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HOMOLOGY OF CATEGORIES VIA POLYGRAPHIC

RESOLUTIONS

LÉONARD GUETTA

Abstract. In this paper, we extend a result of Lafont and Métayer
and prove that the polygraphic homology of a small category, defined
in terms of polygraphic resolutions in the category ωCat of strict ω-
categories, is naturally isomorphic to the homology of its nerve. Along
the way, we prove some results on homotopy colimits with respect to the
Folk model structure and deduce a theorem which formally resembles
Quillen’s Theorem A.

Introduction

In [Str87], Street defines a nerve functor

Nω : ωCat → ∆̂

from the category of strict ω-categories (that we shall simply call ω-categories)
to the category of simplicial sets. This functor can be used to pull back the
homotopy theory of simplicial sets to ω-categories as it is done in the series
of articles [AM14], [AM18], [Gag18], [AM20], etc. For example, we can set
the following definition:

Definition. Let C be an ω-category and k ∈ N. The k-th homology group
Hk(C) of C is the k-th homology group of its nerve Nω(C).

On the other hand, in [Mét03] Métayer defines other homological invari-
ants for ω-categories, which we call polygraphic homology groups. The def-
inition of these homology groups is based on the notion of free ω-category
on a polygraph, also known as free ω-category on a computad, which are
ω-categories that are obtained recursively from the empty ω-category by
freely adjoining cells. From now on, we will simply say free ω-category.

Métayer observed [Mét03, Definition 4.1 and Proposition 4.3] that every
ω-category C admits a polygraphic resolution, that is an arrow

u : P → C

of ωCat, such that P is a free ω-category and u satisfies some properties
that formally resemble those of trivial fibrations of topological spaces (or of
simplicial sets). Moreover, every free ω-category P can be “linearized” to a
chain complex λ(P ) and Métayer proved [Mét03, Theorem 6.1] that given
P → C and P ′ → C two polygraphic resolutions of the same ω-category,
the chain complexes λ(P ) and λ(P ′) have the same homology groups. This
leads to the following definition:
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2 LÉONARD GUETTA

Definition. Let C be an ω-category and k ∈ N. The k-th polygraphic

homology group Hpol
k (C) of C is the k-th homology group of λ(P ) for any

polygraphic resolution P → C.

In this article, we prove the following theorem:

Theorem 1. Let C be a small category. For every k ∈ N, we have

Hk(C) ≃ Hpol
k (C).

For the statement of this theorem to make sense, we have to consider small
categories as particular cases of ω-categories. Namely, a (small) category can
be defined as an ω-category with only trivial cells in dimension greater than
1. Beware that this last property doesn’t imply that the previous theorem
is trivial: given P → C, a polygraphic resolution of a small category C, P
need not have only trivial cells in dimension greater than 1.

The restriction of the previous theorem to the case of monoids seen as
small categories is exactly Corollary 3 of [LM09, Section 3.4]. As such,
Theorem 1 is only a small generalization of Lafont and Métayer’s result.
However, the novelty lies in the new proof we give, which is more conceptual
than the one in loc. cit.

Note also that the actual result we shall obtain in this article (Theorem
8.3) is more precise than Theorem 1. The first reason is that the homol-
ogy of an ω-category (polygraphic or of the nerve) will be considered as a
chain complex up to quasi-isomorphism and not only a sequence of abelian
groups. The second and more important reason is that we will prove that
the polygraphic homology and homology of the nerve of a small category
are naturally isomorphic and even explicitely construct the natural isomor-
phism. This last point was not addressed at all in [LM09].

We shall now give a sketch of the proof of Theorem 1. It is slightly
simpler than the proof of Theorem 8.3 but has the same key ingredients.
The simplification mainly results from avoiding questions of naturality.

The first step is to give a more abstract definition of the polygraphic
homology. By a variation of the Dold-Kan equivalence (see for example
[Bou90]), the category ωCat(Ab) of ω-categories internal to abelian groups
is equivalent to the category Ch≥0 of chain complexes in non-negative de-
gree. Thus, we have a forgetful functor

Ch≥0 ≃ ωCat(Ab) → ωCat,

which have a left adjoint that we denote by λ. Moreover, when X is a free
ω-category, λ(X) is exactly the linearization of X considered in the defi-
nition of polygraphic homology by Métayer. Now, ωCat admits a model
structure, commonly referred to as the Folk model structure [LMW10], with
equivalences of ω-categories (a generalization of the usual notion of equiva-
lence of categories) as weak equivalences and free ω-categories as cofibrant
object [Mét08]. As it turns out, if we equip ωCat with the Folk model struc-
ture and Ch≥0 with the projective model structure, then λ is a left Quillen
functor and hence admits a left derived functor

Lλ : Ho(ωCat) → Ho(Ch≥0).
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The polygraphic homology groups of an ω-category X are exactly the ho-
mology groups of Lλ(X).1 We shall now simply write Hpol(X) := Lλ(X).

Recall now that for every (small) category C, we have a canonical iso-
morphism

colim
c∈C

C/c ≃ C,

where C/c is the slice over c. The keystone idea at the origin of this paper
was to remark that this colimit was a homotopy colimit with respect to
the weak equivalences of the Folk model structure (Theorem 7.10). Since
Lλ is the left derived functor of a Left Quillen functor, it commutes with
homotopy colimits. In particular, we have:

Hpol(C) ≃ hocolim
c∈C

Hpol(C/c).

Then we can show that the polygraphic homology of a small category with
a final object is isomorphic to (the homology of) Z concentrated in degree
0 (Proposition 6.6). Hence, we have

Hpol(C) ≃ hocolim
c∈C

Z.

We conclude by remarking that the right-hand side of the previous equation
is nothing but the homology of the nerve of C (see for example [GZ67,
Appendix II, Proposition 3.3] or [Qui73, Section 1]). Note that when C
is a monoid M , the category of functors M → Ch≥0 is isomorphic to the
category Ch≥0(M) of chain complexes of left ZM -modules and the colimM

functor can be identified with the functor

9
⊗

ZM

Z : Ch≥0(M) → Ch≥0.

Hence, in that case we also recover the definition of homology of a monoid
in terms of Tor functors.

Let us end this introduction by mentioning that this paper is part of an
ongoing program carried out by the author which aims at understanding
which are the ω-categories C such that

Hpol
k (C) ≃ Hk(C).

Theorem 1 may lead us to think that all ω-categories satisfy this property
but a folkloric counter-example discovered by Ara and Maltsiniotis shows
that it is not the case: Let C be the commutative monoid (N, +) considered
as a 2-category with no non-trivial cells in dimension 0 and 1. This 2-
category is free (as an ω-category) and a quick computation shows that

Hpol
k (C) ≃

{
Z for k=0, 2

0 otherwise.

But, as proved in [Ara19, Theorem 4.9 and Example 4.10], the nerve of C is
a K(Z, 2)-space which has non-trivial homology groups in arbitrarily high
even dimension.

