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Slow sound in lined flow ducts

Y. Aurégan1, a) and V. Pagneux1

Laboratoire d’Acoustique de l’Université du Maine, UMR
CNRS 6613 Av. O Messiaen, F-72085 LE MANS Cedex 9,
France

We consider the acoustic propagation in lined flow duct with a purely reactive
impedance at the wall. This reacting liner has the capability to reduce the speed
of sound, and thus to enhance the interaction between the acoustic propagation and
the low Mach number flow (M ' 0.3). At the lower frequencies, there are typically
4 acoustic or hydrodynamic propagating modes, with 3 of them propagating in the
direction of the flow. Above a critical frequency, there are only 2 propagating modes
that all propagate in the direction of the flow. From the exact 2D formulation an
approximate 1D model is developed to study the scattering of acoustic waves in a
straight duct with varying wall impedance. This simple system, with a uniform flow
and with a non-uniform liner impedance at the wall, permits to study the scattering
between regions with different waves characteristics. Several situations are charac-
terized to show the importance of negative energy waves, strong interactions between
acoustic and hydrodynamic modes or asymmetric scattering.

PACS numbers: 43.28.Py, 43.50.Gf, 43.20.Mv
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I. INTRODUCTION

Acoustic liners are widely used to reduce the sound transmission in ducts with flow
with applications in household appliances, ventilation systems in vehicles and buildings, IC-
engines, power plants, aircraft engine. The mitigation due to these liners is based on two
principles that are generally mixed. The first action of the liners is to dissipate acoustical
energy by visco-thermal losses or by exchange of energy between the acoustical field and
flow, like in the vicinity of a hole in a perforated plate with grazing flow. The second type
of action is the scattering of the acoustical waves by the changes of acoustical impedance
occurring for instance at the entrance and at the exit of the liners. This paper focusses on the
second type of action called reacting effects and disregards the first type called dissipative
effects. To do this, a waveguide with an acoustically treated wall is studied and the wall is
considered as locally reacting and without dissipation. When the liner consists of cavities
mounted flush to the wall (like small closed tubes in the present case), those cavities act as
springs in the low frequencies limit. Then, the speed of sound is determined by the square
root of the ratio between the isentropic bulk modulus (which is a measure for the stiffness
of the fluid) and the mass density. The presence of small cavities decreases the effective
stiffness and, consequently, the speed of sound. The propagative acoustical waves in such
systems are called ”slow sound”. Recently, slow acoustic waves have attracted attention for
the potential to design new acoustic devices such as metamaterials. They have been studied
both in sonic crystals1 and in one dimensional system2,3. The originality of the present study
is to introduce a mean flow with a velocity of the same order as the effective speed of sound.
When the flow velocity is smaller than the speed of sound the regime is called ”subsonic”
and ”supersonic” on the other case. In the subsonic regime, it will be shown that 4 modes
propagate at low frequencies (wavelength much smaller than the transverse dimensions of the
waveguide). Two of these modes correspond to classical acoustical waves in both direction.
The two other modes do not exist without flow and are thus called HydroDynamic (HD)
modes in the following. One of these HD modes has a group velocity and a phase velocity
in opposite direction. The second HD mode is a Negative Energy Wave (NEW). Globally,
among the 4 modes that propagate in the subsonic regime, 3 of the modes propagate in
the flow direction while one of the acoustical modes propagates against the flow. In the
supersonic regime, only 2 waves can propagate and they are in the flow direction. The
problem that we consider is close to the response of fluid loaded finite plates with mean
flow4–6 but it leads to a simpler analysis of interesting behaviors.

The plan of the paper is as follows. The section II of this paper is devoted to the
characterization of the modes propagating in the low frequencies limit in a 2D duct. It
will be shown that an energy flux conservation can be written in this case. The section
III describes a approximate 1D model where the effects in the transverse direction of the
duct are taken into account by averaging. Albeit very simple, this 1D model has the same
richness of behavior as the 2D model. In particular, as in the 2D model, an energy flux
conservation is obtained and a NEW is present. In the section IV, the 1D model is used
to calculate the scattering proprieties of an increase or a decrease in the wall impedance.
The transonic cases (from supersonic to subsonic and vice versa) are of particular interest
because of the conversion of acoustical waves into HD modes. A local transonic increase of
the compliance is also studied in the section V and shows an interesting propriety of total
transmission in flow direction and of no transmission in the opposite direction corresponding
to an ”acoustical diode”.

