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Curvature of the Completion of the Space of Sasakian Potentials.

Thomas Franzinetti

Abstract

Given a compact Sasakian manifold, we endow the space of the Sasakian potentials with an

analogue of Mabuchi metric. We show that its metric completion is negatively curved in the

sense of Alexandrov.

1 Introduction

After being introduced in 1960 by S. Sasaki [52] and then studied in the early 70s, Sasakian manifolds
seem to have been more or less neglected until the early 90s. One can mention a paper by T.
Friedrich and I. Kath published in 1990 [35] in which they gave a �rst classi�cation result about
Sasakian manifolds. From 1993 onwards, C. Boyer, K. Galicki and B. Mann have made important
contributions to the understanding of the geometry and topology of Sasakian manifolds [11, 12, 7].
The year 1998 is a key milestone for Sasakian geometry: the in�uential paper by J. Maldacena [48]
who �rst proposed the AdS/CFT correspondance marked a signi�cant regain of interest in Sasakian
geometry. Indeed, manifolds that are product of anti-de Sitter space with Sasakian manifolds play
a crucial role in AdS/CFT correspondance [2, 51, 50]. Finding examples, obstructions or su�cient
conditions for the existence of Sasaki-Einstein metrics (i.e. Sasakian metrics for which the Ricci
tensor is proportional to the metric) has led to a large exploration of Sasakian geometry [8, 9, 37,
50, 38, 10]. As Einstein metrics are very particular versions of constant scalar curvature metrics or
even extremal metrics [15, 13] it seems natural to study these more general metrics in the Sasakian
world.

Recall that a Sasakian manifold (M, g) is an odd dimensional Riemannian manifold whose metric
cone C(M) = (R∗+ ×M,dr2 + r2g) is Kähler. This synthetic description hides the extremely rich
structure of Sasakian manifolds. In particular, M , which can be identi�ed with the link {r = 1} ⊂
C(M), is a contact manifold with contact form η = 2dc log(r). It de�nes a contact bundle ker η on
which 1

2dη is a transverse Kähler form. Here, d = ∂+∂ is the usual decomposition of the di�erential
operator on a Kähler manifold and dc is de�ned as dc = i

2(∂ − ∂). Any Sasakian manifold is
endowed with a special vector �eld: the Reeb vector �eld ξ which is the restriction of J(r∂r) to
the link {r = 1}. Here J denotes the complex structure on the Kähler metric cone C(M). The
restriction Φ of J to the transverse distribution ker η is called a transverse complex structure. We
call (ξ, η,Φ) a Sasaki structure.

As a Sasakian manifold is traped between its Kähler metric cone and its Kähler transverse
structure, one can expect that these special metrics we are looking for are closely related to their
Kähler counterparts. Kähler-Einstein metrics (i.e. Kähler metrics with Ricci form proportional to
the metric itself) have been at the core of intense research over the past forty years [4, 23, 24, 25, 36,
54, 55, 57]. This problem boils down to a non-linear second order PDE: a Monge-Ampère equation
[43]. Kähler-Einstein metrics are examples of constant scalar curvature metrics. The constant scalar
curvature Kähler (cscK) metric problem of looking for cscK metrics was initiated by E. Calabi [16]
and it boils down to a fourth order equation [1], it also led to several works (mention for example
[6, 5, 34]) until recent major breakthrough by X. Chen and J. Cheng [20, 22, 21]. The strudy of
cscK metrics requires a deep understanding of the geometry of the space of Kähler metrics in a given
Kähler class on a Kähler manifold (X,ω) [33, 53], identi�ed with:

H(X,ω) = {φ ∈ C∞(X) |ωφ := ω + ddcφ > 0} . (1)
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Given the Mabuchi metric [47] on the tangent space at a given φ ∈ H(X,ω) as being:

〈ψ1, ψ2〉φ =

∫
M

(ψ1ψ2)ωnφ for ψ1, ψ2 ∈ TφH(X,ω) ' C∞(X), (2)

one can consider geodesics between two elements of H(X,ω). X. Chen and his collaborators worked
intensively in this direction [18, 17, 27, 19, 26] proving in particular that this in�nite dimensional

space is a path metric space with C1,1 geodesics. Note that the regularity of geodesics have been
improved to C1,1 by Chu-Tosatti-Weinkove [28]. T. Darvas then consequently re�ned the study of
the geometry of the space of Kähler metrics [30, 31, 32] especially identifying its metric completion
with a space of weighted �nite energy class E2(X,ω) (previously introduced in [42]) and showing
that it is non-positively curved in the sense of Alexandrov. For further references and details about
E2(X,ω), we refer to [43].

Theses advances in the Kähler setting were truly inspirational for the Sasaki setting. In [49, 50,
37, 9], Sasaki-Einstein metrics are studied while constant scalar curvature Sasaki metrics are studied
in [46, 29, 56, 41]. In this concern, people considered the space of potentials:

H(M, ξ, dη) = {φ ∈ C∞B (M), dη + ddcφ > 0} ,

where C∞B (M) is the space of smooth basic functions (ie smooth functions which are invariant under
the Reeb �ow). As we will explain in Section 2.2, any potential in H(M, ξ, dη) de�nes a new Sasaki
structure on M . This in�nite dimensional space, whose tangent space at any φ ∈ H(M, ξ, dη) is
identi�ed with C∞B (M) is endowed with a Riemannian structure, analogue of the Mabuchi metric
[40, 41]:

〈ψ1, ψ2〉φ =

∫
M

(ψ1ψ2) η ∧ (dη + ddcφ)n.

