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A B S T R A C T

It is well known that expectations influence how we perceive the world. Yet the neural mechanisms underlying
this process remain unclear. Studies about the effects of prior expectations have focused so far on artificial
contingencies between simple neutral cues and events. Real-world expectations are however often generated from
complex associations between contexts and objects learned over a lifetime. Additionally, these expectations may
contain some affective value and recent proposals present conflicting hypotheses about the mechanisms under-
lying affect in predictions. In this study, we used fMRI to investigate how object processing is influenced by
realistic context-based expectations, and how affect impacts these expectations. First, we show that the precuneus,
the inferotemporal cortex and the frontal cortex are more active during object recognition when expectations
have been elicited a priori, irrespectively of their validity or their affective intensity. This result supports previous
hypotheses according to which these brain areas integrate contextual expectations with object sensory infor-
mation. Notably, these brain areas are different from those responsible for simultaneous context-object in-
teractions, dissociating the two processes. Then, we show that early visual areas, on the contrary, are more active
during object recognition when no prior expectation has been elicited by a context. Lastly, BOLD activity was
shown to be enhanced in early visual areas when objects are less expected, but only when contexts are neutral; the
reverse effect is observed when contexts are affective. This result supports the proposal that affect modulates the
weighting of sensory information during predictions. Together, our results help elucidate the neural mechanisms
of real-world expectations.
1. Introduction

We expect to find hairdryers in bathrooms, tombstones in cemeteries,
and baguettes in bakeries, but not tombstones in bathrooms, refrigerators
in cemeteries and hairdryers in bakeries. That is, we live in a world where
most objects are associated with specific contexts. Throughout a lifetime
of experiences, we come to learn these associations, which lead us to
form expectations about the objects to be encountered when we navigate
the world. Congruent contexts have been shown to facilitate an object’s
recognition, compared to incongruent contexts (Bar and Ullman, 1996;
Biederman et al., 1982; Davenport and Potter, 2004); in addition, objects
are recognized more accurately when a semantically consistent scene has
been shown prior to the object’s recognition (Palmer, 1975; see Bar,
2004, for a review of related studies).

Perception can be understood as the process of integrating such top-
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down expectations with incoming sensory information. It has been
proposed that predictions from high-level areas are transmitted to
adjacent lower-level areas and compared with incoming sensory sig-
nals, such that only the discrepancy between these two signals – the
prediction error – is transmitted up the visual hierarchy (Friston, 2005;
see also Mumford, 1992; Ullman, 1995; Rao and Ballard, 1999). In
support of this model, the expectation of a visual stimulus elicits a
specific pattern of activity in the primary visual cortex (Kok et al., 2014,
2017; Hindy et al., 2016) and the perception of an expected stimulus
results in reduced neural activity in sensory cortices (Summerfield
et al., 2008; den Ouden et al., 2010; Alink et al., 2010; Kok et al., 2012a;
Todorovic and de Lange, 2012; see de Lange et al., 2018, for a review).
Some predictions, however, may require a different mechanism than
feedback from adjacent visual areas (Bar, 2007; Hindy et al., 2016): for
instance, the hippocampus has been shown to play a role in the
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generation of predictions (Hindy et al., 2016; Kok and Turk-Browne,
2018), and there is some evidence that parahippocampal (PHC) and
retrosplenial (RSC) cortices initiate context-based expectations (Bar,
2003, 2004; Bar and Aminoff, 2003; Bar et al., 2006; Livne and Bar,
2016; Brandman and Peelen, 2017).

