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Introduction 1

Prediction might be difficult when it's about the future,2 but as we argue here, it can also be a daunting task when it comes to the past.

In most natural and engineering sciences, models are routinely compared to observations; cf. e.g. [START_REF] Legates | Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[END_REF] in hydrology, [START_REF] Brisson | STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize[END_REF] in agronomy and [START_REF] Dudhia | A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front[END_REF] in climate science. For example, all climate models used for IPCC reports have been run using past forcing data (greenhouse gas concentrations, solar irradiance, volcanism…). International model intercomparison projects like CMIP3 gather many modelling teams and provide them with a set of standard scenarios, tools and observational data, so that model outputs can be compared to one another, and to observations. Indeed comparing outputs of retrospective simulations to observations -a method referred to as "hindcasting", "backtesting", "predictive validation" or "cross-validation"is essential to determine how well these models incorporate different parts of the climate system. This helps build confidence in model projections and identify model limitations that should be addressed in future research.

Such comparisons between retrospective simulations and observations are infrequent in economics, as highlighted by several researchers (Vallenzuela et al., 2007;[START_REF] Beckman | Validating energy-oriented CGE models[END_REF][START_REF] Baldos | Looking back to move forward on model validation: insights from a global model of agricultural land use[END_REF][START_REF] Northcott | Prediction versus accommodation in economics[END_REF], in particular in energy economics. Energy-economy models include parameters calibrated or econometrically estimated on past data, but their ability to replicate past evolutions is rarely assessed [START_REF] Beckman | Validating energy-oriented CGE models[END_REF].

This scarcity of hindcasting exercises may be primarily explained by the lack of observational data against which to compare simulations, as noted by [START_REF] Chaturvedi | Model evaluation and hindcasting: An experiment with an integrated assessment model[END_REF]. Moreover, the exercise has its own limitations, since the ability of a model to replicate past observations does not prove it a relevant tool for long-term projections [START_REF] Calvin | A hindcast experiment using the GCAM 3.0 agriculture and land-use module[END_REF][START_REF] Oreskes | Evaluation (not validation) of quantitative models[END_REF]. Conversely, any inconsistency between simulations and observations at one point in time may be due to factors unlikely to happen again in the future, a point which we address in section 5 below. Despite these limitations, the scarcity of hindcasting exercises has raised severe criticism. For instance, [START_REF] Kehoe | An Evaluation of the Performance of Applied General Equilibrium Models of the Impact of NAFTA[END_REF] writes "it is the responsibility of modelers to demonstrate that their models are capable of predicting observed changes, at least ex post. If a modeling approach is not capable of reproducing what has happened, we should discard it." [START_REF] Koomey | Improving long-range energy modeling: A plea for historical retrospectives[END_REF] make the point more bluntly: "One of the most striking things about forecasters is their lack of historical perspective. They rarely do retrospectives, even though looking back at past work can both illuminate the reasons for its success or failure, and improve the methodologies of current and future forecasts".

A few hindcasting exercises based on economic models (mostly applied to energy, trade policies or agriculture and land-use) and published in the last ten years (cf. section 2 below) have started to close this research gap. We contribute to this burgeoning field by hindcasting and evaluating Res-IRF, an integrated energy-economy model of the French residential sector [START_REF] Giraudet | Exploring the potential for energy conservation in French households through hybrid modelling[END_REF]. 4 As this task was confronted to the above-mentioned lack of past data to initiate the model (the repartition of the dwelling stock by energy efficiency class), we had to reconstruct historical data in a preliminary step.

Reducing energy consumption and CO2 emissions in this sector is essential to tackle climate change since the share of the residential sector in global final energy consumption amounts to 22%5 in 2013 and "global building energy consumption could increase by 50% to 2050 without assertive energy efficiency action" (IEA, 2016). The Res-IRF model is meant to incorporate the main relevant policies (taxes, subsidies and regulations) and the main drivers of energy consumption in this sector: construction, destruction and thermal renovation flows, fuel switch and occupants' behaviour (e.g. thermostat setting).

We find that the model qualitatively replicates the main observed trends but quantitatively underestimates some of them. This is true in particular for energy consumption per m² (except for dwelling oil-heated) and for the switch from fuel-oil to natural gas.

We then perform a sensitivity analysis on 8 parameters and select two simulations out of 1 920, based on their closeness to observations. We discuss possible explanations for remaining discrepancies and whether they would affect long-term projections in any relevant way. Some causes are unlikely to appear in the future while others could, and those should be focused on in future research.

The rest of the article is structured as follows. Section 2 reviews related hindcasting exercises conducted in the building sector. Section 3 presents the model, the observational data and the metrics we use to assess the model performance. Results are presented in section 4, Section 5 provides a broader discussion and section 6 concludes.

Literature review

To our knowledge, only three hindcasting exercises analysing energy consumption in the buildings or residential sector have been published: [START_REF] Chaturvedi | Model evaluation and hindcasting: An experiment with an integrated assessment model[END_REF][START_REF] Fujimori | Global energy model hindcasting[END_REF][START_REF] Ruijven B Van, De Vries | A global model for residential energy use: uncertainty in calibration to regional data[END_REF]. [START_REF] Chaturvedi | Model evaluation and hindcasting: An experiment with an integrated assessment model[END_REF] evaluate the global integrated assessment model GCAM, and focus on its buildings component in the USA, one of its 32 regions. The authors calibrate the model for 1990 and compare simulation results to historical estimates for 1995, 2000, 2005 and 2010. They compare in particular the evolution of residential and commercial floorspace, as well as the energy demand disaggregated by fuel, US state and energy service. The model accurately replicates the observed increase in residential floor space. It also accurately replicates the observed decrease in residential heating final energy per m² (which is also a central output variable in our model), though at a slower 4 than observed rate. This is true for the three modelled heating fuels (gas, fuel-oil and electricity). As we shall see, our findings are very similar, a pattern we try to explain in section 5.

