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Abstract 

Tunneling junctions containing no ferromagnetic elements have been fabricated and we show that 

distinct resistance states can be set by field cooling the devices from above the Néel along different 

orientations. Variations of the resistance up to 10% are found upon field cooling in applied fields of 

2T, in-plane or out of plane. Below TN, we found that the metastable states are insensitive to 

magnetic fields thus constituting a memory element robust against external magnetic fields. Our 

work provides the demonstration of an electrically readable magnetic memory device, which 

contains no ferromagnetic elements and stores the information in an antiferromagnetic active layer.  
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Magnetic tunnel junctions used in modern hard-drive read heads and magnetic random access 

memories comprise two ferromagnetic electrodes whose relative magnetization orientations can be 

switched between parallel and antiparallel configurations, yielding the tunneling magnetoresistance 

effect.
1
 Recently, large magnetoresistance signals have been observed on NiFe/IrMn/MgO/Pt stacks 

with an antiferromagnet (AFM) on one side and a non-magnetic metal on the other side of the 

tunnel barrier.
2,3

 In these devices, ferromagnetic moments in NiFe are reversed by external 

magnetic field and the exchange-spring effect of NiFe on IrMn induces the rotation of the AFM 

moments in IrMn. This is then electrically detected via the measurement of the AFM tunneling 

anisotropic magnetoresistance (TAMR). The work has experimentally demonstrated the feasibility 

of a spintronic concept
4,5

 in which the device transport characteristics are governed by an AFM.  

The lack of magnetic stray fields and the relative insensitivity to external magnetic fields make 

AFM materials potentially fruitful complements to ferromagnets in the design of spintronic devices. 

The zero net moment of compensated AFMs, however, also implies that weak magnetic fields of 

the order of the typical magnetic anisotropy fields in magnets cannot be directly applied to rotate 

the AFM moments. In the devices reported in Refs. 2, 3 the problem was circumvented by attaching 

an exchange-coupled ferromagnet to the AFM electrode to form an exchange-spring.
6
 This method, 

however, limits the thickness of the AFM layer to values not exceeding the domain wall width in 

the AFM. Since the exchange spring triggers rotation of the AFM moments at the opposite interface 

to the AFM/tunnel-barrier interface, the AFM TAMR effect can be observed only in AFM films 

which are thinner than the domain wall width in the AFM. Recent experiments in 

[Pt/Co]/IrMn/AlOx/Pt stacks
7
 have demonstrated that room-temperature AFM TAMR can be 

achieved in exchange-spring tunnel junctions only in a narrow window of AFM thickness. A subtle 
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balance is required between a thin enough AFM to allow for the exchange-spring rotation of AFM 

moments across the entire width of the AFM and a thick enough AFM to avoid the decrease of the  

Néel temperature TN below room temperature by the size effects. We also point out that as a 

memory element, the exchange-spring AFM tunnel junctions can be disturbed by weak magnetic 

field perturbations as they still contain a ferromagnetic element.  

To fully exploit the potential robustness of the AFM based spintronic device against magnetic 

fields, we have fabricated magnetic tunnel junctions analogous to those in Ref. 2,3, but without the 

auxiliary ferromagnetic NiFe layer. In these antiferromagnetic tunnel junctions (ATJs) we show that 

metastable states can be set by cooling the sample and crossing the Néel temperature in external 

magnetic fields with different orientations. These metastable states can be detected electrically, due 

to an analogous effect to the AFM TAMR reported in Refs. 2,3,7. Since our field-cooling approach 

for writing does not require any ferromagnetic layer, the limitation on the AFM thickness is 

removed in our devices. Our work provides the demonstration of an electrically readable magnetic 

memory device which contains no ferromagnetic elements and which stores the information in an 

AFM.  

The stacks for the fabrication of the tunneling junctions used in this study have been deposited by 

magnetron sputtering (AJA ATC Orion 8 system). A Ta(20)/Ru(18)/Ta(2)/Ir0.2Mn0.8(2-

8)/MgO(2.5)/Ta(20) (layer thicknesses are in nm) stack was deposited on SrTiO3 (STO) single 

crystal after a chemical cleaning of the substrate. STO was chosen as a suitable insulating substrate 

with limited impact on the device behavior because our measurements are performed above 100K, 

i.e. in a temperature range where STO does not present structural transitions. The metallic layers 

have been deposited in dc mode, while MgO in rf mode. To reproduce the experimental conditions 

optimized for the fabrication of MgO based tunneling junctions, a magnetic field of 30 mT was 

applied along the STO[100] direction during the stack growth. A post growth annealing of 250°C 

has been performed in a dedicated system with an external magnetic field of 400 mT applied along 
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the same STO[100] direction and with a field cooling until reaching room temperature (without 

crossing the Néel Temperature of IrMn).  