Most neuroimaging studies examining the mechanisms underlying
predictions in visual perception have used very simple cues such as tones
(Summerfield and Koechlin, 2008; den Ouden et al., 2010; Kok et al.,
2012a, 2017) or a repetition of the same object (Summerfield et al.,
2008; Todorovic and de Lange, 2012). By contrast, expectations about
everyday objects usually stem from the surrounding context. Several
previous studies investigated the processing of context-object relation-
ships but did so by using a simultaneous presentation of the object and
the scene (Faivre et al., 2019; Goh et al., 2004; Jenkins et al., 2010; Kirk,
2008; R�emy et al., 2014; see also Gronau et al., 2008, who use seman-
tically related objects analyzed as a single event), which makes it hard to
disentangle context-object interactions (occurring while both are being
recognized) from context-based predictions (occurring prior to the ob-
ject’s recognition). For example, context-object interactions can
comprise matching processes or low-level crowding. While studying
these processes is of interest, we focus here on predictions arising from an
earlier processing of scenes and influencing a later processing of objects.
To isolate this process, we used a sequential design in which scenes alone
are presented before objects alone, just like when someone walks to-
wards a cemetery and sees tombstones when he gets in. In fact, contexts
are typically processed before the objects that they comprise (and they
guide the eyes to these objects; Bar, 2003; Oliva and Torralba, 2007).
Ganis and Kutas (2003) used a quasi-sequential scene-object presentation
in their electroencephalography (EEG) study but their objects were
shown overlayed to the scene previously presented; therefore, the effect
of predictions on object recognition was not as isolated as in our design in
which objects appear alone. They found a modulation of an N400-like
component by the semantic congruency of the scene and object. Their
use of EEG, however, prevented them from looking at the specific brain
regions at play. To our knowledge, our study is the first neuroimaging
study to explore context-based predictions using a sequential
context-object design.

Relatedly, the effect of predictions has not been considered in the
setting of an ecological object recognition task. Simple detection tasks
(Jiang et al., 2013), delayed discrimination tasks (Kok et al., 2012a,
2014, 2017) or categorization tasks using few stimuli (den Ouden et al.,
2010; Kok et al., 2012b) are typically used. Moreover, previous studies
on prediction have manipulated predictability by artificial means, either
by repeating and alternating stimuli (Summerfield et al., 2008; Todorovic
and de Lange, 2012), by having stimuli appearing after different cues
with different probabilities during the experiment (den Ouden et al.,
2010; Kok et al., 2012a, 2012b; 2014, 2017; Jiang et al., 2013), or by
developing arbitrary contingencies shortly before the experiment (Hindy
et al., 2016). Associations between contexts and objects formed over a
lifetime of experiences may involve mechanisms distinct from these. For
instance, these associations learned a long time ago may be stored
independently of the hippocampus and so, predictions would not origi-
nate from this area.

Moreover, real-world expectations are often tinted by some affective
value. A visual context can elicit emotional reactions that may influence
the recognition of objects in the scene (Lebrecht et al., 2012). In an
emotional context (e.g., a cemetery), the affective value may be partially
processed before the scene’s objects (e.g., a tombstone) and contribute to
the object’s recognition (Barrett and Bar, 2009). In such a case, there
would be a greater difference in brain activation between validly pre-
dicted and invalidly predicted objects for emotional contexts than for
neutral contexts (due to the presence of additional affective information).

Alternatively, the prediction’s affective value might interact with its
validity. Based on a recent proposal according to which sub-cortical
nuclei have a modulating power over prediction errors (Kanai et al.,
2015), and on the fact that many subcortical circuits are coordinated
2

with bodily processes, Miller and Clark (2018) proposed that affect
(relating to internal bodily states) exerts a continuous influence on
perception by increasing the weight attributed to prediction errors dur-
ing perceptual inference. When prediction errors are up-weighted, ob-
servers will rely more on the sensory input instead of their predictions to
recognize a target object. This increased weight might be implemented
by increasing the postsynaptic gain of neurons representing prediction
errors (Kok et al., 2012b; Feldman and Friston, 2010). According to
recent predictive coding models, the pattern of neural responses to valid
and invalid predictions should reverse when prediction errors are given
more weight (Feldman and Friston, 2010; Kok et al., 2012b). In our case,
this would lead to a greater response to invalidly predicted stimuli than
validly predicted stimuli when there is no affect, and to the opposite
result when there is affect (see Kok et al., 2012b, for a description of a
similar phenomenon, supplemented with diagrams).

In the present study, we aimed to address previous shortcomings by
investigating how object recognition mechanisms are influenced by task-
irrelevant implicit expectations generated by a predictive or non-
predictive visual context. Which brain regions are responding to ob-
jects whether they were preceded by expectations or not will inform us
about how high-level predictions are matched to sensory data. Further-
more, we aimed to investigate the effect of the affective value of pre-
dictions, and to disentangle between competing hypotheses on this
matter. The pattern of results across the different affective value and
predictive value conditions will teach us about how affect modulates the
influence of predictions.