1The description of polygraphic homology as a left derived functor has been around in
the folklore for quite some time and I claim no originality for this result. For example, it
will appear in [ABG+].
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1. Generalities on homotopy colimits

1.1. A localizer is a pair (C, W) where C is a category and W is a class of
arrows of C, which we usually refer to as the weak equivalences. We denote
by Ho(C), the localization of C with respect to W and by

γ : C → Ho(C)

the localization functor [GZ67, 1.1]. Recall the universal property of the
localization: for any category D, the functor induced by pre-composition

γ∗ : Hom(Ho(C), D) → Hom(C, D)

is fully faithful and its essential image consists of functors F : C → D that
sends morphism of W to isomorphisms of D.

We shall always consider that C and Ho(C) have the same class of objects
and implicitly use the equality

γ(X) = X

for any object X of C.

1.2. Let (C, W) and (C′, W ′) be two localizers and F : C → C′ a functor. If
F preserves weak equivalences, i.e. F (W) ⊆ W ′, then the universal property
of the localization implies that there is a canonical functor

F : Ho(C) → Ho(C′)

such that the square

C C′

Ho(C) Ho(C′).

F

γ γ′

F

is commutative.

1.3. Let (C, W) and (C′, W ′) be two localizers. A functor F : C → C′ is
totally left derivable when there exists a functor

LF : Ho(C) → Ho(C′)

and a natural transformation

α : LF ◦ γ ⇒ γ′ ◦ F

that makes LF the right Kan extension of γ′ ◦ F along γ:

C C′

Ho(C) Ho(C′).

F

γ γ′

LF

α

When this right Kan extension is absolute, we say that F is absolutely totally
left derivable.
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Note that when a functor F is totally left derivable, the pair (LF, α) is
unique up to a unique natural isomorphism and thus we shall refer to LF
as the total left derived functor of F .

The notion of (absolute) total right derivable functor is defined dually.

Remark 1.3.1. If F : C → C′ preserves weak equivalences then it follows
from the universal property of the localization that F is absolutely totally
left derivable and LF ≃ F .

1.4. Let (C, W) be a localizer and A a small category. We denote by CA the
category of functors from A to C and natural transformations between them.
An arrow α : d → d′ is a pointwise weak equivalences when αa : d(a) → d′(a)
belongs to W for every a ∈ A. We denote by WA the class of pointwise
weak equivalences. This defines a localizer (CA, WA).

Let

k : C → CA

be the diagonal functor, i.e. for an object X of C, k(X) : A → C is the
constant functor with value X. This functor preserves weak equivalences,
whence a functor

k : Ho(C) → Ho(CA).

Definition 1.5. A localizer (C, W) has homotopy colimits when for every
small category A, the functor

k : Ho(C) → Ho(CA)

has a left adjoint.

1.6. When a localizer (C, W) has homotopy colimits, we denote by

hocolim
A

: Ho(C) → Ho(CA)

the left adjoint of k : Ho(C) → Ho(CA). For an object d of CA, the object

hocolim
A

(d)

of Ho(C) is the homotopy colimit of d. For consistency, we also use the
notation

hocolim
a∈A

d(a).

Note that when C has colimits and (C, W) has homotopy colimits, it fol-
lows from Remark 1.3.1 and the dual of [Gon12, Theorem 3.4] that hocolimA

is the left derived functor of colimA. In particular, for any functor d : A → C,
there is a canonical arrow of Ho(C)

hocolim
A

(d) → colim
A

(d).

1.7. Let (C, W) and (C′, W ′) be two localizers and F : C → C′ that preserves
weak equivalences. For any small category A, the functor induced by post-
composition, which we abusively denote by

F : CA → C′A,
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again preserves weak equivalences and we have a commutative square

Ho(CA) Ho(C′A)

Ho(C) Ho(C′).

F

k

F

k

Suppose now that (C, W) and (C′, W ′) have homotopy colimits. Using the
unit and co-units of the adjunctions hocolimA ⊣ k,

Ho(CA) Ho(C′A) Ho(C′)

Ho(CA) Ho(C) Ho(C′) ,

F hocolimA

hocolimA

id

k

F

k

id

η ǫ

we obtain a natural transformation

hocolim
A

◦ F ⇒ F ◦ hocolim
A

.

Hence, for every object d : A → C of CA, a canonical map

hocolim
A

(F (d)) → F (hocolim
A

(d)).

2. Homotopy colimits in combinatorial model categories

We suppose that the reader is familiar with the basics of model category
theory. Recall that a combinatorial model category is a cofibrantly generated
model category such that the underlying category is locally presentable.

2.1. Let (C, W, Cof , Fib) and (C′, W ′, Cof ′, Fib′) be two model categories
and F : C → C′. Recall that if F is a left Quillen functor (i.e. the left
adjoint in a Quillen adjunction), then F is absolutely totally left derivable
and for any cofibrant object X of C, the canonical arrow

LF (X) → F (X)

is an isomorphism of Ho(C′).

Remark 2.1.1. Note that the definition of totally left derivable functor
only depends on weak equivalences. In particular, if there are several model
structures for which a functor F is left Quillen, then for any cofibrant object
X of any such model structure, the canonical map

LF (X) → F (X)

is an isomorphism.

Proposition 2.2. Let (C, W, Cof , Fib) be a combinatorial model category.
For any small category A, there exists:

(1) A model structure on CA, called the projective model structure, with
pointwise weak equivalences and pointwise fibrations as weak equiv-
alences and fibrations respectively.

(2) A model structure on CA, called the injective model structure, with
pointwise weak equivalences and pointwise cofibrations as weak equiv-
alences and cofibrations respectively.
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Proof. See [Lur09, Proposition A.2.8.2] �

Proposition 2.3. Let (C, W, Cof , Fib) be a combinatorial model category
and A a small category. The adjunction

colimA : CA C : k

is a Quillen adjunction with respect to the projective model structure on CA.

Proof. By definition of the projective model structure, k preserve weak
equivalences and fibrations. �

2.4. We deduce from the previous proposition that if a localizer (C, W) can
be extended to a combinatorial model category (C, W, Cof , Fib), then it has
homotopy colimits and

hocolim
A

≃ L colim
A

.

Since colimA is left Quillen with respect to the projective model structure,
it is particularly interesting to detect the cofibrant objects of this model
structure in order to compute homotopy colimits. This is the goal of the
paragraph below and the lemma that follows.

2.5. Let C be a category with coproducts and A a small category. For any
object X of C and any object a of A, we define X ⊗ a as the functor

X ⊗ a : A → C

b 7→
∐

HomA(a,b)

X.

For any object a of A, this gives rise to a functor

9 ⊗ a : C → CA

X 7→ X ⊗ a.

Lemma 2.6. Let C = (C, W, Cof , Fib) be a combinatorial model category
and A a small category. For any object a of A and any cofibration f : X → Y
of C, the arrow

f ⊗ a : X ⊗ a → Y ⊗ a

is a cofibration of the projective model structure on CA.

Proof. We leave it to the reader to check that the functor 9⊗a is left adjoint
to

eva : CA → C

F 7→ F (a).

Let α be a fibration of the projective model structure on CA. By definition,
f has the left lifting property with respect to eva(α). Hence, by adjunction,
f ⊗a has the left lifting property with respect to α, which is what we needed
to prove. �

2.7. Let (C, W, Cof , Fib) and (C′, W ′, Cof ′, Fib′) be two combinatorial model
categories and F : C → C′ a left Quillen functor. For any small category A,
the functor induced by post-composition

F : CA → C′A
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is left Quillen both with respect to the projective model structure and the in-
jective model structure. In particular, all arrows of the commutative square

CA C′A

C C′.

