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Abstract

Recent works in the Boundary Element Method (BEM) community have been devoted to the
derivation of fast techniques to perform the matrix vector product needed in the iterative solver.
Fast BEMs are now very mature. However, it has been shown that the number of iterations can
significantly hinder the overall efficiency of fast BEMs. The derivation of robust preconditioners
is now inevitable to increase the size of the problems that can be considered. Analytical precon-
ditioners offer a very interesting strategy by improving the spectral properties of the boundary
integral equations ahead from the discretization.

The main contribution of this paper is to propose new analytical preconditioners to treat
Neumann exterior scattering problems in 2D and 3D elasticity. These preconditioners are local
approximations of the adjoint Neumann-to-Dirichlet map. We propose three approximations with
different orders. The resulting boundary integral equations are preconditioned Combined Field
Integral Equations (CFIEs). An analytical spectral study confirms the expected behavior of the
preconditioners, i.e., a better eigenvalue clustering especially in the elliptic part contrary to the
standard CFIE of the first-kind. We provide various 2D numerical illustrations of the efficiency
of the method for different smooth and non smooth geometries. In particular, the number of
iterations is shown to be independent of the density of discretization points per wavelength which
is not the case of the standard CFIE. In addition, it is less sensitive to the frequency.

Keywords: Scattering, time-harmonic elastic waves, Boundary Element Method, analytical
preconditioner, approximate local Neumann-to-Dirichlet map, cavity.

1. Introduction

The development of numerical methods for solving highly oscillatory elastic problems is of great
interest in medical or industrial applications (for example elastrography imaging, seismology, geo-
physical exploration or non-destructive testing). This paper considers the solution of scattering
problems of time-harmonic elastic waves by a two- or three-dimensional bounded obstacle with a
Neumann boundary condition. Various numerical approaches exist to deal with exterior boundary-
value problems [59]. We mention spectral methods [24, 44, 49], Finite Element Methods [41, 9] or
Finite Difference Methods [56, 39]. For the class of volume methods, the unbounded computational
domain must be truncated using an artificial boundary at a finite distance on which a boundary
condition is imposed. Many possibilities are proposed in the literature: nonreflecting bound-
ary conditions [38, 37] such as Absorbing Boundary Conditions (ABCs) [29, 18, 34] or Perfectly
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Matched Layers (PMLs) [8, 40, 26]. The method of boundary integral equations (BIEs) is another
classical tool for solving scattering problems of time-harmonic waves in unbounded, homogeneous
and isotropic media (see e.g. [10, 42, 48, 47]). The main advantage is to formulate the exterior
boundary value-problem as an integral equation on the boundary of the scatterer. Only the surface
of the obstacle is thus needed to be meshed in contrast to volume methods and the dimensional-
ity of the problem is reduced by one. However, the discretization matrix of a boundary integral
operator is dense. Furthermore, in order to capture the oscillatory phenomenon, one has to fix
typically about ten discretization points per wavelength per dimension. The solution of these large
and fully-populated complex linear systems is handled by iterative solvers, namely GMRES [60].
The standard Boundary Element Method (BEM) results in high computational costs in terms of
computational time (O(N2) per iteration) and memory requirements (O(N2)), where N denotes
the number of degrees of freedom (DOFs) of the BEM model. A number of algorithms has been
introduced to evaluate matrix-vector products in a fast way, when the matrix is obtained by the
discretization of an integral operator. The Fast Multipole accelerated Boundary Element Method
(FM-BEM) is one of the efficient methods. The method has been introduced by Rokhlin [55] and
extended to various domains included 3D elastodynamics [20, 19]. A different kind of compression
can be obtained by applying the adaptive cross approximation (ACA) algorithm and hierarchical
matrices [7]. In addition, the spectral properties of the most stable integral equation formulations,
the Combined Field Integral Equations (CFIEs), are usually not well suited for Krylov-subspace
iterative solvers such as GMRES. The cavity problem is particularly challenging because the stan-
dard CFIE is a boundary integral equation of the first kind for such a boundary condition. It
involves the boundary Neumann trace of the double-layer potential which is a pseudodifferential
operator of order 1. Consequently, a sequence of corresponding eigenvalues tends to infinity. The
condition number of the matrix behaves like O(1/h) in the standard basis where h is the mesh size.
We will see that this drawback of the CFIE is exacerbated at high frequencies. In this paper, we
focus on the construction of new well-conditioned BIEs which are more robust than the standard
CFIE.

Specifically, two families of preconditioners exist. We can cite algebraic preconditioning ap-
proaches such as incomplete LU, SParse Approximative Inverse [16, 17], multi-grid methods [15],
nested GMRES algorithm [23] which have been applied to electromagnetic or elastodynamic FM-
BEMs. However, since algebraic preconditioners retain only a small contribution of the system
matrix, they do not contain enough information on the underlying continuous operator. This ap-
proach is performant but shows only moderate efficiency for high frequency problems. Analytical
preconditioners offer a very interesting alternative. They act ahead from the discretization. This
preconditioning technique based on boundary integral operators of opposite orders, also known
as Calderón’s preconditioning, has been introduced by Steinbach and Wendland [57] in electro-
magnetism. Since then, several works have been devoted to the derivation of Fredholm boundary
integral equations of the second kind for both acoustic and electromagnetic scattering problems
by closed surfaces (e.g. [4, 5, 50, 51, 1, 12, 13, 31, 11, 54, 25, 35, 58, 36]) or open surfaces (e.g.
[27, 28, 3, 14]). Among them, approximations of the Dirichlet-to-Neumann map (respectively the
Neumann-to-Dirichlet map) naturally define robust analytical preconditioners when considering
Dirichlet (respectively Neumann) boundary value-problems. They are introduced as regularizing
operators in the integral representation of the scattered field and improve the spectral properties
of the resulting boundary integral equations. A pseudo inverse of the principal classical symbol of
the single layer boundary integral operator - or equivalently the principal classical symbol of the
Neumann trace of the double layer boundary integral operator - is used to approach the Dirichlet-
to-Neumann map and its adjoint operator [6, 5, 30] in the framework of the On-Surface Radiation
Condition (OSRC) methods (e.g. [46, 43, 2]). In acoustics, the resulting preconditioner is expressed
analytically by a simple square-root of the form iκ(I + ∆Γ/κ

2)
1/2 where κ is the wavenumber and

∆Γ the Laplace-Beltrami operator. Using same techniques of pseudodifferential calculus, recent
works have proposed analytical preconditioners for Dirichlet elastic BEM [32]. Some difficulties
inherent to elasticity have to be overcome. For the elasticity case, the double layer boundary
integral operator and its adjoint are not compact even for sufficiently smooth boundaries. This
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implies, according to Calderón’s identities, that regularizing the standard BIEs via a pseudo in-
verse of the single layer boundary integral operator is not sufficient to obtain well-conditioned
boundary integral equations. The principal part of the double layer boundary integral operator
has also to be taken into account in the preconditioner to regularize the single layer integral op-
erator. It is not an easy task to obtain the expressions of the principal parts of each elementary
boundary integral operator. To this end, a modified potential theory is applied and the tangential
Günter derivative plays an important role. The approximations of the Dirichlet-to-Neumann map
are expressed in terms of surface differential operators, square-root operators and their inverse.
These preconditioners can easily be combined with fast methods such as FMM [31], and yield a
very fast convergence of GMRES solver and in particular with a number of iterations independent
of the frequency and the mesh density.