Another point made by the authors is "that the creation of a historical evaluation dataset is one of the foremost challenges in the evaluation process." As explained above, we faced the same challenge, and thus agree that it certainly contributes to explaining the above-mentioned scarcity of retrospective studies in economics. [START_REF] Fujimori | Global energy model hindcasting[END_REF] analyse the computable general equilibrium (CGE) model AIM. They compare the simulated and observed energy consumption, at the world and regional levels, from 1981 to 2010. For Europe, as shown is the online Supporting Information to their article, the simulated building energy demand is close to observations for all fuels taken together and for electricity taken in isolation, but less so for gas and solid fuels. Moreover the simulations do not replicate the observed downward trend in liquid fuels. [START_REF] Ruijven B Van, De Vries | A global model for residential energy use: uncertainty in calibration to regional data[END_REF] quantify uncertainty in the calibration of TIMER 2.0, a system dynamics model that simulates developments in global energy supply and demand. The authors focus on the effect of residential energy use at the regional scale for the period 1970-2003. For Western Europe, the model replicates the stability of residential fuel consumption for the period considered, but fuel consumption is not disaggregated across energies. It also replicates the observed growth in residential electricity consumption but not the slowdown observed in the second half of the period. Some hindcasting exercises have also been conducted for energy-economy models which do not focus on the building sector. [START_REF] Guivarch | The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model[END_REF] use the oil price spike of 2008 to assess the Imaclim-R recursive CGE model. They compare the simulated and observed evolution of macroeconomic variables for a major oil importer (India). The model is found to overestimate the recessionary impact of the oil shock. The authors identify three mechanisms originally not included in their model, the inclusion of which reduces the gap between simulated and observed outputs. These three mechanisms are an increase in capital inflows, subsidies to domestic oil consumers and the rise of India as an exporter of refined products. The authors consider that these mechanisms are "bound to remain short-term" so "it appears acceptable not to embark these mechanisms in [their] modeling architecture when analysing long-term and global evolutions." We discuss this point further in section 5 below. [START_REF] Beckman | Validating energy-oriented CGE models[END_REF] analyse the CGE model GTAP-E. By comparing the variance of model-generated petroleum price distributions -driven by historical demand and supply shocks to the model -with observed price distributions, they conclude that energy demand in GTAP-E is far too price-elastic. After incorporating the latest econometric estimates of energy demand and supply elasticities, they find the model to perform better. [START_REF] Ruijven B Van, Van Der Sluijs | Uncertainty from model calibration: applying a new method to transport energy demand modelling[END_REF] apply the same analysis as [START_REF] Ruijven B Van, De Vries | A global model for residential energy use: uncertainty in calibration to regional data[END_REF] but with a focus on transportation. They conclude that different model calibrations based on the same data lead to contrasted future projections, with a range in outcomes about 44-79% around the best-fit option.

In closing, we briefly mention some hindcasting exercises performed on economic models with no particular focus on energy. A first set of studies assessing the ability of CGE models to replicate the impact of trade agreements has produced contrasted conclusions [START_REF] Kehoe | An evaluation of the performance of an applied general equilibrium model of the Spanish economy[END_REF][START_REF] Kehoe | An Evaluation of the Performance of Applied General Equilibrium Models of the Impact of NAFTA[END_REF]. A second set of papers focus on agriculture and land-use [START_REF] Baldos | Looking back to move forward on model validation: insights from a global model of agricultural land use[END_REF][START_REF] Calvin | A hindcast experiment using the GCAM 3.0 agriculture and land-use module[END_REF][START_REF] Lotze-Campen | Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach[END_REF][START_REF] Ronneberger | KLUM@GTAP: Spatially-Explicit, Biophysical Land Use in a Computable General Equilibrium Model[END_REF][START_REF] Souty | Modelling economic and biophysical drivers of agricultural land-use change. Calibration and evaluation of the Nexus Land-Use model over 1961-2006[END_REF][START_REF] Snyder | Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module[END_REF][START_REF] Valenzuela | Assessing global computable general equilibrium model validity using agricultural price volatility[END_REF]. On this topic, the Agricultural Model Intercomparison and Improvement Project (AgMIP; [START_REF] Rosenzweig | The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies[END_REF] has the potential to facilitate the development of hindcasting exercises by mutualising methods, tools and datasets, like CMIP for global climate models.

Compared to the above-mentioned existing hindcasting studies, ours is more focused since it only deals with energy consumption from heating, and with one country (France). This allows us to compare model output with observations, not only for energy consumption split by fuel, as most studies do, but also for the building stock split by EPC, main heating fuel, structural character and occupancy status, and also for the number of retrofits. As we shall see, this is useful to better understand the discrepancies between observations and simulations.

Material and methods

The Res-IRF6 model Res-IRF, described in Figure 1, is an integrated energy-economy model of energy use for heating in French dwellings developed at CIRED. Version 1 of the model is presented in [START_REF] Giraudet | Comparing and combining energy saving policies. Will proposed residential sector policies meet French official targets?[END_REF][START_REF] Giraudet | Exploring the potential for energy conservation in French households through hybrid modelling[END_REF], version 2 in [START_REF] Branger | Sensitivity analysis of an energy-economy model of the residential building sector[END_REF] and version 3, the one used here, in [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF]. It simulates the construction and destruction of new dwellings, thermal retrofitting of existing ones, the choice of the energy source in new dwellings, fuel switch in existing dwellings7 , and heating intensity (e.g. thermostat setting). The latter depends positively on household's income and dwelling energy efficiency, and negatively on the energy price. This implies that an energy tax will reduce heating intensity while a subsidy to energy efficiency will increase it (rebound effect).

