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Introduction

After being introduced in 1960 by S. Sasaki [START_REF] Sasaki | On dierentiable manifolds with certain structures which are closely related to almost contact structure I[END_REF] and then studied in the early 70s, Sasakian manifolds seem to have been more or less neglected until the early 90s. One can mention a paper by T. Friedrich and I. Kath published in 1990 [START_REF] Friedrich | 7-dimensional compact Riemannian manifolds with Killing spinors[END_REF] in which they gave a rst classication result about Sasakian manifolds. From 1993 onwards, C. Boyer, K. Galicki and B. Mann have made important contributions to the understanding of the geometry and topology of Sasakian manifolds [START_REF] Boyer | 3-Sasakian manifolds[END_REF][START_REF] Boyer | Quaternionic reduction and Einstein manifolds[END_REF][START_REF] Boyer | 3-Sasakian manifolds[END_REF]. The year 1998 is a key milestone for Sasakian geometry: the inuential paper by J. Maldacena [START_REF] Maldacena | The large-N limit of superconformal eld theories and supergravity[END_REF] who rst proposed the AdS/CFT correspondance marked a signicant regain of interest in Sasakian geometry. Indeed, manifolds that are product of anti-de Sitter space with Sasakian manifolds play a crucial role in AdS/CFT correspondance [START_REF] Acharya | Branes at conical singularities and holography[END_REF][START_REF] Morrison | Non-spherical horizons[END_REF][START_REF] Martelli | SasakiEinstein manifolds and volume minimisation[END_REF]. Finding examples, obstructions or sucient conditions for the existence of Sasaki-Einstein metrics (i.e. Sasakian metrics for which the Ricci tensor is proportional to the metric) has led to a large exploration of Sasakian geometry [START_REF] Boyer | On Sasakian-Einstein geometry[END_REF][START_REF] Boyer | Sasakian Geometry[END_REF][START_REF] Futaki | Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds[END_REF][START_REF] Martelli | SasakiEinstein manifolds and volume minimisation[END_REF][START_REF] Gauntlett | Sasaki-Einstein metrics on S 2 × S 3[END_REF][START_REF] Boyer | Einstein metrics on spheres[END_REF]. As Einstein metrics are very particular versions of constant scalar curvature metrics or even extremal metrics [START_REF] Calabi | Extremal Kähler metrics[END_REF][START_REF] Boyer | Extremal Sasakian geometry on T 2 × S 3 and related manifolds[END_REF] it seems natural to study these more general metrics in the Sasakian world.

Recall that a Sasakian manifold (M, g) is an odd dimensional Riemannian manifold whose metric cone C(M ) = (R * + × M, dr 2 + r 2 g) is Kähler. This synthetic description hides the extremely rich structure of Sasakian manifolds. In particular, M , which can be identied with the link {r = 1} ⊂ C(M ), is a contact manifold with contact form η = 2d c log(r). It denes a contact bundle ker η on which 1 2 dη is a transverse Kähler form. Here, d = ∂ + ∂ is the usual decomposition of the dierential operator on a Kähler manifold and d c is dened as

d c = i 2 (∂ -∂).
Any Sasakian manifold is endowed with a special vector eld: the Reeb vector eld ξ which is the restriction of J(r∂ r ) to the link {r = 1}. Here J denotes the complex structure on the Kähler metric cone C(M ). The restriction Φ of J to the transverse distribution ker η is called a transverse complex structure. We call (ξ, η, Φ) a Sasaki structure.

As a Sasakian manifold is traped between its Kähler metric cone and its Kähler transverse structure, one can expect that these special metrics we are looking for are closely related to their Kähler counterparts. Kähler-Einstein metrics (i.e. Kähler metrics with Ricci form proportional to the metric itself) have been at the core of intense research over the past forty years [START_REF] Aubin | Equations de type Monge-Ampère sur les variétés kählérienne compactes[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof[END_REF][START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF][START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF][START_REF] Tian | KählerEinstein metrics on Fano manifolds[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation[END_REF]. This problem boils down to a non-linear second order PDE: a Monge-Ampère equation [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF]. Kähler-Einstein metrics are examples of constant scalar curvature metrics. The constant scalar curvature Kähler (cscK) metric problem of looking for cscK metrics was initiated by E. Calabi [START_REF] Calabi | Extremal Kähler Metrics II[END_REF] and it boils down to a fourth order equation [START_REF] Abreu | Kähler geometry of toric varieties and extremal metrics[END_REF], it also led to several works (mention for example [START_REF] Berndtsson | A BrunnMinkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry[END_REF][START_REF] Berman | Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics[END_REF][START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF]) until recent major breakthrough by X. Chen and J. Cheng [START_REF] Chen | On the constant scalar curvature Kähler metrics, apriori estimates[END_REF][START_REF] Chen | On the constant scalar curvature Kähler metrics, general automorphism group[END_REF][START_REF] Chen | On the constant scalar curvature Kähler metrics[END_REF]. The strudy of cscK metrics requires a deep understanding of the geometry of the space of Kähler metrics in a given Kähler class on a Kähler manifold (X, ω) [START_REF] Donaldson | Symmetric spaces, Kähler geometry and Hamiltonian dynamics[END_REF][START_REF] Semmes | Complex Monge-Ampère and symplectic manifolds[END_REF], identied with:

H(X, ω) = {φ ∈ C ∞ (X) | ω φ := ω + dd c φ > 0} .
(1) Given the Mabuchi metric [START_REF] Mabuchi | Some symplectic geometry on compact Kähler manifolds[END_REF] on the tangent space at a given φ ∈ H(X, ω) as being:

