A′′

i ≤ Ai ∧A′
1
for i = 1, . . . ,k . By monoticity w.r.t. subobject lattice orders, we

have t < JφK(A′′
1
, . . . ,A′′

k)(n) and t < Jψ K(A′′
1
, . . . ,A′′

k)(n). But this implies t < Jφ ∨ψ K(A′′
1
, . . . ,A′′

k)(n), a contradiction.
Case of [πi]φ.

Let D1 ⊆ Sub(JP+
1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. We show that for all n > 0 we have

J[πi]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[πi]φK(D1, . . . ,Dk)(n)

and this goes similarly as for H−I.
Case of [ini]φ.

Let D1 ⊆ Sub(JP+
1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. We show that for all n > 0 we have

J[ini]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[ini]φK(D1, . . . ,Dk)(n)

and this goes similarly as for H−I since the pointwise maps (inj)n : JQ+j K(n) → JQ+
0
K(n) + JQ+

1
K(n) are injective.

Case of [next]φ.
Let D1 ⊆ Sub(JP+

1
K), . . . ,Dk ⊆ Sub(JP+k K) be codirected. Write P+ = ▶Q+. We show that for all n > 0 we have

J[next]φK(
∧

D1, . . . ,
∧

Dk)(n) =
⋂

J[next]φK(D1, . . . ,Dk)(n)

The result is trivial if n = 1. For n > 1, it reduces to

JφK(
∧

D1, . . . ,
∧

Dk)(n − 1) =
⋂

JφK(D1, . . . ,Dk)(n − 1)

which follows from the induction hypothesis.

Case of [fd]φ.
This case is handled similarly as that of [πi].

Case of [bx]φ.
Trivial since φ is required to be closed.

Case of [ev(ψ)]φ.
Trivial sinceψ and φ are required to be closed.

Cases of θαtφ and θαωφ.
Trivial since φ is required to have at most α as free variable. □

Proposition E.9 (Prop. 7.7). Let α1 : P+1 , . . . ,αk : P+k ⊢ φ : P+ be a safe formula. Given S1 ∈ Sub(JP+
1
K), . . . , Sk ∈ Sub(JP+k K), we

have
HφI(Γ(S1), . . . , Γ(Sk)) = Γ

(
JφK(S1, . . . , Sk)

)
Proof. We reason by induction on the derivation of α1 : P

+
1
, . . . ,αk : P+k ⊢ φ : P+. In all cases but ναωφ, the parameters are

irrelevant and we omit them.

Cases of α , ⊤ and ⊥.
Trivial.

Case of φ ∧ψ .
Let x ∈ ΓJP+K. Then we are done since by induction hypothesis we have

x ∈ Hφ ∧ψI iff x ∈ HφI and x ∈ HψI
iff (∀n > 0, xn(•) ∈ JφK(n)) and (∀n > 0, xn(•) ∈ Jψ K(n))
iff ∀n > 0, xn(•) ∈ JφK(n) and xn(•) ∈ Jψ K(n)
iff ∀n > 0, xn(•) ∈ Jφ ∧ψ K(n)

Case of φ ∨ψ .
Let x ∈ ΓJP+K. Assume first that x ∈ Hφ ∨ψI. If (say) x ∈ HφI, then by induction hypothesis we get xn(•) ∈ JφK(n) for all
n > 0, which implies xn(•) ∈ Jφ ∨ψ K(n) for all n > 0.

Conversely, assume that xn(•) ∈ Jφ ∨ψ K(n) for all n > 0. Assume toward a contradiction that there are k, ℓ > 0 with

(say) k ≤ ℓ such that xk (•) < JφK(n) and xℓ(•) < Jψ K(n). Since k ≤ ℓ, by Lem. C.16 we have xk (•) < Jψ K(n), but this
37

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

contradicts xk (•) ∈ Jφ ∨ψ K(n). Hence, we have either xn(•) ∈ JφK(n) for all n > 0 or xn(•) ∈ Jψ K(n) for all n > 0, and

the result follows by induction hypothesis.

Case ofψ ⇒ φ.
This case cannot occur sinceψ ⇒ φ is not safe.

Case of [πi]φ.
Let x ∈ ΓJP+K and write P+ = Q+

0
×Q+

1
. Then we are done since (πi ◦ x)n(•) = πi (xn(•)) so that by induction hypothesis

we have

x ∈ H[πi]φI iff πi ◦ x ∈ HφI
iff ∀n > 0, (πi ◦ x)n(•) ∈ JφK(n)
iff ∀n > 0, xn(•) ∈ J[πi]φK(n)

Case of [ini]φ.
Let x ∈ ΓJP+K and write P+ = Q+

0
+Q+

1
. By Lem. C.2, we have x = inj ◦ y for some unique j ∈ {0, 1} and y ∈ ΓJQ+j K.