2. Materials and methods

2.1. Participants

Seventeen healthy adults (9 female; mean age ¼ 24.8; standard de-
viation ¼ 4.3) were recruited on the campus of Aix-Marseille Universit�e.
Participants did not suffer from any neurological, psychological or psy-
chiatric disorder and were free of medication. The experimental protocol
was approved by the ethics board of CPP Sud-M�editerran�ee 1 and the
study was carried in accordance with the approved guidelines. Written
informed consent was obtained from all participants after the procedure
had been fully explained, and a monetary compensation was provided
upon completion of the experiment.

2.2. Stimuli

We conducted several validation studies. For all these studies, sub-
jects were French and had unlimited time to respond. In a first validation
study, 35 different subjects (20 female; 22–54 years, mean ¼ 29.2 years)
were shown thirty-three context names and had to give the names of
three objects with a high probability of being present in that context.
Then, thirty-two public domain scene color images were selected from
the internet as context images (see examples in Fig. 1a). Context images
were selected to ensure that their three most associated objects did not
appear in them while still being representative of the context category.

Ninety-six color images of objects corresponding to the three most
cited names for each context were then selected for the experiment (e.g.,
swimsuit, diving board and pool ladder for swimming pool; Fig. 1a,
Table S1). For each context, the experimenters also chose three non-
associated objects (selected from the ones that had never been associ-
ated with the context in the first validation study). Every object was the
associated object of only one context and the non-associated object of
only one other context; moreover, for each context, each one of the three
non-associated objects was associated with a different context. Addi-
tionally, the experimenters (i.e. the four authors) divided contexts in
Affective (Aff) and Neutral (Neut) categories according to their judgment
of their affective intensity: the category of each context was determined
by consensus.

We validated this categorization a posteriori with a second validation



Fig. 1. A) Example of one neutral and one affective scene, with their associated objects. See Table S1 for a list of all contexts and associated objects. B) Example of a
trial (Invalid Neutral condition). The object image and name have been enlarged for better viewing.
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study. In this study, an independent sample of 22 subjects (12 female;
20–58 years, mean ¼ 23.5 years) identified what they thought the
context images represented (to confirm that the image represented the
context; all contexts were largely correctly identified), indicated if the
context elicited an emotion and, if so, what were its valence (negative to
positive, from 0 to 10) and intensity (no emotion to very intense emotion,
from 0 to 10); if the subject indicated that the context elicited no
emotion, this was coded as 0 intensity. Valence was not included in the
experimental design. We performed a Spearman correlation between our
classification (binary variable) and the affective intensity score: we ob-
tained a correlation coefficient of 0.78 solely with our binary classifica-
tion, indicating that we explained a large part of the explainable
variance; affective contexts had a mean intensity of 5.42 while neutral
contexts had a mean intensity of 2.37. Looking more closely, only 4
contexts were miscategorized according purely to the validation’s in-
tensity score; we repeated our fMRI analyses excluding these contexts
and obtained very similar results (the regions activated were largely the
same; see supplementary materials).

A third and final validation study was conducted to collect quanti-
tative measures of the associations between objects and contexts. Forty-
four new subjects (29 female; 18–86 years, mean¼ 40.7 years) indicated
on a scale from 0 to 10 exactly howmuch each object was associated to its
associated and non-associated contexts (context-object pairs were ran-
domized). Measures were z-scored within each subject. Associated ob-
jects had a vastly greater associative weight with their context (F ¼
38,353, p < 4.4 � 10�65). Neutral contexts had a greater association to
their associated objects on average, and a smaller association to their
non-associated objects (significant interaction between association and
affective value; F ¼ 17.43, p ¼ .0001). To get rid of this potential
confound, we used these weights, z-scored within predictive value con-
dition but not within affective value condition, as covariates in the
analysis.

Finally, we randomized the phases of the mean of the context images
in the Fourier domain – separately for each RGB color channel – to obtain
96 different phase-scrambled images.
2.3. Data acquisition

Functional imaging data were acquired with an AVANCE 3 T scanner
(Bruker Inc., Ettlingen, Germany) equipped with a 2-channel head-coil.
Functional images sensitive to BOLD contrast were acquired with a
T2*-weighted gradient echo EPI sequence (TR 2400 ms, TE 30 ms, matrix
64� 64 mm, FOV 192 mm, flip angle 81.6�). Thirty-six slices with a slice
gap of 0 mm were acquired within the TR; voxels were 3 x 3 � 3 mm.
Between 303 and 311 vol were acquired in each run, excluding the six
3

dummy scans acquired at the beginning of each run for signal stabiliza-
tion. Additionally, a high resolution (1 x 1 � 1 mm) structural scan was
acquired from each participant with a T1-weighted MPRAGE sequence.

