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Abstract. We study the motion of a one-dimensional run-and-tumble particle with

three discrete internal states in the presence of a harmonic trap of stiffness µ. The three

internal states, corresponding to positive, negative and zero velocities respectively,

evolve following a jump process with rate γ. We compute the stationary position

distribution exactly for arbitrary values of µ and γ which turns out to have a finite

support on the real line. We show that the distribution undergoes a shape-transition

as β = γ/µ is changed. For β < 1, the distribution has a double-concave shape and

shows algebraic divergences with an exponent (β − 1) both at the origin and at the

boundaries. For β > 1, the position distribution becomes convex, vanishing at the

boundaries and with a single, finite, peak at the origin. We also show that for the

special case β = 1, the distribution shows a logarithmic divergence near the origin

while saturating to a constant value at the boundaries.

1. Introduction

Recent years have seen a surge of interest in the study of active matter and active

particles. The term ‘active particle’ refers to a class of self-propelled particles which

can generate dissipative directed motion by consuming energy directly from their

environment [1–6]. Examples of active matter can be found in nature at all length

scales, ranging from micro-organisms like bacteria [7, 8] to granular matter [9, 10],

flock of birds [11, 12] and fish-schools [13, 14]. Apart from a diverse set of novel

collective behaviours like clustering [15–17], motility induced phase separation [18–20],

and absence of well defined pressure [21], active particles show many intriguing features

even at the single particle level. One such interesting feature is that, in the presence

of external potentials and confining boundaries, active particles show very different

behaviour than their passive counterparts, including non-Boltzmann stationary state,

clustering near the boundaries of the confining region [22–26] and unusual relaxation

and persistence properties [27–29]. There have been numerous recent studies focusing on

the behaviour of active particles in the presence of external potentials and confinements,

both theoretical [30–33] and experimental [34–37].
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The theoretical attempts to characterise the behaviour of active particles focus on

studying simple models of such systems. Run-and-tumble particle (RTP) is one of the

most studied models of an active particle. An RTP is an overdamped particle which

moves with a constant speed v0, or ‘runs,’ along the direction of an internal ‘spin’

degree of freedom. The orientation of the spin can change randomly resulting in a

sudden change, or ‘tumble,’ in the direction of motion of the particle. The simplest

example is an RTP moving in one spatial dimension with two possible values of the spin

σ = ±1. In this case, the particle moves with velocity v0 or −v0; the reversal of direction

occurs stochastically with rate γ, with the flipping of the spin σ → −σ. In the presence

of an external potential U(x), the position x(t) of this two-state RTP evolves according

to the Langevin equation,

ẋ = f(x) + v0σ(t) (1)

where f(x) = −U ′(x) is the deterministic force acting on the particle. The spin variable

σ plays the role of the noise, its dichotomous nature giving rise to the ‘activity’. In fact,

it is clear from the auto-correlation 〈σ(t)σ(t′)〉 = e−2γ|t−t′| that σ(t) is a coloured noise

with a finite memory, characterised by the persistence time τ = (2γ)−1. Despite the

apparent simplicity of the model, the two-state RTP shows a lot of intriguing features

typical to active particles including non-Boltzmann stationary distribution [24,27].

For any confining potential, the stationary position distribution of a two-state RTP

is known exactly, and is given by,

Pst(x) ∝ 1

v2
0 − f 2(x)

exp
[
2γ

∫ x

0

dy
f(y)

v2
0 − f 2(y)

]
(2)

up to a normalization constant. The above result was first obtained long ago in the

context of quantum optics [38–41], and later to study the role of coloured noise in

dynamical systems [42]. More recently, it has been re-derived in the context of active

particles [21, 24]. In particular, the stationary distribution (2) has been analysed for

specific confining potentials of the type U(x) ∝ |x|p with p > 0 in Ref. [24]. The case

p = 2 corresponds to a harmonic potential which is of particular interest, not only from

theoretical but also from an experimental point of view [35,37]. For a harmonic potential

U(x) = µx2/2, the stationary distribution (2) simplifies to,

Pst(x) =
2µ

4βB(β, β)v0

[
1−

(
µx

v0

)2
]β−1

(3)

where β = γ/µ and B(u, v) is the beta-function. This distribution is symmetric in x and

has a finite support in the region −v0
µ
≤ x ≤ v0

µ
. Consequently, the particle is confined

within this region in the stationary state. This stationary position distribution shows

an interesting shape-transition as a function of β. For β > 1 the distribution is convex

shaped, with a peak at the origin x = 0 and Pst(x) vanishing at the boundaries x = ±v0
µ
.