ψ 1 , ψ 2 φ = M (ψ 1 ψ 2 )ω n φ for ψ 1 , ψ 2 ∈ T φ H(X, ω) C ∞ (X), (2) 
one can consider geodesics between two elements of H(X, ω). X. Chen and his collaborators worked intensively in this direction [START_REF] Chen | The space of Kähler metrics[END_REF][START_REF] Calabi | The space of Kähler metrics II[END_REF][START_REF] Chen | Geometry of Kähler metrics and foliations by holomorphic discs[END_REF][START_REF] Chen | Space of Kähler metrics III on the lower bound of the Calabi energy and geodesic distance[END_REF][START_REF] Chen | Space of Kähler metrics (V)Kähler quantization[END_REF] proving in particular that this innite dimensional space is a path metric space with C 1,1 geodesics. Note that the regularity of geodesics have been improved to C 1,1 by Chu-Tosatti-Weinkove [START_REF] Chu | C 1,1 regularity for degenerate complex MongeAmpère equations and geodesic rays[END_REF]. T. Darvas then consequently rened the study of the geometry of the space of Kähler metrics [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF][START_REF] Darvas | Weak geodesic rays in the space of Kähler potentials and the class E(X, ω)[END_REF][START_REF] Darvas | The isometries of the space of Kähler metrics[END_REF] especially identifying its metric completion with a space of weighted nite energy class E 2 (X, ω) (previously introduced in [START_REF] Guedj | The weighted MongeAmpère energy of quasiplurisubharmonic functions[END_REF]) and showing that it is non-positively curved in the sense of Alexandrov. For further references and details about E 2 (X, ω), we refer to [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF].

Theses advances in the Kähler setting were truly inspirational for the Sasaki setting. In [START_REF] Martelli | The geometric dual of amaximisation for toric SasakiEinstein manifolds[END_REF][START_REF] Martelli | SasakiEinstein manifolds and volume minimisation[END_REF][START_REF] Futaki | Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds[END_REF][START_REF] Boyer | Sasakian Geometry[END_REF], Sasaki-Einstein metrics are studied while constant scalar curvature Sasaki metrics are studied in [START_REF] Legendre | Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics[END_REF][START_REF] Collins | K-semistability for irregular Sasakian manifolds[END_REF][START_REF] Van Coevering | Monge-Ampère operators, energy functionals, and uniqueness of Sasaki-extremal metrics[END_REF][START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]. In this concern, people considered the space of potentials:

H(M, ξ, dη) = {φ ∈ C ∞ B (M ), dη + dd c φ > 0} ,
where C ∞ B (M ) is the space of smooth basic functions (ie smooth functions which are invariant under the Reeb ow). As we will explain in Section 2.2, any potential in H(M, ξ, dη) denes a new Sasaki structure on M . This innite dimensional space, whose tangent space at any φ ∈ H(M, ξ, dη) is identied with C ∞ B (M ) is endowed with a Riemannian structure, analogue of the Mabuchi metric [START_REF] Guan | A geodesic equation in the space of Sasakian metrics[END_REF][START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]:

ψ 1 , ψ 2 φ = M (ψ 1 ψ 2 ) η ∧ (dη + dd c φ) n .
P. Guan and X. Zhang [START_REF] Guan | A geodesic equation in the space of Sasakian metrics[END_REF][START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF] proved the existence of C 1,1 geodesics (Proposition 4.5) using a Monge-Ampère type re-formulation for the geodesic equation (see Sections 3.1 and 4.2). They also showed that the Riemannian structure on the tangent space of H(M, ξ, dη) induces a metric d on H(M, ξ, dη):

d(φ 0 , φ 1 ) := inf 1 0 φt , φt φt dt ; t → φ t is a smooth path joining φ 0 to φ 1 .
This denition of d is natural but showing that this is indeed a distance is not as easy as for nite dimensional manifolds. W. He and J. Li generalised most of the geometrical results known in the Kähler case to Sasaki setting [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF] allowing W. He to extend X. Chen and J. Cheng result for constant scalar curvature Sasakian metrics [START_REF] He | Scalar curvature and properness on Sasaki manifolds[END_REF]. W. He and J. Li [START_REF] He | Scalar curvature and properness on Sasaki manifolds[END_REF] then used pluripotential theory to study the metric completion of (H(M, ξ, dη), d) and its geometry. Using C. Van Coevering work [START_REF] Van Coevering | Monge-Ampère operators, energy functionals, and uniqueness of Sasaki-extremal metrics[END_REF], they basically generalized the results known in the Kähler setting [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF]. In their study of the geometry of H(M, ξ, dη), energy classes will play a crucial role. The rst energy class to be considered is E(M, ξ, dη). This is the space of all quasi-plurisubharmonic functions with full Monge-Ampère mass i.e. M η ∧ (dη + dd c φ) n = M η ∧ dη n . Building on this one can consider the energy class:

We organise this note as follows: we rst recall, in Section 2, some denitions about Sasakian manifolds in order to x notations. Then we dene the set of Sasakian potentials H(M, ξ, dη) and give a geometrical interpretation of this space (Proposition 2.8). Section 3 is devoted to introduce the analogue of the Mabuchi metric on H(M, ξ, dη). In Section 3.1 we give equivalent formulations for the geodesic equation allowing to weaken the notion of geodesics. Finally, in Section 4 we prove Theorem A. d'une aide incroyable dans ma compréhension. Merci aussi pour le tout le temps que vous m'avez consacré, pour tout ce que j'apprends avec vous et pour tous les bons moments passés à vos côtés. Mes remerciements également à L. Lempert pour avoir pris le temps de m'écouter et pour ses questions. Elles m'éclairent et me donnent des pistes très pertinentes pour la suite.
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Sasakian Geometry and Smooth Potentials

This section starts with some preliminaries in Sasakian Geometry: we x notations and then dene the space of Sasakian potentials. We refer to [START_REF] Boyer | Sasakian Geometry[END_REF] for an extensive study of Sasakian manifolds.