2.4. Experimental design

The LabVIEW (National Instruments Inc., Austin, TX, USA) software
was used to project stimuli during the experiment. Stimuli were projected
to a screen positioned in the back of the scanner using a video projector.
Subjects could see the video reflected in a mirror (15 � 9 cm) suspended
10 cm in front of their face and subtending visual angles of 42� hori-
zontally and 32� vertically.

Each trial was built as follows: a large cue image (see below) spanning
the whole screen during 1 s, a blank screen during 1.5–4 s (duration
randomly selected from a truncated exponential distribution with mean
of 2 s), a centered object image on a white background (20 � 26 degrees
of visual angle) during 133 ms, a blank screen during 1.5–4 s, and an
object name shown until the subject answered or for a maximum of 1 s
(Fig. 1b). During the whole trial except at the presentation of the full-
screen scene, a black background was present around the stimuli. Sub-
jects answered by pressing one of two buttons on a hand-held response
device (as accurately and rapidly as possible) to indicate if the name
corresponded to the object, which occurred on 80% of the trials. The
purpose of the task was to maintain the attention and engagement of the
subjects during the perception of the scenes and objects. A black screen
was displayed for an additional 1 s between trials.

On a third of the trials (Valid condition), the cue image was a scene
associated with the object following it (e.g., an airport and a suitcase); on
another third (Invalid condition), it was a scene not associated with the
object following it (e.g., a church and a tennis racket); on the final third
(No-Prediction condition; noPred), it was a scrambled image (always a
different one). Each object was shown once in each of these conditions,
for a total of 288 trials.

Trials were divided into three runs of 96 trials each. The order of the
trials within each run was predetermined randomly prior to the study and
was constant across participants; the order of the three runs was coun-
terbalanced across subjects. Each functional run lasted between 10 and
12 min (differences in length were due to the random inter-stimuli in-
tervals), with short breaks between them.

2.5. Data preprocessing and analysis

The SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/), running in
the MATLAB environment (Mathworks Inc., Natick, MA, USA), was used.
T1-weighted structural images were segmented into white matter, gray
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matter and cerebrospinal fluid, and warped into MNI space. Functional
images were realigned, unwarped and corrected for geometric distortions
using the field map of each participant, slice time corrected, coregistered to
the structural image of the corresponding participant, and smoothed using
an isotropic Gaussian kernel with a 6 mm Full-Width Half-Maximum.

A standard General Linear Model (GLM) analysis was performed for
each subject. Three events were modelled on each trial: contexts (or
scrambled images), objects and object names. Object events (the re-
gressors of interest) were modelled for each condition separately (Valid-
Aff, Valid-Neut, Invalid-Aff, Invalid-Neut and noPred); scene events (re-
gressors of no interest) were also modelled separately for each condition;
one additional regressor was included for the object names. All these
events were modelled as Dirac delta functions (duration of zero)
convolved with SPM8’s canonical hemodynamic response function. To
get rid of potential effects caused by differences in context-object asso-
ciations, we included an additional parametric regressor which consisted
of the context-object association weights as determined by our third
validation study. This regressor was z-scored separately within Valid
contexts and Invalid contexts but not separately within each affective
value subcondition so that differences in context-object associations be-
tween affective and neutral contexts were accounted for, but that dif-
ferences between Valid and Invalid conditions remained; finally, we
convolved it with the hemodynamic response function. The six motion
parameters were also included as additional nuisance regressors.

A temporal high-pass filter (cut-off of 128 s) was used to remove low-
frequency drifts, and temporal autocorrelation across scans was modelled
with an AR (1) process. Contrasts were then computed at the subject level
and used for group analyses using one-sample t-tests. All voxels inside the
brain were analyzed; we maintained the familywise error rate of p < .05,
two-tailed, at the cluster level (primary threshold of p < .001, uncor-
rected) using random field theory (Friston et al., 1994). The Anatomy
(Eickhoff et al., 2005) and WFU-PickAtlas (Maldjian et al., 2003) tool-
boxes were used to identify activated brain regions based on peak
Montreal Neurological Institute (MNI) coordinates.

Data and code will be made available on the Open Science Framework
repository shortly after the publication of this manuscript.