Then we are done since xn(•) = (inj ◦ y)n(•) = inj (yn(•)) so that by induction hypothesis we have

x ∈ H[ini]φI iff j = i and y ∈ HφI
iff j = i and ∀n > 0, yn(•) ∈ JφK(n)
iff ∀n > 0, xn(•) ∈ J[ini]φK(n)

Case of [next]φ.
Let x ∈ ΓJP+K and write P+ = ▶Q+. By Lem. C.2, we have x = next ◦ y for some unique y ∈ ΓJQ+K. Assume first x ∈

H[next]φI. Hence we have y ∈ HφI, which by induction hypothesis implies yn(•) ∈ JφK(n) for all n > 0. Now, we trivially

have x1(•) ∈ J[next]φK(1). Moreover, for n > 1, we have xn(•) = yn−1(•), so that xn(•) ∈ J[next]φK(n) = JφK(n − 1).

Assume conversely that xn(•) ∈ J[next]φK(n) for all n > 0. This implies xn(•) ∈ JφK(n − 1) for all n > 1, which in turn

implies yn−1(•) ∈ JφK(n − 1) for all n > 1. But by induction hypothesis this implies y ∈ HφI so that x ∈ H[next]φI.
Case of [fd]φ.

This case is handled similarly as that of [πi].
Case of [bx]φ.

Recall that φ is required to be closed. Also, by definition we have

J[bx]φK■A(n) :=
{
t ∈ J■AK(n) = ΓJAK

�� t ∈ HφIA
}

H[bx]φI■A
:=

{
x ∈ ΓJ■AK

�� x1(•) ∈ HφIA
}

It follows that given x ∈ ΓJ■AK, we have

x ∈ H[bx]φI■A
iff x1(•) ∈ HφIA
iff ∀n > 0, xn(•) ∈ HφIA

iff ∀n > 0, xn(•) ∈ J[bx]φK■A(n)

Case of [ev(ψ)]φ.
This case cannot occur since P+ is assumed to be positive.

Cases of θαtφ(α).
Assume α : P+ ⊢ φ(α) : P+. We show by induction onm ∈ N that

Hφm(⊤)I = ΓJφm(⊤)K and Hφm(⊥)I = ΓJφm(⊥)K

The base casem = 0 is trivial. As for the inductive case we have

Hφm+1(⊤)I = Hφ(φm(⊤))I and Jφm+1(⊤)K = Jφ(φm(⊤))K
Hφm+1(⊥)I = Hφ(φm(⊥))I and Jφm+1(⊥)K = Jφ(φm(⊥))K

By induction hypothesis onm we have

Hφm(⊤)I = ΓJφm(⊤)K and Hφm(⊥)I = ΓJφm(⊥)K

and we conclude by induction hypothesis on φ.
Case of ναωφ.

Assume α : P+ ⊢ φ : P+. Reasoning as above, for allm ∈ N we have

Hφm(⊤)I = ΓJφm(⊤)K
38

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

It then directly follows that for all x ∈ ΓJP+K, we have

x ∈
⋂
m∈N

Hφm(⊤)I iff ∀n > 0, xn(•) ∈
⋂
m∈N

Jφm(⊤)K(n)

and we conclude by Lem. E.8 and Lem. E.7. □

E.3 Flat Fixpoints
Lemma E.10 (Lem. 7.8). Consider, for a flat formula α : B ⊢ φ : A, the function

HφI : P(ΓJBK) −→ P(ΓJAK), S 7−→ HφI[S/α]

• If α is positive in φ (i.e. α Pos φ), then HφI is Scott-continuous as well as Scott-cocontinuous.
• If α is negative in φ (i.e. α Neg φ) , then HφI is (antimonotone and) takes joins of directed sets to meets of codirected sets and
takes meets of codirected sets to joins of directed sets.

Proof. The proof is by induction on formation of formulae α : B ⊢ φ : A. Monotonicity and antimonotonicity follow from

Lem. E.3. Note that formulae of the form θαtφ, θαωφ as well as [bx]φ and [ev(ψ)]φ are necessarily closed, nothing has to be

proved for these. Some cases are already handled by Lem. 7.6 (Lem. E.8), and we do not repeat them.

Cases of α ,⊤,⊥.
Trivial.

Case of φ ∧ψ (monotone).
Preservation of codirected meets is trivial (see Lem. 7.6 (Lem. E.8)). As for the preservation of directed joins, assume

α : B ⊢ φ ∧ψ : A, and let D ⊆ P(ΓJBK) be directed. Then by induction hypothesis we have

Hφ ∧ψI(
⋃

D) =
⋃

HφI(D) ∩
⋃

HψI(D) ⊇
⋃

Hφ ∧ψI(D)

For the converse inclusion, consider some x both in

⋃
HφI(D) and

⋃
HψI(D). Hence there are S, S ′ ∈ D such that x ∈ HφI(S)

and x ∈ HψI(S ′). Now since D is directed and by monotonicity, there is some S ′′ ∈ D such that x ∈ HφI(S ′′) ∩ HψI(S ′′).
Case of φ ∧ψ (antimonotone).