Sasakian Manifolds

We consider (M, ξ, η, Φ, g) a compact real smooth manifold of dimension 2n + 1, where (M, ξ, η) is a contact manifold (i.e. η is a contact form and ξ the Reeb vector eld: η(ξ) = 1 and ι ξ dη = 0), g is a Riemannian metric and Φ a (1, 1)-tensor eld with the following compatibility conditions:

Φ • Φ = -1 T M + ξ ⊗ η ; g • (Φ ⊗ 1 T M ) = 1 2 dη ; g • (Φ ⊗ Φ) = g -η ⊗ η.
Note that η • Φ = 0 ; Φ(ξ) = 0 and g is completely determined by η and Φ:

g = η ⊗ η + 1 2 dη • (1 T M ⊗ Φ). (3) 
A Sasakian Manifold is such a manifold with an additional integrability condition. The purpose of the next section is to formulate this condition on the symplectization of M .

Metric Cone

Given such a manifold (M, ξ, η, Φ, g), one can construct a metric cone C(M, η) (called symplectization), also denoted C(M ) if there is no ambiguity (see [3, Appendix 4 -E]):

C(M, η) := {α ∈ T x M, x ∈ M | ker α = ker η x ,

α and η x dening the same orientation}

This set is furnished with a symplectic structure which is basically the restriction of dτ to C(M, η) ⊂ T M where τ is the canonical one-form on the cotangent bundle. We have a canonical identication of C(M, η) with M × R + :

C(M, η) -→ M × R + α ∈ T x M -→ (x, α(ξ x )) =: (x, r).
In C(M, η), one has the so called canonical identication M {r = 1} ⊂ C(M ). We have a projection map:

π r : C(M, η) → {r = 1} .
From now on, we consider M as being {r = 1}, and assume that M is furnished with (ξ, η, Φ, g) as in Section 2.1. Let g C := dr 2 + r 2 (π r g) be a metric on C(M, η). For this metric, we let ψ be the gradient of r 2 2 and we extend the Reeb vector eld: ξ = (ξ, 0). Using these two vector elds and the canonical identication, we dene an almost complex structure on C(M, η) M × R + :

Iψ = ξ I(Y, 0) = (Φ(Y ), 0) -η(Y )ψ,
where Y is a tangent vector to M.

If the almost complex structure I on C(M ) is integrable, then we call (ξ, η, Φ, g) a Sasakian structure. We say that M is a Sasakian manifold if it can be endowed with a Sasakian structure. In particular, given a Sasakian manifold, the almost complex structure dened above is upgraded to a Kähler structure. The next proposition outlines this Kähler structure: Proposition 2.1 ([9, Section 6.5]). Let M be a Sasakian manifold. Set η := π r η and ω

C := 1 2 d(r 2 η). Then, (C(M ), g C , ω C , I) is a Kähler manifold. Moreover, η = 2d c log(r) = 2 r d c r and ω C = dd c r 2 2 .

Kähler Cone

The complex structure, dened in Section 2.1.1, on the symplectization of a Sasakian manifold is actually a Kähler structure. Here, we rst dene what we call a Kähler cone metric and then state a correspondence between these special Kähler metrics and Sasakian structures. where r : C → R + is a positive function such that {r = 1} is compact and such that:

1. dd c r 2 2
is Kähler,

The radial vector eld

ψ := ∇( r 2
2 ) is holomorphic with respect to I (i.e.

L ψ I = 0), 3. g C (ψ, ψ) = r 2 .
Here, g C stands for the Riemannian metric associated to dd c r 2 2 and ∇ stands for the gradient according to g C . We say that such a C is a Kähler cone. Proposition 2.1 says that given a Sasakian manifold, we have a Kähler cone metric on its symplectization C(M, η). On the other hand, a Kähler cone metric induces a Sasakian structure on M = {r = 1}. Indeed, the ow of ψ gives a projection π : C → {r = 1} and a decomposition of C as a Riemannian cone in the sense of [9, Denition 6.5.1]: C {r = 1} × R + with the metric dr 2 + r 2 π (g |M ). We set ξ := π (Iψ), η = 2d c log(r) |{r=1} and dene Φ as being the restriction of I to ker η and Φ(ξ) = 0. It is straightforward to check that (M, ξ, η, Φ, g |M ) is a Sasakian manifold. We summarize this discussion: Proposition 2.3. There is a one-to-one correspondence between compact Sasakian manifolds and Kähler cones.

Basic Forms and Potentials

Here, we recall the denition of basic functions on Sasakian manifolds in order to provide a nice description of Kähler cone metrics in terms of basic functions (Proposition 2.8). In the sequel, M is a compact Sasakian manifold and we use the notations introduced in Section 2.1. Denition 2.4. We say that a p-form α on M is basic if ι ξ α = 0 and L ξ α = 0.

In the case of 0-forms we set: We refer to [START_REF] Boyer | Sasakian Geometry[END_REF] for a proof and for many other properties of these operators. As in the Kähler case we dene the d c B operator (a real operator):

C ∞ B (M ) := {φ ∈ C ∞ (M ), L ξ φ = 0} .
d c B = i 2 (∂ B -∂ B ) so that d B d c B = i∂ B ∂ B .
Basic operators coincide with the usual ones on basic forms so we will often omit the subscript B.

We say that two Sasakian structures with the same Reeb vector eld (ξ, η, Φ, g) and (ξ, η , Φ , g ) on M have the same transverse structure if the following diagram commutes [9, Section 7.5.1].