2



II. SOUND PROPAGATION IN A 2D DUCT WITH FLOW AND
COMPLIANT WALL

Figure 1: Geometry of the problem

We consider the sound propagation in a 2D channel with a uniform flow, see Fig. 1. The
lower wall is rigid. The upper wall is compliant and composed of small tubes of variable
lengths. All parameters are nondimensionalized in the standard way to simplify the notation.
Velocities are nondimensionalized by the speed of sound c0, so that the uniform mean velocity
becomes the steady flow Mach number M . Distances are nondimensionalized by the height
of the channel H, time by H/c0, and pressure by ρ0c

2
0 where ρ0 is the mean density. The

dimensionless equations governing the acoustic motion are then

Dt p = −∇.v (1)

Dt v = −∇p , (2)

where p is the pressure, v is the velocity and Dt = ∂t + M∂x is the convective derivative.
Next, the equations are written in term of the acoustic velocity potential (v = ∇ϕ). Eq.
(2) leads to p = −Dt ϕ and Eq. (1) leads to the classical convected wave equation:

D2
tϕ−∇2ϕ = 0 . (3)

On the rigid wall (y = 0), the boundary condition is ∂yϕ = 0. On the compliant wall, we
use the so-called ”Ingard-Myers Condition”7. This condition states that the pressure and
the transverse displacement η (Dtη = v = ∂yϕ) are continuous at the wall which leads to
v = Dt(C(x)p) where C(x) is the compliance of the wall (ratio of transverse displacement
over the pressure). Hence the boundary condition at the wall y = 1 is written:

∂yϕ = −Dt (C(x)Dtϕ) . (4)

The compliance of the closed tubes of length b(x) at y = 1 is given by C(x) =
σ tan(b(x)ω)/ω where σ is the percentage of open area (POA, ratio between the surface
of the tubes and the total surface). In the very low frequencies limit (ωb � 1), the com-
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pliance is simply equal to the length of the tubes b(x) multiply by the POA. It means that
in this limit, the closed tubes act like springs of stiffness 1/σb. To simplify the notation in
the following σ is suppose to be equal to unity (it could be integrated very easily if it differs
significantly from unity) and the problem can be written globally as

D2
tϕ−∇2ϕ = 0

∂yϕ = 0 at y = 0

∂yϕ = −Dt (b(x)Dtϕ) at y = 1.

(5)

The impedance boundary condition with uniform flow is questionable8 and more advanced
models exist9. The Ingard-Myers condition has been used here for simplicity. In the low
frequencies limit, more complex models have been tested without qualitative changes in the
behavior10. Furthermore, it could be noted that the low frequencies limit used here, leads
to a ”well posed” problem in the sense given by Brambley11.

A. Dispersion equation in the 2D problem

For uniform compliance b, the solution is searched under the form ϕ = A cosh(αy) exp(i(−ωt+
kx)) where α2 = k2 − Ω2 and Ω = ω −Mk. This leads to the dispersion equation:

D(ω, k) = α tanh(α)− tan(b ω)

ω
Ω2 = 0 (6)

which, in the very frequency limit, becomes:

D(ω, k) = α tanh(α)− b Ω2 = 0. (7)

Without flow in the very low frequency limit, the dispersion equation (7) can be simplified
to k2 = (1 + b)ω2. The phase velocity

cb =
ω

k
=

1√
1 + b

(8)

is always smaller than 1, meaning that cb is smaller than the speed of sound in free space.
Thus the acoustic wave propagation can be significantly slowed down in a duct with a wall
which reacts locally like a spring. The phase velocity of this ”slow sound” can be decreased
to become of the order of the flow velocity in the duct. In this case, dramatic effects of a
flow with moderate Mach number (M ' 0.3) are expected.