3. Results

3.1. Behavioral results

Mean accuracy was 97.1% (σ ¼ 2.8%) for the Valid-Neut condition,
97.2% (σ ¼ 2.1%) for the Valid-Aff condition, 96.9% (σ ¼ 2.6%) for the
Invalid-Neut condition, 95.0% (σ ¼ 2.5%) for the Invalid-Aff condition
and 95.7% (σ ¼ 2.4%) for the noPred condition. When comparing Valid,
Invalid and noPred together (ANOVA, n ¼ 17), there was no effect of
condition on accuracy (F (2,16) ¼ 2.17, p ¼ .26, η2p ¼ .12). When
comparing all subconditions except noCont together in order to include
affective value as a factor (ANOVA, n ¼ 17, corrected for multiple
comparisons across both ANOVAs), there was a significant main effect of
predictive value (F (1,16) ¼ 10.36, p ¼ .01, η2p ¼ .13), i.e. accuracy was
higher when objects were predicted. There was no significant main effect
of affective value (F (1,16) ¼ 4.42, p ¼ .10, η2p ¼ .08), and no significant
interaction between affective and predictive values (F (1,16) ¼ 3.97, p ¼
.13, η2p ¼ .10).

Mean response time was 640 ms (σ ¼ 121 ms) for the Valid-Neut
condition, 650 ms (σ ¼ 120 ms) for the Valid-Aff condition, 638 ms (σ
¼ 110 ms) for the Invalid-Neut condition, 636 ms (σ ¼ 127 ms) for the
Invalid-Aff condition and 632 ms (σ ¼ 116 ms) for the noPred condition.
When comparing Valid, Invalid and noPred (ANOVA, n ¼ 17), there was
no effect of condition on response time (F (2,16) ¼ 1.53, p ¼ .46, η2p ¼
.09). When comparing all conditions except noPred together in order to
include affective value as a factor (ANOVA, n¼ 17, corrected for multiple
comparisons across both ANOVAs), there was no main effect of affective
or predictive value and no interaction (Fs(1,16) ¼ 1.67, 0.25 and 0.64
respectively, p > .40, η2p < .03).
4

3.2. fMRI results

We first investigated which regions responded to the presentation of
objects in general. All object presentations (irrespectively of the specific
condition) were contrasted against the implicit baseline. Several areas
were active, most notably the bilateral fusiform gyri and parts of the left
occipital cortex (see supplementarymaterials). These areas are part of the
lateral occipital complex, which is typically activated during object
perception (Grill-Spector et al., 2001).

To investigate the potential effect of explicit contextual expectations,
irrespectively of their validity, on brain activity during object recogni-
tion, we contrasted the Valid and Invalid conditions with the noPred
condition (paired t-test, n ¼ 17). This contrast reveals areas where ex-
pectations and sensory information are combined or integrated, i.e. areas
where sensory processing is modulated by expectations irrespectively of
their validity (Summerfield and Koechlin, 2008). Five clusters were
significantly more activated in the Valid and Invalid conditions than in
the noPred condition (p< .05, two-tailed, corrected for family-wise error
rate (FWER); peak Cohen’s dz ¼ 1.91; Fig. 2; Table 1): one bilateral
cluster in the precuneus (which is part of the retrosplenial complex), one
extending from the left precuneus and middle occipital gyrus to the left
angular gyrus, one in the left middle temporal gyrus, one in the left
middle and inferior frontal gyri and one in the right angular gyrus. The
reverse contrast revealed the specific activation of two clusters in the
right superior and middle occipital gyri and in the left middle occipital
gyrus (p < .05, two-tailed, FWER-corrected; peak Cohen’s dz ¼ 1.73;
Fig. 2; Table 1). To confirm that our randomized jitters prevented
contamination of object responses by scene information, we also con-
ducted supplementary analyses comparing the same conditions but at the
moment of context presentation instead of object presentation (i.e.
contrast of scenes to scrambled scenes). We observed the activation of
occipital areas and most notably, of the parahippocampal gyrus, a region
typically associated to scene processing (Epstein et al., 2003; see sup-
plementary materials). Importantly, these regions were only partly
overlapping with those engaged at the moment of object presentation,
and the scene-processing parahippocampal place area was only impli-
cated when directly contrasting scenes.

We then investigated whether there was a main effect of predictive
value (Valid vs Invalid), a main effect of the context’s affective value (Aff
vs Neut), and an interaction between predictive and affective values at
the moment of object recognition (paired t-tests, n ¼ 17). There were no
significant main effects of predictive or affective values. However, there
was a significant interaction between predictive and affective values for
two clusters: one in the right cuneus and one overlapping.