T M p / / Φ T M/L ξ J T M p o o Φ T M p / / T M/L ξ T M p o o
Here, p is the natural projection, J is the map induced by Φ (dened by the right hand side of the diagram) and L ξ is the line bundle generated by ξ. Let's now compare two Sasakian structures (ξ, η, Φ, g) and (ξ , η , Φ , g ) on M with the same Reeb vector eld: ξ = ξ and having the same transverse structure. Note that this last condition is fundamental because we want to identify the basic (1, 1)-forms in cohomology. Since η and η have the same Reeb vector eld, the 1-form η -η is basic. Thus dη -dη is an exact basic form. Lemma 2.5 gives a basic function φ such that d(η -η) = dd c φ. Since dη and dη are both real, φ is a smooth real function. This motivates the denition of the following set of the so called Sasakian potentials:

H(M, ξ, dη) = {φ ∈ C ∞ B (M ), dη φ = d(η + d c φ) > 0} .
In the sequel, when there is no ambiguity, we will write H for the space of Sasakian potentials H(M, ξ, dη).

Example 2.6. Consider the standard Sasakian structure on S 3 . Let φ ∈ H be a smooth Sasakian potential. Since it is basic, one can nd φ ∈ C ∞ (CP 1 ) such that φ • H = φ, where H stands for the Hopf bration. Indeed, the orbits of the Reeb vector eld are given by the Hopf bration. Since dη φ > 0, one has: 

H (2ω F S + dd c φ) = dη + dd c (H φ) = dη φ > 0. Thus, φ ∈ H(CP 1 , 2ω F S ) (see ( 1 
η φ ∧ (dη φ ) n = η ∧ (dη φ ) n , since d c B φ
is basic and so is dη φ . We note that

dη φ > 0 ⇐⇒ η φ ∧ dη n φ = 0.
Indeed, take a minimizing point p for φ. At p, since dη > 0, we have dη φ | p > 0. If η φ ∧ dη n φ = 0, then by continuity dη φ > 0 everywhere on M . On the other hand, if dη φ > 0, one can dene a function g such that: η φ ∧ dη n φ = η ∧ dη n φ =: g(η ∧ dη n ). Suppose that g(p) = 0 where p ∈ M . Then, on ker η |p the 2-form dη φ is degenerate, indeed, (dη n φ ) |p = ι ξ (η ∧ dη n φ ) |p = 0. This is a contradiction with the positivity of the transverse Kähler form dη φ . Proposition 2.8. Let (M, ξ, η, Φ, g) be a compact Sasakian manifold. Let I be the induced complex structure on C(M, η). Then, there is a one-to-one correspondence between the space of Sasakian potentials, H, and the set of Kähler cone metrics on (C(M, η), I) with xed radial vector eld (i.e. if r and r are as in Denition 2.2 then we ask ψ = ψ). Proof. Given a function u ∈ H, we set r := re u 2 . It is straighforward to check that it induces a Kähler cone metric. On the other hand, xing the complex structure I, the condition ψ = ψ implies that u := 2 log r r is a basic function on M . In particular, u ∈ H induces a new Sasakian structure (ξ, η u , Φ u , g u ) on M with same Reeb vector eld. It is completely determined by u using the correspondences given in Proposition 2.3 and Proposition 2.8:

η u := η + d c u ; Φ u := Φ -ξ ⊗ (d c u • Φ).
The Riemannian metric g u is then determined by [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]. The new Sasakian structure (ξ, η u , Φ u , g u ) has the same transverse complex structure.

Observe that given a compact Sasakian manifold M , Sasakian structures induced by functions in H have same volume (see [9, Proposition 7.5.10]):

M η ∧ dη n = M η u ∧ dη n u .
This plays an important role when normalizing the Monge-Ampère measure.

The Geometry of Smooth Potentials

In this section, following the work of P. Guan and X. Zhang [START_REF] Guan | A geodesic equation in the space of Sasakian metrics[END_REF][START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF], we present some results about the geometry of H and its geodesics. Given φ ∈ H, we introduce a L 2 -metric on the tangent space of H at φ, for

ψ 1 , ψ 2 ∈ T φ H C ∞ B (M )
, we set:

ψ 1 , ψ 2 φ = M (ψ 1 ψ 2 )η φ ∧ dη n φ = M (ψ 1 ψ 2 )η ∧ dη n φ .
Example 3.1. One can compute the metric on the space of Sasakian potentials for the sphere. For any two f , g ∈ C ∞ B , we note f, g ∈ C ∞ (CP 1 ) such that f = f • H and g = g • H (see Example 2.6). Denoting •, • S 3 the Riemannian metric on the space of Sasakian potentials of S 3 and •, • CP 1 the one on the space of Kähler potentials on (CP 1 , 2ω F S ) (see ( 2)) one has:

f , g S 3 ,φ = 2π f, g CP 1 ,φ .
Indeed, the integrals of η along each orbit of ξ are equal to 2π.

Let t ∈ [0, 1] → φ t be a smooth path in H and ψ 1 , ψ 2 ∈ C ∞ B (M × [0, 1]) tangent to φ.
Stokes' theorem gives (see also [40, Proposition 1]):

d dt ψ 1 , ψ 2 φ = dψ 1 dt - 1 4 g φ (∇ψ 1 , ∇ φ), ψ 2 φ + ψ 1 , dψ 2 dt - 1 4 g φ (∇ψ 2 , ∇ φ) φ ,
where ∇ stands for the gradient associated to g φ . Denition 3.2. Let φ : t ∈ [0, 1] → φ(t) ∈ H be a smooth path and ψ tangent to φ identied with smooth basic functions on M × [0, 1].