The dispersion curves are displayed on Fig. 2 and show the effect of the flow. For
ω < ωmax, Eq. (6) has 4 real solutions corresponding to propagating modes. Two roots,
labeled S and A− on Fig. 2, approach to each other when ω → ωmax. They coalesce for a
frequency ωmax above which they no longer exist as real roots i.e. as propagating waves. It
is shown in Appendix A that when M > cb there are only two propagating modes whatever
the frequency (i.e. ωmax = 0).

In the subsonic regime, i.e. when M < cb and ω < ωmax, 2 of the 4 modes have a
vanishing wavenumber when ω → 0. These solutions are called acoustic and, in the low
frequencies limit, they propagate in both directions with the speed of sound cb corrected
by the convective effects. The 2 other solutions do not exist without flow and are called
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Figure 2: (Color online) Propagative wave numbers k as a

function of the frequency ω for b = 4 and M = 0.3. The 2

embedded boxes give the direction of the waves

propagation.

HydroDynamic (HD) modes. The solution called S in Fig. 2 has a negative phase velocity
cΦ ≡ ω/k but a positive group velocity cg ≡ dω/dk and thus propagates in the flow direction.
The last solution called N has both positive phase and group velocities and propagates in
the flow direction. It can be seen from Fig. 12 in Appendix A that Ω < 0 for this wave and it
will be seen below that it corresponds to a Negative Energy Wave (NEW). In the supersonic
regime, i.e. when M > cb or ω > ωmax, only the A+ and the N waves can propagate.

In summary, in the subsonic case 4 waves propagate. Three of them propagate in the
flow direction (A+, S, N) and one propagates against the flow (A−). In the supersonic case,
only 2 waves (A+, N) can propagate and they are in the flow direction. A NEW is always
present. If M > 1/

√
1 + b, we are always in the supersonic case. If M < 1/

√
1 + b, the

transition from subsonic to supersonic can been reach either by increasing ω at a given b or
by increasing b at a given ω. This last possibility will be used in the Section on scattering
(Sec. IV and V).

B. Energy flux conservation of slow sound waves with flow

Thereafter the problem is studied in the frequency domain (convention e−iωt) where ∂t ≡
−iω and Dω = −iω + M∂x. In order to find an ”energy like” equation, the Eq. (3) is
classically multiplied by ϕ (the complex conjugate of ϕ) and is integrated on the cross
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section to yield:

=m

(∫ 1

0

ϕ(∂2
xϕ+ ∂2

yϕ−D2
ωϕ) dy

)
=

=m

(
∂x

(∫ 1

0

(ϕ∂xϕ−MϕDωϕ) dy

)
+ [ϕ∂yϕ]10

)
=

∂x

(
=m
(∫ 1

0

(ϕ∂xϕ−MϕDωϕ) dy (9)

−Mϕ(x, 1)b(x)Dωϕ(x, 1)
))

= 0,

where the relation

=m (gDω(f(x)Dωg)) = ∂x (=m (Mgf(x)Dωg)) (10)

valid for any function g and any real function f had been used. Thus the quantity

J = =m

(∫ 1

0

ϕ(∂xϕ−MDωϕ) dy

−Mϕ(x, 1)b(x)Dωϕ(x, 1)

)
(11)

is conserved along x. This expression is identical to the expression of the energy flux proposed
by Möhring12. This energy flux can be computed for each mode m (normalized by its value
at y = 1): ϕm = cosh(αmy)eikmx/ cosh(αm) where αm is one of the solutions of the dispersion
equation, α2

m = k2
m − Ω2

m and Ωm = ω −Mkm :

Jm =

(
(km +MΩm)

sinh(2αm) + 2αm

4αm cosh2(αm)
+MbΩm

)
.

The value of Jm is displayed on Fig. 3 for the 4 propagating modes. The modes A+ and
S, that propagate in the flow direction, have positive energy fluxes. The modes A−, that
propagates against the flow, has negative energy flux. The mode N , that propagates in the
flow direction, has a negative energy flux. It means that this mode is a NEW4. This last
property will have important consequences in the results presented afterwards.