P. Guan and X. Zhang [40, 41] proved the existence of C1,1 geodesics (Proposition 4.5) using a
Monge-Ampère type re-formulation for the geodesic equation (see Sections 3.1 and 4.2). They also
showed that the Riemannian structure on the tangent space of H(M, ξ, dη) induces a metric d on
H(M, ξ, dη):

d(φ0, φ1) := inf

{∫ 1

0

√〈
φ̇t, φ̇t

〉
φt
dt ; t 7→ φt is a smooth path joining φ0 to φ1

}
.

This de�nition of d is natural but showing that this is indeed a distance is not as easy as for �nite
dimensional manifolds. W. He and J. Li generalised most of the geometrical results known in the
Kähler case to Sasaki setting [45] allowing W. He to extend X. Chen and J. Cheng result for constant
scalar curvature Sasakian metrics [44]. W. He and J. Li [44] then used pluripotential theory to study
the metric completion of (H(M, ξ, dη), d) and its geometry. Using C. Van Coevering work [56], they
basically generalized the results known in the Kähler setting [43]. In their study of the geometry
of H(M, ξ, dη), energy classes will play a crucial role. The �rst energy class to be considered is
E(M, ξ, dη). This is the space of all quasi-plurisubharmonic functions with full Monge-Ampère mass(
i.e.

∫
M η ∧ (dη + ddcφ)n =

∫
M η ∧ dηn

)
. Building on this one can consider the energy class:

E2(M, ξ, dη) :=

{
φ ∈ E(M, ξ, dη) ;

∫
M

(φ2)η ∧ (dη + ddcφ)n <∞
}
.

We refer to [45, 56], to Section 4.1 and to Section 4.3 for the notions of quasi-plurisubharmonicity
and these energy classes. Our main result states as follows:

Theorem A. The metric completion, E2(M, ξ, dη), of (H(M, ξ, dη), d) is negatively curved in the

sense of Alexandrov.
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We organise this note as follows: we �rst recall, in Section 2, some de�nitions about Sasakian
manifolds in order to �x notations. Then we de�ne the set of Sasakian potentials H(M, ξ, dη) and
give a geometrical interpretation of this space (Proposition 2.8). Section 3 is devoted to introduce
the analogue of the Mabuchi metric on H(M, ξ, dη). In Section 3.1 we give equivalent formulations
for the geodesic equation allowing to weaken the notion of geodesics. Finally, in Section 4 we prove
Theorem A.
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2 Sasakian Geometry and Smooth Potentials

This section starts with some preliminaries in Sasakian Geometry: we �x notations and then de�ne
the space of Sasakian potentials. We refer to [9] for an extensive study of Sasakian manifolds.

2.1 Sasakian Manifolds

We consider (M, ξ, η,Φ, g) a compact real smooth manifold of dimension 2n+ 1, where (M, ξ, η) is
a contact manifold (i.e. η is a contact form and ξ the Reeb vector �eld: η(ξ) = 1 and ιξdη = 0), g
is a Riemannian metric and Φ a (1, 1)-tensor �eld with the following compatibility conditions:

Φ ◦ Φ = −1TM + ξ ⊗ η ; g ◦ (Φ⊗ 1TM ) =
1

2
dη ; g ◦ (Φ⊗ Φ) = g − η ⊗ η.

Note that η ◦ Φ = 0 ; Φ(ξ) = 0 and g is completely determined by η and Φ:

g = η ⊗ η +
1

2
dη ◦ (1TM ⊗ Φ). (3)

A Sasakian Manifold is such a manifold with an additional integrability condition. The purpose
of the next section is to formulate this condition on the symplectization of M .

2.1.1 Metric Cone

Given such a manifold (M, ξ, η,Φ, g), one can construct a metric cone C(M,η) (called symplectiza-
tion), also denoted C(M) if there is no ambiguity (see [3, Appendix 4 - E]):

C(M,η) := {α ∈ T ?xM,x ∈M | kerα = ker ηx , α and ηx de�ning the same orientation}

This set is furnished with a symplectic structure which is basically the restriction of dτ to C(M,η) ⊂
T ?M where τ is the canonical one-form on the cotangent bundle. We have a canonical identi�cation
of C(M,η) with M × R?+:

C(M,η) −→M × R?+
α ∈ T ?xM 7−→ (x,

√
α(ξx)) =: (x, r).
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In C(M,η), one has the so called canonical identi�cation M ' {r = 1} ⊂ C(M). We have a
projection map:

πr : C(M,η)→ {r = 1} .

From now on, we consider M as being {r = 1}, and assume that M is furnished with (ξ, η,Φ, g) as
in Section 2.1. Let gC := dr2 + r2(π?rg) be a metric on C(M,η). For this metric, we let ψ be the

gradient of r
2

2 and we extend the Reeb vector �eld: ξ = (ξ, 0). Using these two vector �elds and the
canonical identi�cation, we de�ne an almost complex structure on C(M,η) 'M × R?+:{

Iψ = ξ

I(Y, 0) = (Φ(Y ), 0)− η(Y )ψ, where Y is a tangent vector to M.