∇ φψ := ψ - 1 4 g φ (∇ψ, ∇ φ),
where ψ = dψ dt . We recall [40, Proposition 2] that the connection ∇ is compatible with ., . φ and torsion free. Additionally, and this is crucial for Theorem 4.12, we have: Proposition 3.3 ([40, Theorem 1]). The sectional curvature is non-positive.

Geodesic Equations

In this section we present dierent equivalent formulations for the geodesic equation in H and give an example on the 3-sphere S 3 . The natural geodesic equation in H is ∇ φ φ = 0, which writes:

φ - 1 4 g φ (∇ φ, ∇ φ) = 0. (4) 
In [START_REF] Godlinski | Locally Sasakian manifolds[END_REF], it has been proved that at any point in M , one can choose a local system of coordinates (τ, z 1 , ..., z n ) ∈ (-δ, δ) × V ⊂ R × C n such that (using Einstein summation convention):

           ξ = ∂ ∂τ η = dτ -i ∂h ∂z j dz j -∂h ∂z j dz j Φ = i X j ⊗ dz j -X j ⊗ dz j g = η ⊗ η + ∂ 2 h ∂z k ∂z j (dz k ⊗ dz j + dz j ⊗ dz k ), (5) 
where h is a local, real valued, basic function (i.e. ξh = 0), such that g is a positive denite and

X j = ∂ ∂z j + i ∂h ∂z j ∂ ∂τ ; X j = ∂ ∂z j -i ∂h ∂z j ∂ ∂τ .
Now, for φ ∈ H, the induced Sasakian structure can be locally written in the same coordinate system as in ( 5) replacing h by h φ := h + 1 2 φ. In such a coordinate system, the geodesic equation can be rewritten as:

φ - 1 2 h ,jk φ ∂ φ ∂z k ∂ φ ∂z j = 0. (6) 
P. Guan and X. Zhang [41, Proposition 2] showed that the geodesic equation ( 4) can be reformulated as a Monge-Ampère type equation on the cone C(M ). Given φ t be a smooth path in H, we dene ψ on M × 1, 3 2 by: ψ(•, r) := φ 2(r-1) (•) + 4 log(r).

We set Ω ψ := ω C + r 2 2 dd c ψ -∂ψ ∂r dd c r , where ω C is the Kähler form on the cone and d, d c are the usual operators on the cone. Proposition 3.4 ([41,Proposition 2]). Fix ε ≥ 0. The following Dirichlet problems are equivalent.

       φ -1 4 g φ (∇ φ, ∇ φ) η ∧ dη n φ = εη ∧ dη n on M × (0, 1)
φ| t=0 = φ 0 φ| t=1 = φ 1 . ( 8 
)      Ω n+1 Ψ = εr 2 ω n+1 C on M × (1, 3 
2 )

ψ| t=1 = ψ 1 ψ| t= 3 2 = ψ 3 2 . ( 9 
)
Example 3.5. Recall that, for a Kähler manifold (X, ω), the geodesic equation on H(X, ω) is given, in a chart where ω = i 2 ω jk dz j ∧ dz k , by: φ - [START_REF] Mabuchi | Some symplectic geometry on compact Kähler manifolds[END_REF]Equation 2.4.1] and (1) for notations). In the case of CP 1 , for both usual charts, the metric ω F S is given by:

2ω jk φ ∂ φ ∂z j ∂ φ ∂z k = 0 (see
ω F S = i 2 dz ∧ dz (1 + zz) 2 .
The computations are the same in both charts since here, we have:

ω 11 = (1 + zz) -2 .
Recall that the Hopf bration brings back 2ω F S to dη: H (2ω F S ) = dη. Thus, writing dη in coordinates as in [START_REF] Berman | Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics[END_REF] gives: 2h 11 = ω 11 • H. Therefore, 1 2 h 11 = ω 11 • H. Pulling back the geodesic equation for φ ∈ H(CP 1 , 2ω F S ) by H exactly gives the geodesic equation ( 6) for φ • H in H, the space of Sasakian potentials on S 3 . For this reason, nding a geodesic in H boils down to nding one in H(CP 1 , 2ω F S ). In a chart of CP 1 , set:

φ t := log(1 + e 2t |z| 2 ) -2 log(1 + |z| 2 ).
This map is dened so that 2ω F S + dd c φ t = dd c log(1 + e 2t |z| 2 ). Now using the reformulation of [ Here, we present the material we need about plurisubharmonicity. We refer to [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF] for an extensive reference about plurisubharmonicity.

Denition 4.1. A function u : M → R ∪ {-∞} is said to be (transverse) dη-plurisubharmonic (dη-psh) if u is invariant under the Reeb ow, if u is locally the sum of a smooth function and a plurisubharmonic function and:

dη + dd c u ≥ 0,
in the sense of currents. We let P SH(M, ξ, dη) be the set of all dη-plurisubharmonic functions which are not identically -∞.

The rst result we state about this class of function is an approximation result analogous to the Kähler case. It will be used in the sequel. We can now dene an analogue of the Monge-Ampère measure for functions in P SH(M, ξ, dη). For bounded plurisubharmonic function, C. Van Coevering [START_REF] Van Coevering | Monge-Ampère operators, energy functionals, and uniqueness of Sasaki-extremal metrics[END_REF] adapted the Bedford-Taylor theory to the Sasaki setting, hence dening η ∧ dη n u when u ∈ P SH(M, ξ, dη) is bounded. As in the Kähler case, we extend the denition: for u ∈ P SH(M, ξ, dη) we set u j := max(u, -j). Following [45, Denition 3.2], we set η ∧ dη n u := lim j→∞ 1 {u>-j} η ∧ dη n u j . Note that thanks to the maximum principle [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Proposition 3.2], this in an increasing sequence of measures. The limit is then a measure with total mass smaller that the total volume: M η ∧ dη n . We then dene the set of functions with full Monge-Ampère mass:

E(M, ξ, dη) := u ∈ P SH(M, ξ, dη); M η ∧ dη n u = M η ∧ dη n .
At this point, we can dene a special subset of E(M, ξ, dη). For any u ∈ P SH(M, ξ, dη) we set

E(u) := M |u| 2 η ∧ dη n u ∈ [0, +∞]
. and we dene the following nite energy class:

E 2 (M, ξ, dη) := {u ∈ E(M, ξ, dη); E(u) < ∞} .
We refer to [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Section 3] for a deep study of nite energy class.