III. 1D MODEL

A. 1D approximation

In order to simplify the analysis of the problem, we are looking for a 1D model that
conserved the main proprieties of the 2D problem: The dispersion relation has to give the
same number of propagating modes as the 2D model and a conserved energy flux has to be
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Figure 3: (Color online) Energy flux J as a function of

the frequency ω for b = 4 and M = 0.3.

defined. For that, we integrate the 2D equation (3) along y and we get the exact expression:

D2
t

(∫ 1

0

ϕ dy

)
− ∂2

x

(∫ 1

0

ϕ dy

)
− ∂yϕ(x, 1) = 0 (12)

which is associated to the boundary conditions in (5). A simplification can be achieved if
we now assume that the y derivative of ϕ at the compliant wall can be written:

∂yϕ(x, 1) = a1V (x) + a2F (x) (13)

where a1 and a2 are two real constants and where V and F are defined as the two functions
appearing in (12) and in the boundary condition at y = 1 in Eq. (5):

V (x) = ϕ(x, 1) and F (x) =

∫ 1

0

ϕ dy.

This leads to the system of two coupled ODEs{
D2

tF − ∂2
xF = a1V + a2F

Dt( b DtV ) = −(a1V + a2F )

(14)

(15)

The real constants a1 and a2 can be chosen freely. For instance, for a parabolic approxi-
mation such as ϕ = C1 + C2y

2, the constants are a1 = −a2 = 3.
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B. Dispersion relation

When b is constant, looking for a solution under the form exp(i(−ωt+ kx)), leads to the
dispersion equation expressed as a function of the frequency in the moving frame Ω = ω−Mk:(

Ω2 − k2 + a2

) (
bΩ2 − a1

)
+ a1a2 = 0 (16)

The solutions in term of ω versus k are plot on Fig. 4 and compared to the results of the
2D model. The agreement between the two model is good when the coefficient a1 = −a2 is
chosen in such a way that the value of k when ω → 0 of the modes N and S are closed in
1D and 2D model. When a1 = −a2, the wavenumbers for ω → 0 are:

kA± =
±
√

1 + b ω

1±M
√

1 + b
and kN,S = ±

√
a1(1−M2(1 + b))

bM2(1−M2)
(17)

Figure 4: (Color online) Propagative wave numbers k as a

function of the frequency ω for a1 = −a2 = 4, b = 4 and

M = 0.3. The solid lines represent the solutions of the 1D

model while the dashed lines represent the solution of the

2D model (see Fig. 2).

C. Evolution equations

A set of first order evolution equations can be derived from the Eqs. (14) and (15) by
introducing G and W with G ≡ (ω + i(1−M)∂x)F and (ω + iM∂x)W ≡ −(a1V + a2F ). In
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vectorial notation, the evolution equation is:

−i∂xX = QX where X =


F
G
V
W

 (18)

and

Q =


−ω/(1−M) 1/(1−M) 0 0
a2/(1 +M) ω/(1 +M) a1/(1 +M) 0

0 0 ω/M 1/(Mb)
a2/M 0 a1/M ω/M


The eigenvalues of the matrix Q are the four km solutions of the dispersion equation

(16) and the eigenvectors Xm give a relation for each modes between the mean value of
the velocity potential over the section Fm and its value at the wall Vm. Note that, at low
frequencies, the A+ and A− modes are quasi plane while the S and N are more localized
along the compliant wall.

D. Energy flux conservation in the 1D model

To obtain an energy flux conservation, we multiply the Eq. (14) by F and Eq. (15) by
V and we make use of the relation (10) :

∂x
(
=m

(
F∂xF −MFDωF

))
= −a1=m

(
FV
)

(19)

∂x
(
=m

(
M bV DωV

))
= −a2=m

(
V F
)

(20)

Thus the quantity

I = =m

(
F (∂xF −MDωF ) +

a1

a2

M bV DωV

)
(21)

is conserved along x. It can be noticed that if a1 = −a2, the 1D energy flux conservation
(21) becomes very similar to the exact energy flux conservation in 2D, see equation (11). In
this case, the energy flux of any mode (m = A+, A−, S, N) is given by:

Im = (km(1−M2) +Mω)|Fm|2 +M b(ω − kmM)|Vm|2. (22)

As in the 2D case, the modes A+ and S have positive energy fluxes while the modes A− and
N have negative energy flux. The mode N , propagating to the right, is thus a NEW, as in
the 2D model.