In this paper, we construct analytical preconditioners for the iterative solution of cavity prob-
lems. To the best of our knowledge, this is the first contribution in this sense in 3D elastodynamics.
Contrary to the acoustic and electromagnetic cases, the definition of the Neumann-to-Dirichlet
preconditioner as the inverse of the Dirichlet-to-Neumann preconditioner is not sufficient to con-
struct well-conditioned BIEs for Neumann scattering problems. The approximations of different
orders of the adjoint Neumann-to-Dirichlet map, that we propose to apply as regularizing oper-
ators, are derived using strategies developed in [32]. However, we can no more use the modified
potential theory and the help of the tangential Günter derivative to overcome the non-compactness
of the boundary double-layer integral operator.

The paper is organized as follows: in Section 2, we introduce the problem setting. We present
the Combined Field Integral Equation (CFIE) formulations that are numerically investigated in
this paper. In Section 3, we describe the different approximate adjoint Neumann-to-Dirichlet maps
and the corresponding CFIEs in the two- and three-dimensional cases. Section 4 is devoted to ana-
lytical investigations of the spectral properties of the standard and preconditioned operators in the
particular case of the elastic sphere. Furthermore, we study the effect of both the number of spher-
ical harmonics and the frequency increase on the condition number. In Section 5, we provide some
elements of the discretization and implementation. We also give various numerical illustrations of
the efficiency of the method for different 2D geometries. We address numerical investigation of
the eigenvalues of the classical and preconditioned CFIEs. Finally, we draw concluding remarks,
and we discuss possible research lines in Section 6.

2. The Navier exterior problem and standard boundary integral equations

2.1. The Navier exterior problem
We consider an elastic cavity represented by a bounded domain Ω− in Rd, d = 2, 3, with a

closed boundary Γ := ∂Ω− of class C 2 at least. Let Ω+ denote the exterior domain Rd\Ω− and n
the outer unit normal vector to the boundary Γ. The Lamé parameters µ and λ and the density ρ
are positive constants. The propagation of time-harmonic waves in an isotropic and homogeneous
elastic medium is governed by the Navier equation [48, Eq. (12.5) page 55]

µ∆u+ (λ+ µ)∇ divu+ ρω2u = 0, (1a)

where ω > 0 denotes the angular frequency. The displacement field u is decomposed into a
longitudinal field up (compressional part) with vanishing curl and a transverse divergence-free field
us, both solutions to the Helmholtz equation with respective wavenumbers κ2

p = ρω2(λ + 2µ)−1

and κ2
s = ρω2µ−1. The Neumann trace, defined by t|Γ := Tu, is given by the traction operator

T = 2µ
∂

∂n
+ λn div +µn× curl .

The two-dimensional traction is obtained by setting u = (u1, u2, 0) and n = (n1, n2, 0) in the
above definition.
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The elastic cavity problem is formulated as follows : Given an incident displacement wave uinc
which is assumed to solve the Navier equation in the absence of any scatterer, find the scattered
field u to the Navier equation (1a) in Ω+ which satisfies the Neumann boundary condition

t|Γ = −tinc|Γ on Γ, (1b)

where we have set tinc|Γ = Tuinc. In addition, the behavior of the scattered displacement field u
at infinity is described by the Kupradze radiation conditions [48, Eqs (2.6)-(2.9) page 126]

lim
r→∞

r

(
∂up
∂r
− iκpup

)
= 0, lim

r→∞
r

(
∂us
∂r
− iκsus

)
= 0, r = |x|, (1c)

uniformly in all directions.
We denote by Hs

loc(Ω
+) and Hs(Γ) the standard (local in the case of the exterior domain)

complex valued, Hilbert-Sobolev spaces of order s ∈ R defined on Ω+ and Γ respectively (with
the convention H0 = L2). Spaces of vector functions will be denoted by boldface letters, thus
Hs = (Hs)d. We set ∆∗u := µ∆u + (λ + µ)∇divu. The radiating solution to (1a)-(1b)-(1c)
belongs to the space

H1
+(∆∗) := H1

loc(Ω
+,∆∗) :=

{
u ∈H1

loc(Ω
+) : ∆∗u ∈ L2

loc(Ω
+)
}
.

For existence and uniqueness results, we refer to Kupradze [47, 48].

2.2. Potential theory and integral representation
The first main difficulty arising in the numerical solution to the exterior boundary value-

problem (1a)-(1b)-(1c) is related to the unbounded computational domain Ω+. Integral equation
based methods are one of the possible tools to overcome this issue. For any positive real number
κ, let

G(κ,x− y) =


i

4
H

(1)
0 (κ|x− y|) if d = 2,

eiκ|x−y]

4π|x− y|
,x 6= y, if d = 3,

be the fundamental solution of the Helmholtz equation ∆v + κ2v = 0. The fundamental solution
of the Navier equation is written

Φ(x,y) =
1

µ

[
G(κs, |x− y|) · IRd +

1

κ2
s

∇x∇xT
(
G(κs, |x− y|)−G(κp, |x− y|)

)]
. (2)

The single- and double-layer potential operators are defined by

Sϕ =

ˆ
Γ

Φ(· ,y)ϕ(y)ds(y) and Dψ =

ˆ
Γ

[T yΦ(· ,y)]
T
ψ(y)ds(y), (3)

where T y = T (n(y), ∂y) and T yΦ(x,y) is the tensor obtained by applying the traction operator
T y to each column of Φ(x,y). For a solution u of the Navier equation (1a) in Ω+, that satisfies
the Kupradze radiation conditions, one can derive the Somigliana integral representation formula:
for x ∈ Ω+

u(x) = Du|Γ(x)− St|Γ(x). (4)

The Cauchy data (u|Γ, t|Γ) become the new unknowns of the problem. The displacement field u
in Ω+ is uniquely determined from the knowledge of these two surface fields.