Weak Geodesics

In order to prove that the function d on H × H dened in Section 4.3 is a distance [41, Theorem 3], P. Guan and X. Zhang proved, among others, a technical result [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]Lemma 14] in order to get the triangle inequality. This Lemma proves the existence of weak geodesics and gives an approximation with ε-geodesic. Following [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF] we dene weak geodesics and ε-geodesics. Here and in the sequel, ) is the closure of smooth function under the norm:

M := M × 1, 3 2 ⊂ C(M ) and C 1,1 (M
||•|| C 1,1 := ||•|| C 1 (M ) + sup M |∆ • |,
where ∆ is the Riemannian Laplacian on C(M ). Denition 4.3. For any φ 0 , φ 1 ∈ H, we say that :

1. φ t is a weak geodesic between φ 0 and φ 1 if the function ψ = φ 2(r-1) + 4 log(r) dened in ( 7) is a weak solution to (9) ε=0 (i.e. ψ is a bounded function such that Ω ψ > 0 and

Ω n+1 ψ = 0). 2. φ ε t is a ε-geodesic between φ 0 and φ 1 if ψ ε := φ ε 2(r-1) + 4 log(r) satises Ω ψ ε > 0 and (9).
Proposition 4.4 ([41, Theorem 1]). For any smooth φ 0 , φ 1 ∈ H, there exists a unique C 1,1 (M ) weak geodesic between φ 0 and φ 1 .

This result has been extended to [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]Lemma 14] which will be crucial in the sequel.

Proposition 4.5 [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]Lemma 14]). Let ϕ 0 , ϕ 1 be smooth paths in H:

ϕ i : s ∈ [0, 1] → ϕ i (•, s) ∈ H (i = 1, 2).
For ε 0 small enough, there exist a unique two parameter smooth families of curves

ϕ : [0, 1] × [0, 1] × (0, ε 0 ] -→ H (t, s, ε) -→ ϕ(•, t, s, ε)
such that the following hold:

i. Setting ψ s,ε (r, •) := ϕ(•, 2(r -1), s, ε) + 4 log(r), ψ veries [START_REF] Boyer | Sasakian Geometry[END_REF] and Ω ψ > 0. In particular, for xed s, we get a ε-geodesic between ϕ 0 (•, s) and ϕ 1 (•, s).

ii. There exists a uniform constant C which depends only on ϕ 0 and ϕ 1 such that:

|ϕ| + ∂ϕ ∂s + ∂ϕ ∂t < C ; 0 < ∂ 2 ϕ ∂t 2 < C ; ∂ 2 ϕ ∂s 2 < C.
iii. For xed s, the ε-approximating geodesic ϕ(•, t, s, ε) converges, when ε → 0, to the unique geodesic between ϕ 0 (•, s) and ϕ 1 (•, s) in C 1,1 -topology. Proposition 4.6 ([56,Section 2.4]). The ε-geodesics are decreasing to the weak geodesic.

4.3

Distance on H and on E 2

In this section, following [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF][START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF], we dene a natural distance d on H for which we give a nice expression in Proposition 4.8. Then, we extend the distance d to E 2 (M, ξ, dη).

Distance for Smooth potentials

Recall that we dened a Riemannian metric on H for which the length of a smooth path φ t ∈ H is given by:

l(φ) := 1 0 M ( φt ) 2 η ∧ dη n φt dt.
P. Guan and X. Zhang [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]Theorem 3] proved that the length of the weak geodesic induces a distance. A straightforward consequence of [START_REF] Guan | Regularity of the geodesic equation in the space of Sasakian metrics[END_REF]Theorem 3 and Equation (7.15)] is that this length is equal to: d(φ 0 , φ 1 ) = inf {l(φ) | φ is a smooth path joining φ 0 and φ 1 } . In particular, d is a distance on H and we have: Proposition 4.7 ([41,Equation (7.15)]). Let φ 0 , φ 1 ∈ H and φ ε t be the ε-geodesic between φ 0 and φ 1 then:

d(φ 0 , φ 1 ) = lim ε→0 1 0 M ( φε t ) 2 η ∧ dη n φ ε t dt.
The following will be of a great use in the proof of Theorem 4.12.

Proposition 4.8. Given φ 0 , φ 1 ∈ H and φ t be the weak geodesic and φ ε t the ε-geodesic between φ 0 and φ 1 , one has:

∀t ∈ [0, 1], d(φ 0 , φ 1 ) 2 = M ( φt ) 2 η ∧ dη n φt = lim ε→0 M ( φε t ) 2 η ∧ dη n φ ε t .
Proof. P. Guan and X. Zhang [41, Theorem 1] showed that there exists a constant C independent of ε such that

||φ ε t || C 2 w ≤ C.
We set e ε (t) := M ( φε

t ) 2 η ∧ dη n φ ε t
. Thus, using [START_REF] Boyer | On Sasakian-Einstein geometry[END_REF] we have:

de ε dt = 2 ∇ φε t φε t , φε t φ ε t = 2ε M φε t η ∧ dη n ≤ 2εC Vol(M ) := 2εC M η ∧ dη n .
For any xed t ∈ [0, 1], this gives: |l(φ ε ) -e ε (t)| → 0. But, using the estimate of Proposition 4.5 and Ascoli theorem gives a subsequence such that φε t → φ t uniformly. We also have the weak convergence of measures [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Proposition 3.1]: Suppose that u j ∈ P SH(M, ξ, dη) ∩ L ∞ decreases to u ∈ P SH(M, ξ, dη) ∩ L ∞ then η ∧ dη n u j → η ∧ dη n u in the weak sense of measures. This, with Proposition 4.7 gives the result.