The 1D model reproduces correctly all the main physical ingredients (dispersion and
energy flux conservation) that are present in the 2D model. This model will be used in the
next section to study the scattering induced by a change in the wall compliance in the next
section.
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Figure 5: (Color online) Scattering problems by a change

in the wall compliance. The propagative waves are given

for the 4 cases considered. Case 1: subsonic everywhere

(The scattering matrix S is 4× 4). Case 2: transcritical

variation of the compliance from supersonic to subsonic (S

is 3× 3). Case 2: transcritical variation of the compliance

from subsonic to supersonic (S is 3× 3). Case 4:

supersonic everywhere (S is 2× 2).

IV. SCATTERING BY A CHANGE IN THE WALL COMPLIANCE

We consider the problem defined in Fig. 5: The compliance of the wall is changing
around x = 0 from the value b1 (x < 0) to a value b2 (x > 0), the flow being in the positive
x-direction. The 4 cases indicated on Fig. 5 will be considered.

A. Subsonic case (case 1)

In the case 1, the problem is subsonic everywhere. Upstream, at left, there are 3 incoming
and 1 outgoing waves. Downstream, at right, there are 1 incoming and 3 outgoing waves.
The upstream and downstream propagative field can be described by:

Xj(x) = a+
j X̂A+

j eikA
+

j x + njX̂
N
j eikNj x

+sjX̂
S
j eikSj x + a−j X̂A−

j eikA
−

j x (23)

where j = 1 or 2 labels the region, the hat indicates that the modes have been normalized
such that their energy flux is 1 for the modes A+ and S and −1 for the modes A− and N
(X̂m = Xm/

√
|Im|).

The effect of the compliance variation is described by the scattering matrix linking the 4
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outgoing waves B to the 4 incoming waves A:

B = SA where B =


a+

2

n2

s2

a−1

 and A =


a+

1

n1

s1

a−2

 (24)

where the coefficients of S are classically given by Smn with n the incident mode and m the
outgoing mode.

The classical unitary relation13 for a conservative system is replaced in our case (see
Appendix B) by

S
T

JS = J (25)

where J = diag(1, −1, 1, 1) and the superscript T denotes the transpose operation.

Even if the scattering matrix can be easily computed for a continuous variation of b(x) by
numerical integration, for the sake of simplicity only the results for discontinuous variation
of b at x = 0 will be presented. It can be seen from Eq. (18) that the functions F , G, V and
W are continuous when b is discontinuous while the slope of V is discontinuous at x = 0.
The continuity of X at x = 0 can be written in vectorial form, separating the incoming and
the outgoing waves:

[
X̂A+

2 , X̂N
2 , X̂

S
2 ,−X̂A−

1

]
︸ ︷︷ ︸

VO


a+

2

n2

s2

a−1

 =

[
X̂A+

1 , X̂N
1 , X̂

S
1 ,−X̂A−

2

]
︸ ︷︷ ︸

VI


a+

1

n1

s1

a−2

 . (26)

The scattering matrix is then computed by:

S = V−1
O VI (27)

As an example of the scattering matrix elements, the value of the outgoing waves when the
wave A+

1 is incident are plotted in Fig. 6.