If the almost complex structure I on C(M) is integrable, then we call (ξ, η,Φ, g) a Sasakian structure.
We say thatM is a Sasakian manifold if it can be endowed with a Sasakian structure. In particular,
given a Sasakian manifold, the almost complex structure de�ned above is upgraded to a Kähler
structure. The next proposition outlines this Kähler structure:

Proposition 2.1 ([9, Section 6.5]). LetM be a Sasakian manifold. Set η := π?rη and ωC := 1
2d(r2η).

Then, (C(M), gC , ωC , I) is a Kähler manifold. Moreover, η = 2dc log(r) = 2
rd
cr and ωC = ddc

(
r2

2

)
.

2.1.2 Kähler Cone

The complex structure, de�ned in Section 2.1.1, on the symplectization of a Sasakian manifold is
actually a Kähler structure. Here, we �rst de�ne what we call a Kähler cone metric and then state
a correspondence between these special Kähler metrics and Sasakian structures.

De�nition 2.2. Given a complex manifold (C, I), a Kähler cone metric on (C, I) is a (1, 1)-form of

the form ddc
(
r2

2

)
where r : C → R?+ is a positive function such that {r = 1} is compact and such

that:

1. ddc
(
r2

2

)
is Kähler,

2. The radial vector �eld ψ := ∇( r
2

2 ) is holomorphic with respect to I (i.e. LψI = 0),

3. gC(ψ,ψ) = r2.

Here, gC stands for the Riemannian metric associated to ddc
(
r2

2

)
and ∇ stands for the gradient

according to gC . We say that such a C is a Kähler cone.

Proposition 2.1 says that given a Sasakian manifold, we have a Kähler cone metric on its sym-
plectization C(M,η). On the other hand, a Kähler cone metric induces a Sasakian structure on
M = {r = 1}. Indeed, the �ow of ψ gives a projection π : C → {r = 1} and a decomposition of
C as a Riemannian cone in the sense of [9, De�nition 6.5.1]: C ' {r = 1} × R?+ with the metric
dr2 + r2π?(g|M ). We set ξ := π?(Iψ), η = 2dc log(r)|{r=1} and de�ne Φ as being the restriction of I
to ker η and Φ(ξ) = 0. It is straightforward to check that (M, ξ, η,Φ, g|M ) is a Sasakian manifold.
We summarize this discussion:

Proposition 2.3. There is a one-to-one correspondence between compact Sasakian manifolds and

Kähler cones.
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2.2 Basic Forms and Potentials

Here, we recall the de�nition of basic functions on Sasakian manifolds in order to provide a nice
description of Kähler cone metrics in terms of basic functions (Proposition 2.8). In the sequel, M is
a compact Sasakian manifold and we use the notations introduced in Section 2.1.

De�nition 2.4. We say that a p-form α on M is basic if ιξα = 0 and Lξα = 0.

In the case of 0-forms we set: C∞B (M) := {φ ∈ C∞(M),Lξφ = 0} .
Following [9, Section 7], one can de�ne basic operators dB, ∂B, ∂B and their associated coho-

mologies. In this context, a ∂B∂B-lemma holds:

Lemma 2.5 ([9, Lemma 7.5.6]). Let M be a compact Sasakian manifold. Let ω and ω′ be closed,

basic cohomologous (1, 1)-forms. Then there exists a function φ ∈ C∞B (M) such that ω = ω′+i∂B∂Bφ.

We refer to [9] for a proof and for many other properties of these operators. As in the Kähler
case we de�ne the dcB operator (a real operator): dcB = i

2(∂B − ∂B) so that dBd
c
B = i∂B∂B. Basic

operators coincide with the usual ones on basic forms so we will often omit the subscript B.
We say that two Sasakian structures with the same Reeb vector �eld (ξ, η,Φ, g) and (ξ, η′,Φ′, g′)

on M have the same transverse structure if the following diagram commutes [9, Section 7.5.1].

TM
p //

Φ

��

TM/Lξ

J
��

TM
poo

Φ′

��
TM p

// TM/Lξ TMp
oo

Here, p is the natural projection, J is the map induced by Φ (de�ned by the right hand side of
the diagram) and Lξ is the line bundle generated by ξ. Let's now compare two Sasakian structures
(ξ, η,Φ, g) and (ξ′, η′,Φ′, g′) on M with the same Reeb vector �eld: ξ = ξ′ and having the same
transverse structure. Note that this last condition is fundamental because we want to identify the
basic (1, 1)-forms in cohomology. Since η and η′ have the same Reeb vector �eld, the 1-form η − η′
is basic. Thus dη − dη′ is an exact basic form. Lemma 2.5 gives a basic function φ such that
d(η′ − η) = ddcφ. Since dη and dη′ are both real, φ is a smooth real function. This motivates the
de�nition of the following set of the so called Sasakian potentials:

H(M, ξ, dη) = {φ ∈ C∞B (M), dηφ = d(η + dcφ) > 0} .

In the sequel, when there is no ambiguity, we will write H for the space of Sasakian potentials
H(M, ξ, dη).

Example 2.6. Consider the standard Sasakian structure on S3. Let φ ∈ H be a smooth Sasakian
potential. Since it is basic, one can �nd φ ∈ C∞(CP1) such that φ ◦H = φ, where H stands for the
Hopf �bration. Indeed, the orbits of the Reeb vector �eld are given by the Hopf �bration. Since
dηφ > 0, one has: H?(2ωFS +ddcφ) = dη+ddc(H?φ) = dηφ > 0. Thus, φ ∈ H(CP1, 2ωFS) (see (1)).