The left cuneus, calcarine gyrus and lingual gyrus (p< .05, two-tailed,
FWER-corrected; peak Cohen’s dz ¼ 1.74; Fig. 3; Table 1). We then
investigated the simple effects specifically in the peak voxels (local
maxima) of the clusters which had a significant interaction effect. We
observed that these voxels were more active in the Valid-Aff condition
than in the Invalid-Aff condition (left cuneus: t (16)¼ 4.80, pBonf¼ .0008,
dz ¼ 1.16; right cuneus: t (16) ¼ 4.56, pBonf ¼ .001, dz ¼ 1.11) and more
active in the Invalid-Neut than in the Valid-Neut condition (left cuneus: t
(16) ¼ 4.41, pBonf ¼ .002, dz ¼ 1.07; right cuneus: t (16) ¼ 4.24, pBonf ¼
.003, dz ¼ 1.03).

Next, we conducted a series of control analyses to ensure that the
interaction could not have been the result of undesirable confounds.
First, we investigated whether the interaction could have been caused by
differences between the objects associated to neutral contexts and those
associated to affective contexts by assessing if there was any significant
difference in brain activity when they were perceived without a context
(noPred condition). There was no significant difference between the
conditions (pFWER > .33). We also analyzed the image similarities
directly: we used the HMAXmodel (Riesenhuber and Poggio, 1999; Serre
et al., 2007), a commonly used model of the early visual cortex, and we
computed correlation distances between the responses of the model to
each image. We then verified if the between-categories (affective context



Fig. 2. A) Significant clusters for the noCont > (Pred þ noPred) (in red) and the (Pred þ noPred) > noCont (in cyan) contrasts. B) Beta values of individual subjects for
noCont and (Pred þ noPred) conditions in peak voxels of various significant clusters, along with the group means and standard errors.

Table 1
Montreal Neurological Institute (MNI) coordinates and T values for significantly
activated brain regions.

Brain regions Peak MNI coordinates
(mm)

Nb of voxels Peak T value

x y z

(Pred þ noPred) > noCont
L Middle Occipital �30 �69 39 232 7.88
L Angular �42 �63 27 6.63
L Middle Temporal �54 �21 �9 76 6.92
R Angular 51 �63 36 90 6.16
L Middle Frontal �48 18 39 94 5.79
L Inferior Frontal �42 15 24 5.51
L Precuneus �3 �66 54 224 5.59
R Precuneus 9 �57 42 5.32

noCont > (Pred þ noPred)
R Superior Occipital 27 �78 21 61 7.12
R Middle Occipital 36 �81 12 4.75
L Middle Occipital �27 �84 6 90 6.76

Predict. x Affect. Interaction
R Cuneus 15 �96 6 45 7.79
L Cuneus �12 �90 3 43 6.08

0 �87 �3 4.55
�9 �84 �9 3.89
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objects to neutral context objects) distances were larger than the
within-categories distances (two sample t-tests): no difference was
observed (compared to within-neutral distances: 0.498 vs 0.504, t
(3430)¼ 0.57, n¼ 1128 and 2304, p¼ .57; compared to within-affective
distances: 0.498 vs 0.502, t (3430) ¼ 0.38, n ¼ 1128 and 2304, p ¼ .70),
suggesting that the images in these two object categories are similar.

Finally, the possibility remained that attention could explain the
interaction between affective and predictive values: a similar interaction
has indeed been previously reported with attention as a factor instead of
affective value (Kok et al., 2012b). A first objection to this claimwould be
that our behavioral results actually trend (p ¼ .10) toward an opposite
effect. Although we observe the same reversed prediction effect in the
brain for affective contexts that Kok et al. observed for task-relevant
stimuli, the lower recognition accuracy in the affective condition sug-
gests that they are not attended more and that attention is not the cause
5

of this interaction. Nonetheless, we decided to conduct an additional
behavioral experiment to isolate potential attentional effects better.
Twenty-four participants aged between 18 and 30 years (mean ¼ 25.2)
performed a Gabor orientation discrimination task (vertical vs horizon-
tal), in which the Gabor patches (1 cycle per degree) were randomly
following either a neutral context image or an affective context image in
the same way as in the fMRI experiment (contexts presented for 1s, 1.5–4
s jitter, patches presented during 133 ms). Subjects were instructed to
respond as accurately and rapidly as possible, and adaptive procedures
were conducted separately in each condition in order to find the contrast
sensitivity threshold associated with each condition. Again, no difference
was observed (log10 (contrast) of �2.10 vs �2.11; p ¼ .94). Since we
know that contrast sensitivity is greatly enhanced by attention (see
Carrasco, 2006, for a review), it does not seem likely that affective
contexts were attracting attention andmaintaining it for up to 4 s in order
for it to alter object processing.