It can be seen that the wave A+
1 is mainly transmitted on A+

2 and some acoustical re-
flection on A−

1 occurs. The acoustical transmission and reflection are nearly constant up to
the value ωmax = 0.1228 where the propagation becomes sonic in the tube with the larger
b. We can define the acoustical transmission coefficients by T+

A = Sa+2 a+1
and the acoustical

reflection coefficients by R+
A = Sa−1 a+1

. It can be seen from Fig. 6 that an energy-like conser-

vation for the acoustical waves can be written: |T+
A |2 + |R+

A|2 is close and always smaller than
1. There is some conversion from the acoustical modes to the HD modes N and S. This
conversion increases linearly from 0 at ω = 0 but those modes are such that their energies
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Figure 6: (Color online) Value of the outgoing waves

when the wave A+
1 is incident (a+

1 = 1) for M = 0.3,

b1 = 4, b2 = 1 and a1 = −a2 = 4. The 4 curves represent

the 4 outgoing waves: —: A+
2 , +++: N2, ooo: S2 and - - -:

A−
1 . The thin dashed line represent the value of

|T+
A |2 + |R+

A|2. The embedded figure is a zoom around 1.

are opposite to fulfill the exact energy conservation, from Eq. (21):

|T+
A |

2 + |R+
A|

2 + |Ss2a
+
1
|2 − |Sn2a

+
1
|2 = 1.

When HD modes N1 or S1 are incident (not displayed), they are mainly transmitted on the
same mode N2 resp. S2 and some extra transmission occurs on S2 resp. N2. The conversion
to acoustical modes is small.

The overall picture of the subsonic case is that both the acoustical modes and the HD
modes are rather independent. Some small conversions exist between those two families of
modes. When the problem is near transonic, the coupling between the different kind of
modes becomes larger.

B. Transonic case (case 2 )

In the transonic case 2, on the upstream side M > 1/
√

1 + b1 and the propagation is
supersonic whatever ω. In this case, the modes S1 and A−

1 are no longer propagative but
they are transformed into 2 evanescent modes that are complex conjugate: E+ and E−. The
E+ mode is defined such as it decreases when x increases (=m(kE+) > 0). In this transonic
case, 2 incoming waves are present upstream and 1 incoming and 3 outgoing waves are
present downstream. Therefore the scattering matrix S is now a 3 × 3 matrix. To apply
the continuity of X at x = 0, it is necessary to take into account the evanescent mode
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that decays in the −x direction (E−). The output matrix VO is transformed into VO =

[X̂A+

2 , X̂N
2 , X̂

S
2 ,−X̂E−

1 ] while the input matrix VI is reduced to VI = [X̂A+

1 , X̂N
1 ,−X̂A−

2 ]. The
scattering matrix is obtained from V−1

O VI by removing the last line linked to the evanescent
mode. The coefficient of the scattering matrix are now complex numbers and the absolute
values of 3 of these coefficients (when A−

2 is incident) are shown in Fig. 7.

Figure 7: (Color online) Absolute value of the outgoing

waves when the wave A−
2 is incident (a−2 = 1) for M = 0.3,

b1 = 12, b2 = 4 and a1 = −a2 = 4. The 3 curves are linked

to the 3 outgoing waves: —: A+
2 , +++: N2 and ooo: S2.

The first striking point on the Fig. 7, is the divergence of 2 of the curves at ω → 0. When
ω → 0, the energy flux, see Eq. (22), for all the acoustical modes go linearly to 0 while the
energy of HD modes (with a non-zero value of k at ω = 0) do not go to zero in the subsonic
region. In the supersonic region, the energy of the N mode goes to 0 when ω → 0. To
ensure continuity in X, the amplitude of some of the mode coefficients has to go to infinity
(like ω−1/2) while the amplitudes of the eigenvectors go to 0 due to the normalization.

When an acoustical wave is incident from the upstream side, its transmission is closed to
1 (not displayed). Nevertheless, two HD modes with opposite energy flux are created. When
the mode N is incident upstream, this wave is mainly transmitted with an amplitude larger
than 1 due to the negative energy characteristic of the wave. The S wave is also created but
the conversion into acoustical wave is weak. Interestingly, when an acoustical wave is send
downstream A−

2 , see Fig. 7, it is mainly converted into S and N waves and the reflection
on the acoustical wave A+

2 is weak (the absolute value of the acoustical reflection coefficient
is of the order of 0.15). Thus, most of the incident acoustical energy had been transferred
to the HD modes. This fact is also illustrated in Fig. 8 where a temporal simulation of the
Eqs. (14) is given. It can be also remarked in this figure that the group velocity of the 2
HD modes are close (they are equal when ω → 0) and much smaller than the group velocity
of A+

1 (resp. 0.170, 0.185 and 0.747 in the present case).
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Figure 8: (Color online) Temporal simulation of the

variable F in the case 2. The different colors represent the

absolute value of F in logarithmic scale for M = 0.3,

b1 = 12, b2 = 4 and a1 = −a2 = 4. An A−
2 pulse is send at

t = 0 with a central frequency ωs = 0.015. The slope of the

black dashed lines is determined by calculating the group

velocity of each modes.