Given vector densities ϕ and ψ, the boundary integral operators S, D, D
′
and N are defined,
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for x ∈ Γ, by

Sϕ(x) =

ˆ
Γ

Φ(x,y)ϕ(y) ds(y),

Dψ(x) =

ˆ
Γ

[T yΦ(x,y)]
T
ψ(y) ds(y),

D
′
ϕ(x) =

ˆ
Γ

T x {Φ(x,y)ϕ(y)} ds(y),

Nψ(x) =

ˆ
Γ

T x

{
[T yΦ(x,y)]

T
ψ(y)

}
ds(y).

By applying the exterior Dirichlet and Neumann traces to S and D we have [32]

(Sϕ)|Γ = Sϕ,
(
TSϕ

)
|Γ = −1

2
ϕ+D

′
ϕ,

(Dψ)|Γ =
1

2
ψ +Dψ, and

(
TDψ

)
|Γ = Nψ,

(5)

where I is the identity operator. The operator S is a pseudo-differential operator of order −1, i.e it
is bounded from H−

1
2 (Γ) to H

1
2 (Γ) and compact from H−

1
2 (Γ) to itself. The operator D and its

adjoint D
′
are of order 0, i.e. they have a strongly singular kernel and are bounded from H

1
2 (Γ)

and H−
1
2 (Γ) to themselves, respectively. The operator N is of order 1, i.e. it has a hypersingular

kernel and is bounded from H
1
2 (Γ) to H−

1
2 (Γ). The Calderón projectors for the time-harmonic

Navier equation are

P± =

±1

2
I +D −S

N ±1

2
I−D′

 .

We have P+ ◦ P− = P− ◦ P+ = 0 and thus the relations

SD′ = DS , D′N = ND ,

SN = D2 − 1

4
I , NS = D′

2 − 1

4
I.

(6)

2.3. Standard Boundary Integral Equations
There exists various possible boundary integral equations to obtain the Cauchy data (u|Γ, t|Γ).

We focus on combined field boundary integral equations that admit the unique solvability property.
The Neumann trace t|Γ is known through the boundary condition (1b).

We consider the direct method based on the following integral representation formula

u = D
(
u|Γ + uinc|Γ

)
.

Taking the exterior Dirichlet and Neumann traces of the right hand side, we obtain on Γ

(
I

2
+D)

(
u|Γ + uinc|Γ

)
= u|Γ ⇔ (

I

2
−D)

(
u|Γ + uinc|Γ

)
= uinc|Γ and N

(
t|Γ + tinc|Γ

)
= t|Γ = −tinc|Γ .

Combining the previous two equations, we construct the standard CFIE: find the physical unknown
ψ = u|Γ + uinc|Γ ∈H

1
2 (Γ) solution to

(
I

2
−D − iηN)ψ = uinc|Γ + iηtinc|Γ , on Γ, (7)

with η a coupling parameter. The integral equation (7) is well-posed for any frequency ω and
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any non-zero real parameter η [42, 47, 48]. However, it involves the boundary integral operator
N which is a pseudodifferential operator of order 1. Thus, this boundary integral equation is of
the first-kind and admits a countable set of eigenvalues that tends to infinity. We will see that
this standard CFIE is not well-suited for iterative solvers, particularly at high frequencies (see
Sections 4 and 5). This motivates the research of new and well-conditioned CFIEs.

3. Analytical preconditioners and regularized CFIE

3.1. Principle of analytical preconditioners
The analytical preconditioning technique consists in first constructing local approximations of

the exact exterior Neumann-to-Dirichlet operator. Secondly, we use them to get new CFIEs with
interesting spectral properties. The principle of the approach is the following.

Consider the exact exterior Neumann-to-Dirichlet operator (called NtD)

V ex : t|Γ ∈H−
1
2 (Γ) 7→ V ext|Γ := u|Γ ∈H

1
2 (Γ) . (8)

We write the Somigliana integral representation formula (4) of the scattered field under the form

u(x) = Du|Γ(x)− St|Γ(x) = DV ext|Γ(x)− St|Γ(x), x ∈ Ω+. (9)

We take the exterior Neumann trace of the representation (9)

t|Γ(x) =
(
NV ex +

I

2
−D′

)
t|Γ(x), x ∈ Γ,

and hence the exact NtD operator V ex satisfies on Γ

I

2
−D′ +NV ex = I.

In order to avoid the use of non-physical quantities, we consider the L2-adjoint form of the above-
written boundary integral equation operator

I

2
−D + V ex′

N = I, (10)

that is related to the CFIE (7). Thus we conclude that the adjoint NtD V ex′
is an ideal analytical

preconditioner for the CFIE, in the sense that the use of V ex′
(instead of the constant η) to

regularize the operator N gives directly the solution of the scattering problem. Furthermore,
assume that ω is not an eigenfrequency of the Navier equation (1a) in Ω− with a Neumann
homogeneous boundary condition, we deduce from relation (10) that the adjoint NtD map is
expressed in terms of elementary boundary integral operators on Γ by

V ex′
= N−1

( I

2
+D

)
. (11)

The Calderon formula SN = D2 − 1

4
I (see (6)) leads to another integral representation

V ex′
= −S

( I

2
−D

)−1

. (12)

However, it is too expensive numerically to apply one of these representations of the operator V ex′

as a preconditioner for the CFIE. Instead, an approximation V ′ of V ex′
is introduced to construct
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a preconditioned CFIE : Find the total field ψ = u|Γ + uinc|Γ ∈H
1
2 (Γ) solution to

(
I

2
−D + V ′N)ψ = uinc|Γ − V

′tinc|Γ , on Γ. (13)

The spectral properties of (13) depend on the choice of the approximate adjoint NtD map V ′.