4. Discussion

Our first aim was to investigate how the generation of expectations
about objects from a preceding context might modulate the activity of
brain areas involved in object perception. We found significantly more
activation in the precuneus, the left middle occipital gyrus, the left
middle temporal gyrus, the left frontal cortex and the parietal cortex,
when (valid or invalid) contextual expectations were generated prior to
object perception, suggesting that these high-level areas are mainly
associated with object processing when expectations are generated.
These activations specifically represent an interaction between contex-
tual expectations and object bottom-up sensory information: activity
related solely to object processing is cancelled out because the objects are
the same in both conditions, and activity related solely to the prior pre-
sentation of the context is regressed out in the GLM.

To our knowledge, only Summerfield and Koechlin (2008) performed
a similar analysis before; however, they used lines as cues and gratings as
stimuli, and the cue was directly related to the task (the subjects had to
indicate whether the cue and the grating matched). In their study, they
observed a significantly greater activation of the middle occipital and
fusiform gyri when there was an expectation. We also find a greater
activation of the middle occipital gyrus, in addition to many other brain
regions. Since expectations in our study are about objects rather than
simple grating orientations, regions representing them are likely to be



Fig. 3. A) Significant clusters for the interaction between affective and predictive values (in red). B) Beta values of individual subjects for each condition in peak
voxels of significant clusters, along with the group means and standard errors.
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more numerous. The interaction between object and context processing
observed in the middle temporal gyrus (a part of the inferotemporal
cortex) supports a popular hypothesis according to which top-down
contextual predictions would be combined with bottom-up sensory in-
formation to facilitate object recognition in the inferotemporal cortex
(Bar, 2004). The precuneus and the parietal cortex, which are also acti-
vated in this contrast, have previously been linked to episodic memory
retrieval and contextual associative processing (Lundstrom et al., 2005;
Aminoff et al., 2007; Livne and Bar, 2016; Brandman and Peelen, 2017)
which both require the integration of stored representations with
incoming sensory information. Moreover, the precuneus of an observer
that views several objects simultaneously is more activated when these
objects are contextually related than when they are not (Livne and Bar,
2016); this suggests that the contextual representations elicited by some
of these objects are compared to other objects. Recently, activity in the
retrosplenial complex, a region comprising the precuneus, has been
shown to correlate with supra-additive decoding of objects embedded in
scenes, suggesting that the precuneus is responsible for a scene-based
facilitation of object representations (Brandman and Peelen, 2017).
Interestingly, the interaction we observed between context and object
information in the precuneus is also supra-additive (i.e. there is a
remaining positive activation after considering the main effects of object
and context). We extend previous results by showing that the precuneus
integrates object sensory information with valid or invalid scene-based
expectations generated prior to object presentation. The inferior and
middle frontal gyri were also active during object processing when ex-
pectations were generated. These regions have previously been found to
respond more to objects in non-congruent scenes than to objects in
congruent scenes (R�emy et al., 2014): it is thus likely that they are
responsible of integrating contextual information with perceived objects.
The prefrontal cortex has also been linked to object-related predictions in
other studies (Bar, 2007; Bar et al., 2006) and has been found to both
maintain expectations and integrate them with sensory information
(Summerfield et al., 2006; Summerfield and Koechlin, 2008).

The reverse contrast, associated with visual processing of objects
when no expectation (neither valid nor invalid) had been generated from
a context, yielded bilateral activation of primary visual areas. Activated
voxels may be part of areas primarily associated with the processing of
sensory information shared by a majority of objects (e.g., intermediate
spatial frequencies; Caplette et al., 2014), which is thus reduced when
almost any object is expected.