Extension of d to E 2

As in the Kähler setting, using smooth approximations given by Proposition 4.2 one can extend the distance dened on H to E 2 (M, ξ, dη). Given φ 0 , φ 1 ∈ E 2 (M, ξ, dη), and φ k 0 , φ k 1 ∈ H decreasing respectively to φ 0 , φ 1 , we set d(φ 0 , φ 1 ) := lim k→∞ d(φ k 0 , φ k 1 ). W. He and J. Li proved [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Lemma 4.6] that the denition above is independent of the choice of the approximate sequences. They also extended T. Darvas results to Sasakian manifolds and in particular showed (E 2 (M, ξ, dη), d) is the metric completion of (H, d) ([45, Theorem 2]). Additionally, one can consider t → φ k t ∈ H ∆ the weak geodesic between φ k 0 and φ k 1 . This is a decreasing sequence (this follows from the maximum principle [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Lemma 4.1]). We set, for t ∈ (0, 1):

φ t := lim k→∞ φ k t .
Using these notations, W. He and J. Li proved the following: Proposition 4.9 [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF]Lemma 4.7]). The map t → φ t is a geodesic segment in the sense of metric spaces. In particular, for all l ∈ (0, 1), d(φ 0 , φ l ) = l d(φ 0 , φ 1 ). We rst prove a CAT(0)-type inequality for H (Theorem 4.12) and then extend it to E 2 (M, ξ, dη) (Theorem 4.13). The proof is adapted from the Kähler case done by E. Calabi and X. X. Chen [17, Theorem 1.1] and T. Darvas [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF].

Denition 4.11 (CAT(0) spaces [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]). A geodesic metric space (X, d) is said to be non-positively curved in the sense of Alexandrov if for any distinct points q, r ∈ X, there exists a geodesic γ : [0, 1] → X joining q, r such that for any a ∈ γ and p ∈ X the following inequality is satised:

d(p, a) 2 ≤ λd(p, r) 2 + (1 -λ)d(p, q) 2 -λ(1 -λ)d(q, r) 2 .
Where λ = d(q,a) d(q,r) < 1.

In this manuscript, we only give this suitable denition of CAT(0) spaces. We refer to [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF] for more about CAT(0) spaces. Theorem 4.12. Given p, q, r ∈ H and λ ∈ (0, 1). If we denote φ qr the weak geodesic segment between q and r and a ∈ φ qr such that λd(q, r) = d(q, a) then:

d(p, a) 2 ≤ λd(p, r) 2 + (1 -λ)d(p, q) 2 -λ(1 -λ)d(q, r) 2 .
It is worth mentioning that one cannot say that H is a CAT(0) space since the element a above only lies in H ∆ (H is not a geodesic metric space).

Proof. We x ε, ε > 0. And three potentials p, q, r ∈ H. Proposition 4.5 applied to the constant path φ 0 ≡ p and φ 1 the ε -geodesic joining q to r gives a two-parameter family of curves: φ(., t, s, ε). Recall that for xed s, the path t → φ(., t, s, ε) is a ε geodesic. We denote X = ∂φ ∂t and Y = ∂φ ∂s . Finally, we write E(s) the total energy of the ε-geodesic between p and φ(., 1, s, ε): E(s) := 1 0 X, X φ dt.

Let's compute the rst derivative of E.

1 2 dE ds = 1 2 1 0 ∂ ∂s X, X φ dt = 1 0 ∇ Y X, X φ dt = 1 0 ∂ ∂t X, Y φ -∇ X X, Y φ dt = X, Y φ | t=1 - 1 0 ∇ X X, Y φ dt.
The last term in the above equation can be written thanks to (8) as:

1 0 M Y ∇ X Xη ∧ dη n φ dt = ε 1 0 M ∂φ ∂s η ∧ dη n dt.
Thus,

1 2 dE ds = X, Y φ | t=1 -ε 1 0 M ∂φ ∂s η ∧ dη n dt.
Before computing the second derivative of E, we prove that, at t = 1:

Y, ∇ X Y φ ≥ Y, Y φ . (10) 
Indeed, setting H = η∧dη n η∧dη n φ , since the sectional curvature is negative and In the above computation we used Stokes' theorem. Therefore,

∇ X Y = ∇ Y X, 1 2 
∂ 2 ∂t 2 Y, Y φ = ∇ Y X, ∇ X Y φ + ∇ X ∇ Y X, Y φ = ∇ X Y, ∇ X Y φ + ∇ Y ∇ X X, Y φ -K(X, Y ) ≥ ∇ X Y, ∇ X Y φ + ε ∇ Y η ∧ dη n η ∧ dη n φ , Y φ ≥ ∇ X Y
1 2 ∂ 2 ∂t 2 Y, Y φ ≥ ∇ X Y, ∇ X Y φ .
This shows that t → |Y (t)| φ (norm associated to g φ ) is convex. But Y (0) = 0 so we get the claim [START_REF] Boyer | Einstein metrics on spheres[END_REF]. We can now compute the second derivative of E(s):