3.2. Three-dimensional case
In this subsection, we give the expressions of different approximations of the adjoint NtD

map and their corresponding preconditioned CFIEs. First, let us introduce the expressions of
the principal parts of the operators S and D using tools proposed in [32]. The operator P (S) is
decomposed into two terms: P (S) = S1 + S2 with

S1 =
i

2ρω2

(
n
(
∆Γ + κ2

pI
) 1

2n · In + τ
(
∆Γ + κ2

sI
) 1

2 τ · Iτ
)

S2 = − i

2ρω2

(
n∆Γ

(
∆Γ + κ2

sI
)− 1

2 n · In + ∇Γ

(
∆Γ + κ2

pI
)− 1

2 divΓ Iτ

) (14)

where In = n ⊗ n and Iτ = I − In. We refer to [53, pages 68-75] for the definition of the
surface differential operators: the tangential gradient ∇Γ, the surface divergence divΓ and the
scalar Laplace-Beltrami operator ∆Γ. The square-root z1/2 of a complex number z stands for the
classical complex square-root with branch-cut along the negative real axis. The operator P (D) is
also decomposed into two terms: P (D) = D1 +D2 with

D1 =
i

2

(
n
(
∆Γ + κ2

pI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

sI
)− 1

2 n · In
)

D2 =
iµ

ρω2

(
− n

(
∆Γ + κ2

sI
) 1

2 divΓ It + n∆Γ

(
∆Γ + κ2

pI
)− 1

2 divΓ It

+∇Γ

(
∆Γ + κ2

pI
) 1

2
(
n · In

)
−∇Γ

(
∆Γ + κ2

sI
)− 1

2 ∆Γ

(
n · In

))
.

(15)

From (12)-(14)-(15), we derive several approximations of the adjoint NtD map.

Low-order approximation. We retain in (14) the informations associated to the first eigenmode of
the operators only. We obtain the following adjoint NtD approximation

V ′ := V ′LO = −i
( 1

(λ+ 2µ)κp
In +

1

µκs
It

)
. (16)

Importantly, the operator (16) is only coming from S1 (14).This low-order approximation is the
equivalent in elasticity of the zeroth-order approximation 1/(iκ) of the acoustic NtD map where
κ is the wavenumber. The associated preconditioned integral equation is given by

(
I

2
−D + V ′LON)ψ = uinc|Γ − V

′
LOt

inc
|Γ , on Γ, (17)

and is called LO-preconditioned CFIE (LO P-CFIE) in the remaining of the paper. The main
advantage of this preconditioner is to be very easy to implement. This new boundary integral
equation can be interpreted as the equivalent in elasticity of the usual CFIE with the optimal
coupling parameter of Kress [45] in acoustics. By construction, the approximation (16) provides
a good clustering of the first eigenvalues (associated with propagating modes) only. We will show
that we need high-order approximations to regularize the operator N of order 1 and then to cluster
eigenvalues associated with evanescent modes (see Sections 4 and 5).
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High-order approximation. Similarly to previous works [32, 22] realised for the Dirichlet boundary
condition case, we propose to consider the two following high-order approximations of the adjoint
NtD map

V ′HO(1) = −2P (S) (18)

V ′HO(2) = −P (S)
( I

2
− P (D)

)−1

(19)

where P (S) and P (D) are the respective principal parts of the operators S and D. For a numerical
purpose, these approximations are preferred to the one of (11) that involves the principal part
of the operator N−1. The approximation (18) doesn’t take into account the contribution of the
double-layer boundary integral operator D and avoids an operator inversion. It corresponds to
the NtD-choice done in acoustics [6, 4, 5] and electromagnetics [30, 33]. However, the operator
D is no more compact in the elasticity case, even for smooths surface. Thus, we also consider its
principal part in (19). We will observe in the sequel how it impacts the spectral behavior of the
preconditioned CFIE (13). We get the two corresponding P-CFIEs:

• the High-Order preconditioned CFIE with one term (HO(1) P-CFIE): integral equation (13)
and the analytical preconditioner V ′ := V ′HO(1) (18) without the contribution P (D) associ-
ated with the double-layer boundary integral operator.

• the High-Order preconditioned CFIE with two terms (HO(2) P-CFIE): integral equation (13)
and the analytical preconditioner V ′ := V ′HO(2) (19) with the principal part P (D).

The preconditioner V ′ contains square-root operators of the form (∆Γ + κ2
γI)1/2 with γ = s, p

and their inverse. An artificial singularity of square-root operators appears in the transition zone
from the propagating modes to the evanescent ones. The presence of the singularity yields a
wrong representation of the grazing modes. To model the behavior in the transition zone, we use
a regularization [6] by adding a small local damping parameter εγ > 0 to the wavenumber κγ . We
set κγ,ε := κγ + iεγ and we consider square-root operators (∆Γ + κ2

γ,εI)
1/2 and their inverse in

the preconditioner V ′. We denote by Pε(S) and Pε(D) the corresponding principal parts. The
addition of a local damping is important to obtain the well-posed character of the corresponding
preconditioned CFIEs. For existence and uniqueness results, we refer to [32].

3.3. Two-dimensional case
The main difference between 2D and 3D for the three proposed preconditioned CFIEs lies in

the expressions of the principal parts P (S) and P (D). We denote by s the anticlockwise directed
curvilinear abscissa along Γ. We introduce the curvilinear derivative ∂s. The Laplace-Beltrami
operator over Γ is defined by ∆Γ := ∂2

s . Furthermore, we use the relations ∇Γu = τ∂su and
divΓ u = ∂s(τ · u). We deduce that in 2D we have P (S) = S1 + S2 with

S1 =
i

2ρω2

(
n
(
∆Γ + κ2

p,εI
) 1

2n · In + τ
(
∆Γ + κ2

s,εI
) 1

2 τ · Iτ
)

S2 = − i

2ρω2

(
n
(
∆Γ + κ2

s,εI
)− 1

2 ∆Γ(n · In) + τ
(
∆Γ + κ2

p,εI
)− 1

2 ∆Γ(τ · Iτ )
) (20)

and P (D) = D1 +D2 with

D1 =
i

2

(
n∂s

(
∆Γ + κ2

p,εI
)− 1

2 τ · Iτ − τ∂s
(
∆Γ + κ2

s,εI
)− 1

2 n · In
)

D2 =
iµ

ρω2

(
− n∂s

(
∆Γ + κ2

s,εI
) 1

2 τ · Iτ + n∂s
(
∆Γ + κ2

p,εI
)− 1

2 ∆Γ(τ · Iτ )

+τ∂s
(
∆Γ + κ2

p,εI
) 1

2
(
n · In

)
− τ∂s

(
∆Γ + κ2

s,εI
)− 1

2 ∆Γ

(
n · In

))
.

(21)
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4. Spectral study for the spherical case

Once the three possible preconditioned CFIEs presented, we perform an analytical investigation
of the eigenvalue clustering of these CFIE operators for the 3D spherical case. We compare also
the stability of their condition number with respect to the mesh refinement and frequency increase.
We use some results obtained in [32, Section 4 and Appendix B] for the three-dimensional Dirichlet
boundary condition case.