Assume α : B ⊢ φ ∧ψ : A. That Hφ ∧ψI turns directed joins into codirected meets is trivial (as codirected meets commute

over binary meets) and omitted. Let us show that Hφ ∧ψI turns codirected meets into directed joins. So let D ⊆ P(ΓJBK)
be codirected. Then by induction hypothesis we have

Hφ ∧ψI(
⋂

D) =
⋃

HφI(D) ∩
⋃

HψI(D) ⊇
⋃

Hφ ∧ψI(D)

We then conclude as for preservation of directed joins in the monotone case. Given x both in

⋃
HφI(D) and

⋃
HψI(D),

there are S, S ′ ∈ D such that x ∈ HφI(S) and x ∈ HψI(S ′). Now since D is codirected there is some S ′′ ∈ D such that

S ′′ ⊆ S ∩ S ′, and by antimonotonicity we have x ∈ HφI(S ′′) ∩ HψI(S ′′).
Case of φ ∨ψ (monotone).

Preservation of codirected meets is handled in Lem. 7.6 (Lem. E.8) while preservation of directed join is trivial.

Case of φ ∨ψ (antimonotone).
Assume α : B ⊢ φ ∧ψ : A. That Hφ ∨ψI turns codirected meets into directed joins is trivial (as directed joins commute

over binary joins) and omitted. Let us show that Hφ ∨ψI turns directed joins into codirected meets. So let D ⊆ P(ΓJBK)
be directed. By induction hypothesis we have

Hφ ∨ψI(
⋃

D) =
⋂

HφI(D) ∪
⋂

HψI(D) ⊆
⋂

Hφ ∨ψI(D)

We can then conclude similarly as in Lem. 7.6 (Lem. E.8). Let x ∈
⋂

Hφ ∨ ψI(D) and assume toward a contradiction

that there are S, S ′ ∈ D such that x < HφI(S) and x < HψI(S ′). Then since D is directed, there is some S ′′ ∈ D such that

S ∪ S ′ ⊆ S ′′, and by antimonotonicty we get x < Hφ ∨ψI(S ′′), a contradiction.
Case ofψ ⇒ φ.

With the classical semantics, the interpretation of ⇒ can be decomposed into ∨ and ¬, where H¬φI is the complement

of HφI (at the appropriate type). Let α be positive in φ and negative inψ , with α : B ⊢ φ,ψ : A, and let furthermore by D

39

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

and D ′
(of the appropriate type) be resp. directed and codirected. We then trivially have

H¬φI(
⋃

D) = P(ΓJAK) \ HφI(
⋃

D)
= P(ΓJAK) \

⋃
HφI(D)

=
⋂ (

P(ΓJAK) \ HφI(D)
) H¬φI(

⋂
D ′) = P(ΓJAK) \ HφI(

⋂
D ′)

= P(ΓJAK) \
⋂

HφI(D ′)

=
⋃ (

P(ΓJAK) \ HφI(D ′)
)

H¬ψI(
⋃

D) = P(ΓJAK) \ HψI(
⋃

D)
= P(ΓJAK) \

⋂
HψI(D)

=
⋃ (

P(ΓJAK) \ HψI(D)
) H¬ψI(

⋂
D ′) = P(ΓJAK) \ HψI(

⋂
D ′)

= P(ΓJAK) \
⋃

HψI(D ′)

=
⋂ (

P(ΓJAK) \ HψI(D ′)
)

Cases of [πi]φ, [ini]φ, [next]φ and [fd]φ.
These modalities are handled similarly as in Lem. 7.6 (Lem. E.8).

□

E.4 Realizability
Lemma E.11 (Monotonicity of Realizability (Lem. C.22)). If x ⊪n T then x ⊪k T for all k ≤ n.

Proof. By induction on the definition of⊪.

Case of a refined type {A | φ}.
The result follows from monotony of forcing (i.e. that JφK is a subobject of JAK) .

Case of 1.
The result is trivial as x ⊪n 1 for all n > 0.

Case of T0 +T1.
Assume x ⊪n T0 +T1 and let k ≤ n. Then we have x = ini ◦ y for some i = 0, 1 and some y ∈ ΓJ|Ti |K such that y ⊪n Ti .
By induction hypothesis we get y ⊪k Ti , so that x ⊪k T0 +T1.

Case of T0 ×T1.
Assume x ⊪n T0 × T1 and let k ≤ n. Then for each i = 0, 1 we have πi ◦ x ⊪n Ti , so that πi ◦ x ⊪k Ti by induction

hypothesis, and it follows that x ⊪k T0 ×T1.
Case ofU → T .
Assume x ⊪n U → T and let k ≤ n. But given ℓ ≤ k and y ∈ ΓJ|U |K such that y ⊪ℓ U we have ev ◦ ⟨x ,y⟩ ⊪ℓ T since

ℓ ≤ n.
Case of ▶T .

Assume x ⊪n ▶T and let k ≤ n. If k = 1 then we are done since always x ⊪1 ▶T . Otherwise, k = ℓ+ 1, so that n =m+ 1
with ℓ ≤ m. Moreover, there is y ∈ ΓJT K such that x = next ◦ y and y ⊪m T . We get y ⊪ℓ T by induction hypothesis, so

that x ⊪k ▶T .
Case of Fix(X).A .