Remark 2.7. Using the fact that the (2n + 1)'th basic cohomology group is trivial on a (2n + 1)-
dimensional Sasakian manifold [9, Proposition 7.2.3], one gets:

ηφ ∧ (dηφ)n = η ∧ (dηφ)n,

since dcBφ is basic and so is dηφ.

We note that
dηφ > 0 ⇐⇒ ηφ ∧ dηnφ 6= 0.

Indeed, take a minimizing point p for φ. At p, since dη > 0, we have dηφ|p > 0. If ηφ∧dηnφ 6= 0, then
by continuity dηφ > 0 everywhere on M . On the other hand, if dηφ > 0, one can de�ne a function g
such that: ηφ ∧ dηnφ = η ∧ dηnφ =: g(η ∧ dηn). Suppose that g(p) = 0 where p ∈M . Then, on ker η|p
the 2-form dηφ is degenerate, indeed, (dηnφ)|p = ιξ(η ∧ dηnφ)|p = 0. This is a contradiction with the
positivity of the transverse Kähler form dηφ.
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Proposition 2.8. Let (M, ξ, η,Φ, g) be a compact Sasakian manifold. Let I be the induced complex

structure on C(M,η). Then, there is a one-to-one correspondence between the space of Sasakian

potentials, H, and the set of Kähler cone metrics on (C(M,η), I) with �xed radial vector �eld (i.e.

if r and r̃ are as in De�nition 2.2 then we ask ψ = ψ̃).

Proof. Given a function u ∈ H, we set r̃ := re
u
2 . It is straighforward to check that it induces a

Kähler cone metric. On the other hand, �xing the complex structure I, the condition ψ = ψ̃ implies
that u := 2 log

(
r̃
r

)
is a basic function on M .

In particular, u ∈ H induces a new Sasakian structure (ξ, ηu,Φu, gu) on M with same Reeb
vector �eld. It is completely determined by u using the correspondences given in Proposition 2.3
and Proposition 2.8:

ηu := η + dcu ; Φu := Φ− ξ ⊗ (dcu ◦ Φ).

The Riemannian metric gu is then determined by (3). The new Sasakian structure (ξ, ηu,Φu, gu)
has the same transverse complex structure.

Observe that given a compact Sasakian manifold M , Sasakian structures induced by functions
in H have same volume (see [9, Proposition 7.5.10]):∫

M
η ∧ dηn =

∫
M
ηu ∧ dηnu .

This plays an important role when normalizing the Monge-Ampère measure.

3 The Geometry of Smooth Potentials

In this section, following the work of P. Guan and X. Zhang [40, 41], we present some results about
the geometry of H and its geodesics.

Given φ ∈ H, we introduce a L2-metric on the tangent space of H at φ, for ψ1, ψ2 ∈ TφH '
C∞B (M), we set:

〈ψ1, ψ2〉φ =

∫
M

(ψ1ψ2)ηφ ∧ dηnφ =

∫
M

(ψ1ψ2)η ∧ dηnφ .

Example 3.1. One can compute the metric on the space of Sasakian potentials for the sphere. For
any two f, g ∈ C∞B , we note f, g ∈ C∞(CP1) such that f = f ◦H and g = g ◦H (see Example 2.6).
Denoting 〈·, ·〉S3 the Riemannian metric on the space of Sasakian potentials of S3 and 〈·, ·〉CP1 the
one on the space of Kähler potentials on (CP1, 2ωFS) (see (2)) one has:〈

f, g
〉
S3,φ = 2π 〈f, g〉CP1,φ .

Indeed, the integrals of η along each orbit of ξ are equal to 2π.

Let t ∈ [0, 1] 7→ φt be a smooth path in H and ψ1, ψ2 ∈ C∞B (M × [0, 1]) tangent to φ. Stokes'
theorem gives (see also [40, Proposition 1]):

d

dt
〈ψ1, ψ2〉φ =

〈
dψ1

dt
− 1

4
gφ(∇ψ1,∇φ̇), ψ2

〉
φ

+

〈
ψ1,

dψ2

dt
− 1

4
gφ(∇ψ2,∇φ̇)

〉
φ

,

where ∇ stands for the gradient associated to gφ.

De�nition 3.2. Let φ : t ∈ [0, 1] 7→ φ(t) ∈ H be a smooth path and ψ tangent to φ identi�ed with
smooth basic functions on M × [0, 1].

∇φ̇ψ := ψ̇ − 1

4
gφ(∇ψ,∇φ̇),

where ψ̇ = dψ
dt .