The region x < 0 is a region which cannot be excited from the outside, although waves
can escape from it. In particular, NEW can escape from this region. In this sense, it can be
seen as an acoustical analogous of a white hole in general relativity14.

C. Transonic case (case 3 )

The transonic case 3, can be treated with a method similar to the case 2 except that
the evanescent wave that had to be taken into account is E+

2 . The output matrix VO is

transformed into VO = [X̂A+

2 , X̂N
2 , X̂

E+

2 ,−X̂A−
1 ] while the input matrix VI is reduced to

VI = [X̂A+

1 , X̂N
1 ,−X̂S

1 ]. The scattering matrix is obtained from V−1
O VI by removing the 3th

line linked to the evanescent mode.

When an acoustical mode is incident upstream, see Fig. 9, its transmission is again
close to 1 with a small acoustical reflection. As a N wave is created, the acoustical energy
increases and |T+

A |2 + |R+
A|2 is close and always greater than 1. When an HD modes N or S

is incident (not displayed), it creates a transmitted N mode and a large part is reflected as
an acoustical mode. Only a small part is transmitted as an acoustical mode.

The region x > 0 is a region from which no wave can escape. This can be seen as a dumb
hole, i.e. an acoustic analogue of a black hole15. The presence in this new analogue system
of effective horizons opens up new possibilities to explore the black hole evaporation with
experiments16.
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Figure 9: (Color online) Absolute value of the outgoing

waves when the wave A+
1 is incident (a+

1 = 1) for M = 0.3,

b1 = 4, b2 = 12 and a1 = −a2 = 4. The 3 curves are linked

to the 3 outgoing waves. —: A+
2 , +++: N2 and - - -: A−

1 .

The thin dashed line represent the value of |T+
A |2 + |R+

A|2.

The embedded figure is a zoom around 1.

D. Supersonic case (case 4 )

When the problem is supersonic everywhere 2 incoming waves are present upstream and
2 outgoing waves are present downstream (Fig. 5). Then there is no reflection and the
scattering matrix is reduced to a 2 × 2 matrix that can be computed in the same way as
previously, taking into account an evanescent mode on both sides of the discontinuity. The
waves are mainly transmitted. Due to the characteristic of the negative energy wave, the
transmission of the waves is always larger than 1.

V. SCATTERING BY A LOCAL INCREASE IN THE WALL
COMPLIANCE

A local increase in the wall compliance is depicted in Fig. 10. This configuration is
computed as previously: the continuity of X is applied at x = 0 and at x = L, the prop-
agation of the 2 modes A+

2 and N2 is taken into account between x = 0 and x = L and
2 decreasing evanescent modes are present on each side of the compliance bump (E+

2 and
E−

2 ). There are 8 unknowns C = [a+
3 , n3, s3, a

−
1 , a

+
2 , n2, e

+
2 , e

−
2 , ]T and four input values:

A = [a+
1 , n1, s1 a

−
3 ]T. From the 8 continuity relations, a vectorial relation can be written as

MCC = MAA. The global 4 × 4 S-matrix is composed of the first four lines of the matrix
MC

−1MA. The absolute values of coefficients T+
A = Sa+3 a+1

, R+
A = Sa−1 a+1

,T−
A = Sa−1 a−3

and

15



Figure 10: Local increasing on in the wall compliance.

R−
A = Sa+3 a−3

are displayed in Fig. 11.
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Figure 11: (Color online) Absolute value of acoustical

transmission and reflection coefficients in the flow direction

T+
A and R+

A and against the flow T−
A and R−

A for M = 0.3,

b1 = 12, b2 = 4, a1 = −a2 = 4 and L = 5.