4.1. Asymptotic analysis
Let S2 be the unit sphere in R3 with outward unit normal vector denoted by x̂. We introduce

the scalar spherical harmonics Y`j of order ` for ` ∈ N and degree j = −`, . . . , `. The concatenation
of the tangential vector spherical harmonics defined for ` ∈ N∗ by

Y(1)
`j = (`(`+ 1))−

1
2∇S2Y`j , Y(1)

`j = (`(`+ 1))−
1
2∇S2Y`j × x̂

with the radial spherical harmonics defined for ` ∈ N by Y(3)
`j = x̂Y`j , forms an othonormal basis

function of H
1
2 (S2). In the case of an elastic sphere of radius R, the boundary integral operators

D and N can be expanded in this basis functions both such that CY(3)
0,0 = C

(3,3)
0 Y(3)

0,0 and for ` ≥ 1

C

Y(1)
`,j

Y(2)
`,j

Y(3)
`,j

 =

C
(1,1)
` 0 C

(1,3)
`

0 C
(2,2)
` 0

C
(3,1)
` 0 C

(3,3)
`


Y(1)

`,j

Y(2)
`,j

Y(3)
`,j


where C = D or N . We distinguish three zones of modes: the hyperbolic zone for ωR→ +∞ and
`� κpR (propagating modes), the elliptic zone when `→ +∞ and `� κsR (evanescent modes),
and the transition zone of physical surface modes between ` ≈ κpR and ` ≈ κsR. First, let us
consider the hyperbolic zone. We obtain the following asymptotic behavior.

Proposition 4.1. When ωR→∞ we have

• for the operator D :

D
(1,1)
` =

1

2
− sin2(κsR− (`+ 1)π2 ) + i

2 sin
(
2(κsR− (`+ 1)π2 )

)
+O

(
1

|ωR|

)
, ` ≥ 1,

D
(2,2)
` =

1

2
− cos2(κsR− (`+ 1)π2 )− i

2 sin
(
2(κsR− (`+ 1)π2 )

)
+O

(
1

|ωR|

)
, ` ≥ 1,

D
(3,3)
` =

1

2
− sin2(κpR− (`+ 1)π2 ) + i

2 sin
(
2(κpR− (`+ 1)π2 )

)
+O

(
1

|ωR|

)
, ` ≥ 0,

D
(1,3)
` = O

(
1

|ωR|

)
, D

(3,1)
` (ωR) = O

(
1

|ωR|

)
, ` ≥ 1,

• and for the operator N :

N
(1,1)
` =

µκs
i

(
− cos2(κsR− (`+ 1)π2 )− i

2 sin
(
2(κsR− (`+ 1)π2 )

))
+O

(
1

|ωR|

)
, ` ≥ 1,

N
(2,2)
` =

µκs
i

(
− sin2(κsR− (`+ 1)π2 ) + i

2 sin
(
2(κsR− (`+ 1)π2 )

))
+O

(
1

|ωR|

)
, ` ≥ 1,

N
(3,3)
` = i(λ+ 2µ)κp

(
cos2(κpR− (`+ 1)π2 )+ i

2 sin
(
2(κpR− (`+ 1)π2 )

))
+O

(
1

|ωR|

)
, ` ≥ 0,

N
(1,3)
` = O

(
1

|ωR|

)
, N

(3,1)
` (ωR) = O

(
1

|ωR|

)
, ` ≥ 1.
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From these results and the integral representation (11), we retrieve the low-order approxima-
tion (16) of the NtD operator

V ′LO =


1

iµκs
0 0

0 1
iµκs

0

0 0 1
i(λ+2µ)κp

 (22)

so that in the hyperbolic zone (when ωR→∞) we get

I

2
−D + V ′LON = I +O

(
1

|ωR|

)
.

The high-order P-CFIE operators share also this good property. Let us observe now the behaviour
of the different operators in the elliptic zone. The following asymptotic results hold.

Proposition 4.2. When `→∞, we have

• for the operator D :

D
(1,1)
` = − µ

λ+ 2µ

1

2(2`+ 1)
+O

(
1

`3

)
,

D
(2,2)
` = − 3

2(2`+ 1)
+O

(
1

`3

)
,

D
(3,3)
` = − 3µ

λ+ 2µ

1

2(2`+ 1)
+O

(
1

`3

)
,

D
(1,3)
` = D

(3,1)
` =

µ

2(λ+ 2µ)
+O

(
1

`2

)
,

• and for the operator N :

N
(1,1)
` =

−2µ(λ+ µ)

λ+ 2µ

`+ 1
2

2R
+O

(
1

`

)
,

N
(2,2)
` = −µ

`+ 1
2

2R
+O

(
1

`

)
,

N
(3,3)
` =

−2µ(λ+ µ)

λ+ 2µ

`+ 1
2

2R
+O

(
1

`

)
,

N
(1,3)
` = N

(3,1)
` =

µ(3λ+ µ)

2R(λ+ 2µ)
+O

(
1

`2

)
.

The asympotic behavior for large modes of the boundary integral operator N are in accordance
with the fact that the standard CFIE operator is of the first kind. The application of the low-order
approximation V ′LO (22) is not sufficient to regularize the operatorN in the elliptic part. It doesn’t
provide an eigenvalue clustering in this zone (see Figure 1). The high-order approximations are
needed to efficiently regularize the operator N . We have

V ′HO(2) = −Pε(S)
( I

2
− Pε(D)

)−1

where

Pε(S)

Y(1)
`,j

Y(2)
`,j

Y(3)
`,j

 =


s

(1,1)
`,ε 0 0

0 s
(2,2)
`,ε 0

0 0 s
(3,3)
`,ε


Y(1)

`,j

Y(2)
`,j

Y(3)
`,j

 ,
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with asymptotics when `→∞

s
(1,1)
`,ε = i

2ρω2

[(
κ2
s,ε −

`(`+1)
R2

) 1
2

+ `(`+1)
R2

(
κ2
p,ε −

`(`+1)
R2

)− 1
2

]
=

(κ2
s,ε+κ2

p,ε)R

4ρω2
√
`(`+1)

+ o(`−1),

s
(2,2)
`,ε = i

2ρω2κ
2
s,ε

(
κ2
s,ε −

`(`+1)
R2

)− 1
2

=
κ2
s,εR

2ρω2
√
`(`+1)

+ o(`−1),

s
(3,3)
`,ε = i

2ρω2

[(
κ2
p −

`(`+1)
R2

) 1
2

+ `(`+1)
R2

(
κ2
s,ε −

`(`+1)
R2

)− 1
2

]
=

(κ2
s,ε+κ2

p,ε)R

4ρω2
√
`(`+1)