We recall [40, Proposition 2] that the connection ∇ is compatible with 〈., .〉φ and torsion free.
Additionally, and this is crucial for Theorem 4.12, we have:

Proposition 3.3 ([40, Theorem 1]). The sectional curvature is non-positive.
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3.1 Geodesic Equations

In this section we present di�erent equivalent formulations for the geodesic equation in H and give
an example on the 3-sphere S3. The natural geodesic equation in H is ∇φ̇φ̇ = 0, which writes:

φ̈− 1

4
gφ(∇φ̇,∇φ̇) = 0. (4)

In [39], it has been proved that at any point in M , one can choose a local system of coordinates
(τ, z1, ..., zn) ∈ (−δ, δ)× V ⊂ R× Cn such that (using Einstein summation convention):

ξ = ∂
∂τ

η = dτ − i
(
∂h
∂zj
dzj − ∂h

∂zj
dzj

)
Φ = i

(
Xj ⊗ dzj −Xj ⊗ dzj

)
g = η ⊗ η + ∂2h

∂zk∂zj
(dzk ⊗ dzj + dzj ⊗ dzk),

(5)

where h is a local, real valued, basic function (i.e. ξh = 0), such that g is a positive de�nite and

Xj =
∂

∂zj
+ i

∂h

∂zj

∂

∂τ
; Xj =

∂

∂zj
− i ∂h

∂zj

∂

∂τ
.

Now, for φ ∈ H, the induced Sasakian structure can be locally written in the same coordinate system
as in (5) replacing h by hφ := h + 1

2φ. In such a coordinate system, the geodesic equation can be
rewritten as:

φ̈− 1

2
h,jkφ

∂φ̇

∂zk

∂φ̇

∂zj
= 0. (6)

P. Guan and X. Zhang [41, Proposition 2] showed that the geodesic equation (4) can be reformulated
as a Monge-Ampère type equation on the cone C(M). Given φt be a smooth path in H, we de�ne
ψ on M ×

[
1, 3

2

]
by:

ψ(·, r) := φ2(r−1)(·) + 4 log(r). (7)

We set Ωψ := ωC + r2

2

(
ddcψ − ∂ψ

∂r dd
cr
)
, where ωC is the Kähler form on the cone and d, dc are the

usual operators on the cone.

Proposition 3.4 ([41, Proposition 2]). Fix ε ≥ 0. The following Dirichlet problems are equivalent.
(
φ̈− 1

4gφ(∇φ̇,∇φ̇)
)
η ∧ dηnφ = εη ∧ dηn on M × (0, 1)

φ|t=0 = φ0

φ|t=1 = φ1.

(8)


Ωn+1

Ψ = εr2ωn+1
C on M × (1, 3

2)

ψ|t=1 = ψ1

ψ|t= 3
2

= ψ 3
2
.

(9)

Example 3.5. Recall that, for a Kähler manifold (X,ω), the geodesic equation on H(X,ω) is given,

in a chart where ω = i
2ωjkdzj ∧ dzk, by: φ̈ − 2ωjkφ

∂φ̇
∂zj

∂φ̇
∂zk

= 0 (see [47, Equation 2.4.1] and (1) for

notations). In the case of CP1, for both usual charts, the metric ωFS is given by:

ωFS =
i

2

dz ∧ dz
(1 + zz)2

.

The computations are the same in both charts since here, we have: ω11 = (1 + zz)−2. Recall that
the Hopf �bration brings back 2ωFS to dη: H?(2ωFS) = dη. Thus, writing dη in coordinates as

7



in (5) gives: 2h11 = ω11 ◦ H. Therefore, 1
2h

11 = ω11 ◦ H. Pulling back the geodesic equation for
φ ∈ H(CP1, 2ωFS) by H exactly gives the geodesic equation (6) for φ◦H in H, the space of Sasakian
potentials on S3. For this reason, �nding a geodesic in H boils down to �nding one in H(CP1, 2ωFS).
In a chart of CP1, set:

φt := log(1 + e2t|z|2)− 2 log(1 + |z|2).

This map is de�ned so that 2ωFS + ddcφt = ddc log(1 + e2t|z|2). Now using the reformulation of [47,
Equation 2.4.1] in terms of Monge-Ampère equation (see for example [43, Section 15.2.2.1]), we see

that φt is a geodesic in H(CP1, 2ωFS), indeed: on C2,
(
ddc log(1 + |ζ|2|z|2)

)2
= 0. Thus φt ◦H is a

geodesic in H. Note that, on CP1, in terms of metrics, this geodesic goes from ωFS to C?ωFS where
C : [z0 : z1] 7→ [z0 : ez1] is a conformal map on CP1.

4 Geometry of the Metric Completion of H

4.1 Plurisubharmonic Functions

Here, we present the material we need about plurisubharmonicity. We refer to [43] for an extensive
reference about plurisubharmonicity.

De�nition 4.1. A function u : M → R ∪ {−∞} is said to be (transverse) dη-plurisubharmonic
(dη-psh) if u is invariant under the Reeb �ow, if u is locally the sum of a smooth function and a
plurisubharmonic function and:

dη + ddcu ≥ 0,

in the sense of currents. We let PSH(M, ξ, dη) be the set of all dη-plurisubharmonic functions which
are not identically −∞.

The �rst result we state about this class of function is an approximation result analogous to the
Kähler case. It will be used in the sequel.

Proposition 4.2 ([45, Lemma 3.1]). Given u ∈ PSH(M, ξ, dη), there exists a sequence uk ∈ H
decreasing to u.