Figure 1. Simplified representation of the Res-IRF model

Source: authors. The inputs underlined are those subject to the sensitivity analysis.

Res-IRF is run at an annual time step and has a finer resolution (840 categories of dwellings) than that of those peer models that have also been subjected to hindcasting. In particular, Res-IRF distinguishes dwellings along five dimensions: tenancy status (owner-occupied, rented -private homeowner, rented -public homeowner), structural character (single-family vs. multi-family building), main energy source (fuel-oil, natural gas, electricity and fuelwood8 ), household's income, and energy efficiency summarised by the energy performance certificate (EPC) class, from A to G, cf. Table 1. This facilitates the comparison of simulations and observations and the interpretation of observed discrepancies.

The model considers implicit technologies, i.e., it is not detailed if windows are double-glazed and walls have external insulation, but each change from a given energy performance class to a better one (entailed by thermal retrofitting) is associated to an investment costs in €/m². The cost transition matrix is presented in [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF]. The share of dwellings being retrofitted and the ambition of this retrofitting (the EPC class reached) are represented by logit functions, which take into account the discounted cost of the available options, including the investment and energy cost Res-IRF

Main outputs:

• Energy consumption by dwelling category*

• Nb of retrofits, by category * *A dwelling category is defined along 5 dimensions: EPC, household's income class, structural character, main heating energy, occupancy status.

Yearly inputs:

• • • • • • First year Second year

Updated building stock (Nb of dwellings by category*)

Main outputs:

• • Time (net of the various taxes and subsidies) and an intangible cost representing all the non-financial drivers of the investment (aesthetic or acoustic benefit, inconvenience due to the work…) that cannot be estimated. The intangible cost is calibrated so that the model reproduces a given retrofitting rate at the initial year [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF]. The main time-varying exogenous inputs are energy prices, the number of households, households' income, and policies -thermal regulations, energy taxes and energy-efficiency subsidies (Table 2). In previous applications (forward-looking studies), Res-IRF model has been calibrated against year 2012 (using in particular the Phébus survey9 ) and run recursively in annual time steps to 2050 [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF]. For the calibration year, additional inputs are required, especially the state of the building stock, the costs of construction, of retrofitting and of fuel switch.

The different drivers of energy demand are determined endogenously (number of dwellings retrofitted, amount of energy saved thanks to these retrofits and occupants' behaviour), and several barriers to energy efficiency improvements are included (heterogeneity of consumer preferences, landlord-tenant dilemma, inertia of information diffusion, rebound effect). Positive externalities are also taken into account in the form of learning-by-doing (investment costs are reduced when the cumulated investments increase). Calibrated intangible costs mimic the imperfection of information and hidden costs that cannot be modelled explicitly.

Calibrating Res-IRF on the 1984-2012 period

In this work, the model was calibrated against 1984, a year chosen for data availability. Simulations were run until 2012 and outputs were compared to available observations over this period. Contrary to previous applications of Res-IRF, some demographic variables (number of households and share of multi-family vs. single-family buildings) were set exogenously, based on observations (Table 2). The reason is that Res-IRF is first and foremost an energy-economy model and is not aimed at forecasting demographic variables. Thus demographic variables are exogenous in this article, just like energy prices or public policies10 .

The most demanding task was the assessment of the energy efficiency of the dwelling stock at the initial year (1984). The construction of this dataset followed several steps which are explained in more depth in the Appendix:

• The 1984 "National housing survey" (INSEE, Enquête nationale logement) provided the number of dwellings along four dimensions: single vs. multi-family building, tenancy status, heating fuel and income quintile.

• CEREN provided actual final energy consumption per m² split by heating energy source and structural character (single vs. multi-family building).

• The "conventional energy consumption," i.e., the consumption for a standard utilisation of the heating system, was estimated based on the actual one, through the heating intensity function mentioned above. The consumption level obtained defines the belonging to a certain EPC class.

• Obtaining a 4-dimensional stock {decision maker, energy, income, EPC} from 1984 with 13.8 million dwellings as a result of the exploitation of the National housing survey, against 17 million dwellings for CEREN. This difference is due to the deletion in our analysis of some ambiguous data from the housing survey on the nature of the occupant (owner or tenant) and the main heating energy.

• Weighting by energy and type of housing in the stock of 13.8 million to obtain a stock of 17 million by proportionality, in order to be able to compare the stock evolution with CEREN data.

• Transition from occupant income to landlord income (needed for investment decisions in Res-IRF). We finally obtain a dataset of the 1984 dwelling stock with 17 million units arranged by decision maker, structural character, energy, income and EPC. Some exogenous variables were readily available: number of dwellings (split by heating energy source, income quintile & tenancy status), share of multi-family vs. single-family buildings, share of owner-occupied vs. rented dwelling, households' income and energy prices. Table 2 provides the main data sources. The least-known part concerned public policies (thermal regulations and subsidies) and especially the energy efficiency of the dwelling stock at the initial year (1984).

Thermal regulations for new residential buildings have been implemented since 1974 in France, and strengthened several times, with new regulations successively implemented for residential buildings in 1982, 1988, 2000, 2005 and 2012. Only the latter two specify explicit energy consumption limits. For the others, there is no direct correspondence between the requirements of the regulations and the EPC class. Besides, these regulations have been loosely enforced, at least up to the 1990s [START_REF] Martin | La Maîtrise de l'énergie : rapport de l'instance d'évaluation[END_REF]. The lack of ambition (or of enforcement) of these regulations is confirmed by the fact that in 2012, according to the above-mentioned Phébus survey, more than one million dwellings were classified as G, the worst EPC class. Based on these data and discussion with experts, we consider that dwellings built until 2004 are not influenced by thermal regulations while from 2005 onwards all new dwellings reach at least class E of EPC.