On the other hand, for β < 1 Pst(x) has a concave shape with divergences at the

boundaries and a minimum at the origin. For β = 1, the distribution is uniform. Thus

by varying β, one can observe a transition from a double-peaked (at the boundaries) to
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a single-peaked distribution. The double-peaked nature of the distribution for γ < µ

signifies an ‘active phase’, where the persistence time of the spin-orientation is larger

than µ−1, the relaxation time-scale of the potential. On the other hand, γ > µ, i.e.,

when the persistence time is smaller compared to µ−1, corresponds to a passive phase,

where the stationary distribution resembles that of a passive particle in a trap, with a

single peak at the centre of the trap. Indeed, in the diffusive limit when v0 →∞, γ →∞
but keeping the ratio v2

0/2γ = D fixed, the dynamics of the RTP in the harmonic trap

converges to the Ornstein-Uhlenbeck process. This is also exhibited in the stationary

state where the distribution in Eq. (3) converges to a Boltzmann distribution, which in

this case is a simple Gaussian Pst(x) ∝ e−
µ
D
x2 .

It is then natural to ask how the stationary distribution changes if the RTP has

more than two internal states. In fact, an RTP with many internal degrees have been

studied where the internal degrees can take a set of discrete values and evolve following

some discrete jump processes [43,44]. However, most of these studies are numerical and

to the best of our knowledge no analytical results are available for the stationary state

of a multi-state RTP in the presence of an external potential.

In this article, we study a run-and-tumble active particle in one spatial dimension

with three discrete internal states, with positive, negative and zero velocities,

respectively. We show that such a multi-state dynamics naturally arises when one

considers an RTP in higher spatial dimensions and project it to one-dimension. We

calculate exactly the stationary position probability distribution in the presence of a

harmonic potential of strength µ for arbitrary flip-rate γ among the internal states. It

turns out that the presence of the zero-velocity internal state leads to a rich behaviour

of the position distribution P (x). As in the two-state case, it turns out that the shape

of the stationary state distribution is governed by one single parameter

β =
γ

µ
. (4)

We show that P (x) has a finite support on the real line and undergoes a transition

in shape as β = γ/µ is varied : For β < 1, P (x) diverges both at the origin and the

boundaries with the same exponent β − 1. Thus, in this case, the position distribution

has a double-concave shape, with three peaks, namely at the boundaries and the origin.

For β = 1, P (x) shows a logarithmic divergence near the origin. On the other hand, for

β > 1, the distribution converges to a finite value at the origin while it vanishes at the

boundaries, implying a convex shape with a single peak at the origin (see Fig. 2).

2. Model

Our model of a three-state RTP in one-dimension is motivated by a natural “clock-

like” model for a two-dimensional RTP. Let us indeed consider an overdamped particle

moving on a two dimensional (xy) plane with an internal orientational degree of freedom

or ‘spin’ σ associated with it. In the absence of any external potential the particle moves

with a constant speed v0 along the direction of σ, which is a unit vector with four possible
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Figure 1. (a) Schematic representation of the jump process through which the

orientation σ evolves. (b) The equivalent 3-state jump process for σx.

discrete orientations, denoted by E,W,N, S (along ±x and ±y axes respectively). The

spin σ evolves in time following a Markov jump process – its orientation can change via

a rotation of π
2

either clockwise or anti-clockwise, both with rate γ
2
. This jump process is

schematically represented in Fig. 1(a). Additionally, we consider an external harmonic

potential U(x, y) = µ
2
(x2 + y2) which exerts a force f(x, y) = −∇U(x, y) on the RTP.

The time-evolution of the position (x(t), y(t)) of the RTP can be conveniently

expressed in terms of the Langevin equations,

ẋ(t) = − µx(t) + v0σx(t) (5a)

ẏ(t) = − µy(t) + v0σy(t) (5b)

where σx,y(t) are components of the spin vector σ(t) at any time t, along the x and y

axes respectively (see Fig. 1(a)).