We can now de�ne an analogue of the Monge-Ampère measure for functions in PSH(M, ξ, dη).
For bounded plurisubharmonic function, C. Van Coevering [56] adapted the Bedford-Taylor theory
to the Sasaki setting, hence de�ning η ∧ dηnu when u ∈ PSH(M, ξ, dη) is bounded. As in the
Kähler case, we extend the de�nition: for u ∈ PSH(M, ξ, dη) we set uj := max(u,−j). Following
[45, De�nition 3.2], we set η ∧ dηnu := limj→∞ 1{u>−j}η ∧ dηnuj . Note that thanks to the maximum
principle [45, Proposition 3.2], this in an increasing sequence of measures. The limit is then a measure
with total mass smaller that the total volume:

∫
M η ∧ dηn. We then de�ne the set of functions with

full Monge-Ampère mass:

E(M, ξ, dη) :=

{
u ∈ PSH(M, ξ, dη);

∫
M
η ∧ dηnu =

∫
M
η ∧ dηn

}
.

At this point, we can de�ne a special subset of E(M, ξ, dη). For any u ∈ PSH(M, ξ, dη) we set
E(u) :=

∫
M |u|

2η ∧ dηnu ∈ [0,+∞]. and we de�ne the following �nite energy class:

E2(M, ξ, dη) := {u ∈ E(M, ξ, dη);E(u) <∞} .

We refer to [45, Section 3] for a deep study of �nite energy class.
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4.2 Weak Geodesics

In order to prove that the function d on H×H de�ned in Section 4.3 is a distance [41, Theorem 3],
P. Guan and X. Zhang proved, among others, a technical result [41, Lemma 14] in order to get the
triangle inequality. This Lemma proves the existence of weak geodesics and gives an approximation
with ε-geodesic. Following [41] we de�ne weak geodesics and ε-geodesics. Here and in the sequel,

M := M ×
[
1, 3

2

]
⊂ C(M) and C1,1(M) is the closure of smooth function under the norm: ||·||C1,1 :=

||·||C1(M) + supM |∆ · |, where ∆ is the Riemannian Laplacian on C(M).

De�nition 4.3. For any φ0, φ1 ∈ H, we say that :

1. φt is a weak geodesic between φ0 and φ1 if the function ψ = φ2(r−1) + 4 log(r) de�ned in (7) is

a weak solution to (9)ε=0 (i.e. ψ is a bounded function such that Ωψ > 0 and Ωn+1
ψ = 0).

2. φεt is a ε-geodesic between φ0 and φ1 if ψε := φε2(r−1) + 4 log(r) satis�es Ωψε > 0 and (9).

Proposition 4.4 ([41, Theorem 1]). For any smooth φ0, φ1 ∈ H, there exists a unique C1,1(M) weak
geodesic between φ0 and φ1.

This result has been extended to [41, Lemma 14] which will be crucial in the sequel.

Proposition 4.5 ([41, Lemma 14]). Let ϕ0, ϕ1 be smooth paths in H: ϕi : s ∈ [0, 1] 7→ ϕi(·, s) ∈ H
(i = 1, 2). For ε0 small enough, there exist a unique two parameter smooth families of curves

ϕ : [0, 1]× [0, 1]× (0, ε0] −→ H
(t, s, ε) 7−→ ϕ(·, t, s, ε)

such that the following hold:

i. Setting ψs,ε(r, ·) := ϕ(·, 2(r − 1), s, ε) + 4 log(r), ψ veri�es (9) and Ωψ > 0. In particular, for

�xed s, we get a ε-geodesic between ϕ0(·, s) and ϕ1(·, s).

ii. There exists a uniform constant C which depends only on ϕ0 and ϕ1 such that:

|ϕ|+
∣∣∣∣∂ϕ∂s

∣∣∣∣+

∣∣∣∣∂ϕ∂t
∣∣∣∣ < C ; 0 <

∂2ϕ

∂t2
< C ;

∂2ϕ

∂s2
< C.

iii. For �xed s, the ε-approximating geodesic ϕ(·, t, s, ε) converges, when ε → 0, to the unique

geodesic between ϕ0(·, s) and ϕ1(·, s) in C1,1-topology.

Proposition 4.6 ([56, Section 2.4]). The ε-geodesics are decreasing to the weak geodesic.

4.3 Distance on H and on E2

In this section, following [41, 45], we de�ne a natural distance d on H for which we give a nice
expression in Proposition 4.8. Then, we extend the distance d to E2(M, ξ, dη).

4.3.1 Distance for Smooth potentials

Recall that we de�ned a Riemannian metric on H for which the length of a smooth path φt ∈ H is
given by:

l(φ) :=

∫ 1

0

√∫
M

(φ̇t)2η ∧ dηnφtdt.

P. Guan and X. Zhang [41, Theorem 3] proved that the length of the weak geodesic induces a
distance. A straightforward consequence of [41, Theorem 3 and Equation (7.15)] is that this length
is equal to:

d(φ0, φ1) = inf {l(φ) | φ is a smooth path joining φ0 and φ1} .
In particular, d is a distance on H and we have:
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Proposition 4.7 ([41, Equation (7.15)]). Let φ0, φ1 ∈ H and φεt be the ε-geodesic between φ0 and

φ1 then:

d(φ0, φ1) = lim
ε→0

∫ 1

0

√∫
M

(φ̇εt )
2η ∧ dηnφεtdt.

The following will be of a great use in the proof of Theorem 4.12.

Proposition 4.8. Given φ0, φ1 ∈ H and φt be the weak geodesic and φεt the ε-geodesic between φ0

and φ1, one has:

∀t ∈ [0, 1], d(φ0, φ1)2 =

∫
M

(φ̇t)
2η ∧ dηnφt = lim

ε→0

∫
M

(φ̇εt )
2η ∧ dηnφεt .