Reduced VAT has been in existence since 1999, income tax credit for sustainable development (CIDD) since 2005, Energy-Efficiency Certificates since 2006 and the zero-rate loan since 2009. These three policies are represented in the model as subsidies which reduce the investment cost of retrofitting.

Metrics to assess the model performance

In a first step, we present the results for the model calibrated without the post-1984 data12 thereafter referred to as the preliminary simulation. As highlighted by [START_REF] Calvin | A hindcast experiment using the GCAM 3.0 agriculture and land-use module[END_REF] among others, this is necessary to evaluate the performance of the model for prospective studies. Otherwise the model performance would be artificially boosted, compared to a situation where the model is actually used for forward projections.

To this end we then apply two widely-used (Bennet et al., 2013) evaluation metrics: the Mean Absolute Percentage Error (MAPE) and the coefficient of determination (R²).
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The MAPE is a frequently-used metric for hindcasting exercises (e.g. [START_REF] Calvin | A hindcast experiment using the GCAM 3.0 agriculture and land-use module[END_REF][START_REF] Snyder | Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module[END_REF] and represents the gap in percentage between simulations and observations, averaged over the period13 .

A limitation of the MAPE and similar indicators is that a low value may be due to the fact that observed variables vary little. In this case, a low MAPE only indicates that the model does not suffer from a systematic bias. Hence we also compute the coefficient of determination (R²), following [START_REF] Lotze-Campen | Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach[END_REF]. R² elicits the share of the variance in the observed variable that is explained by the simulated one:
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and respectively the averages of observations and simulations and n the number of observations.

Sensitivity analysis

It is well-known that uncertainties in energy modelling leave room for different calibrations of a model. [START_REF] Ruijven B Van, Van Der Sluijs | Uncertainty from model calibration: applying a new method to transport energy demand modelling[END_REF] carefully discuss this issue using the TIMER global energy model applied to transportation, and "obtain sets of parameter values that perform reasonably against historic data", which is also the aim of this sensitivity analysis.

Therefore, in a second step, we perform a sensitivity analysis on those parameters that could not be precisely determined (Table 3). All combinations are considered, which means that 1 920

(2 * 2 * 2 * 3 * 2 * 5 * 4 * 2) simulations are run. The range of parameters considered results from a compromise between the calculation time (which increases exponentially with the number of parameter values considered) and an attempt to vary the parameters most likely to influence the results significantly.

Among the 1 920 simulations, we single out two of them, in addition to the "preliminary simulation", which is based on the parameters selected before performing the sensitivity analysis.

• The "uni-dimensional optimum" simulation minimizes the MAPE applied to the actual final energy consumption per m², aggregated over all dwelling types, and over the period 1985-2012. We choose this variable because it is the most policy-relevant among our model output variables. Yet such an aggregated quantity may hide significant discrepancies which partially cancel out each other. Thus we also single out another simulation:

• The "multi-dimensional optimum" simulation is also selected using the MAPE over the period 1985-2012, but following a more complex procedure. First, we select the simulations which outperform the preliminary one on twelve dimensions: energy consumption per m² for our six dwelling categories, and number of dwellings for the same six categories. This leaves us with seven simulations. Then among these simulations we select the parameters value which show up the most often. This leaves us with three simulations which only differ by the initial rate of retrofitting: 2.5%, 2.8% or 3%/yr. We finally select the latter for two reasons: it provides a slightly lower MAPE than the other two for aggregated energy consumption, and since the preliminary simulation also features a 3%/yr. retrofitting rate, we conclude that there is no reason to change this value.

Most parameters values are presented in Table 3 for the preliminary and the two "optimum" simulations. The methods as well as the values for the other parameters are explained in Glotin (2018, section 3.5).

In the "uni-dimensional" simulation, compared to the preliminary one, the following parameters are changed. Investment costs for new dwellings become more expensive; the heterogeneity parameter for new dwellings becomes higher, i.e. the EPC for new dwellings becomes more price-sensitive; heterogeneity parameters for both fuel switch and retrofitting become lower, i.e., the choice of an EPC and of a fuel becomes less price-sensitive; the retrofitting rate at the initial year (1984) becomes slightly higher; the repartition of retrofitting by EPC includes less inefficient dwellings (EPC F & G) and more relatively efficient dwellings (EPC D & E); finally, to calculate the impact of retrofitting and fuel switch investments on energy consumption, shorter lifetimes are assumed, in other words investors do not take into account the increased value of the dwelling when they stop occupying them (i.e., after 7 years for owner-occupied dwellings and after 1 year for dwellings rented by a private homeowner).

Concerning the "multi-dimensional" optimum, parameters take the same value as in the preliminary simulation, or the same value as in the "uni-dimensional optimum". Thus, fitting the model on several dimensions would lead us to change fewer values than fitting it just on a single dimension. 

Results

Energy consumption per m²

Table 4, Figure 2 and figure 3 present the actual final energy consumption per m², the variable used to select the "uni-dimensional optimum" simulation and one of those used to select the "multidimensional optimum" simulation. Results at the aggregated level are already satisfactory for the preliminary simulation since the Mean Absolute Percentage Error (MAPE) is lower than 1.5% and the model explains 85% of the variance (Table 4). Graphically, the decreasing trend is consistent with observations (Figure 2). This trend may be explained by an increase in energy prices and the implementation of energy efficiency policies after 2000.

However, observed consumption decreases from around 150 kWh/m² in 1990 to around 100 in 2012 while in the preliminary simulation it starts from the same level but reaches around 120 kWh/m² in 2012. Results are much closer to observations with the uni-dimensional optimum simulation, which can be seen in Figure 2 (lower curve) and by our model performance metrics: MAPE is divided by three, as well as the part of the variance not explained by the model (R² moves from 85% to 96%). The multi-dimensional simulation is roughly half-way between the preliminary and the unidimensional optimum simulation, both graphically (Figure 2) and by looking at the MAPE (Table 4). However disaggregated results are more contrasted (Figure 3). For each of the six dwelling categories, energy consumption decreases faster in the two "optimum" simulations than in the preliminary one. In most cases, the two "optimum" simulations are close one to the other and closer to observations than the preliminary one.