F

k

F

k

are left Quillen functors when CA and C′A are equipped with the injective
model structure. Hence, by composition of left Quillen functors, we obtain
a commutative square up to a canonical isomorphism

Ho(CA) Ho(C′A)

Ho(C) Ho(C′).

LF

k

LF

k≃

In a similar fashion as in Paragraph 1.7, we obtain a natural transformation

hocolim
A

◦LF ⇒ LF ◦ hocolim
A

.

The next proposition tells us that left Quillen functors are “homotopy co-
continuous”.

Proposition 2.8. Let (C, W, Cof , Fib) and (C′, W ′, Cof ′, Fib′) be two com-
binatorial model categories, F : C → C′ a left Quillen functor and A a small
category. For any object d : A → C of CA, the canonical map

hocolim
A

(LF (d)) → LF (hocolim
A

(d))

is an isomorphism of Ho(C′).

Proof. We use here the projective model structures on CA and C′A. Since
every object d of CA is isomorphic in Ho(CA) to a cofibrant one, it suffices
to show that the map

hocolim
A

(LF (d)) → LF (hocolim
A

(d))

is an isomorphism when d is cofibrant. But in this case, the previous map
can be identified with the image of the map

colim
A

(F (d)) → F (colim
A

(d))

in the localization of C′A. Since F is a left adjoint, this map is indeed an
isomorphism. �

3. ω-categories

3.1. We denote by ωCat the category of (small) strict ω-categories and
strict ω-functors. Since we shall never deal with non-strict ω-categories, we
omit the word “strict” and simply say ω-categories and ω-functors. For an
ω-category C, we denote by Cn the set of n-cells of C. For x ∈ Cn, we refer
to the integer n as the dimension of x.

For an n-cell x with n > 0, s(x) and t(x) are respectively the source and
target of x (which are (n91)-cells). More generally, for any k < n, sk(x) and
tk(x) are respectively the k-dimensional source of x and the k-dimensional
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target of x, which are obtained by iteration. We say that two n-cells x and
y are parallel if either n = 0 or n > 0 and

s(x) = s(y) and t(x) = t(y).

Let k < n ∈ N. Two n-cells x and y are k-composable if sk(x) = tk(y), in
which case we denote their k-composition by x ∗k y.

For an n-cell x, 1x is the unit on x, which is a (n+1)-cell. More generally,

for any k > n we denote by 1
(k)
x the k-dimensional unit on n obtained by

iteration. (Note that the superscript denotes the dimension and not the

number of iterations.) For consistency, we also define 1
(n)
x := x for any n-

cell x. A n-cell x is degenerate if there exists a cell y of dimension strictly

lower than n and such that x = 1
(n)
y .

We extend the notion of k-composition for cells of different dimension in
the following way. Let x be a n-cell, y be a m-cell and k < min{m, n}. The
cells x and y are k-composable if sk(x) = tk(y), in which case we define x∗k y
as the cell of dimension l := max{m, n} as

x ∗k y := 1(l)
x ∗k 1(l)

y .

Finally, we use the convention that for n < m the operation ∗n has priority
over ∗m, which means that

x ∗n y ∗m z = (x ∗n y) ∗m z and x ∗m y ∗n z = x ∗m (y ∗n z)

whenever these equations make sense.

3.2. Let n ∈ N. An n-category is an ω-category such that all cells of dimen-
sion strictly greater than n are degenerate. An n-functor is an ω-functor
between n-categories. We denote by nCat the category of n-categories and
n-functors. For an ω-category C, we denote by C≤n the n-category obtained
from C by removing all non-degenerate cells of dimension strictly greater
than n. The functor

ωCat → nCat

C 7→ C≤n

is right adjoint to the canonical inclusion functor

nCat →֒ ωCat.

For an ω-category C, we define C≤−1 to be the empty ω-category (which is
a (91)-category).

Remark 3.3. When n = 1, we have a canonical functor

1Cat → Cat

from the category of 1-categories to the category of small categories, which
simply forgets the k-cells for k > 1. Since this functor is an isomorphism
of categories, we usually identify the categories Cat and 1Cat and consider
that the terms “1-category” and “(small) category” are synonyms.

3.4. Let n ∈ N. The functor

ωCat → Set

C 7→ Cn
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is representable and we define the n-globe Dn as the ω-category representing
this functor. (Dn is in fact an n-category). For an n-cell x of an ω-category
C, we denote by

〈x〉 : Dn → C

the associated morphism of ωCat. Here are some pictures of Dn in low
dimension:

D0 = • ,

D1 = • • ,

D2 = • • ,

D3 = • •⇛ .

For an ω-category C, let us denote by Parn(C) the set of pair of parallel
n-cells of C. The functor

ωCat → Set

C 7→ Parn(C)

is representable and we define the n-sphere Sn as the ω-category representing
this functor. (Sn is in fact an n-category). If x and y are parallel n-cells of
C, we denote by

〈x, y〉 : Sn → C

the associated morphism of ωCat. Here are some pictures of Sn in low
dimension:

S0 = • • ,

S1 = • • ,

S2 = • • .

Suppose now that n > 0, and let C be an ω-category. The canonical mor-
phism

Cn → Parn−1(C)

x 7→ (s(x), t(x)),

is natural in C. Hence, a canonical morphism

in : Sn−1 → Dn.

We also define S−1 to be the empty ω-category (which is the initial object
of ωCat), and i0 to be the unique morphism

i0 : S−1 → D0.
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3.5. A basis of an ω-category C is a graded set of cells of C

Σ = (Σn ⊆ Cn)n∈N

such that for every n ∈ N, the commutative square

∐

x∈Σn

Sn−1 C≤n−1

∐

x∈Σn

Dn C≤n

∐

x∈Σn

in

〈s(x),t(x)〉

〈x〉

,

where the anonymous arrow is the canonical inclusion, is a pushout square.
That is, C≤n is obtained from C≤n−1 by freely adjoining the n-cells that
belongs to Σn. An ω-category is free when it has a basis. Note that a
free ω-category has a unique basis (see [Mak05, Section 4, Proposition 8.3]).
This allows us to speak of the basis of a free ω-category. Cells that belong
to Σn are referred to as generating n-cells of C.

Recall from [Gue18] the following definition:

Definition 3.6. An ω-functor f : C → D is a discrete Conduché ω-functor
if for every n-cell x of C, every k < n and every pair (y1, y2) of k-composable
n-cells of D such that

f(x) = y1 ∗k y2,

there exists a unique pair (x1, x2) of k-composable n-cells of C such that

(1) x = x1 ∗k x2
(2) f(x1) = y1 and f(x2) = y2.

Lemma 3.7. Let

C ′ C

D′ D

u

f ′ f

v

be a pullback square in ωCat. If f is a discrete Conduché ω-functor then
so is f ′.

Proof. Left to the reader. See [Gue18, remark 4.5]. �

Proposition 3.8. Let f : C → D be a discrete Conduché ω-functor. If D
is a free ω-category then so is C.