Assume x ⊪n Fix(X).A and let k ≤ n. We have ufd ◦ x ⊪n A[Fix(X).A/X], so that ufd ◦ x ⊪k A[Fix(X).A/X] by

induction hypothesis and thus x ⊪k Fix(X).A.
Case of ■T .

Trivial. □

Lemma E.12 (Lem. C.23). For a pure type A and x ∈ ΓJAK, we have x ⊪n A for all n > 0.

Proof. The proof is by induction on pairs (n,A), using implicitly Lem. C.2 whenever required.

Case of 1.
Trivial.

Case of A0 +A1.
Given x ∈ ΓJA0 +A1K ≃ ΓJA0K + ΓJA1K, we have x = ini ◦ y for some y ∈ ΓJAiK. Then we are done since y ⊪n Ai by

induction hypothesis.

Case of A0 ×A1.
Given x ∈ ΓJA0 ×A1K ≃ ΓJA0K× ΓJA1K, we have π0 ◦ x ⊪n A0 and π1 ◦ x ⊪n A1 by induction hypothesis, and the result

follows.

Case of B → A.
Fix x ∈ ΓJB → AK. Given y ∈ ΓJBK and k ≤ n, we have y ⊪k B by induction hypothesis, so that ev ◦ ⟨x ,y⟩ ⊪k A. Hence
x ⊪n B → A.

40

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Case of ▶A.
The result is trivial if n = 1, so assume n > 1. Given x ∈ ΓJ▶AK, we have x = next ◦ y for some y ∈ ΓJAK. But then
y ⊪n−1 A by induction hypothesis, so that x ⊪n ▶A.

Case of Fix(X).A.
Let x ∈ ΓJFix(X).AK. It follows by induction on A from the induction hypothesis on n and the guardedness of X in A
that ufd ◦ x ⊪n A[Fix(X).A/X], and we are done.

Case of ■T .
Let x ∈ ΓJ■T K. Given n > 0, we have xn(•) ∈ ΓJT K, so that xn(•) ⊪m T for allm > 0 by induction hypothesis. But this

implies x ⊪n ■T . □

Lemma E.13 (Correctness of Subtyping (Lem. C.25)). Given types T ,U without free iteration variable, if x ⊪n U andU ≤ T
then x ⊪n T .

Proof. By induction onU ≤ T .

Cases of

T ≤ T

T ≤ U U ≤ V

T ≤ V

Trivial.

Cases of
T0 ≤ U0 T1 ≤ U1

T0 ×T1 ≤ U0 ×U1

T0 ≤ U0 T1 ≤ U1

T0 +T1 ≤ U0 +U1

U0 ≤ T0 T1 ≤ U1

T0 → T1 ≤ U0 → U1

T ≤ U

▶T ≤ ▶U
Trivial

Case of
U ≤ T

■U ≤ ■T
Let x : 1 →S ∆ΓJU K such that x ⊪n ■U , so that xn(•) ⊪m U for allm > 0. By induction hypothesis we get xn(•) ⊪m T
for allm > 0 and we are done.

Case of

T ≤ |T |

By Lem. C.23.

Case of

A ≤ {A | ⊤}

Trivial

Case of
⊢A φ ⇒ ψ

{A | φ} ≤ {A | ψ }

By Lem. E.4 (Lem. C.13.(2)).

Case of

{B → A | [ev(ψ)]φ} ≤ {B | ψ } → {A | φ}

Let x ∈ ΓJB → AK and n > 0. Assume x ⊪n {B → A | [ev(ψ)]φ}, that is xn(•) ∈ J[ev(ψ)]φK(n). Let further y ∈ ΓJBK
and k ≤ n such that y ⊪k {B | ψ }, that is yk (•) ∈ Jψ K(k). Then by monotonictiy of J−K (Lem. C.16) we have xk (•) ∈
J[ev(ψ)]φK(k), from which it follows that (xk (•))(yk (•)) ∈ JφK(k). But this means ev ◦ ⟨x ,y⟩ ⊪k {A | φ} and we are done.

Case of

{B | ψ } → {A | φ} ≤ {B → A | [ev(ψ)]φ}

Let x ∈ ΓJBK → A and n > 0. Assume x ⊪n {B | ψ } → {A | φ}. Let furthermore k ≤ n andu ∈ Jψ K(k). By Lem. C.24 ([13,

Cor. 3.8]) there is somey ∈ ΓJBK such thatyk (•) = u. We thus havey ⊪k {B | ψ }, and it follows that ev◦⟨x ,y⟩ ⊪k {A | φ},
that is xk (•)(yk (•)) ∈ JφK(k), and we are done.

41

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Case of

▶ {A | φ} ≡ {▶A | [next]φ}

Let x ∈ ΓJ▶AK. First, we always have x ⊪1 ▶A, as well as x1 ∈ J[next]φK▶A
. Let now n > 1. By Lem. C.2 we have

x = next ◦ y for some y ∈ ΓJAK. Since xn(•) = yn−1(•), we have

x ⊪n ▶ {A | φ} iff y ⊪n−1 {A | φ}
iff yn−1(•) ∈ JφKA(n − 1)

iff xn(•) = yn−1(•) ∈ J[next]φK▶A(n)
iff x ⊪n {▶A | [next]φ} .