However oil-heated dwellings are an exception on this point: the MAPE is worse for the Unidimensional optimum than for the Preliminary simulation, although the R² is slightly better. For the Multi-dimensional optimum simulation, both metrics are almost equal to those in the Preliminary simulation.

Moreover, all simulations largely underestimate electricity consumption in multi-family buildings, especially at the end of the period; this bias is reflected in the high value of the MAPE for the category, in both the preliminary and the "optimum" simulations. 

Stock evolution per type of dwelling and heating energy source

For each dwelling category, the model simulates the choice of the energy source, both for new and retrofitted buildings. Throughout the period, there has been a massive increase in the number of dwellings heated by natural gas and electricity and a drop in fuel-oil heating, especially in multifamily buildings. Figure 4 shows that the model qualitatively replicates the observed trends. Quantitatively, it accurately replicates the rise in electric heating. For other fuels, simulations are accurate in trend but not in magnitude; specifically, the increase in natural gas and the decrease in fuel oil are largely underestimated, in every simulation. The two "optimum" simulations are close one to the other, the "multi-dimensional optimum being slightly closer to observations for singlefamily buildings heated by electricity and fuel-oil. 

Energy performance of the dwelling stock

The only available data against which to compare our simulations come from the Phébus survey and concern a single year, 2012. However, the work realised to build the dwelling stock of 1984 generates insights into how the energy performance of dwellings has evolved between these two dates. The left panel of Figure 5 represents the dwelling stock split by EPC of 1984, from the reconstitution explained in section 3. As we can see, there is almost no dwelling with an EPC A, B or C and only 7% of dwellings belong to class D.

On the right panel, observations from the Phébus survey are compared to simulations for the final year, 2012. In observations as well as in simulations, the dwelling stock is much more efficient in 2012 than in 1984, with especially a sharp decrease in class G dwellings. Simulations are also consistent with observations in that there is almost no dwelling belonging to classes A and B.

However, the simulated dwelling stock is more efficient than the observed one, with too many dwellings in class C and too little in class G. Moreover, for EPC classes C and G, the discrepancy is larger with the two "optimum" than with the preliminary simulation. In the "uni-dimensional optimum" simulation, the model parameters are set at values that permit particularly deep retrofits, thereby getting specific energy consumption closer to observations; this however comes at the expense of increasing the gap between the observed and simulated dwelling stock, in particular for the C and G EPC classes. The "multi-dimensional" optimum performs better in this regard and is very close to observations for classes C, D and F. Yet it shows important discrepancies for classes E and G.

Number of retrofitted dwellings

Unfortunately we cannot compare the simulated number of retrofitted dwelling to observations for every year, nor for every dwelling category. The reason is that while estimations of the number of dwellings retrofitted have existed for several decades [START_REF] Nauleau | Free-riding on tax credits for home insulation in France: An econometric assessment using panel data[END_REF], until 2018 these surveys did not estimate the energy savings entailed by these retrofits. The newly released survey TREMI [START_REF] Ademe | Enquête TREMI -Travaux de Rénovation Energétique des Maisons Individuelles[END_REF] provide such data but only for single-family dwellings and only aggregated over the three years 2014-2016. Hence, we focus on single-family dwellings and on year 2012, the closest to the period covered by TREMI (Table 5). The number of retrofitted dwellings is about one third too low in the Preliminary simulation, compared to observations, the discrepancy being even higher in the "uni-dimensional optimum" simulation. Among these retrofitted dwellings, those gaining 2 or more EPC classes are more numerous in the model simulations than in the observations. Finally, the dominance of owneroccupied dwellings in retrofitted dwellings (90%, while these dwellings represent 79% of singlefamily dwellings), is well represented. Finally, the "Multi-dimensional optimum" is closer to observations than the other two simulations, on every dimension presented in Table 5.

These being said, these comparisons cannot be taken at face value, because they concern different years, and because the gain in EPC classes in TREMI is the result of a calculation based on a simplified building thermal model (3CL), which is itself imperfect and fed by rather imprecise data.

Discussion

Our hindcasting exercise indicates that the Res-IRF model is able to qualitatively replicate the main trends over the 1984-2012 period: the decrease in the number of dwellings heated by fuel-oil and the corresponding increase in the share of electricity and natural gas, the improvement in the building stock efficiency and the corresponding decrease in energy consumption per m² for each of the six dwelling categories (single-family and multi-family, heated by electricity, gas and fuel-oil).

Moreover the simulated share of owner-occupied dwellings in retrofitted single-family dwellings is close to observations (table 5). In the remainder of this section, we discuss what we think are the main significant discrepancies.

Main discrepancies regarding aggregate energy consumption

In the preliminary simulation, the decrease in energy consumption per m² is lower than in observations. We can think of four explanations:

i.

The number of retrofitted dwellings simulated could be too low. Two arguments point in this direction: in the "uni-dimensional optimum" simulation, the initial number of yearly retrofits (which is used to calibrate intangible costs -cf. section 3 above) is higher than in the preliminary simulation (Table 3), and the decrease in energy consumption per m² is much closer to observations (Figure 2). Moreover the number of simulated retrofits in 2012 is lower than the one observed over 2014-2016 in average15 (Table 5). A likely explanation for the too low number of retrofitted dwellings is that in the model, dwellings built after 1984 cannot be retrofitted, while in reality some of them have certainly been 16 . ii.

Modelled retrofits could be less ambitious than in reality. Available observations do not point in this direction: first, the number of ambitious retrofits (at least two EPC classes gained) is higher than in observations (Table 5); second, the 2012 dwelling stock is too efficient compared to observations (Figure 5). Hence we think that we can rule out this explanation. iii.