The core of the stack employed for the fabrication of our devices is the Ir0.2Mn0.8(2-

8)/MgO(2.5)/Ta(20) ATJ where the IrMn layer is in direct contact with the insulating barrier. In this 

way, modifications of its relativistic spin-orbit coupled band structure for different AFM 

configurations can yield the TAMR.
4
 The high structural quality of our heterostructures is evident 

from Fig. 1, where we show STEM images taken on a sample with a 8 nm thick IrMn film. A Nion 

UltraSTEM operated at 100 kV and equipped with a Nion aberration corrector was used. Low and 

high resolution STEM Z contrast images show that the stacking comprises continuous films over 

large distances. This is consistent with atomic force microscopy analyses at intermediate growth 

steps, which revealed that each new layer preserved an RMS roughness of less than 1 nm (data not 

shown). The image shown in the inset of Fig. 1 highlights the successful recrystallization of MgO 

after annealing at 250
°
C for 1 hour. The MgO insulating barrier is highly textured along the out-of-

plane [001] direction, parallel to the IrMn [111] texturation, as found in our preceding works
2
 and 

confirmed by X-ray diffraction measurements (data not shown).  

Pillar structures with different cross sectional areas, ranging from 4 to 100 µm
2
, were patterned by 

optical lithography in order to define the ATJs for electrical measurements. The devices show 

tunneling I(V) characteristics and resistance area products (RA) typical of standard MgO magnetic 

tunneling junctions with the same MgO thickness  (RA ∼ 2.5·10
5
 Ω µm

2
 at 100 mV and 300 K). A 

Quantum Design Physical Property Measurement System (PPMS) and an Oxford Instruments 

cryostat furnished with vector magnet were used to perform the magneto-transport measurements.  

As calorimetry measurements showed that TN of a 2 nm thick IrMn is reduced to ∼173 K (see Fig. 

3 and discussion thereafter), we performed the field cooling procedure from room temperature 

down to 120 K, thus covering a sufficiently large temperature range around TN. In the case of data 

reported in the main panel of Fig. 2,  we applied an external field µ0Hz of ±2T oriented 
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perpendicular to the sample surface (scattered and red curves) and µ0Hx = +2T oriented in the plane 

of the sample, along the [100] axis of the STO substrate (thick green curve). The RA product 

(measured at a fixed bias of 20 mV) is identical for the three field orientations in the temperature 

interval from 300 K to approximately 170 K, while below this temperature the RA traces for out-of-

plane and in-plane field orientations split. At 120 K the difference is more than 10%. Remarkably, 

these states are metastable at temperatures sufficiently below TN, as illustrated in the inset of Fig. 2. 

In the mesurement, the higher resistance state was prepared by in-plane field cooling and then the 

temperature was stabilized at 120 K. The RA product (at 20 mV bias) was then monitored while 

continuously sweeping the magnetic field in the out-of-plane direction (Hz) and also in the two 

orthogonal in-plane directions (Hx and Hy) between +2 T and -2 T, for 10 hours. No changes in the 

tunneling resistance are observed within the experimental noise, which is much smaller than the 

difference between the higher and lower resistance states observed in the main panel of Fig. 2. This 

demonstrates that the state prepared by field cooling is metastable and insensitive to relatively large 

external magnetic fields. Note that metastable states showing different tunneling resistances at zero 

magnetic field were also observed in Ref. 2, where the configuration of the AFM moments in IrMn 

was controlled below TN using the exchange-spring effect of a ferromagnet. Noteworthy, the 

observed field-cool induced magnetotransport effect shows the key signatures of an anisotropic 

magnetoresistance. In Fig. 2, while the temperature-dependent resistance traces for the in-plane and 

out-of-plane fields split below TN, we observe no difference between field-cool measurements 

performed at fields with the opposite polarity.  

In Fig. 3 we highlight that the onset of the splitting of the RA traces for cooling in fields with 

different directions coincides with the transition to the ordered AFM state in the 2 nm IrMn film. 

Side by side we plot in the figure the normalized variation of the tunneling resistance (R(Hx)-

R(Hz))/R(Hz) in one of our 2 nm IrMn pillar devices and the differential specific heat of a 2nm IrMn 

layer as a function of temperature. Quasi-adiabatic nanocalorimetry (QAnC) is an ideal technique 
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for investigating the Néel temperature of thin IrMn films. This technique allows for a direct 

measurement of the specific heat of the sample, enabling the observation of the critical behavior in 

the specific heat near TN.  Identical multilayers to those used in the tunnel junctions were sputtered 

onto self-standing silicon nitride membranes that form the nanocalorimetric cells. A twin 

calorimeter loaded with a reference multilayer sample without IrMn was used for differential 

measurements of the specific heat.
8
 The Néel temperature inferred from the inflexion point of the 

specific heat singularity
8 

is approximately 173 K, i.e., it is significantly reduced in the 2 nm IrMn 

film as compared to the bulk IrMn, having TN > 1000 K. This is in agreement with previous 

observations in case of other AFMs, e.g. CoO.
8 

The reproducibility of the specific heat method has 

been confirmed in different samples prepared in separate growth runs under the same growth 

conditions. Moreover, the correspondence between TN and the onset of the field-cool AFM TAMR 

has been confirmed by independent measurements using the PPMS and the vector magnet cryostat, 

and studying different ATJs with the same nominal layer structure. All samples show a negligible 

magnetoresistance in the paramagnetic phase and a reproducible splitting of the RA traces when 

continuing the field-cooling below TN with in-plane and out-of-plane magnetic fields. The 

percentage difference between the two metastable resistance states obtained at 120 K varies from 

2% to 10% in different ATJ samples. Higher values were found in devices with larger RA, thus 

indicating that tunneling is the origin of the observed magnetoresistance. The last one simply 

decreases in devices with thinner barriers, where defects can creates parallel conductive paths 

partially masking the effect of anisotropic tunneling. 