Case of

∀k ·▶T ≡ ▶∀k ·T

Let x ∈ ΓJ▶|T |K.
Assume first that x ⊪n ∀k · ▶T . We have to show x ⊪n ▶∀k · T . The result is trivial if n = 1. So assume n > 1. By

Lem. C.2, there some unique y ∈ ΓJ|T |K such that x = next ◦ y. We have to show y ⊪n−1 T [m/k] for allm ∈ N. But by
assumption we have x ⊪n ▶T [m/k], so that by uniqueness of y we get y ⊪n−1 T [m/k].
Conversely, assume that x ⊪n ▶∀k · T . We have to show x ⊪n ∀k · ▶T . Let m ∈ N. If n = 1, then we trivially

have x ⊪n ▶T [m/k]. Otherwise, by Lem. C.2 let y ∈ ΓJ|T |K such that x = next ◦ y. But since x ⊪n ▶∀k · T , we get
y ⊪n−1 T [m/k], so that x ⊪n ▶T [m/k] and we are done.

Case of
φ safe

■ {A | φ} ≡ {■A | [bx]φ}

Let x : 1 →S ∆ΓJAK. Since φ is safe we have HφIA = [JφKA] by Prop. E.9 (Prop. 7.7). Then we are done since:

x ⊪n ■ {A | φ} iff xn(•) ⊪m {A | φ} for allm > 0

iff (xn(•))m(•) ∈ JφKA(m) for allm > 0

iff xn(•) ∈ HφIA

iff xn(•) ∈ J[bx]φK■A(n)
iff x ⊪n {■A | [bx]φ}

Case of
⊢A
c
φ ⇒ ψ

{■A | [bx]φ} ≤ {■A | [bx]ψ }

By Lem. E.1 (Lem. C.13.(1)). □

Theorem E.14 (Adequacy (Thm. C.26)). Let Γ,T have free iteration variables among ℓ, and letm ∈ N. If Γ ⊢ M : T and ρ |= Γ,
then

∀n > 0, ρ ⊪n Γ[ℓ/m] =⇒ JMKρ ⊪n T [ℓ/m]

Proof. The proof is by induction on typing derivations. We implicitely use Lem. C.2 whenever required. We omit iteration

variables when possible.

Case of
Γ,x : ▶T ⊢ M : T

Γ ⊢ fix(x).M : T

Let ρ |= Γ and write y := Jfix(x).MKρ ∈ ΓJT K. Note that

y = JM[next(fix(x).M)/x]Kρ = JMKρ[next◦y/x]

We show by induction on n > 0 that ρ ⊪n Γ implies y ⊪n T . In the base case n = 1, since next ◦ y ⊪1 ▶T , we have
ρ[next ◦ y/x] ⊪1 Γ,x : ▶T , so that the induction hypothesis on typing derivations gives y = JMKρ[next◦y/x] ⊪1 T .
As for induction step, assume ρ ⊪n+1 Γ. By Monotonicity of Realizability (Lem. E.11), we have ρ ⊪n Γ, and the induction
hypothesis on n gives y ⊪n T . It follows that next ◦y ⊪n+1 ▶T , so that ρ[next ◦y/x] ⊪n+1 Γ,x : ▶T and the induction

hypothesis on typing derivations gives y = JMKρ[next◦y/x] ⊪n+1 T .

42

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Case of
Γ ⊢ M : T

Γ ⊢ next(M) : ▶T
Let ρ |= Γ and write x := Jnext(M)Kρ ∈ ΓJ▶T K. Let n > 0 such that ρ ⊪n T . If n = 1 then we trivially have x ⊪1 ▶T .
Assume n > 1. Write y := JMKρ , so that x = next ◦ y. By Monotonicity of Realizability (Lem. E.11), we have ρ ⊪n−1 Γ,
so that the induction hypothesis on typing derivations gives y ⊪n−1 T and we are done.

Case of
x1 : T1, . . . ,xk : Tk ⊢ M : T Γ ⊢ M1 : T1 . . . Γ ⊢ Mk : Tk

Γ ⊢ bx[x1 7→M1, ...,xk 7→Mk](M) : ■T
(T1, . . . ,Tk constant)

Let ρ |= Γ and write x := Jbxσ (M)Kρ where σ = [x1 7→ M1, . . . ,xk 7→ Mk]. Let n > 0 such that ρ ⊪n Γ. We show

x ⊪n ■T , i.e. that xm(•) ⊪m T for allm > 0. Fixm > 0. We have by definition

xm(•) : ℓ 7−→ JMKℓ
(
JM1Km(ρm(•)) , . . . , JMk Km(ρm(•))

))
For i = 1, . . . ,k , since the type Ti is constant, we have by Lem C.21 that JMiKm(ρm(•)) = JMiKℓ(ρℓ(•)) for all ℓ > 0, so

that

xm(•) = ℓ 7−→ JMKℓ
(
JM1Kℓ(ρℓ(•)) , . . . , JMk Kℓ(ρℓ(•))

))
Now, by induction hypothesis, since ρ ⊪n Γ by assumption, for each i = 1, . . . ,k we have JMiKρ ⊪n Ti and since