The relatively coarse definition of the EPC classes may lead one to ignore some energy efficiency gains that do not generate a change in EPC class. In particular, the EPC class G has no upper bound for energy consumption. Hence the 31% dwellings falling in class G in 1984 may have benefited from significant energy retrofits without moving to a more efficient class. Also, while some dwellings built after 1984 undoubtedly fall in class G, they are certainly more efficient than the average class-G dwelling, built before the first thermal regulation in 1974. iv.

The heating intensity could increase too much throughout the period, perhaps because of a too high rebound effect. The rebound effect in Res-IRF is around 30%, a figure compatible with empirical estimates [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF], but the latter typically yield large confidence intervals so we cannot rule out this explanation.

Main discrepancies by heating energy sources

The model vastly underestimates the switch from fuel-oil to natural gas in multi-family buildings (Figure 4). We can think of two explanations.

i.

One owes to the structure of the model, which allows fuel-switch only for dwellings which move to a better energy efficiency class, while in reality some dwelling have switched from fuel-oil to gas without improvement in the building envelope, and often without moving to a better energy class (even though new gas boilers generally had a better energy efficiency than the fuel boilers they replaced). ii.

Another explanation is that the switch was in practice enabled by the expansion of the natural gas network during the period simulated, especially in cities, where multi-family buildings are concentrated. Absent geo-localised data of natural gas network and fuel-switch, we cannot quantify this effect.

The other main discrepancy concerns multi-family dwellings: those heated by fuel-oil and natural gas suffer from a relatively low R² (60% for the "uni-dimensional optimum" simulation) while those heated by electricity suffer from a relatively high MAPE (27% for the "uni-dimensional optimum" simulation) while observations indicate a much lower consumption than simulations, especially at the end of the simulation period (Figure 3).

The latter discrepancy is particularly surprising and could be due to problems in observational data, since average energy consumption lower than 50 kWh of final energy per m² is surprisingly low even for dwellings heated by electricity, which are known to consume less than other dwellings, partly because energy is more expansive, partly because thermal regulations are more stringent. While CEREN energy consumption data are generally considered reliable when they are aggregated across all uses for a given energy carrier, this is less clear when they are disaggregated, which is more difficult for electricity because of the numerous uses of this energy carrier. According to some energy measurement campaigns, CEREN vastly over-estimates the amount of electricity in some specific uses, such as washing (around 15 TWh in 2016 in France, vs. 6 according to Binet and Cayla, 2018). This is consistent with an underestimation of electricity consumption from heating.

Finally, as mentioned above, our simulations do not reproduce observed fluctuations in energy consumption of dwellings heated by fuel-oil. These fluctuations follow a pattern which seems difficult to explain; in particular it does not mirror fuel-oil price. Here again, this can be due to the imperfection of observational data, all the more likely that the sample of dwellings using fuel-oil for heating in CEREN data is smaller than for gas and electricity.

Implications of the main discrepancies for the model assessment

These differences between observations and simulations raise questions, which, we think, are quite general: to what extent do the discrepancies disqualify the use of the model for forward-looking studies? Do they point to prioritise some particular model developments? The answers clearly depend on the explanation for the observed discrepancies.

Take the first one, the too low decrease in energy consumption per m². As explained above, a likely explanation is that in the model, dwellings built after 1984 cannot be retrofitted (explanation i above). This is not problematic for forward-looking studies since dwellings built after 2012 are much more energy-efficient than before thanks to a new thermal regulation, so they are unlikely to be retrofitted in the next decades17 . Vice-versa, if the problem is a too high rebound effect (explanation iv), it will still happen in the future and deserves further attention. Finally, splitting class G in several sub-classes (following explanation iii) would be less useful for forward-looking studies since these dwellings represent a much smaller share now than in 1984.

Concerning the insufficient switch from fuel-oil to gas, the first explanation given above (fuel-switch only allowed for effective energy efficiency upgrades) may bias the results also for long-term projections, and could be addressed by changing the way fuel switch is modelled. In contrast, the second explanation (expansion of the gas network) is unlikely to bias long-term projections because the natural gas distribution network will not develop significantly in the future, since it has reached almost every densely built area18 .

To sum up, identifying discrepancies between model and observation does not systematically imply the model should be discarded or even modified -provided that the cause is unlikely to materialise again in the future. [START_REF] Guivarch | The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model[END_REF] make a similar point when they write that the mechanisms behind the discrepancies they identified are bound to remain short-term, so are of little relevance for the long-term prospective studies their model is designed for.

Admittedly, we cannot rule out that important unexpected drivers of residential energy consumption occur before 2050. For instance, building retrofitting costs might decrease following massproduction, or progress in heat-pump technologies could induce a switch toward electricity. Moreover, both the market price of fossil fuels and the future carbon prices are notoriously difficult to forecast, while they impact both retrofitting and heating intensity. Hence, results from the prospective studies for the next decades based on Res-IRF may well differ a lot from future observations. However this is true for any prospective study, and what matters, in our opinion, is the capacity of the model to factor in such surprises, especially in order to understand to what extent they affect the cost and effectiveness of public policies or targets.

Implications of the main discrepancies for modellers and data providers

Some of the identified discrepancies mirror those found in the other hindcasting studies mentioned in Section 2 above. [START_REF] Chaturvedi | Model evaluation and hindcasting: An experiment with an integrated assessment model[END_REF] However we think that the main hurdle to hindcasting exercises in energy economics is the limited availability of observational data. In France, yearly residential energy consumption data are available to researchers only in an aggregated way, individual data being private property of CEREN. This prevents researchers from disentangling the effect of problems in data from that of problems in the model. Similarly, data on retrofitted dwellings are available only for single-family dwellings and in an aggregated way, although the situation is likely to improve in the near future thanks to new surveys launched by Ademe and to a more open data policy.