More precisely, if we denote by ΣD
n the set of generating n-cells of D, then

the set of generating n-cells of C is

ΣC
n = {x ∈ Cn|f(x) ∈ ΣD

n }.

Proof. This is Theorem 5.12(1) from [Gue18]. �

3.9. Let C be an ω-category. We define the equivalence relation ∼ω on the
set Cn by co-induction on n ∈ N. Let x, y ∈ Cn, then x ∼ω y when:

- x and y are parallel,
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- there exist r, s ∈ Cn+1 such that r : x → y, s : y → x,

r ∗n s ∼ω 1y

and
s ∗n r ∼ω 1x.

For details on this definition and the proof that it is an equivalence relation,
see [LMW10, section 4.2].

3.10. An ω-functor f : C → D is an equivalence of ω-categories when:

- for every y ∈ D0, there exists a x ∈ C0 such that

f(x) ∼ω y,

- for every x, y ∈ Cn that are parallel and every β ∈ Dn+1 such that

β : f(x) → f(y),

there exists α ∈ Cn+1 such that

α : x → y

and
f(α) ∼ω β.

Theorem 3.11. There exists a combinatorial model structure on ωCat such
that the weak equivalences are the equivalences of ω-categories, and the set
{in : Sn−1 → Dn|n ∈ N} is a set of generating cofibrations.

Proof. This is the main result of [LMW10]. �

3.12. We refer to the model structure of the previous theorem as the Folk
model structure on ωCat. Data of this model structure will often be referred
to by using the adjective folk, e.g. folk cofibration. From now on, unless oth-
erwise explicitely specified, we will always consider that ωCat is equipped
with this model structure. In particular, Ho(ωCat) will always be the lo-
calization of ωCat with respect to the class of equivalence of ω-categories.

Proposition 3.13. An ω-category is cofibrant for the Folk model structure
if and only if it is free.

Proof. The fact that every free ω-category is cofibrant follows immediately
from the fact that the in : Sn−1 → Dn are cofibrations and that every
ω-category C is the colimit of the canonical diagram

∅ = C≤−1 → C≤0 → · · · → C≤n → C≤n+1 · · ·

For the converse, see [Mét08]. �

4. Polygraphic homology

4.1. Let C be an ω-category. We define a chain complex in non-negative
degree λ(C) in the following way:

- for n ∈ N, λ(C)n is the abelian group obtained by quotienting the
free abelian group ZCn by the congruence generated by the relations

x ∗k y ∼ x + y

for any x, y ∈ Cn that are k-composable,
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- the differential ∂ : λ(C)n → λ(C)n−1 is induced by the map

ZCn → ZCn−1

x ∈ Cn 7→ t(x) − s(x).

The axioms of ω-categories imply that ∂ ◦ ∂ = 0. Now let f : C → D be an
ω-functor. The map

ZCn → ZDn

x ∈ Cn 7→ f(x)

induces a map
λ(f)n : λ(C)n → λ(D)n.

Since f commutes with source and targets, we obtain a morphism of chain
complexes (λ(f)n)n∈N. This defines a functor

λ : ωCat → Ch≥0,

where Ch≥0 is the category of chain complexes in non-negative degree, which
we call the abelianization functor.

Lemma 4.2. Let C be a free ω-category and let Σ = (Σn)nN be its basis.
Then for every n ∈ N, λ(C)n is isomorphic to the free abelian group ZΣn.

Proof. Let G be an abelian group. For any n ∈ N, we define an n-category
BnG with:

- (BnG)k is a singleton set for every k < n,
- (BnG)n = G
- for all x and y in G and i < n,

x ∗i y := x + y.

It it straightforward to check that this defines an n-category. Note that when
n = 1, the previous definition would still make sense without the hypothesis
that G be abelian, but for n ≥ 2 this hypothesis is necessary because of the
Eckmann-Hilton argument. For n = 0, we only needed that G was a set.

This defines a functor
Bn : Ab → nCat

G 7→ BnG,

which is easily seen to be right adjoint to the functor

nCat → Ab

C 7→ λ(C)n.

Now, if C is an ω-category then λ(C≤n)n = λ(C)n and if C is free with basis
Σ = (Σn)n∈N, then for any abelian group G there is a natural isomorphism

HomnCat(C≤n, BnG) ≃ HomSet(Σn, |G|),

where |G| is the underlying set of G. Altogether, we have

HomAb(λ(C)n, G) ≃ HomAb(λ(C≤n)n, G)

≃ HomnCat(C≤n, BnG)

≃ HomSet(Σn, |G|)

≃ HomAb(ZΣn, G).

�
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Lemma 4.3. The functor λ is a left adjoint.

Proof. The category of chain complexes is equivalent to the category ωCat(Ab)
of ω-categories internal to abelian groups (see [Bou90, Theorem 3.3]) and
with this identification, the functor λ : ωCat → ωCat(Ab) is nothing but
the left adjoint of the canonical forgetful functor ωCat(Ab) → ωCat. �

4.4. Let u, v : C → D be two ω-functors. An oplax transformation α from
u to v consists of the following data:

- for every 0-cell x of C, a 1-cell of D

αx : u(x) → v(x),

- for every n-cell of x of C with n > 0, an (n + 1)-cell of D

αx : αtn−1(x) ∗n−1 · · · ∗1 αt0(x) ∗0 u(x) → v(x) ∗0 αs0(x) ∗1 · · · ∗n−1 αsn−1(x)

subject to the following axioms:
(1) for every n-cell x,

α1x = 1αx ,

(2) for all 0 ≤ k < n, for all n-cells x and y that are k-composable,

αx∗ky =
(
v(tk+1(x)) ∗0 αs0(x) ∗1 · · · ∗n−1 αsn−1(x) ∗k αy

)

∗k+1

(
αtn−1(x) ∗n−1 · · · ∗1 αt0(x) ∗0 u(sk+1(y))

)
.

We use the notation α : u ⇒ v to say that α is an oplax transformation
from u to v.

4.5. Let

B C D E
f u

v

g

be a diagram in ωCat and α : u ⇒ v an oplax transformation. The data of

(g ⋆ α)x := g(αx)

for each cell x of C (resp.

(α ⋆ f)x := αf(x)

for each cell x of B) defines an oplax transformation from gu to gv (resp.
uf to ug) that we denote g ⋆ α (resp. α ⋆ f).

Lemma 4.6. Let u, v : C → D be two ω-functors. If there is an oplax
transformation α : u ⇒ v, then there is a homotopy of chain complexes from
λ(u) to λ(v).

Proof. For any n-cell x of C (resp. D), let us use the notation [x] for the
image of x in λ(C)n (resp. λ(D)n).

Let hn be the map
hn : λ(C)n → λ(D)n+1

[x] 7→ [αx].

The definition of oplax transformations implies that hn is linear and that
for every n-cell x of C,

∂(hn(x)) + hn−1(∂(x)) = [v(x)] − [u(x)].