Ti is constant, by Lem C.21 this implies JMiKρ ⊪ℓ Ti for all ℓ > 0. By induction hypothesis again, this in turn gives

JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩ ⊪ℓ T for each ℓ > 0. But then we are done since

xm(•) = ℓ 7−→ JMKℓ
(
JM1Kℓ(ρℓ(•)) , . . . , JMk Kℓ(ρℓ(•))

))
= JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩

Case of
Γ ⊢ M : ■T

Γ ⊢ ubx(M) : T

Let ρ |= Γ and write x := Jubx(M)Kρ . Let n > 0 such that ρ ⊪n Γ. By induction hypothesis we get JMKρ ⊪n ■T , that is
(JMKρ)m(•) ⊪m T for allm > 0, so in particular (JMKρ)n(•) ⊪n T . But now we are done since xm(•) = (JMKρ)n(•)m(•)
for eachm > 0.

Case of
x1 : T1, . . . ,xk : Tk ⊢ M : ▶T Γ ⊢ M1 : T1 . . . Γ ⊢ Mk : Tk

Γ ⊢ prev[x1 7→M1, ...,xk 7→Mk]
(M) : T

(T1, . . . ,Tk constant)

Let ρ |= Γ and write x := Jbxσ (M)Kρ where σ = [x1 7→ M1, . . . ,xk 7→ Mk]. Let n > 0 such that ρ ⊪n Γ. We show

x ⊪n ▶T . If n = 1 then the result trivially holds. Assume n > 1. For eachm > 0, we have by definition

xm(•) = JMKm+1
(
JM1Km(ρm(•)) , . . . , JMk Km(ρm(•))

))
For i = 1, . . . ,k , since the type Ti is constant, we have by Lem C.21 that JMiKm(ρm(•)) = JMiKm+1(ρm+1(•)), so that

xm(•) = JMKm+1
(
JM1Km+1(ρm+1(•)) , . . . , JMk Km+1(ρm+1(•))

))
and it follows that

x = next ◦ JMK ◦ ⟨JM1Kρ , . . . , JMk Kρ ⟩
Now, by induction hypothesis, since ρ ⊪n Γ by assumption, for each i = 1, . . . ,k we have JMiKρ ⊪n Ti and since

Ti is constant, by Lem C.21 this implies JMiKρ ⊪n−1 Ti . By induction hypothesis again, this in turn gives JMK ◦

⟨JM1Kρ , . . . , JMk Kρ ⟩ ⊪n−1 T and we are done.

Case of
Γ ⊢ M : T T ≤ U

Γ ⊢ M : U
By Lem. C.25 (Lem. E.13).

Case of
Γ ⊢ M : {A | ψ ⇒ φ} Γ ⊢ M : {A | ψ }

Γ ⊢ M : {A | φ}

Let ρ |= Γ and write x := JMKρ ∈ ΓJAK. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis, the right premise gives

xn(•) ∈ Jψ KA(n) and the left premise implies xn(•) ∈ JφKA(n).
43

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Case of
for i ∈ {0, 1},

Γ ⊢ M : {A | φ0 ∨ φ1} Γ,x : {A | φi } ⊢ N : U

Γ ⊢ N [M/x] : U

Let ρ |= Γ and write y := JMKρ ∈ ΓJAK and z := JN Kρ[y/x] ∈ ΓJ|U |K. Let n > 0 and assume ρ ⊪n Γ. By induction

hypothesis we have y ∈ JφiK for some i ∈ {0, 1}. It follows that ρ[y/x] ⊪n Γ,x : {A | φi }, from which we get z ⊪n B by

induction hypothesis.

Case of
Γ ⊢ M : {A | ⊥} Γ ⊢ N : |U |

Γ ⊢ N : U
Let ρ |= Γ and write x := JMKρ ∈ ΓJAK. Let n > 0 such that ρ ⊪n Γ. By induction hypothesis, the left premise gives

xn(•) ∈ J⊥K(n) = ∅, a contradiction. Hence ρ ̸⊪n Γ, and the result follows.

Case of
Γ ⊢ Mi : {Ai | φ} Γ ⊢ M1−i : A1−i

Γ ⊢ ⟨M0,M1⟩ : {A0 ×A1 | [πi]φ}

Let ρ |= Γ. Write y0 := JM0Kρ ∈ ΓJA0K, y1 := JM1Kρ ∈ ΓJA1K, and x := J⟨M0,M1⟩Kρ = ⟨y0,y1⟩. Let n > 0 such that

ρ ⊪n Γ. By induction hypothesis on typing derivations we have (yi)n(•) ∈ JφK. But since πi (xn(•)) = (yi)n(•), this gives
xn(•) ∈ J[πi]φK.

Case of
Γ ⊢ M : {A0 ×A1 | [πi]φ}

Γ ⊢ πi (M) : {Ai | φ}

Let ρ |= Γ. Writey := JMKρ ∈ ΓJA0×A1K and x := Jπi (M)Kρ = πi ◦y. Letn > 0 such that ρ ⊪n Γ. By induction hypothesis
on typing derivations we have yn(•) ∈ J[πi]φK, so that πi (yn(•)) ∈ JφK. But then we are done since xn(•) = πi (yn(•)).