The position probability distribution P(x, y, t) is given by the sum P(x, y, t) =∑
σ Pσ(x, y, t) where Pσ(x, y, t) denotes the probability that the particle has the position

(x, y) and orientation σ = E,N,W, S at time t. These probabilities evolve according to

the Fokker-Planck (FP) equations,

∂

∂t
PE(x, y, t) =

∂

∂x

[
(µx− v0)PE

]
+

∂

∂y

[
µyPE

]
+
γ

2
(PN + PS)− γPE (6a)

∂

∂t
PN(x, y, t) =

∂

∂x

[
µxPN

]
+

∂

∂y

[
(µy − v0)PN

]
+
γ

2
(PE + PW )− γPN (6b)

∂

∂t
PW (x, y, t) =

∂

∂x

[
(µx+ v0)PW

]
+

∂

∂y

[
µyPW

]
+
γ

2
(PN + PS)− γPW (6c)

∂

∂t
PS(x, y, t) =

∂

∂x

[
µxPS

]
+

∂

∂y

[
(µy + v0)PS

]
+
γ

2
(PE + PW )− γPS (6d)

where we have suppressed the argument of Pσ on the right hand side for the sake of

brevity. It is hard to find an analytical form of P(x, y, t) as these equations are difficult

to solve, even in the stationary state.

However, it is also interesting to look at the x-process only, governed by Eq. (5a).

This describes an effective one-dimensional RTP where the internal spin σx has three

possible discrete values, 1, 0,−1. As illustrated in Fig. 1(a), both σ = N and σ = S

correspond to σx = 0 while σ = E and σ = W corresponds to σx = 1 and σx = −1,

respectively. The jump from σx = 1 to 0 can, thus, occur through two different channels

(E → N and E → S), resulting in a jump rate γ for σx = 1 → σx = 0. Similarly,
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σx = −1 → σx = 0 occurs with rate γ, while 0 → ±1 occurs with rate γ
2

(since there

is only one way to make this transition). This effective 3-state jump process in one-

dimension is schematically shown in Fig. 1(b). Let Pi(x, t) denote the probability that

the RTP is at a position x at time t with σx = i. The corresponding FP equations read,

∂

∂t
P1(x, t) =

∂

∂x
[(µx− v0)P1] +

γ

2
P0 − γP1 (7a)

∂

∂t
P−1(x, t) =

∂

∂x
[(µx+ v0)P−1] +

γ

2
P0 − γP−1 (7b)

∂

∂t
P0(x, t) =

∂

∂x
[µxP0] + γ(P1 + P−1)− γP0. (7c)

We note that this set of FP equations can also be obtained from Eqs. (6a)-(6d)

by integrating both sides over y and then identifying P1(x, t) =
∫

dy PE(x, y, t),

P−1(x, t) =
∫

dy PW (x, y, t), and P0(x, t) =
∫

dy [PN(x, y, t) + PS(x, y, t)].

In the presence of the confining harmonic potential, in the long time limit the RTP

is expected to reach a stationary state where the left hand side (l. h. s.) of the Eqs. (7a)

- (7c) would vanish. The corresponding stationary distributions Pi(x) = limt→∞ Pi(x, t)

then satisfy a set of coupled linear differential equations (obtained by putting ∂Pi
∂t

= 0),

d

dx
[(µx− v0)P1] +

γ

2
P0 − γP1 = 0 (8a)

d

dx
[(µx+ v0)P−1] +

γ

2
P0 − γP−1 = 0 (8b)

d

dx
[µxP0] + γ(P1 + P−1)− γP0 = 0. (8c)

Our objective is to solve this set of equations to find Pi(x) in the stationary state.

Boundary Conditions: To proceed with the solution we first need to specify the

boundary conditions for Pi(x). To determine these boundary conditions, we first note

that, in the stationary state, the RTP is confined within a finite region bounded by

x± = ±v0/µ. This can be understood easily from the following argument: from the

Langevin equation (5a) it is clear that if the particle is outside the region [x−, x+], it

always feels a drift towards the origin, irrespective of the value of σx. As a result, if the

particle starts from some initial position x0 > x+, or x0 < x−, it will eventually reach

the region [x−, x+]. Consequently, the stationary distribution has a finite support in the

region [x−, x+] and it is zero outside. To solve Eqs. (8a) - (8c) then, we need to specify

the boundary conditions at these two points. Let us first look at the behaviour of P1(x)

near x = x−. During an infinitesimal time increment ∆t, P1(x−, t) evolves as,

P1(x−, t+ ∆t) = (1− γ∆t)P1(x− −∆x, t) +
γ

2
∆tP0(x−, t) (9)

where the first term on the right hand side (r.h.s.) represents the transition when the

position of the particle changes by an amount ∆x during interval ∆t, and the second

term corresponds to the case when σx changes from 0 to 1; the pre-factors (1 − γ∆t)

and γ∆t/2 denotes the probabilities for these two occurrences, respectively. Now, in the
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stationary state, the probabilities Pi(x) are independent of time, hence, we have from