Conclusion

Our hindcasting exercises indicate that the Res-IRF model is able to replicate the main trends over the 1984-2012 period: the decrease in the number of dwelling heated by fuel-oil and the corresponding increase in the share of electricity and natural gas, the improvement in the building stock efficiency and the corresponding decrease in energy consumption per m² for each of the six dwelling categories (single-family and multi-family buildings, heated by electricity, gas and fuel-oil).

The metrics calculated for the decrease in energy consumption per m² indicate a good overall performance of the model.

They also shed light on some limitations of the model, in particular too slow evolutions in fuel switch and energy consumption per m². This provides directions for improvements of the model in future work. To this end, it is useful to identify the cause of discrepancies between observations and simulations, because some of the possible causes are likely to persist in the future (like the possibility to switch fuel without improving the building envelope) while others are not (like the development of the natural gas network).

Data availability makes such identification difficult, a point also highlighted by [START_REF] Chaturvedi | Model evaluation and hindcasting: An experiment with an integrated assessment model[END_REF]. Observations of energy consumption which we compare to our model outputs are based on a survey whose results are available to researchers only in aggregate. This hinders identification of the reasons for the observed discrepancies.

However we are convinced that these difficulties should not prevent economists to engage into hindcasting. To quote Oreskes et al. [42] "In areas where public policy and public safety are at stake, the burden is on the modeller to demonstrate the degree of correspondence between the model and the material world it seeks to represent and to delineate the limits of that correspondence."

Appendix: construction of dwelling stock data in 1984

Year 1984 was chosen as the initial year because of data availability reasons. 

Reconstructing the fourth dimension: conventional consumption

The dwelling stock needs to be classified into EPC classes. Data on consumption of dwellings at real climate in 1984 were collected from CEREN. After converting them at normal climate, the following table was produced with average consumptions for three different periods of construction. Data from CEREN do not provide information about incomes and do not distinguish social and private rentals. Furthermore, Res-IRF requires EPC classes, which means that these actual consumptions have to be converted into conventional consumptions. Besides, dispersion is necessary, otherwise all the dwellings POMI_electricity_Q1 will have the same consumption and will be in the same class, which is not realistic. The consumptions presented above are averages.

For that purpose, the heating intensity factor curve is used in order to convert the actual consumption into conventional consumption. The following equation has to be solved, with Cconv the conventional consumption and Cr the actual consumption presented above:

$ % $ & '
+ 0.191 * log (0 % * 1234567 8 69:7 ) * $ & ' -0.1105 = 0

As the actual consumption values from CEREN are averaged by tenancy status and energy source, the surface and income of each household enable to obtain individualised conventional consumption values for each household. Even if the spread of values may be greater in reality, the precision of CEREN data does not allow getting deeper. The consumption level obtained for each household defines its belonging to a certain EPC class.

Final adjustments: total number of dwellings and income of owners

The dwelling stock is now divided into the four desired dimensions: tenancy status, heating energy, income quintile and energy performance. However, the reconstructed building stock only reaches 13.8 million of dwellings, compared to the 17,365,650 dwellings heated with one of the four fuels at stake in year 1984 according to CEREN. This is due to the variables of the National Housing Survey that are sometimes ambiguous or not accurate enough, so these dwellings were left behind. It is also due to the definition of the principal heating energy source of CEREN which is not necessarily the same as in the National Housing Survey, especially when there are several heating energies in the same dwelling. In order to compare the results of the simulations from 1984 to 2012 with some data, it is essential to start with the appropriate number of dwellings, at least the same as the available data (from CEREN then). The building stock with 13.8 million of dwellings is therefore extended to 17,365,650 dwellings by applying proportionality coefficients for each branch {heating energy + single-family/multi-family dwelling}. This is equivalent to assuming that the shares of each reconstructed segment {tenancy status + heating energy + income quintile + EPC} in the larger branch {heating energy + single-family/multi-family} remain unchanged.

The income of owners coincides with the income of tenants on the segment PO (homeowners). However, for the segment PB, tenants are not owners. For the investment decisions, Res-IRF needs the income of landlords. The process used to switch from the income of tenants to the income of landlords on the segment PB is the same as the one used for prospective simulations [START_REF] Giraudet | Long-term efficiency and distributional impacts of energy saving policies in the French residential sector[END_REF], with adapted data when available. This process leads to the final image of the dwelling stock, classified according to the incomes of owners.

The final dataset is provided in the supplementary material.

Figure 2 .

 2 Figure 2. Actual final energy consumption for heating (kWh/m²) aggregated over all dwelling categories. Observations are weather-corrected (CEREN, 2015).

Figure 3 .

 3 Figure 3. Actual final energy consumption for heating (kWh/m²), by dwelling category. Observations are weathercorrected (CEREN, 2015).
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 4 Figure 4. Evolution of the stock per type of dwelling and heating energy source

Figure 5 .