Case of
Γ ⊢ M : {Ai | φ}

Γ ⊢ ini (M) : {A0 +A1 | [ini]φ}
Let ρ |= Γ. Write y := JMKρ ∈ ΓJAiK, and x := Jini (M)Kρ = ini ◦ y. Let n > 0 such that ρ ⊪n Γ. Hence by induction

hypothesis on typing derivations we have yn(•) ∈ JφK. But since xn(•) = ini (yn(•)), this implies xn(•) ∈ J[ini]φK.
Case of

Γ ⊢ M : {A0 +A1 | [ini]φ} Γ,x : {Ai | φ} ⊢ Ni : U Γ,x : A1−i ⊢ N1−i : U

Γ ⊢ caseM of (x .N0 |x .N1) : U

Let ρ |= Γ. Write y := JMKρ ∈ ΓJA0 +A1K ≃ ΓJA0K+ ΓJA1K. Hence y = inj ◦ z for some (unique) j ∈ {0, 1} and z ∈ ΓJAjK.
Let n > 0 such that ρ ⊪n Γ. By induction hypothesis, the left premise gives yn(•) ∈ J[ini]φK(n), so that yn(•) = ini (u)
for some u ∈ JφK(n). But this implies j = i and u = zn(•), so that z ⊪n {Ai | φ}. It follows that ρ[z/x] ⊪n Γ,x : {Ai | φ},
and the induction hypothesis on typing derivations gives JNiKρ[z/x] ⊪n U . But then we are done since

JcaseM of (x .N0 |x .N1)Kρ = JNiKρ[z/x]
Case of

Γ,x : {B | ψ } ⊢ M : {A | φ}

Γ ⊢ λx .M : {B → A | [ev(ψ)]φ}
Let ρ |= Γ. Write y := Jλx .MKρ ∈ ΓJB → AK. Let n > 0 such that ρ ⊪n Γ. We show yn(•) ∈ J[ev(ψ)]φK(n). So let k ≤ n
and u ∈ ΓJBK(k) such that u ∈ Jψ K(k). By [13, Cor. 3.8] there is some z ∈ ΓJBK such that zk (•) = t . By Monotonicity

of Realizability (Lem. E.11), we have ρ ⊪k Γ, so that ρ[z/x] ⊪k Γ,x : {B | ψ }. The induction hypothesis on typing

derivations thus gives (JMKρ[z/x])k (•) ∈ JφK, and we are done since (yk (•))(zk (•)) = (JMKρ[z/x])k (•).
Case of

Γ ⊢ M : {B → A | [ev(ψ)]φ} Γ ⊢ N : {B | ψ }

Γ ⊢ MN : {A | φ}

Let ρ |= Γ. Write y := JMKρ ∈ ΓJB → AK, z := JN Kρ ∈ ΓJBK and x := JMN Kρ = ev ◦ ⟨y, z⟩. Let n > 0 such that

ρ ⊪n Γ. By induction on typing derivations, the right premise gives zn(•) ∈ Jψ K(n), so that the left premise gives

(yn(•))(zn(•)) ∈ JφK(n). But then we are done since xn(•) = (yn(•))(zn(•)).
Case of

Γ ⊢ M : {A[Fix(X).A/X] | φ}

Γ ⊢ fd(M) : {Fix(X).A | [fd]φ}
Let ρ |= Γ. Write y := JMKρ ∈ ΓJA[Fix(X).A/X]K and x := Jfd(M)Kρ = fd ◦ y. Let n > 0 such that ρ ⊪n Γ. By induction

hypothesis on typing derivations we have yn(•) ∈ JφK. But then we are done since ufdn(xn(•)) = yn(•).
44

Temporal Refinements for Guarded Recursive Types Conference’17, July 2017, Washington, DC, USA

Case of
Γ ⊢ M : {Fix(X).A | [fd]φ}

Γ ⊢ ufd(M) : {A[Fix(X).A/X] | φ}

Let ρ |= Γ. Write y := JMKρ ∈ ΓJFix(X).AK and x := Jufd(M)Kρ = ufd ◦ y. Let n > 0 such that ρ ⊪n Γ. By
induction hypothesis on typing derivations we have yn(•) ∈ J[fd]φK. Hence ufdn(yn(•)) ∈ JφK and we are done since

xn(•) = ufdn(yn(•)).
Cases of

Γ ⊢ M : T [0/ℓ] Γ ⊢ M : T [ℓ+1/ℓ]

Γ ⊢ M : ∀ℓ ·T (ℓ not free in Γ)
Γ ⊢ M : T

Γ ⊢ M : ∀ℓ ·T (ℓ not free in Γ)

Let ρ |= Γ and write x := JMKρ ∈ ΓJ|T |K. Let n > 0 and assume ρ ⊪n Γ. Letm ∈ N. We have to show M ⊪n T [m/ℓ].
Since ℓ does not occur free in Γ, we have ρ ⊪n Γ[m′/ℓ] for allm′ ∈ N. For both rules we can conclude from the induction

hypothesis.