(9),

P1(x−) = (1− γ∆t)P1(x− −∆x) +
γ

2
∆tP0(x−) (10)

Moreover, from Eq. (5a) we have, for σx = 1 and near x−, ∆x ' (−µx− + v0)∆t =

2v0∆t > 0, thus P1(x− −∆x) = P1(x− − 2v0∆t) which vanishes in the stationary state,

as the argument x− − 2v0∆t is outside the region [x−, x+]. Then, taking ∆t → 0 limit

in Eq. (10), we get P1(x−) = 0. Using similar arguments for P−1 and P0, one finds the

full set of boundary conditions to be satisfied by the set of equations (8a) - (8c),

P1(x−) = 0, P−1(x+) = 0, P0(x−) = 0, P0(x+) = 0. (11)

Note that the behaviour of P1(x+) and P−1(x−) remain unspecified. The set of bound-

ary conditions for P1 and P−1 is very similar to the case of 2-state RTP [24]. However,

as we will see below, the presence of the third state σx = 0 leads to a richer behaviour

in the present case.

3. Exact Solution

The straightforward strategy to solve a set of coupled first order equations like Eqs. (8a)

- (8c) is to decouple them and find separate equations for Pi(x). However, our primary

goal is to find the marginal position distribution of the particle, i.e., the probability that

the effective one-dimensional RTP has a position x, irrespective of the spin-orientation

σx. This is given by

P (x) = P0(x) + P1(x) + P−1(x). (12)

In the following we attempt to derive an equation for P (x) using Eqs. (8a) - (8c). To

this end, we first define,

Q(x) = P1(x) + P−1(x), and R(x) = P1(x)− P−1(x). (13)

It is straightforward to see that in terms of these functions P and Q, the four boundary

conditions given by Eq. (11) translate to,

P (x+) = Q(x+), and P (x−) = Q(x−) (14)

Note that the boundary conditions of R(x) remain unspecified. We proceed by

expressing Eqs. (8a) - (8c) in terms of these functions P and Q. For this purpose,

we first add equations (8a), (8b) and (8c) to get,

d

dx

[
µxP (x)− v0R(x)

]
= 0 ⇒ µxP (x)− v0R(x) = C (15)

where C is a constant independent of x. To determine C, we substitute x = x+ in the

above equation. Using the definitions of P and R, along with the boundary condition

(11), we get, C = (µx+ − v0)P1(x+) = 0. Hence, from Eq. (15) we have,

R(x) =
µx

v0

P (x) (16)



Exact stationary state of a three-state run-and-tumble particle 7

for all values of x. Now, adding Eqs. (8a) and (8b) and using Eq. (16), we get,

µxP ′(x) + (µ− γ)P (x) = µxQ′(x) + (µ− 2γ)Q(x) (17)

where ′ denotes the derivative with respect to (w.r.t.) the argument of the functions.

Next, we subtract Eq. (8b) from Eq. (8a) to get,

(µx)2P ′(x) + µ(2µ− γ)xP (x) = v2
0Q
′(x). (18)

Eqs. (17) and (18) are two coupled linear differential equations involving P (x) and Q(x).

In the following, we use them to get two separate differential equations for P (x) and

Q(x). But, first, it is convenient to use a change of variable z = (µx
v0

)2 with 0 ≤ z ≤ 1.

Let us denote P̃ (z) = P (x = v0

√
z/µ) and Q̃(z) = Q(x = v0

√
z/µ). Eqs. (17) and (18)

then become,

2zP̃ ′(z) + (1− β)P̃ (z) = 2zQ̃′(z) + (1− 2β)Q̃(z) (19)

zP̃ ′(z) +

(
1− β

2

)
P̃ (z) = Q̃′(z) (20)

where β = γ/µ. The two boundary conditions in Eq. (14) reduce to a single condition

for P̃ and Q̃,

P̃ (z = 1) = Q̃(z = 1) . (21)

As we will see below, this boundary condition is enough to solve the differential equations

uniquely.