+ o(`−1),

and

Pε(D)

Y(1)
`,j

Y(2)
`,j

Y(3)
`,j

 =


0 0 d

(1,3)
`,ε

0 0 0

d
(3,1)
`,ε 0 0


Y(1)

`,j

Y(2)
`,j

Y(3)
`,j

 ,

with asymptotics when `→∞

d
(1,3)
`,ε = i

κ2
s,ε

(
`(`+1)
R2

)1/2
[(
κ2
s,ε −

`(`+1)
R2

) 1
2

+ `(`+1)
R2

(
κ2
p,ε −

`(`+1)
R2

)− 1
2

]
− i

2

(
`(`+1)
R2

)1/2(
κ2
p,ε −

`(`+1)
R2

)− 1
2

=
κ2
p,ε

2κ2
s,ε

+ o(1),

d
(3,1)
`,ε = i

κ2
s,ε

(
`(`+1)
R2

)1/2
[(
κ2
p,ε −

`(`+1)
R2

) 1
2

+ `(`+1)
R2

(
κ2
s,ε −

`(`+1)
R2

)− 1
2

]
− i

2

(
`(`+1)
R2

)1/2(
κ2
s,ε −

`(`+1)
R2

)− 1
2

=
κ2
p,ε

2κ2
s,ε

+ o(1).

Thus, we obtain the following behaviour of the high-order approximate NtD map when `→∞

V ′HO(2)

Y(1)
`,j

Y(2)
`,j

Y(3)
`,j

 = − R√
`(`+ 1)


1

2ρω2

κ4
s,ε

κ2
s,ε−κ2

p,ε
0 1

2ρω2

κ2
s,εκ

2
p,ε

κ2
s,ε−κ2

p,ε

0
κ2
s,ε

ρω2 0

1
2ρω2

κ2
s,εκ

2
p,ε

κ2
s,ε−κ2

p,ε
0 1

2ρω2

κ4
s,ε

κ2
s,ε−κ2

p,ε


Y(1)

`,j

Y(2)
`,j

Y(3)
`,j

+ o(`−1)

and of the corresponding HO(2) P-CFIE operator

(
I

2
−D + V ′HO(2)N

)Y(1)
`,j

Y(2)
`,j

Y(3)
`,j



=


1
2 +

κ4
s,ε(κ2

s−κ
2
p)

2κ4
s(κ2

s,ε−κ2
p,ε)

µ
2(λ+2µ)

(
κ2
s,εκ

2
p,ε(κ2

s−κ
2
p)

κ2
sκ

2
p(κ2

s,ε−κ2
p,ε) − 1

)
0 1

2 +
κ2
s,ε

2κ2
s

0

µ
2(λ+2µ)

(
κ2
s,εκ

2
p,ε(κ2

s−κ
2
p)

κ2
sκ

2
p(κ2

s,ε−κ2
p,ε) − 1

)
0 1

2 +
κ4
s,ε(κ2

s−κ
2
p)

2κ4
s(κ2

s,ε−κ2
p,ε)


Y(1)

`,j

Y(2)
`,j

Y(3)
`,j

+ o(`−1).

This result shows that the eigenvalues of the HO(2)-CFIE operator are well-clustered around
the unit in the elliptic zone. This is also the case for the HO(1)-CFIE operator.

4.2. Illustration of the spectral properties for the unit sphere
We now consider a finite dimensional approximation. We keep only the modes ` such that

|`| ≤ mmax with mmax = [(nλs
κsR)/2] and [x] denotes the integer part of a real number x. In

practice, the number of modes mmax to retain must not only be large enough to capture the
hyperbolic and transition parts of the spectrum but also the elliptic part (mmax ≥ κs), while
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avoiding the divergence of the spherical Bessel and Hankel functions. It depends on the density
of discretization points nλs per S-wavelength (λs = 2π/κs).

In this Section, the physical parameters (ρ = µ = 1, λ = 3) are fixed such that the wavenumbers
satisfy κs =

√
5κp. In Figure 1, we report the eigenvalue distribution of the standard and three

proposed P-CFIEs. We observe that the three analytical preconditioners improve successfully
the spectral properties of the standard CFIE with an efficient clustering of the eigenvalues. The
best results are given by the HO P-CFIEs, particularly in the elliptic zone. As expected, the
corresponding condition numbers are independent on the number of modes, i.e. on the mesh
density (see Figure 2), on the contrary to the standard CFIE of the first-kind. Furthermore, the
LO and HO P-CFIEs allow to reduce the dependance of the condition number with respect to the
frequency. This dependance is linked to the eigenvalues associated with grazing modes. We have
performed also this analytical study for the unit disk in 2D and obtain similar conclusions (see
Figure 3).
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Figure 1: Unit sphere. Distribution of the eigenvalues of the standard and three P-CFIEs (η = 1, κs = ω = 50 and
nλs = 12). (a) Complete distribution and (b) Closer view on the clustering.

5. Numerical efficiency of analytical preconditioners

5.1. Discretization and implementation
To discretize the surface Γ of the scatterer, we consider a triangulation withNE surface triangles

and NI vertices. The polyedric interpolated surface is denoted by Γh. The discretization is
performed by means of classical P1 boundary finite elements. We set Xh = P1(Γh) and Xh = V dh ,
d = 2, 3, with dimXh = M := dNI . The application of the HO(2)-preconditioner (19), namely

V ′HO(2) = −Pε(S)
( I

2
− Pε(D)

)−1

,

is decomposed into the following two steps:
Step 1: Knowing v ∈H

1
2 (Γ), solve the boundary differential equation: find the intermediate variable

q ∈H
1
2 (Γ) solution of ( I

2
− Pε(D)

)
q = v. (23)

Step 2: Knowing q ∈H
1
2 (Γ), compute u ∈H−

1
2 (Γ) such that

u = −Pε(S)q. (24)
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Figure 2: Unit sphere. Study of the condition number of the three P-CFIEs. (a) Condition number with respect to
the maximal number of modes mmax (κs = 4π). (b) Condition number with respect to the frequency ω (nλs = 12).
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Figure 3: Unit disk. Study of the condition number of the P-CFIEs. (a) Condition number with respect to the
maximal number of modes mmax (κs = 4π). (b) Condition number with respect to the frequency (nλs = 12).