1 2

d 2 E ds 2 = d ds X, Y φ -ε 1 0 M ∂ 2 φ ∂s 2 η ∧ dη n dt = ∇ X Y, Y φ | t=1 + X, ∇ Y Y φ | t=1 -ε 1 0 M ∂ 2 φ ∂s 2 η ∧ dη n dt ≥ Y, Y φ | t=1 + M ∂φ ∂t ≥-C ∇ Y Y η ∧ dη n φ =ε η∧dη n | t=1 -ε 1 0 M ∂ 2 φ ∂s 2 ≤C η ∧ dη n dt ≥ Y, Y φ | t=1 -(ε + ε )C Vol(M ).
Where we used the fact that φ 1 = φ(., 1, s, ε) is an ε -geodesic, and the estimates of Proposition 4.5. But Y, Y φ | t=1 is exactly the energy of the ε -geodesic joining q and r which we denote E ε (qr) . Thus, we nally have: But φ 1 (., s) being on the ε -geodesic φ 1 , denoting φ qr the weak geodesic segment between q and r, we have that φ 1 (., s) decreases to φ qr (s) as soon as ε → 0. So Proposition 4.10 gives that d(p, φ 1 (., s)) → d(p, φ qr (s)), and thus: d(p, φ qr (s)) 2 ≤ (1 -s)d(p, q) 2 + sd(p, r) 2 + (s 2 -s)d(q, r) 2 .

The conclusion follows from Proposition 4.9.

Theorem 4.13. E 2 (M, ξ, dη) is a CAT(0) space. Proof. Let p, q, r ∈ E 2 (M, ξ, dη). We consider decreasing approximations: p k , q k , r k ∈ H. Theorem 4.12 gives:

d(p k , φ q k r k (s)) 2 ≤ (1 -s)d(p k , q k ) 2 + sd(p k , r k ) 2 + (s 2 -s)d(q k , r k ) 2 .
where φ q k r k ∈ H ∆ is the weak geodesic between q k and r k which decreases to the metric geodesic dened by (4.3.2). Using Proposition 4.10 gives the CAT(0) inequality for E 2 (M, ξ, dη) since φ qr is a geodesic in the metric sense according to Proposition 4.9.

Denition 2 . 2 .

 22 Given a complex manifold (C, I), a Kähler cone metric on (C, I) is a (1, 1)-form of the form dd c r 2 2

Following [ 9 ,

 9 Section 7], one can dene basic operators d B , ∂ B , ∂ B and their associated cohomologies. In this context, a ∂ B ∂ B -lemma holds: Lemma 2.5 ([9, Lemma 7.5.6]). Let M be a compact Sasakian manifold. Let ω and ω be closed, basic cohomologous (1, 1)-forms. Then there exists a function φ ∈ C ∞ B (M ) such that ω = ω +i∂ B ∂ B φ.

Proposition 4 . 2 (

 42 [START_REF] He | Geometric pluripotential theory on Sasaki manifolds[END_REF] Lemma 3.1]). Given u ∈ P SH(M, ξ, dη), there exists a sequence u k ∈ H decreasing to u.

  ds 2 ≥ E ε (qr) -(vε + ε )C Vol(M ).

  This implies:E(s) ≤ (1 -s)E(0) + sE(1) + (s 2 -s) E ε (qr) -(ε + ε )C Vol(M ). Now, we x s and let ε → 0. Proposition 4.8 gives ;d(p, φ 1 (., s)) 2 ≤ (1 -s)d(p, q) 2 + sd(p, r) 2 + (s 2 -s)E ε (qr) -ε C Vol(M )(s 2 -s).

  )). Remark 2.7. Using the fact that the (2n + 1)'th basic cohomology group is trivial on a (2n + 1)dimensional Sasakian manifold [9, Proposition 7.2.3], one gets:

  47, Equation 2.4.1] in terms of Monge-Ampère equation (see for example [43, Section 15.2.2.1]), we see that φ t is a geodesic in H(CP 1 , 2ω F S ), indeed: on C 2 , dd c log(1 + |ζ| 2 |z| 2 ) 2 = 0. Thus φ t • H is a geodesic in H. Note that, on CP 1 , in terms of metrics, this geodesic goes from ω F S to C ω F S where C : [z 0 : z 1 ] → [z 0 : ez 1 ] is a conformal map on CP 1 . 4 Geometry of the Metric Completion of H

	4.1	Plurisubharmonic Functions

  Proposition 4.10 ([45, Lemma 4.11]).Let u ∈ E 2 (M, ξ, dη). If u k ∈ E 2 (M, ξ, dη) decreases to u then, d(u k , u) → 0.

	4.4	Non-Positive Curvature

  , ∇ X Y φ + ε

	=	ε 4 M	g φ ∇	∂φ ∂s	H , ∇	∂φ ∂s	-	∂φ ∂s	g φ ∇H, ∇	∂φ ∂s	η ∧ dη n φ
	=	ε 4 M	g φ ∇	∂φ ∂s	, ∇	∂φ ∂s	η ∧ dη n ≥ 0.
												M	∂φ ∂s	∂H ∂s	-	1 4	g φ ∇H, ∇	∂φ ∂s	η ∧ dη n φ .
	On the other hand:					∂H ∂s	η ∧ dη n φ + nHη ∧ dd c ∂φ ∂s	∧ dη n-1 φ	= 0.
	Thus the last term above simplies in		
	-nε	M	∂φ ∂s	Hη ∧ dd c ∂φ ∂s	∧ dη n-1 φ	-	ε 4 M	∂φ ∂s	g φ ∇H, ∇	∂φ ∂s	η ∧ dη n φ
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