To get an equation involving P̃ (z) only, we take derivative of Eq. (19) w.r.t. z.

Then, using Eq. (20), we immediately arrive at a second order differential equation,

z(1− z)P̃ ′′(z) +

[
3− β

2
− 1

2
(7− 3β)z

]
P̃ ′(z)−

(
1− β

2

)(
3

2
− β

)
P̃ (z) = 0 (22)

It is straightforward to check that the above equation is in the form of a hypergeometric

differential equation,

z(1− z)P̃ ′′(z) + [c1 − (a1 + b1 + 1)z]P̃ ′(z)− a1b1P̃ (z) = 0 (23)

with the parameters,

a1 = 1− β

2
; b1 =

3

2
− β; c1 =

3− β
2

. (24)

One can also get a similar second order equation for Q̃(z). To this end, we first express

P ′(z) in terms of Q̃(z) and Q̃′(z), i.e., in a form similar to Eq. (20). Multiplying Eq. (19)

by (1− β
2
) and Eq. (20) by (1− β), and subtracting the latter resulting equation from

the former, we get,

zP̃ ′(z) = (1− 2β)

(
1− β

2

)
Q̃− [1− β − (2− β)z]Q̃′(z) (25)

Taking a derivative of Eq. (20) and using Eq. (25), we get,

z(1− z)Q̃′′(z) +

[
1− β

2
− 1

2
(5− 3β)z

]
Q̃′(z)−

(
1− β

2

)(
1

2
− β

)
Q̃(z) = 0 (26)
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Clearly, this is also a hypergeometric differential equation of the form (23), but with a

different parameter set,

a2 = 1− β

2
= a1, b2 =

1

2
− β = b1 − 1, c2 =

1− β
2

= c1 − 1. (27)

3.1. Position distribution for β 6= 1

The general solutions for Eqs. (22) and (26) can be written in terms of the

hypergeometric function 2F1(a, b, c; z) [45]. For c1 6= 1, i.e., for β 6= 1, these general

solutions read,

P (z) = A1 [2F1(a1, b1, c1; z)] +B1z
1−c1 [2F1(a1 − c1 + 1, b1 − c1 + 1, 2− c1; z)] (28)

Q(z) = A2 [2F1(a2, b2, c2; z)] +B2z
1−c2 [2F1(a2 − c2 + 1, b2 − c2 + 1, 2− c2; z)] (29)

where A1, A2, B1, B2 are arbitrary constants. The case β = 1 is special, which we discuss

later. To determine the constants A1, A2, B1, B2, we first use the original first order

equations (19) and (20) which must be satisfied by the solution. Substituting Eqs. (28)

and (29) in Eq. (20) and using well known identities involving the hypergeometric

function, we get, B2 = B1

1+β
and A2 = A1(1−β)

1−2β
. Next, we impose the boundary condition

(21). Once again, using properties of hypergeometric functions, we get

B1 =
2A1√
π

Γ(3−β
2

)Γ(1
2

+ β)

(1− 2β)Γ(1+β
2

)
(30)

To completely specify P̃ (z) we still need A1 which can be determined using the

normalization condition,∫ x+

x−

dx P (x) = 1⇒
∫ v0/µ

0

dx P̃

[(
µx

v0

)2
]

=
1

2
. (31)

Fortunately, this integral can be performed analytically and yields,

A1 =
µ

2v0

[
3F2

(
1
2

3
2
− β 1− β

2
3
2

3−β
2

; 1

)
− 1

β
√
π

Γ(3−β
2

)Γ(β − 1
2
)

Γ(1+β
2

)
3F2

(
1
2

1− β
2

β
2

1+β
2

β
2

+ 1
; 1

)]−1

(32)

where pFq(
a1,a2,...ap
b1,b2,...bq

; z) denotes the generalized hypergeometric function [45]. Finally, we

can write an explicit expression for the stationary position probability distribution,

P (x) = A1

[
2F1

(
1− β

2
,
3

2
− β, 3− β

2
;

(
µx

v0

)2
)

+
2√
π

Γ(3−β
2

)Γ(β + 1
2
)

(1− 2β)Γ(β+1
2

)

(
µx

v0

)β−1

2F1

(
1

2
, 1− β

2
,
β + 1

2
;

(
µx

v0

)2
)]

(33)

where the normalization constant A1 is given by Eq. (32). Note that, P (x) is an even

function of x and it depends on the flip rate γ comes through the ratio β = γ/µ only.
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P (x) takes particularly simple form for certain specific values of β,

P (x) =


Γ( 3

4
)

√
πΓ( 1

4
)

√
µv0√

|x|(v20−µ2x2)
for β = 1

2

µ
v0

(1− µ|x|
v0

) for β = 2

6µ
5v0

[
1− 5(µx

v0
)2 −

(
µ|x|
v0

)3 (
(µx
v0

)2 − 5
)]

for β = 4.