Proof. P. Guan and X. Zhang [41, Theorem 1] showed that there exists a constant C independent
of ε such that ||φεt ||C2w ≤ C. We set eε(t) :=

∫
M (φ̇εt )

2η ∧ dηnφεt . Thus, using (8) we have:

deε

dt
= 2

〈
∇φ̇εt φ̇

ε
t , φ̇

ε
t

〉
φεt

= 2ε

∫
M
φ̇εtη ∧ dηn ≤ 2εC Vol(M) := 2εC

∫
M
η ∧ dηn.

For any �xed t ∈ [0, 1], this gives: |l(φε)−
√
eε(t)| → 0. But, using the estimate of Proposition 4.5

and Ascoli theorem gives a subsequence such that φ̇εt → φt uniformly.
We also have the weak convergence of measures [45, Proposition 3.1]: Suppose that uj ∈

PSH(M, ξ, dη) ∩ L∞ decreases to u ∈ PSH(M, ξ, dη) ∩ L∞ then η ∧ dηnuj → η ∧ dηnu in the weak
sense of measures. This, with Proposition 4.7 gives the result.

4.3.2 Extension of d to E2

As in the Kähler setting, using smooth approximations given by Proposition 4.2 one can extend
the distance de�ned on H to E2(M, ξ, dη). Given φ0, φ1 ∈ E2(M, ξ, dη), and φk0, φ

k
1 ∈ H decreasing

respectively to φ0, φ1, we set d̃(φ0, φ1) := limk→∞ d(φk0, φ
k
1). W. He and J. Li proved [45, Lemma

4.6] that the de�nition above is independent of the choice of the approximate sequences. They also
extended T. Darvas results to Sasakian manifolds and in particular showed (E2(M, ξ, dη), d̃) is the
metric completion of (H, d) ([45, Theorem 2]). Additionally, one can consider t 7→ φkt ∈ H∆ the
weak geodesic between φk0 and φk1. This is a decreasing sequence (this follows from the maximum
principle [45, Lemma 4.1]). We set, for t ∈ (0, 1):

φt := lim
k→∞

φkt .

Using these notations, W. He and J. Li proved the following:

Proposition 4.9 ([45, Lemma 4.7]). The map t 7→ φt is a geodesic segment in the sense of metric

spaces. In particular, for all l ∈ (0, 1), d̃(φ0, φl) = ld̃(φ0, φ1).

Proposition 4.10 ([45, Lemma 4.11]). Let u ∈ E2(M, ξ, dη). If uk ∈ E2(M, ξ, dη) decreases to u
then, d(uk, u)→ 0.

4.4 Non-Positive Curvature

We �rst prove a CAT(0)-type inequality for H (Theorem 4.12) and then extend it to E2(M, ξ, dη)
(Theorem 4.13). The proof is adapted from the Kähler case done by E. Calabi and X. X. Chen [17,
Theorem 1.1] and T. Darvas [30].

De�nition 4.11 (CAT(0) spaces [14]). A geodesic metric space (X, d) is said to be non-positively

curved in the sense of Alexandrov if for any distinct points q, r ∈ X, there exists a geodesic γ :
[0, 1]→ X joining q, r such that for any a ∈ γ and p ∈ X the following inequality is satis�ed:

d(p, a)2 ≤ λd(p, r)2 + (1− λ)d(p, q)2 − λ(1− λ)d(q, r)2.

Where λ = d(q,a)
d(q,r) < 1.
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In this manuscript, we only give this suitable de�nition of CAT(0) spaces. We refer to [14] for
more about CAT(0) spaces.

Theorem 4.12. Given p, q, r ∈ H and λ ∈ (0, 1). If we denote φqr the weak geodesic segment

between q and r and a ∈ φqr such that λd(q, r) = d̃(q, a) then:

d̃(p, a)2 ≤ λd(p, r)2 + (1− λ)d(p, q)2 − λ(1− λ)d(q, r)2.

It is worth mentioning that one cannot say that H is a CAT(0) space since the element a above
only lies in H∆ (H is not a geodesic metric space).

Proof. We �x ε, ε′ > 0. And three potentials p, q, r ∈ H. Proposition 4.5 applied to the constant path
φ0 ≡ p and φ1 the ε

′-geodesic joining q to r gives a two-parameter family of curves: φ(., t, s, ε). Recall
that for �xed s, the path t 7→ φ(., t, s, ε) is a ε geodesic. We denote X = ∂φ

∂t and Y = ∂φ
∂s . Finally,

we write E(s) the total energy of the ε-geodesic between p and φ(., 1, s, ε): E(s) :=
∫ 1

0 〈X,X〉φ dt.
Let's compute the �rst derivative of E.

1

2

dE

ds
=

1

2

∫ 1

0

∂

∂s
〈X,X〉φ dt =

∫ 1

0
〈∇YX,X〉φ dt =

∫ 1

0

(
∂

∂t
〈X,Y 〉φ − 〈∇XX,Y 〉φ

)
dt

= 〈X,Y 〉φ |t=1 −
∫ 1

0
〈∇XX,Y 〉φ dt.