The application of the HO(1)-preconditioner (18), i.e. without the contribution of the operator D,
reduces to the evaluation of u = −2Pε(S)v without the need of the inversion Step (Step 1). We
refer to [21] for the derivation of the corresponding variational formulation. The efficiency of the
HO-preconditioners relies on a robust local representation of the square-root operators (1 + z)1/2,
z ∈ C, and their inverses. To this end, we apply complex Padé approximants with a rotating
branch-cut of angle θ (see [52, 22] for more details). Such a Padé approximation allows to model
correctly the different types of modes and in particular the evanescent ones, i.e. corresponding to
the region {z < −1|Im(z) = 0}. The discrete wavenumbers are then expressed by κγ,εh = κs + iεh

with εh = 0.39κ
1/3
γ (H2

h)1/3. The quantity Hh is a piecewise constant interpolation of the mean
curvature H over Γh on each triangle of the triangulation. The numerical evaluation of Hh comes
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from the relation

Hh(x) =
1

2
divΓh

nh(x) =
1

2

d∑
k=1

NI∑
j=1

(nh(aj) · ek)(ek · ∇Γh
ϕj(x)), x ∈ Γh,

where aj , 1 ≤ j ≤ NI , are the vertices of the mesh and the functions ϕj , 1 ≤ j ≤ NI , the P1 basis
functions on Γh.

We solve the dense non-symmetric linear systems, corresponding to the BEM discretization of
the preconditioned or standard CFIEs, with GMRES [60]. We do not use a restarted version in
order to have a precise idea of the impact of the preconditioning technique on the convergence.
[A] ∈ CM×M denotes the matrix associated with the linear discretization of a given integral
operator A. At each iteration of the solver, the solution of the preconditioned CFIE (13) requires
the evaluation of the vector Y ∈ CM

Y =

(
[I]

2
+ [D] + [V ′][N ]

)
X,

for any vector X ∈ CM given by GMRES. From a computational point of view, the precondition-
ers (18) and (19) involve only sparse matrices. The Padé approximation of order 2Np + 1 requires
to solve Np uncoupled sparse linear systems. Importantly, for the preconditioner (19) Step 1
needs the inversion of

(
I/2 − Pε(D))

)
. In practice, due to the use of Padé approximations, the

matrix associated with this operator is never explicitly assembled and the sparse system is solved
with an inner GMRES solver.

To check the efficiency of the proposed analytical preconditioners, we consider three geometries
with increasing difficulties. The first geometry is a unit disk used to validate our code. The second
one is a unit square with corner singularities. Finally, we construct a C-shape modeling a crack
with a finite thickness (see Fig. 4). It is parametrised by C = {(1.5 sin (3t+4)π

8 − 1, 0.8 sin (3t+4)π
4 ) :

−1 ≤ t ≤ 1} ∪ {(1.45 sin (3t+4)π
8 − 1, 0.7 sin (3t+4)π

4 ) : −1 ≤ t ≤ 1}. For all the examples, we fix
the mechanical parameters to ρ = µ = 1 and λ = 2 such that κs = ω and κp = ω/2. The obstacles
are meshed with a density of nλs points per S-wavelength.

Figure 4: C-shape: definition of the geometry.

5.2. Spectral analysis
In order to analyse the convergence properties of GMRES to solve the preconditioned and

standard CFIEs, we observe first the eigenvalue behavior of the involved integral operators. The
spectral study has been done analytically for the unit disk in Section 4. For the unit square
and the C-shape, an analytical expression of the eigenvalues is not available. We compute them
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numerically to check if these good spectral properties are also observed. The circular frequency is
set to ω = 2π, the discretization to nλs = 20 and the Padé order to 60. We report on Figures 5 and 6
the eigenvalue distribution for the standard and preconditioned CFIEs when the scatterers are the
unit square and the C-shape respectively. For these scatterers, the high order local approximation
of the NtD maps also have the remarkable property of clustering the eigenvalues associated with
the evanescent modes. This is not the case for the non-preconditioned CFIE. The best spectral
behavior is provided by the HO(2)-preconditioner and is favorable for an iterative solution.
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Figure 5: Unit square. Distribution of the eigenvalues of the standard and different P-CFIEs (η = 1, ω = 2π and
nλs = 20). (a) Complete distribution and (b) closer view of the clustering.

Real part
-2 0 2 4 6 8 10 12 14 16 18

Im
a

g
in

a
ry

 p
a

rt

-10

-5

0

5

10

15

20

25

30

35
CFIE
LO P-CFIE
HO(1) P-CFIE
HO(2) P-CFIE

Real part
0 0.5 1 1.5 2

Im
a

g
in

a
ry

 p
a

rt

-2

-1

0

1

2

3

4
LO P-CFIE
HO(1) P-CFIE
HO(2) P-CFIE

(a) (b)

Figure 6: C-shape. Distribution of the eigenvalues of the standard and different P-CFIEs (η = 1, ω = 2π and
nλs = 20). (a) Complete distribution and (b) closer view of the clustering.

5.3. Numerical efficiency in the context of an iterative solver
We now compare the convergence of the iterative solver GMRES for the different CFIEs. The

scatterers are illuminated by incident plane waves of the form

uinc(x) =
1

µ
eiκsx·d(d× p)× d+

1

λ+ 2µ
eiκpx·d(d · p)d , where d ∈ D2 and p ∈ R2 (25)

(D2 is the unit disk in R2). When p = ±d, the incident plane wave oscillates along the direction of
propagation (pressure wave or P-wave). When the polarization p is orthogonal to the propagation
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vector d, the incident plane wave oscillates in a direction orthogonal to the direction of propagation
(shear wave or S-wave). We consider the scattering of incident plane P-waves with p = d = (1, 0)T ,
or S-waves with p = (1, 0)T and d = (0, 1)T . For all the tests, the tolerances of the inner and outer
GMRES solvers are set to 10−5 and 10−3 respectively. The mechanical parameters are defined
such that the wavenumbers satisfy κs = 2κp and ω = κs (i.e. ρ = 1, µ = 1 and λ = 2) and the
number of Padé terms is set to 60.