Details are left to the reader. �
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4.7. Recall that the category of chain complexes in non-negative degree
Ch≥0 has a cofibrantly model structure where:

- the weak equivalences are the quasi-isomorphisms, i.e. morphisms of
chain complexes that induce an isomorphism on homology groups,

- the cofibrations are the morphisms of chain complexes f : X → Y
such that for every n ≥ 0, fn : Xn → Yn is a monomorphism with
projective cokernel,

- the fibrations are the morphisms of chain complexes f : X → Y such
that for every n > 0, fn : Xn → Yn is an epimorphism.

(See for example [DS95, Section 7].) From now on, we will implicitly consider
that the category Ch≥0 is equipped with this model structure.

Proposition 4.8. The functor λ : ωCat → Ch≥0 is left Quillen.

Proof. The fact that λ is a left adjoint is Lemma 4.3.
A simple computation using Lemma 4.2 shows that for every n ∈ N,

λ(in) : λ(Sn−1) → λ(Dn)

is a monomorphism with projective cokernel. This shows that λ preserves
cofibrations.

Then, we know from [LMW10, Sections 4.6 and 4.7] and [AM16, Re-
marque B.1.16] (see also [AL19, Paragraph 3.11]) that there exists a set of
generating trivial cofibrations J of the Folk model structure on ωCat such
that any j : X → Y in J satisfies the following conditions:

- there exists r : Y → X such that r ◦ j = 1X ,
- there exists an oplax transformation α : j ◦ r ⇒ 1Y .

From Lemma 4.6, we conclude that λ preserves trivial cofibrations. �

The previous proposition leads the following definition:

Definition 4.9. We define the polygraphic homology functor

H
pol : Ho(ωCat) → Ho(Ch≥0)

as the left derived functor of λ : ωCat → Ch≥0.

5. Nerve of ω-categories and the comparison map

5.1. We denote by ∆ the category whose objects are the finite non-empty
totally ordered sets [n] = {0 < · · · < n} and whose morphisms are the
non-decreasing maps. For n ∈ N and 0 ≤ i ≤ n, we denote by

δi : [n − 1] → [n]

the only injective increasing map whose image does not contain i.

The category ∆̂ of simplicial sets is the category of presheaves on ∆. For
a simplicial set X, we use the notations

Xn := X([n])

∂i := X(δi) : Xn → Xn91.

Elements of Xn are referred to as n-simplices of X.
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5.2. From now on, we will consider that the category ∆̂ is equipped with
the model structure defined by Quillen in [Qui67]. A weak equivalence of
simplicial sets is a weak equivalence for this model structure.

5.3. We denote by O : ∆ → ωCat the cosimplicial object introduced by
Street in [Str87]. The ω-category On is the n-oriental. For a definition and
basic properties of this cosimplicial object we refer to op.cit., [Ste04] and
[AM16, Chapitre 7].

For every n ∈ N, the ω-category On is free and the set of generating
k-cells is canonically isomorphic to the set of increasing sequence

0 ≤ i0 < i1 < · · · < ik ≤ n.

We will denote such a generating cell by 〈i0i1 · · · ik〉. In particular, On is an
n-category and it has a unique generating n-cell, namely 〈012 · · · n〉, which
we call the principal cell of On.

Here are some pictures in low dimension:

O0 = 〈0〉,

O1 = 〈0〉 〈1〉,
〈01〉

O2 =

〈1〉

〈0〉 〈2〉

〈12〉〈01〉

〈02〉

〈012〉
.

5.4. For every ω-category X, the nerve of X is the simplicial set Nω(X)
defined as

Nω(X) : ∆op → Set

[n] 7→ HomωCat(On, X).

By post-composition, this yields a functor

Nω : ωCat → ∆̂

X 7→ Nω(X).

Note that when X is a 1-category, Nω(X) is canonically isomorphic to the
usual nerve of X, that is, the simplicial set

∆op → Set

[n] 7→ HomCat([n], X),

where [n] is seen as a 1-category.
By the usual Kan extension technique, O : ∆ → ωCat can be extended

to a functor
cω : ∆̂ → ωCat,

which is left adjoint to the nerve functor Nω.

Lemma 5.5. The nerve functor Nω : ωCat → ∆̂ sends equivalences of
ω-categories to weak equivalences of simplicial sets.

In particular, this means that the nerve functor induces a functor

Nω : Ho(ωCat) → Ho(∆̂).
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Proof. Since every ω-category is fibrant for the Folk model structure [LMW10,
Proposition 9], it follows from Ken Brown’s Lemma [Hov07, Lemma 1.1.12]
that it suffices to show that the nerve sends folk trivial fibrations to weak
equivalences of simplicial sets. In particular, it suffices to show the stronger
condition that the nerve sends folk trivial fibrations to trivial fibrations of
simplicial sets.

By adjunction, this is equivalent to showing that the functor cω : ∆̂ →
ωCat sends cofibrations of simplicial sets to folk cofibrations. Since cω is
cocontinuous and the cofibrations of simplicial sets are generated by the
canonical inclusions

∂∆n → ∆n

for n ∈ N, it suffices to show that cω sends these inclusions to folk cofibra-
tions.

Now, it follows from any reference on orientals previously cited that the
image of the inclusion ∂∆n → ∆n by cω can be identified with the canonical
inclusion

(On)≤n−1 → On.

Since On is free, this last morphism is by definition a push-out of a coproduct
of folk cofibrations, hence a folk cofibration. �

5.6. Let X be a simplicial set. We denote by Kn(X) the abelian group of
n-chains of X, that is the free abelian group on Xn, and by ∂ : Kn(X) →
Kn91(X) the linear map defined for x ∈ Xn by

∂(x) =
∑

0≤i≤n

(91)i∂i(x).

It can be shown that ∂ ◦ ∂ = 0 and thus, the previous data defines a chain
complex K(X). This actually yields a functor

K : ∆̂ → Ch≥0.

5.7. Recall that an n-simplex x of a simplicial set X is degenerate if there
exists a surjective non-decreasing map ϕ : [n] → [k] with k < n and a k-
simplex x′ of X such that X(ϕ)(x′) = x. For every n ∈ N, we define Dn(X)
as the subgroup of Kn(X) spanned by the degenerate n-simplices.

We denote by κn(X) the abelian group of normalized chain complex,

κn(X) = Kn(X)/Dn(X).

It can be shown that ∂(Dn(X)) ⊆ Dn91(X) and we denote by

∂ : κn(X) → κn91(X)

the map induced by the differential of K(X). This data defines a chain
complex κ(X) that we call the normalized chain complex of X. This yields
a functor

κ : ∆̂ → Ch≥0.

Lemma 5.8. The functor κ : ∆̂ → Ch≥0 is left Quillen and sends weak
equivalences of simplicial sets to quasi-isomorphisms.
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Proof. From the Dold-Kan equivalence, we know that Ch≥0 is equivalent to
the category Ab(∆) of simplicial abelian groups. With this identification

the functor κ : ∆̂ → Ch≥0 is left adjoint of the canonical forgetful functor

U : Ch≥0 ≃ Ab(∆) → ∆̂

induced by the forgetful functor from abelian groups to sets. It follows from
[GJ09, Lemma 2.9 and Corollary 2.10] that U is right Quillen, hence κ is
left Quillen.