We point out that the observed magnetoresistance cannot be ascribed to magnetization-

independent tunneling transport phenomena due, e.g., to Lorentz force effects of the magnetic fields 

applied along different directions with respect to the tunneling current direction. These types of 

phenomena can be excluded since the field-cooling magnetoresistance disappears above TN and 

since we observe a negligible resistance variation upon application of external fields when the 
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temperature is stabilized below TN, as shown in the inset of Fig. 2. For the same reason, we exclude 

that possible Mn interdiffusion wthin the oxide layer is responsible for the observed metastable 

magnetic states. The coincidence between the Néel temperature and the onset of the resistance 

splitting is a strong evidence for the linking of the observed phenomena to the antiferromagnetism 

of the IrMn layer and not to the magnetic behavior of some Mn atoms dispersed in the tunneling 

barrier. We also note that the microscopic mechanism which yields the field-cool TAMR in  IrMn is 

distinct from the high-field magnetotransport effects previously observed in iron pnictide AFMs.
9
 In 

the latter materials the phenomenon has been ascribed to field-induced selection of structural crystal 

twin domains.
9  

IrMn does not undergo a crystal phase change near TN and we therefore ascribe the 

distinct metastable states realized by field-cooling purely to distinct AFM configurations of uniform  

IrMn film.  

The precise microscopic identification of these states requires a detailed study, which is beyond 

the proof-of-concept work presented in this paper. Here we recall the theoretical study
10

 on IrMn 

which for Ir20Mn80 identified two non-collinear AFM phases 2Q and 3Q (confining the magnetic 

spins in the plane or yielding an out-of-plane component, respectively) with an energy difference of 

only ~0.25 mRy/atom, and a collinear phase whose energy is ~1.25 mRy/atom higher. We surmise 

that depending on the direction and strength of the applied field, the field-cooling procedure starting 

from temperatures above TN can favor spin configurations with different proportion of these distinct 

metastable AFM phases. Finally we remark that in the previously studied NiFe/IrMn exchange-

spring AFM tunnel junctions,
2,3

 the formation of the distinct magnetic configurations affecting the 

tunnel transport could be ascribed to bulk properties of the AFM or to the interface effects with the 

ferromagnet. From this perspective, our present experiments provide valuable complementary 

evidence showing that the interface with another magnetic layer is not required for stabilizing 

distinct states in the IrMn AFM. 

 To summarize, we have demonstrated the storage of information in an AFM/insulator/normal-
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metal tunneling device comprising no ferromagnetic elements. Different metastable configurations, 

yielding the high and low resistance states of the ATJ, can be set by cooling the AFM from above 

TN in magnetic fields with different orientations. By increasing the AFM layer thickness, the Néel 

temperature of the AFM film is expected to increase, virtually allowing setting the TN above room 

temperature. The absence of stray fields and the robustness against magnetic field perturbations are 

the key features of these devices, which hold potential for the development of novel spintronic 

devices without ferromagnets.   
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FIG. 1. (color online) High resolution Z contrast image of the heterostructure studied here. In the 

inset a high resolution image of the Ta/MgO/IrMn tunneling junction is shown. The reference 

system reported on the right is that used for indexing the magnetic fields during field cooling.  
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FIG. 2. (color online) Tunnel resistance data for field-cooling along positive and negative out-of-

plane z-directions of the field and for the in-plane x-direction. The splitting of the two resistance 

traces, corresponding to the non-zero anisotropic magnetoresistance, is observed near TN. Inset 

shows the stability of the state realized by field-cooling in the out-of-plane field. Below TN, at 

T=120 K, the resistance remains constant when sweeping the magnetic field between +2 and -2T 

along out-of-plane (z) or orthogonal in-plane (x,y) directions. 
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FIG. 3. (color online) Red scattered curve: Differential specific heat measurements of the 2 nm IrMn 

samples indicating TN ~173 K. Data were obtained on samples with a 2 nm thick IrMn layer, by 

averaging 1000 consecutive scans. Black curve: Temperature dependence of the tunneling 

magnetoresistance corresponding to the relative difference between field-cool resistance 

measurements in 2T fields applied along the out-of-plane (z) and in-plane (x) directions. The onset 

of a non-zero anisotropic magnetoresistance is observed when crossing TN. 
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