The acoustic transmission in the flow direction T+
A is close to 1 while acoustic transmission

against the flow T−
A is close to 0 because no wave can propagate against the flow. In this low

frequency range, some acoustic is transmitted by the evanescent modes (tunneling effect).
This system has been completely asymmetrised by the flow and act as an ”acoustical diode”
for a large range of frequencies.

VI. CONCLUDING REMARKS

We have shown that the propagation of slow sound with flow at moderate Mach number
have interesting and new properties. With such a system, it is possible to have subsonic
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and supersonic propagation and to make transition (soft or abrupt) from one regime to the
other. The scattering properties of those transitions are very similar to what happens to
light near a white or a black hole. This analogy is useful in two ways. For instance, an
acoustical analogue of a ”black hole laser”17 can be studied as an inverse of the work done in
Section 4 (Supersonic → Subsonic → Supersonic). On the other hand, this new acoustical
analogy open opportunities to do simple experiments on these subjects.
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Appendix A: Dispersion relation in Ω vs k

The dispersion curves are displayed on Fig. 12 in term of Ω vs k. The thick continuous
curves (Ω-curves) represent the Eq. (6):

√
k2 − Ω2 tanh(

√
k2 − Ω2)− tan(b ω)Ω2/ω = 0. At

low frequencies, this curve depends only on b. The straight line represents Ω = ω − kM
and the solutions are found at the intersection of the Ω-curves and of the straight line. In
the displayed case, Eq. (6) has 4 real solutions. When ω increases at fixed M (parallel
translation of the straight line toward larger Ω), two roots, labeled S and A− on Fig. 12,
become closer and closer. They coalesce for the frequency ωmax. The same phenomenon
occurs when M increases at fixed ω (rotation of the straight line toward larger negative
slopes).

It can be also seen in Fig. 12 that if the slope of the straight line (given by M) is
larger than the slope of the dispersion relation at the origin (dΩ/dk = cb where cb is the
”slow sound” velocity given by Eq. (8)), represented by dashed lines in the figure, only
two solutions can exist whatever ω. In the 1D model, the slope at the origin is equal to
±1/

√
1− a2b/a1. In order to have the same slope at the origin in the 1D and 2D model, we

must have a2 = −a1.
The Ω vs k representation is also interesting because it allows the determination of the

group velocity in the moving frame linked to the flow cMg = dΩ/dk. In our case, 3 solutions

have a negative cMg (A−, S, N) and one has a positive cMg (A+). Depending on the sign of the
curvature of the Ω-curve, the group velocity at high k can be larger or smaller than the group
velocity at low k. These cases are usually referred to in the literature as ”superluminal” and
”subluminal” dispersion relations14. The slow sound analogy has a ”subluminal” dispersion
relation.

Appendix B: Modified unitary relation

When the wave is taken under the form (23), the energy flux conservation (21) between
the regions 1 and 2 can be written:

|a+
1 |2 − |n1|2|+ |s1|2| − |a+

1 |2 =

|a+
2 |2 − |n2|2|+ |s2|2| − |a+

2 |2. (B1)
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Figure 12: (Color online) Solutions of the dispersion

equation Eq. (6) in term of Ω versus k for b = 4. The

solution in term of of ω versus k can be found at the

intersections between these Ω-curves and the straight line

Ω = ω − kM with ω = 0.05 and M = 0.3. The thin dashed

lines represent the slope at the origin and the thick dashed

lines is the Ω-curve of the 1D model (Eq. (16) with

a2 = −a1 = 4).

Splitting the incoming and the outgoing modes leads to:

|a+
1 |2 − |n1|2|+ |s1|2|+ |a+

2 |2 =

|a+
2 |2 − |n2|2|+ |s2|2|+ |a+

1 |2. (B2)

which can be written:

A
T

JA = B
T

JB (B3)

where the vectors A and B are given in Eq. (24) and J = diag(1, −1, 1, 1). Using the
definition of the scattering matrix, it can be written:

A
T

JA = A
T

S
T

JSA (B4)

This relation, valid whatever A, leads to the Eq. (25).
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