The fact that κ preserves weak equivalences follows from Ken Brown’s
Lemma [Hov07, Lemma 1.1.12] and the fact that all simplicial sets are cofi-
brant. �

Lemma 5.9. The triangle of functors

∆̂ ωCat

Ch≥0

cω

κ λ

is commutative (up to a canonical isomorphism).

Proof. Since all the functors involved are cocontinuous, it suffices to show
that the triangle is commutative when we pre-compose it by the Yoneda

embedding ∆ → ∆̂. This property follows straightforwardly from the de-
scription of the orientals in [Ste04]. �

5.10. From Lemma 5.9, the co-unit of the adjunction cω ⊣ Nω induces a
natural transformation

κNω ≃ λcωNω ⇒ λ.

From Lemma 5.5, Lemma 5.8, Remark 1.3.1 and the universal property of
left derivable functors, we obtain a natural transformation

κNω ⇒ H
pol,

that we refer to as the canonical comparison map.

6. The case of contractible ω-categories

6.1. For any ω-category C, we denote by

pC : C → D0

the unique morphism from C to D0 (which is a terminal object of ωCat).

Definition 6.2. An ω-category C is contractible if there exists a 0-cell x of
C and an oplax transformation

C D0

C.

idC

pC

〈x〉
α

6.3. An immediate computation using Lemma 4.2 shows that λ(D0) is
canonically isomorphic to Z considered as a chain complex concentrated
in degree 0.
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Lemma 6.4. Let C be a contractible ω-category. The morphism of chain
complexes

λ(pC) : λ(C) → λ(D0) ≃ Z

is a quasi-isomorphism.

Proof. This follows immediately from Lemma 4.6. �

Lemma 6.5. Let

C ′ D′

C D

f ′

ǫ

u v

fǫ

be commutative squares in ωCat for ǫ ∈ {0, 1}.
If C ′ is a free ω-category and v is a trivial fibration for the Folk model

structure on ωCat, then for any oplax transformation

α : f0 ⇒ f1,

there is an oplax transformation

α′ : f ′
0 ⇒ f ′

1

such that

v ⋆ α′ = α ⋆ u.

Proof. We denote by ⊗ the Gray monoidal product (see for example [AM16,
Appendice A]) on the category ωCat. Recall that the unit of this monoidal
product is the ω-category D0.

From [AM16, Appendice B], we know that given u, v : C → D two
ω-functors, the set of oplax transformations from u to v is in bijection with
the set of functors α : D1 ⊗ C → D such that the diagram

(D0 ∐ D0) ⊗ C ≃ C ∐ C

D1 ⊗ C D,

i1⊗C
〈u,v〉

α

where i1 : D0 ∐D0 ≃ S0 → D1 is the morphism introduced in 3.4, is commu-
tative. We use the same letter to denote an oplax transformation and the
functor D1 ⊗ C → D associated to it.

Moreover, for an ω-functor f : B → C, the oplax transformation α ⋆ f is
represented by the functor

D1 ⊗ B D1 ⊗ C D
D1⊗f α

and for an ω-functor g : D → E, the oplax transformation g⋆α is represented
by the functor

D1 ⊗ C D E.α g
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Using this way of representing oplax transformations, the hypotheses of
the present lemma yield the following commutative square

(D0 ∐ D0) ⊗ C ′ D′

D1 ⊗ C ′
D1 ⊗ C D.

i1⊗C′

〈f ′

0,f ′

1〉

v

D1⊗u

α

Since i1 is a folk cofibration and C ′ is cofibrant, it follows that the left
vertical morphism of the previous square is a folk cofibration (see [Luc17,
Proposition 5.1.2.7] or [AL19]). By hypothesis, v is a folk trivial fibration,
the above square admits a lift

α′ : D1 ⊗ C ′ → D′.

The commutativity of the two induced triangle shows what we needed to
prove. �

Proposition 6.6. Let C be an ω-category. If C is contractible, then the
canonical comparison map

κNω(C) → H
pol(C)

is an isomorphism of Ho(Ch≥0). More precisely, this morphism can be
identified with the identity morphism idZ : Z → Z (where Z is seen as an
object of Ho(Ch≥0) concentrated in degree 0).

Proof. Consider first the case when C is cofibrant for the Folk model struc-
ture. It follows respectively from Lemma 6.4 and [AM20, Corollaire A.13]
that the morphisms

H
pol(C) → H

pol(D0)

and

κNω(C) → κNω(D0),

induced by the canonical morphism pC : C → D0, are isomorphisms of
Ho(Ch≥0). Moreover, it is straightforward to check that the canonical com-
parison map

κNω(D0) → H
pol(D0)

is an isomorphism Ho(Ch≥0) (and can be identified with the identity mor-
phism idZ : Z → Z, where Z is seen as a chain complex concentrated in
degree 0). From the naturality square

κNω(C) H
pol(C)

κNω(D0) H
pol(D0)

we deduce that the top arrow is an isomorphism of Ho(Ch≥0).
In the general case, let us choose an equivalence of ω-categories u : P → C

with P cofibrant for the Folk model structure and consider the naturality
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square

κNω(P ) H
pol(P )

κNω(C) H
pol(C).

From Lemma 6.5, we deduce that P is also contractible, hence the top
arrow is an isomorphism. Since u is a weak equivalence for the Folk model
structure, both vertical arrows are isomorphisms and thus the bottom arrow
is also an isomorphism. �

7. The folk homotopy colimit theorem

7.1. For every object a of a (small) category A, we denote by A/a the slice
category over a. That is, an object of A/a is a pair (b, p : b → a) where b is
an object of A and p is an arrow of A, and an arrow (b, p) → (b′, p′) of A/a
is an arrow q : b → b′ of A such that p′ ◦ q = p.

We denote by
πa : A/a → A

(b, p) 7→ b

the canonical forgetful functor.

Definition 7.2. Let A be a small category, a an object of A, X an ω-category
and f : X → A be an ω-functor.

We define the ω-category X/a and the ω-functor

f/a : X/a → A/a

as the following pullback

X/a X

A/a A.

y
f/a f

πa

7.3. More explicitely, a n-arrow of X/a is a pair (x, p) where x is a n-arrow
of X and p is an arrow of A of the form p : f(t0(x)) → a.

The source and target of a n-arrow of X/a (when n > 1) are given by

s((x, p)) = (s(x), p) and t((x, p)) = (t(x), p).

For (x, p) a n-arrow of X/a, we have

(f/a)(x, p) = (f(x), p),

and the canonical arrow X/a → X is simply expressed as

(x, p) 7→ x.

7.4. Let f : X → A be an ω-functor with A a 1-category. Any arrow
β : a → a′ of A induces an ω-functor

X/β : X/a → X/a′

(x, p) 7→ (x, β ◦ p).
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This defines a functor
X/9 : A → ωCat

a 7→ X/a.

Moreover, for every arrow β : a → a′ of A, the triangle

X/a X/a′

X

X/β

is commutative. By universal property, this induces a canonical arrow

colim
a∈A

(X/a) → X.

Now, let

X X ′

A

g

f f ′

be a commutative triangle in ωCat with A a 1-category. For every a ∈ Ob(A),
we define the ω-functor g/a as

X/a → X ′/a

(x, p) 7→ (g(x), p).