We then investigated whether there was an effect of prediction error
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or match, i.e. whether some areas were more active at the presentation of
the object when the object followed a valid context or when the object
followed an invalid context. When neutral and affective contexts were
combined, there was no significant difference between valid and invalid
conditions; however, there was a significant interaction between pre-
dictive and affective values in low-level occipital areas, specifically the
left and right cunei. Looking at this cluster, the classical prediction error
effect was visible for neutral contexts, i.e. validly predicted objects eli-
cited a smaller BOLD signal; but, when contexts were affective, this effect
was reversed, i.e. validly predicted objects elicited a larger BOLD signal.
Note that previous studies observing a smaller signal for validly predicted
objects have exclusively used affectively neutral cues, making our results
compatible with theirs.

These results are not compatible with the proposal that a subject’s
internal affective state is altering the content of their predictions about
object identities (Barrett and Bar, 2009). According to this idea, the af-
fective value of a preceding context (or even a simultaneous context or
the object itself; see Barrett and Bar, 2009) would alter the subject’s
bodily state and bring additional information that could be used by the
brain to predict the identity of perceived objects. Consequently, a similar
pattern of results should be visible for neutral and emotional contexts,
with only a greater difference in activation between validly predicted and
invalidly predicted objects for emotional contexts than for neutral con-
texts (due to the additional emotional information).

Our results are compatible, however, with the general idea that affect
interacts with predictive processing (Barrett and Simmons, 2015; Miller
and Clark, 2018). One possibility recently put forward by some authors is
that, rather than contributing to the content of the predictions, a subject’s
internal affective state modulates the weight given to prediction errors
during perceptual inference (Miller and Clark, 2018). Specifically, this
weight would increase when the subject is experiencing affect. According
to recent predictive coding models, such an increased weighting should
lead to a reversal of the classical prediction error effect, as we observed
(Feldman and Friston, 2010; Kok et al., 2012b).

Note that most affective contexts (11/15) used in our experiment had a
positive valence. This may have affected the results. However, because
negative contexts were especially negative, the median valence for affec-
tive contexts was still close to neutral (5.8, 0 being the most negative and
10 the most positive). Moreover, Miller& Clark (2018) do not differentiate
between positive and negative stimuli in their proposal and, generally, the
same brain network seems to be implicated in the processing of all affective
stimuli, irrespective of valence (Lindquist et al., 2016).
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Kok and colleagues (Kok et al., 2012b) reported a similar reversal of
the prediction error effect in the early visual cortex for task-relevant
stimuli. They argued that this effect was caused by endogenous atten-
tion increasing the weight of prediction errors (Friston, 2009; Feldman
and Friston, 2010; Rao, 2005). This cannot be the cause of the effect we
observed however, since attention was not manipulated in our study and
our stimuli were all similarly task relevant. Furthermore, exogenous
attention was also similar between our conditions, as revealed by
behavioral results obtained in the scanner and in the control contrast
sensitivity experiment. This implies that the reversal of the prediction
error effect in our study was not caused by an increase in attention.

Notably, we observed significant main effects neither of predictive
nor of affective value. The absence of a main effect of prediction can be
explained by the fact that the effect of prediction is completely reversed
depending on the affective value and so is cancelled when all contexts are
combined. The absence of a main effect of affect might be due at least
partly to the fact that our contrast concerns object processing and that
affective value was at the level of the context. However, we also did not
observe the activation of several regions typically implicated in affect
processing during affective scene presentation (see supplementary ma-
terials). Our scenes, which were for the most part everyday contexts,
possibly did not have a sufficient intensity to elicit such activations: the
stimuli used in most fMRI studies are often of a much higher average
intensity (e.g., IAPS; Lang et al., 2005).

In summary, real-world expectations initiated by contexts, irre-
spectively of their degree of validity, led to more activation of high-level
areas (including parietal and frontal cortices) during subsequent object
recognition; notably, these regions were distinct from those responsible
of instantaneous context-object interactions. It is important however to
note that these prior expectations are not necessarily explicit and
conscious: they are representations preactivated by the perception of the
scene, which will impact the processing of subsequent stimuli. In addi-
tion, the context’s affective value interacted with the validity of the
prediction it had initiated: classical prediction error effects were only
observed with neutral contexts, and a complete reversal of these effects
was observed when contexts were emotional. This result is not compat-
ible with the idea that the affective value of a stimulus, and the ensuing
internal bodily state of the subject, are contributing to the creation of
predictions (Barrett and Bar, 2009); but it is compatible with a modu-
latory role of affective value over the weight of sensory evidence in
perception (Miller and Clark, 2018). In conclusion, our results deepen
our understanding of predictive coding in an ecological setting by
showing that the mere presence of explicit expectations, and their af-
fective content, modulate object recognition.
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