(34)

One can also write an explicit expression for Q(x) using Eqs.(29) and (30),

Q(x) =
A1

(1− 2β)

[
(1− β) 2F1

(
1− β

2
,
1

2
− β, 1− β

2
;

(
µx

v0

)2
)

+
2√
π

Γ(3−β
2

)Γ(β + 1
2
)

(1 + β)Γ(β+1
2

)

(
µx

v0

)β+1

2F1

(
1

2
, 1− β

2
,
β + 3

2
;

(
µx

v0

)2
)]

. (35)

From Eqs. (33) and (35) and using the relation (16) between P (x) and R(x) we can

also calculate Pi(x) individually in a straightforward manner. However, we do not give

explicit expressions for them here. Figure 2(a) and (c) show plots of P (x) as a function

of x for different values of β calculated from Eq. (33) along with the data obtained from

numerical simulations. It appears that, similar to the 2-state RTP, the distribution

shows two different behaviours near the boundary x = x± depending on the value of β.

Moreover, it appears from the plots that for β < 1, P (x) also diverges near the origin

x = 0 while it shows a cusp-like behaviour for large β. In the following we investigate

the behaviour of P (x) in more details and characterise this change in shape.

Behaviour near x = 0: To understand the behaviour of P (x) near the origin we use

the series expansion of the hypergeometric function 2F1(a, b, c; z) near z = 0,

2F1(a, b, c; z) = 1 +
ab

c
z +

ab(1 + a)(1 + b)

2c(1 + c)
z2 +O(z3) (36)

Using this expansion in Eq. (33), we have, near x = 0,

P (x) ∼


B1

(
µ
v0
x
)β−1

for β < 1

A1(1− C1x
β−1) for 1 < β < 3

A1(1− C2x
2) for β > 3

(37)

where B1 and A1 are given respectively in Eqs. (30) and (32) while C1 and C2 are

given by

C1 =
2√
π

Γ(3−β
2

)Γ(β + 1
2
)

(2β − 1)Γ(β+1
2

)

(
µ

v0

)β−1

, (38)

C2 =
2β2 + 6− 7β

2(β − 3)

(
µ

v0

)2

. (39)

Clearly, for β < 1, P (x) diverges near the origin whereas for β > 1 it approaches a

finite value. The approach also depends on the value of β : for 1 < β < 3, P (x) has

a cusp-like behaviour near the origin while for β ≥ 3 it shows a quadratic behaviour,
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Figure 2. Stationary position distribution P (x) as a function of x for the 3-state model

for (a) β < 1, (b) β = 1, and (c) β > 1. Here v0 = 1 and µ = 1. The symbols correspond

to the data obtained from numerical simulations while solid lines are obtained from

the exact result [see Eq. (33) and Eq. (46)].

resembling a Gaussian around the origin. Indeed, in the diffusive limit, when γ → ∞
and v0 →∞ keeping v2

0/(2γ) = D fixed (as a consequence β →∞ in this limit), we find

from Eq. (39) that C2 → µ/(2D). As a result, from the third line of (37), we recover

the Boltzmann distribution P (x) ∼ e−µ/(2D)x2 which actually holds for all x.

Behaviour near x = x±: The position distribution P (x) also shows an interesting

behaviour near the boundaries x = x±. As P (x) is symmetric in x, it suffices to

explore its nature near one boundary, say x+. To characterise the same we use the

series expansion of 2F1(a, b, c; z) near z = 1. From Eq. (28), we have, for z → 1−,

P̃ (z) ∼


(1− z)β−1 for β < 3

(1− z)2 for β > 3

.

(40)

Hence, near x = x+, we have the following behaviour of P (x) :

P (x) ∼


(x+ − x)β−1 diverges for β < 1

(x+ − x)β−1 vanishes for 1 < β ≤ 3

(x+ − x)2 vanishes for β > 3 .