This induces an ω-functor

colim
a∈A

(X/a) → colim
a∈A

(X ′/a)

and the square

colim
a∈A

(X/a) X

colim
a∈A

(X ′/a) X ′

g

is commutative.

Lemma 7.5. Let f : X → A be an ω-functor such that A is a 1-category.
The canonical arrow

colim
a∈A

(X/a) → X

is an isomorphism.

Proof. We have to show that the cocone

(X/a → X)a∈Ob(A)

is colimiting. Let

(ga : (X/a) → C)a∈Ob(A)

be another cocone and let x be a n-arrow of X. Notice that the pair

(x, 1f(t0(x)))
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is a n-arrow of X/f(t0(x)). We leave it to the reader to prove that the
formula

φ : X → C

x 7→ gf(t0(x))(x, 1f(t0(x))).

defines an ω-functor. This proves the existence part of the universal prop-
erty.

It is straightforward to check that for every a ∈ Ob(A) the triangle

X/a X

C

ga

φ

is commutative. Now let φ′ : X → C be another ω-functor that makes the
previous triangles commute and let x be a n-arrow of X. Since the triangle

X/f(t0(x)) X

C
gf(t0(x))

φ′

is commutative, we necessarily have

φ′(x) = gf(t0(x))(x, 1f(t0(x)))

which proves that φ′ = φ. �

Lemma 7.6. If X is free, then for any a ∈ Ob(A) the ω-category X/a is
free.

More precisely, if we denote by ΣX
n the set of generating n-cells of X,

then the set of generating n-cells of X/a is

ΣX/a
n = {(x, p) ∈ (X/a)n|x ∈ ΣX

n }.

Proof. Remark first that for any a ∈ Ob(A), the map

πc : A/a → A

is a discrete Conduché ω-functor (Definition 3.6). Hence, from Lemma 3.7,
we deduce that the canonical map

X/a → X

is a discrete Conduché ω-functor. We conclude with Proposition 3.8. �

7.7. Let f : X → A be as before and suppose that X is free. Any arrow
β : a → a′ of A induces a map:

ΣX/a′

n → ΣX/a
n

(x, p) 7→ (x, β ◦ p).

This defines a functor
ΣX/9

n : A → Set

a 7→ ΣX/a
n .

Lemma 7.8. If X is free, then there is a natural isomorphism

ΣX/9
n ≃

∐

x∈ΣX
n

HomA (f(t0(x)), 9) .
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Proof. Let a be an object of A. For each x ∈ ΣX
n , there is a canonical map

HomA (f(t0(x)), a) → ΣX/a
n

p 7→ (x, p)

that induces by universal property a map
∐

x∈ΣX
n

HomA (f(t0(x)), a) → ΣX/a
n .

The naturality in a and the fact that this map is an isomorphism are obvious.
�

Proposition 7.9. Let f : X → A be an ω-functor with A a 1-category and
X a free ω-category. The functor

X/9 : A → ωCat

a 7→ X/a.

is a cofibrant object for the projective model structure on ωCatA induced by
the Folk model structure on ωCat.

Proof. Recall that the set

{in : Sn−1 → Dn|n ∈ N}

is a set a generating cofibrations for the Folk model structure on ωCat.
From Lemmas 7.6 and 7.8 we deduce that for any a ∈ Ob(A) and n ∈ N,
the canonical square

∐

x∈ΣX
n

∐

HomA(f(t0(x)),a)

Sn−1 (X/a)≤n−1

∐

x∈ΣX
n

∐

HomA(f(t0(x)),a)

Dn (X/a)≤n

is a pushout square. It is straightforward to check that this square is natural
in a in an obvious sense. The result follows from Lemma 2.6. �

Theorem 7.10. Let X be an ω-category, A a 1-category and f : X → A
an ω-functor. The canonical arrow of Ho(ωCat)

hocolim
a∈A

(X/a) → colim
a∈A

(X/a)

is an isomorphism.

NB. Note that in the previous theorem, we did not suppose that X was
cofibrant for the Folk model structure.

Proof of Theorem 7.10. Let P be a free ω-category and g : P → X a trivial
fibration for the Folk model structure. We have a commutative diagram in
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Ho(ωCat)

(1)

hocolim
a∈A

(P/a) colim
a∈A

(P/a)

hocolim
a∈A

(X/a) colim
a∈A

(X/a)

where the vertical arrows are induced by the arrows

g/a : P/a → X/a.

Since trivial fibrations are stable by pullback, g/a is a trivial fibration. This
proves that the left vertical arrow of square (1) is an isomorphism.

Moreover, from paragraph 7.4 and Lemma 7.5, we deduce that the right
vertical arrow of (1) can be identified with the image of g : P → X in
Ho(ωCat) and hence is an isomorphism.

Finally, from Proposition 7.9, we deduce that the top horizontal arrow of
(1) is an isomorphism.

This proves the theorem. �

8. Homology of 1-categories

8.1. For a functor d : A → Cat with A a small category, we denote
by

∫
A d the Grothendieck construction for d. We refer to [Mal05, Section

3.1] for a definition and basic properties of this construction. Recall that
there is a canonical morphism

∫
A d → A as well a canonical morphism∫

A d → colimA(d), and that if d is the functor a 7→ A/a then these two
morphisms can be identified via the isomorphism colimA A/a ≃ A.

Lemma 8.2. Let A be a small category and consider the functor

A → ωCat

a 7→ A/a.

The canonical map

hocolim
a∈A

Nω(A/a) → Nω(hocolim
a∈A

A/a)

is an isomorphism of Ho(∆̂).

Proof. The proof is long and we divide it in several parts. Recall that
we consider Cat as a full subcategory of ωCat (see Remark 3.3). Given
a functor d : A → Cat, we still denote d the functor obtained by post-
composition

A Cat ωCat.d

Preliminaries: We say that a morphism of ωCat, f : X → Y , is a Thoma-
son weak equivalence when Nω(f) is a weak equivalence of simplicial
sets. We denote by WTh

ω the class of Thomason weak equivalences.
In order to avoid any confusion, we use the notation HoTh(ωCat)
for the localization of ωCat with respect to Thomason weak equiva-
lences and the notation Hofolk(ωCat) the localization of ωCat with
respect to W folk

ω , the weak equivalences of the folk model structure
(3.12).



26 LÉONARD GUETTA

Similarly, we denote by WTh
1 the class of arrows of Cat whose

elements are Thomason weak equivalences (seen as arrows of ωCat)
and by HoTh(Cat) the localization of Cat with respect to WTh

1 .
Note that WTh

1 is indeed the class of weak equivalences of the model
structure on Cat considered by Thomason in [Tho80].

Thus, we have defined three localizers: (Cat, WTh
1 ), (ωCat, WTh

ω )
and (ωCat, W folk

ω ). We have already seen that (ωCat, W folk
ω ) has

homotopy colimits and from the existence of the Thomason model
structure on Cat [Tho80], we deduce that (Cat, WTh

1 ) has homo-
topy colimits. Although the existence of a model structure on ωCat

with the Thomason weak equivalences as weak equivalences is not
established (see [AM14] though), we will see later in this proof that
(ωCat, WTh

ω ) has homotopy colimits. In order to explicitly distin-
guish the homotopy colimits in these three localizers, we use the
self-explanatory notations:

Cat,Th
hocolim

A
,

ωCat,Th
hocolim

A
and

ωCat,folk
hocolim

A
.