Unit disk. As a usual validation test, we first consider the unit disk. Figure 7 represents the
analytical and numerical far fields for nλs

= 40 and ω = 2π and illustrates the accuracy of the code
(for an incident plane P wave). The number of GMRES iterations with respect to the frequency
ω are reported in Table 1 (resp. Table 2) for P-waves (resp. S-waves) for the four possible CFIEs.
In the case of the HO(2) P-CFIE, inner iterations are indicated in parentheses. The use of the
different analytical preconditioners efficiently speeds up the convergence of the solver, particularly
at high frequencies. The HO(2) P-CFIE provides the best results. Nevertheless, the two other P-
CFIEs also offer a very good alternative to the standard CFIE and have the advantage to be very
simple to implement. The dependence of the convergence with respect to the frequency is linked
to eigenvalues corresponding with grazing modes and probably surface modes (Rayleigh waves).
In Table 3, we study the number of GMRES iterations with respect to the density of points nλs

for incident S-waves. As predicted by the spectral analysis, the convergence is independent on the
mesh refinement for the HO P-CFIEs. The LO P-CFIE is also robust with a slight increase of the
number of iterations. This is not the case of the standard CFIE which is of the first-kind.

Figure 7: Unit disk. Validation of the code by comparing the analytical and numerical modulus of the far-field for
an incident plane P-wave (nλs = 40 and ω = 2π). The L2 error for this example is 5.87 10−3.

ω # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 20 6 8 5(22)
4π 32 9 11 4(30)
6π 50 12 11 4(32)
8π 72 13 12 3(33)
16π 120 11 8 3(40)
20π 170 10 8 3(45)

Table 1: Unit disk: Diffraction of incident P-waves. Number of GMRES iterations for a fixed density of points
nλs = 20.
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ω # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 26 13 11 8(24)
4π 46 19 19 8(32)
6π 65 27 25 9(39)
8π 91 36 31 10(45)
16π 186 66 51 14(68)

Table 2: Unit disk: Diffraction of incident S-waves. Number of GMRES iterations for a fixed density of points
nλs = 20.

nλs # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
5 31 14 19 9(30)
10 37 16 17 6(33)
20 46 19 19 8(32)
30 57 22 19 8(32)

Table 3: Unit disk. Diffraction of incident S-waves. Number of GMRES iterations for a fixed frequency ω = 4π.

Unit square. We now consider the case of a unit square. The number of GMRES iterations with
respect to the frequency ω are reported in Table 4 (resp. Table 5) for P-waves (resp. S-waves)
for the four possible CFIEs. In Table 6, we study the number of GMRES iterations with respect
to the density of points nλs

for incident S-waves. For this geometry more difficult geometry, the
number of iterations without any preconditioner also increases with both the frequency and the
mesh refinement. The three preconditioners are efficient. Here again, the dependence on the
frequency after preconditioning is reduced, and the independence of the convergence according to
a mesh refinement is still observed with the HO P-CFIEs.

ω # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 57 19 11 10(25)
4π 103 25 15 11(35)
6π 134 30 21 13(42)
8π 177 36 28 15(52)
16π 287 55 49 20(80)

Table 4: Unit square. Diffraction of incident P-waves. Number of GMRES iterations for a fixed density of points
nλs = 20.

ω # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 63 21 12 10(25)
4π 120 26 18 12(35)
6π 171 32 23 15(43)
8π 226 38 29 17(52)
16π 421 70 53 24(80)

Table 5: Unit square. Diffraction of incident S-waves. Number of GMRES iterations for a fixed density of points
nλs = 20.
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nλs # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
20 421 70 53 24(80)
30 449 86 55 23(80)
40 475 99 55 24(80)

Table 6: Unit square. Diffraction of incident S-waves. Number of GMRES iterations for a fixed frequency ω = 16π.

C-shape. It is known that the dependence on the frequency is more pronounced for the case of
a trapping obstacle than for the case of a disk or square. It is interesting to study the efficiency
of analytical preconditioners for such scattering objects. The number of GMRES iterations with
respect to the frequency ω are reported in Table 7 (resp. Table 8) for P-waves (resp. S-waves)
for the four possible CFIEs. For this more difficult geometry, the number of iterations without
any preconditioner increases drastically with the frequency. The three preconditioners are seen
to be very efficient (with at least the number of iterations divided by three). Here again, the
dependence on the frequency after preconditioning is reduced. Importantly, for this geometry
HO(1) P-CFIE is the most robust approach particularly at high frequencies. For example, where
multiplying the frequency by 8, the number of iterations is only multiplied by a factor 2. The
relative loss of performance of the HO(2) P-CFIE approach for this geometry can be explained by

the inversion of the operator
( I

2
− Pε(D)

)
in (23), where Pε(D) is the principal part of the non-

compact operator D. For Dirichlet problems, we proposed to consider a modified potential theory
(using the tangential Günter derivative) in which the corresponding double-layer boundary integral
operator is a compact operator [32, 31]. This technique is not possible for Neumann problems.
The inversion in (23) requires a higher Padé order to make the HO(2) P-CFIE competitive. The
HO(1) P-CFIE is a very interesting compromise for such configurations.

ω # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 66 27 25 28(40)
4π 106 34 31 46(54)
6π 176 47 45 66(73)
8π 207 44 41 79(84)
16π 332 61 52 113(141)

Table 7: C-shape: Diffraction of incident P-wave. Number of GMRES iterations for a fixed density of points
nλs = 20.

ω N # iter CFIE # iter LO P-CFIE # iter HO(1) P-CFIE # iter HO(2) P-CFIE
2π 81 65 26 25 28(40)
4π 165 122 35 31 46(54)
6π 250 180 47 46 68(72)
8π 331 205 51 41 75(83)
16π 666 328 69 56 107(140)
20π 829 395 76 61 116(173)

Table 8: C-shape: Diffraction of incident S-wave. Number of GMRES iterations for a fixed density of points
nλs = 20.

6. Conclusion and future work

In this paper, we have presented a first conclusive study of the efficiency of analytical precon-
ditioners for the numerical solution of high-oscillatory Neumann elastic exterior problems. We
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have proposed three preconditioners corresponding to approximations with various orders of the
exact adjoint Neumann-to-Dirichlet (NtD) map. The theory based on the calculus of the principal
pseudo-differential symbol of the NtD map is described in two- and three-dimensions.

A spectral analytical study for the spherical case has shown that the high-order preconditioned
CFIEs are not of the first-kind on the contrary to the non-preconditioned CFIE. Consequently,
their condition numbers are not sensitive to the mesh refinement and the convergence of GM-
RES is independent of the mesh size too. Numerical simulations on various 2D geometries have
attested that the convergence of GMRES is also greatly improved with respect to the frequency
with high-order and local approximations of the NtD. A slight dependence on the frequency is
observed. Nevertheless, the proposed preconditioned CFIEs offer a very competitive alternative
to the standard one.

In the future, a more extensive analysis should be performed in order to understand the in-
fluence in the preconditioner of some physical aspects inherent to a cavity problem, e.g. surface
Rayleigh waves. This is an ongoing work.
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