(41)

A similar behaviour is seen also near x = x−. Note that this “freezing” for the leading

behaviour for β > 3 occurs only for the three-state model, but not for the two-state

model [24].

3.2. Position distribution for β = 1

As mentioned before, the case β = 1 is special. In this case, the differential

equations (22) and (26) reduce to,

z(1− z)P̃ ′′(z) + (1− 2z)P̃ ′(z)− 1

4
P̃ (z) = 0 (42)

z(1− z)Q̃′′(z)− zQ̃′(z) +
1

4
Q̃(z) = 0. (43)
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which correspond to two hypergeometric equations with c1 = 1 and c2 = 0, along with

a1 = a2 = b1 = 1/2, b2 = −1/2. Eq. (28) is not a general solution anymore as the

two hypergeometric functions therein become identical. We use Mathematica to solve

Eqs. (42) and (43) and it turns out that the general solutions can be expressed in the

form,

P̃ (z) =
2A1

π
K(1− z) +B1Q− 1

2
(2z − 1) (44)

Q̃(z) = A2z 2F1

(
1

2
,
3

2
, 2; z

)
+B2 G

20
22

(
1
2

3
2

0 1
; z

)
. (45)

Here K(u) is the Legendre’s complete elliptic integral of the first kind (see Ref. [46]

and Eq. 19.2.8 in Ref. [45]), Gmn
pq (a1,...ap

b1...bq
; z) is the Meijer’s G-function (see Ref. [46] and

Eq. 16.17.1 in Ref. [45]) and Qν(u) is the Legendre function of the second kind (see

Eq. 14.3.7 in Ref. [45]).

To determine the arbitrary constants A1, A2, B1 and B2 we use the same strategy

as in the previous section. First, we note that the solutions in Eqs. (44) and (45) must

satisfy the original first order equations (19) and (20) with β = 1 for all values of z. We

then look at the behaviour of P̃ (z) and Q̃(z) in Eqs. (44) and (45) near z = 0. In this

limit both K(1− z) and G20
22

(
1
2

3
2

0 1
; z
)

diverge logarithmically whereas the Legendre and

hypergeometric functions approach a constant value. Substituting the series expansions

of these functions back into Eq. (20) and comparing coefficients of ln z and different

powers of z, we get, B2 = A1, and A2 = −π
4
B1. It is also straightforward to check

that Eq. (19) gives the same relation. We still have two independent constants A1

and B1. To determine these we use the boundary condition (21). Using the limiting

behaviours of the special functions we have, for z → 1−, P̃ (z)− Q̃(z) = B1 +O(1− z)

which immediately implies B1 = 0 [see Eq. (21)]. The last remaining constant A1 can

be determined from the normalization condition (31) and yields A1 = µ
πv0
. Finally, we

have, for β = 1,

P (x) =
2µ

π2v0

K

(
1− µ2x2

v2
0

)
, and Q(x) =

µ

πv0

G20
22

(
1
2

3
2

0 1
;
µ2x2

v2
0

)
. (46)

Figure 2(b) shows a plot of P (x) for β = 1 together with the same obtained from

numerical simulations. To understand the behaviour near the origin x = 0 and the

boundaries x = x± we look at the series expansion of P (x). Near x = 0, a logarithmic

divergence is seen, P (x) ∼ − lnx. On the other hand, near the boundaries x = x±, P (x)

approaches a constant value, limx→x± P (x) = µ
πv0
.

4. Conclusion

In this paper, we have solved exactly the stationary position distribution of a one-

dimensional run-and-tumble (RTP) particle with three discrete internal states and

subjected to an external harmonic potential. To our knowledge, this is the first exact

solution with three states that generalizes the well-known result for the standard two-

state RTP. We showed that the stationary state exhibits a rich behavior as a function of
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the single parameter β = γ/µ (where γ represents the rate at which the internal state

changes and µ is the stiffness of the trap). One of the interesting outcomes is that the

stationary distribution undergoes a shape-transition at β = 1.

While we were able to characterise the stationary state of a three-state RTP in

a harmonic trap exactly, it would be interesting to study the relaxational dynamics

towards this stationary state, as was recently done for the two-state RTP [24]. It would

also be natural to extend our studies to non-harmonic potentials, such as U(x) ∼ |x|p,
with p > 0. Another natural extension would be to consider an RTP particle with more

than 3 internal states. Finding even the stationary state of a general n-state RTP with

n > 3 remains a challenging open problem.
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