Similarly, we use the notations

Cat

colim
A

and
ωCat

colim
A

to distinguish colimits in Cat and ωCat.
Thomason’s homotopy colimit theorem: From [Mal05, Section 3.1], we

know that the functor
∫

A : CatA → Cat preserves Thomason weak
equivalences and that the induced functor

∫

A
: HoTh(CatA) → HoTh(Cat)

is a left adjoint to the diagonal functor (1.4)

k : HoTh(Cat) → HoTh(CatA).

Hence, there is a canonical isomorphism of functors

∫

A
≃

Cat,Th
hocolim

A
.

Since for any object a of A, the category A/a has a terminal ob-
ject, it follows from [Qui73, Section 1,Corollary 2] that the canonical
morphism

pA/a : A/a → D0

to the terminal category is a Thomason weak equivalence. In par-
ticular, if d : A → Cat is the functor a 7→ A/a, the induced map

(2)

∫

A
d →

∫

A
k(D0),

where k(D0) is the constant diagram with value D0, is an isomor-
phism of HoTh(Cat). A quick computation left to the reader shows
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that
∫

A k(D0) ≃ A and that the map (2) can be identified with the
canonical map

Cat,Th
hocolim

a∈A
A/a →

Cat

colim
a∈A

A/a,

which is an isomorphism of HoTh(Cat).
Preservation of Thomason homotopy colimits: From [Gag18, Theo-

rem 2.4 and 6.9], it follows that Nω : ωCat → ∆̂ induces an equiva-
lence of prederivators (here ωCat is equipped with Thomason weak
equivalences). Concretely to us, this implies that (ωCat, WTh

ω ) has
homotopy colimits and that for any functor d : A → ωCat, the
canonical map

∆̂
hocolim

A
(Nω(d)) → Nω(

ωCat,Th
hocolim

A
(d))

is an isomorphism of Ho(∆̂).

Similarly, the usual nerve functor for 1-categories N1 : Cat → ∆̂
induces an equivalence of prederivators and from the commutativity
of the triangle

Cat ωCat

∆̂ ,

i

N1 Nω

and the fact that i preserve Thomason weak equivalences (by defini-
tion), we deduce that i also induces an equivalence of prederivators.
Hence, for any functor d : A → Cat, the canonical map

ωCat,Th
hocolim

A
(d) →

Cat,Th
hocolim

A
(d)

is an isomorphism of HoTh(ωCat). Consider now the commutative
square in HoTh(ωCat):

Cat,Th
hocolim

a∈A
A/a

ωCat,Th
hocolim

a∈A
A/a

Cat

colim
a∈A

A/a
ωCat

colim
a∈A

A/a.

So far we have proved that the top horizontal arrow and the left ver-
tical arrows are isomorphisms. Since the inclusion functor Cat →
ωCat preserves colimits, the bottom horizontal arrow is also an iso-
morphism. This implies that the right vertical arrow is an isomor-
phism.

Comparing Folk and Thomason homotopy colimits: From Lemma 5.5,
we have that W folk

ω ⊆ WTh
ω . In particular, the identity functor

ωCat → ωCat induces a functor

Hofolk(ωCat) → HoTh(ωCat),
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and for any functor d : A → ωCat, we have a commutative triangle
in HoTh(ωCat):

ωCat,folk
hocolim

A
(d)

ωCat,Th
hocolim

A
(d)

ωCat

colim
A

(d).

In the case d is the functor a 7→ A/a, we have already proved that
the two slanted arrows of the previous triangle were isomorphisms.
Hence, the canonical map

ωCat,folk
hocolim

a∈A
A/a →

ωCat,Th
hocolim

a∈A
A/a

is an isomorphism. Consider now the commutative triangle induced
by the nerve functor:

∆̂
hocolim

A
(Nω(d))

Nω(
ωCat,folk
hocolim

A
(d)) Nω(

ωCat,Th
hocolim

A
(d)).

We have already seen that the slanted arrow on the right is an iso-
morphism. In the case that d is the functor a 7→ A/a, it follows from
what we have proved that the horizontal arrow is an isomorphism.
Hence, the canonical map

∆̂
hocolim

a∈A
Nω(A/a) → Nω(

ωCat,folk
hocolim

a∈A
A/a)

is an isomorphism. �

We can now prove the main theorem of this paper.

Theorem 8.3. Let A be a small category seen as an object of ωCat. The
canonical comparison map

κNω(A) → H
pol(A)

is an isomorphism of Ho(Ch≥0).

Proof. We have a commutative diagram

hocolim
a∈A

κNω(A/a) κNω(hocolim
a∈A

A/a) κNω(colim
a∈A

A/a) κNω(A)

hocolim
a∈A

H
pol(A/a) H

pol(hocolim
a∈A

A/a) H
pol(colim

a∈A
A/a) H

pol(A),

(A) (B) (C)

where the vertical arrows are induced by the canonical comparison map. The
goal is to show that the right vertical map of square (C) is an isomorphism.
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By Lemma 7.5 the horizontal arrows of square (C) are isomorphisms. By
Theorem 7.10, the horizontal arrows of square (B) are isomorphisms. By
Lemma 8.2, the top horizontal arrow of square (A) is an isomorphim, and
by 2.8 the bottom horizontal arrow of the same square is an isomorphism.
Finally, by Proposition 6.6, the left vertical arrow of square (A) is an iso-
morphism. By 2-out-of-3 property for isomorphisms, this shows what we
wanted. �

9. Complement : a folk Theorem A

9.1. As a corollary of Theorem 7.10, we obtain Proposition 9.2 below. It
is to be compare with Theorem A of Quillen [Qui73, Theorem A] and its
generalization for ω-categories by Ara and Maltsiniotis [AM18] and [AM20].
However, note that in the pre-cited references, the weak equivalences con-
sidered are the ones induced by the nerve (5.4), whereas in the proposition
below we work with the weak equivalences of the Folk model structure (3.10).

Proposition 9.2. Let

X Y

A

u

v w

be a commutative triangle in ωCat and suppose that A is a 1-category. If
for every a ∈ Ob(A), the induced arrow

u/a : X/a → Y/a

is an equivalence of ω-categories, then u is also an equivalence of ω-categories.

Proof. Consider the commutative square in Ho(ωCat):

hocolim
a∈A

(X/a) colim
a∈A

(X/a)

hocolim
a∈A

(Y/a) colim
a∈A

(Y/a)

where the vertical arrows are induced by the arrows

u/a : X/a → Y/a.

Since we supposed that these arrows were weak equivalences of the Folk
model structure, it follows that the left vertical arrow of the previous square
is an isomorphism. From Theorem 7.10, the horizontal arrows are isomor-
phisms.

This proves that the right vertical arrow is also an isomorphism but it
follows from 7.4 and Lemma 7.5 that this arrow can be identified with the
image of u : X → Y in Ho(ωCat). �
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