The last term in the above equation can be written thanks to (8) as:∫ 1

0

∫
M
Y∇XXη ∧ dηnφdt = ε

∫ 1

0

∫
M

∂φ

∂s
η ∧ dηndt.

Thus,

1

2

dE

ds
= 〈X,Y 〉φ |t=1 − ε

∫ 1

0

∫
M

∂φ

∂s
η ∧ dηndt.

Before computing the second derivative of E, we prove that, at t = 1:

〈Y,∇XY 〉φ ≥ 〈Y, Y 〉φ . (10)

Indeed, setting H = η∧dηn
η∧dηnφ

, since the sectional curvature is negative and ∇XY = ∇YX,

1

2

∂2

∂t2
〈Y, Y 〉φ = 〈∇YX,∇XY 〉φ + 〈∇X∇YX,Y 〉φ

= 〈∇XY,∇XY 〉φ + 〈∇Y∇XX,Y 〉φ −K(X,Y )

≥ 〈∇XY,∇XY 〉φ + ε

〈
∇Y

(
η ∧ dηn

η ∧ dηnφ

)
, Y

〉
φ

≥ 〈∇XY,∇XY 〉φ + ε

∫
M

∂φ

∂s

(
∂H

∂s
− 1

4
gφ

(
∇H,∇∂φ

∂s

))
η ∧ dηnφ .

On the other hand:
∂H

∂s
η ∧ dηnφ + nHη ∧ ddc

(
∂φ

∂s

)
∧ dηn−1

φ = 0.

Thus the last term above simpli�es in

−nε
∫
M

∂φ

∂s
Hη ∧ ddc

(
∂φ

∂s

)
∧ dηn−1

φ − ε

4

∫
M

∂φ

∂s
gφ

(
∇H,∇∂φ

∂s

)
η ∧ dηnφ

11



=
ε

4

∫
M
gφ

(
∇
(
∂φ

∂s
H

)
,∇∂φ

∂s

)
− ∂φ

∂s
gφ

(
∇H,∇∂φ

∂s

)
η ∧ dηnφ

=
ε

4

∫
M
gφ

(
∇∂φ
∂s
,∇∂φ

∂s

)
η ∧ dηn ≥ 0.

In the above computation we used Stokes' theorem. Therefore,

1

2

∂2

∂t2
〈Y, Y 〉φ ≥ 〈∇XY,∇XY 〉φ .

This shows that t 7→ |Y (t)|φ (norm associated to gφ) is convex. But Y (0) = 0 so we get the claim
(10). We can now compute the second derivative of E(s):

1

2

d2E

ds2
=

d

ds
〈X,Y 〉φ − ε

∫ 1

0

∫
M

∂2φ

∂s2
η ∧ dηndt

= 〈∇XY, Y 〉φ |t=1 + 〈X,∇Y Y 〉φ |t=1 − ε
∫ 1

0

∫
M

∂2φ

∂s2
η ∧ dηndt

≥ 〈Y, Y 〉φ |t=1 +

∫
M

∂φ

∂t︸︷︷︸
≥−C

∇Y Y η ∧ dηnφ︸ ︷︷ ︸
=ε′η∧dηn

|t=1 − ε
∫ 1

0

∫
M

∂2φ

∂s2︸︷︷︸
≤C

η ∧ dηndt

≥ 〈Y, Y 〉φ |t=1 − (ε+ ε′)C Vol(M).

Where we used the fact that φ1 = φ(., 1, s, ε) is an ε′-geodesic, and the estimates of Proposition
4.5. But 〈Y, Y 〉φ |t=1 is exactly the energy of the ε′-geodesic joining q and r which we denote Eε

′

(qr).
Thus, we �nally have:

1

2

d2E

ds2
≥ Eε′(qr) − (vε+ ε′)C Vol(M).

This implies: E(s) ≤ (1− s)E(0) + sE(1) + (s2− s)
(
Eε

′

(qr) − (ε+ ε′)C Vol(M)
)
. Now, we �x s and

let ε→ 0. Proposition 4.8 gives ;

d(p, φ1(., s))2 ≤ (1− s)d(p, q)2 + sd(p, r)2 + (s2 − s)Eε′(qr) − ε
′C Vol(M)(s2 − s).

But φ1(., s) being on the ε′-geodesic φ1, denoting φqr the weak geodesic segment between q
and r, we have that φ1(., s) decreases to φqr(s) as soon as ε′ → 0. So Proposition 4.10 gives that
d(p, φ1(., s))→ d̃(p, φqr(s)), and thus:

d̃(p, φqr(s))
2 ≤ (1− s)d(p, q)2 + sd(p, r)2 + (s2 − s)d(q, r)2.

The conclusion follows from Proposition 4.9.

Theorem 4.13. E2(M, ξ, dη) is a CAT(0) space.

Proof. Let p, q, r ∈ E2(M, ξ, dη). We consider decreasing approximations: pk, qk, rk ∈ H. Theorem
4.12 gives:

d̃(pk, φqkrk(s))2 ≤ (1− s)d(pk, qk)2 + sd(pk, rk)2 + (s2 − s)d(qk, rk)2.

where φqkrk ∈ H∆ is the weak geodesic between qk and rk which decreases to the metric geodesic
de�ned by (4.3.2). Using Proposition 4.10 gives the CAT(0) inequality for E2(M, ξ, dη) since φqr is
a geodesic in the metric sense according to Proposition 4.9.
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