Case of
Γ ⊢ M : ∀ℓ ·T
Γ ⊢ M : T [t/ℓ]

Let ρ |= Γ and write x := JMKρ ∈ ΓJ|T |K. Let n > 0 and assume ρ ⊪n Γ. By induction hypothesis we have x ⊪n T [m/ℓ]
form = JtK and the result follows.

Cases of
Γ ⊢ M :

{
■A

�� [bx]γ [να ℓφ/β]
}

β Pos γ

Γ ⊢ M : {■A | [bx]γ [ναωφ/β]}
(ℓ not free in Γ,γ)

Γ ⊢ M : {■A | [bx]γ [ναωφ/β]} β Pos γ

Γ ⊢ M : {■A | [bx]γ [ναtφ/β]}

First, by Cor. 7.9 we have

Hναωφ(α)I =
⋂

m∈NHφm(⊤)I
Moreover, since β is positive in γ , it follows from Lem. E.10 (Lem. 7.8) that Hγ I is cocontinuous. We thus get

Hγ [ναωφ(α)/β]I =
⋂

m∈NHγ [φm(⊤)/β]I

For both rules, the result then follows from the induction hypothesis.

Cases of
Γ ⊢ M :

{
■A

�� [bx]γ [µαtφ/β]
}

β Pos γ

Γ ⊢ M : {■A | [bx]γ [µαωφ/β]}

Γ ⊢ M : {■A | [bx]γ [µαωφ/β]} Γ,x :

{
■A

�� [bx]γ [µα ℓφ/β]
}
⊢ N : U β Pos γ

Γ ⊢ N [M/x] : U
(ℓ not free in Γ,U ,γ)

Similar. □

45

Conference’17, July 2017, Washington, DC, USA Guilhem Jaber and Colin Riba

Contents

Abstract 1

1 Introduction 1

2 Outline 2

3 Related Work 3

4 The Pure Calculus 4

5 A Temporal Modal Logic 5

6 A Temporally Refined Type System 7

7 Semantics 8

8 Conclusion 12

Acknowledgments 13

References 13

A Additional Material for Section 5 15

B Additional Material for Section 6 15

C Additional Material for Section 7 15

C.1 The Topos of Trees (Basic Structure) 15

C.2 Global Sections and Constant Objects 15

C.3 External and Internal Semantics: Global

Definitions 17

C.4 An Open Geometric Morphism 17

C.5 Abstract Modalities 17

C.6 External and Internal Semantics: Local

Definitions 19

C.6.1 Internal Semantics 19

C.6.2 External Semantics 20

C.7 The Safe Fragment 20

C.8 Flat Fixpoints 20

C.9 Constant Objects, Again 20

C.10 Realizability 21

C.11 A Galois Connection 22

D Details of the Examples 23

D.1 Guarded Streams 23

D.1.1 The Later Modality on Guarded

Streams 23

D.1.2 Destructors of Guarded Streams 23

D.1.3 Constructor of Guarded Streams 24

D.1.4 Map over Guarded Streams 24

D.1.5 Merge over Guarded Streams 24

D.2 Map over Coinductive Streams 25

D.2.1 The Case of Eventually (3[φ]) 25

D.2.2 The Case of Eventually Always
(32[φ]) 26

D.2.3 The Case of Always Eventually
(23[φ]) 27

D.3 The Diagonal Function 29

D.3.1 Operations on Coinductive Streams 29

D.3.2 The Guarded Diagonal Function 30

D.3.3 The Coinductive Diagonal Function 30

E Proofs of Section 7 32

E.1 Correctness of the External and Internal

Semantics 32

E.1.1 Proof of Lem. C.13.(1) (Lem. 7.3.(1)) 32

E.1.2 Proof of Lem. C.13.(2) (Lem. 7.3.(2)) 33

E.2 The Safe Fragment 35

E.3 Flat Fixpoints 39

E.4 Realizability 40

Contents 46

46

	Abstract
	1 Introduction
	2 Outline
	3 Related Work
	4 The Pure Calculus
	5 A Temporal Modal Logic
	6 A Temporally Refined Type System
	7 Semantics
	8 Conclusion
	Acknowledgments
	References
	A Additional Material for Section 5
	B Additional Material for Section 6
	C Additional Material for Section 7
	C.1 The Topos of Trees (Basic Structure)
	C.2 Global Sections and Constant Objects
	C.3 External and Internal Semantics: Global Definitions
	C.4 An Open Geometric Morphism
	C.5 Abstract Modalities
	C.6 External and Internal Semantics: Local Definitions
	C.7 The Safe Fragment
	C.8 Flat Fixpoints
	C.9 Constant Objects, Again
	C.10 Realizability
	C.11 A Galois Connection

	D Details of the Examples
	D.1 Guarded Streams
	D.2 Map over Coinductive Streams
	D.3 The Diagonal Function

	E Proofs of Section 7
	E.1 Correctness of the External and Internal Semantics
	E.2 The Safe Fragment
	E.3 Flat Fixpoints
	E.4 Realizability

	Contents