 5 Figure 5. Distribution of dwellings per Energy Performance Class (EPC)

Table 1 . Energy consumption by Energy Performance Certificate class

 1 Conventional consumption, in primary energy. Source: authors' calculations, based on the Phébus survey.

	EPC class	Energy consumption for heating (kWh/m²/yr.)
	G	
	F	
	E	
	D	
	C	
	B	
	A	

Table 2 . Main data sources Data used as inputs to the model Variables Year(s) Source

 2 

	Number of dwellings, split by	1984	National housing survey
	heating energy source, income		(Enquête nationale logement)
	quintile & tenancy status		
	Energy prices	1984-2012	Pégase database 11
	Households' income	1984-2012	INSEE
	Number of dwellings & share of	1984-2012	National housing survey
	single-family vs. multi-family		(Enquête nationale logement)
	Subsidy rates: reduced VAT, income	1984-2012	Various sources
	tax credit for sustainable		
	development (CIDD), Energy-		
	Efficiency Certificates & zero-rate		
	loan (éco-PTZ)		
	Investment cost for new dwellings	1984-2012	INSEE, Cost of construction index
	Data compared to model outputs	
	Variables	Year(s)	Source
	Repartition of dwellings by Energy	2012	Phébus survey
	Performance Certificate		
	Final energy consumption	1984-2012	CEREN
	Number of dwellings, by energy	1984-2012	CEREN
	source		

Table 3 . Summary of the sensitivity analysis Parameter Number of values Value for the preliminary simulation Value for the uni- dimensional optimum simulation 14 Value for the multi- dimensional

 3 

	optimum
	simulation

Table 4 . Model performance metrics for the energy consumption per m² Mean Absolute Percentage Error (MAPE) R²

 4 

			Uni-	Multi-		Uni-	Multi-
			dimensional	dimensional		dimensional	dimensional
		Preliminary	optimum	optimum	Preliminary	optimum	optimum
		simulation	simulation	simulation	simulation	simulation	simulation
	Aggregated	1.4%	0.5%	0.9%	85%	96%	93%
	multi-family						
	electricity	34.7%	27.3%	28.9%	21%	95%	92%
	multi-family						
	fuel-oil	2.7%	3.0%	2.6%	56%	60%	55%
	multi-family						
	natural gas	6.4%	3.2%	4.4%	17%	60%	40%
	single-family						
	electricity	9.6%	3.7%	5.4%	92%	86%	91%
	single-family						
	fuel-oil	2.7%	6.7%	2.7%	70%	84%	71%
	single-family						
	natural gas	7.9%	2.0%	4.1%	53%	96%	87%
	Source: authors						

Table 5 . Thermal retrofitting of single-family dwellings: observations vs. simulations

 5 

	Observations	Res-IRF,	Res-IRF, uni-	Res-IRF, multi-
	(average 2014-	preliminary	dimensional	dimensional
	2016)		simulation (year	optimum (year	optimum (year
			2012)	2012)	2012)
	Number of	433	301	271	306
	retrofitted single-				
	family dwellings				
	Of which energy	347	175	153	216
	efficiency gain =				
	1 EPC class				
	Of which energy	87	125	117	90
	efficiency gain >=				
	2 EPC classes				
	Share of owner-	90%	86%	84%	92%
	occupied dwellings				
	in retrofitted				
	single-family				
	dwellings				
	Source: authors' calculations, based on Ademe (2018) for observations.	

  also underestimate the observed decrease in residential heating final energy per m².[START_REF] Fujimori | Global energy model hindcasting[END_REF] do not replicate the observed downward trend in liquid fuels consumption for Europe. Finally,[START_REF] Ruijven B Van, De Vries | A global model for residential energy use: uncertainty in calibration to regional data[END_REF] overestimate electricity consumption, in the second half of the period they consider.Unfortunately, simulations are generally presented by researchers at a rather aggregate level which prevents one from further comparing models outputs. This lack of disaggregated results in most published hindcasting studies is sometimes due to the aggregated nature of the model itself, sometimes to journal space constraints. Systematically presenting energy consumption split by fuel and (when relevant) dwelling type would facilitate model comparisons for future hindcasting exercises; so would presenting energy consumption per m² in addition to aggregate consumption. These evolutions could be facilitated by a model intercomparison project devoted to energy consumption, in the spirit of CMIP in climate science or AgMIP in the agriculture-land use scientific community. The Energy Modeling Forum could form a natural forum for this kind of retrospective studies since it already has this role for prospective studies (e.g.[START_REF] Huntington | The Policy Implications of Energy-Efficiency Cost Curves[END_REF], in the field of energy efficiency).

  Indeed, two surveys of the French national statistics institute (INSEE) were published: the National Housing Survey in 1984 [29] ("Enquête Nationale Logement"=ENL) and the Family Budget Survey in 1985[30] ("Budget des Familles"=BdF) were used to build the segmented image of the building stock. Data furnished by CEREN about actual consumption of dwellings in 1984 differentiated by tenancy status and heating energy source were also used. The reconstruction of the building stock of 1984 followed several steps.Filtering the number of dwellings in each segment is done with R, by reading the dataset of the National Housing Survey. The dataset was provided by "Réseau Quetelet". A coefficient of extrapolation is defined for each of the 29233 households surveyed. It enables one to switch to the real number of dwellings. The National Housing Survey does not provide any information about heating consumption. Thus, the image of the dwelling stock of 1984 contains at this point three dimensions: tenancy status (6 types), heating energy (4 types) and income quintile (5 types).

	National Housing Survey: segmentation with 3 dimensions {tenancy status, heating energy
	source, income quintile}

Table A .1. Average unit consumption per type of dwelling and energy source (1984)

 A 

	Actual heating	<1975	kWhep/m²	1975-1981	kWhep/m²	1982-1987	kWhep/m²
	consumption of						
	primary energy at						
	normal climate						
	Single-family,	Electricity	250	Electricity	157	Electricity	156
	owner-occupied	Natural gas	173	Natural gas	141	Natural gas	132
		Fuel oil	170	Fuel oil	127	Fuel oil	96
	Single-family,	Electricity	243	Electricity	153	Electricity	108
	rented	Natural gas	169	Natural gas	134	Natural gas	118
		Fuel oil	170	Fuel oil	124	Fuel oil	81
	Multi-family,	Electricity	226	Electricity	150	Electricity	138
	owner-occupied	Natural gas	158	Natural gas	148	Natural gas	118
		Fuel oil	194	Fuel oil	200	Fuel oil	196
	Multi-family,	Electricity	208	Electricity	151	Electricity	143
	rented	Natural gas	170	Natural gas	148	Natural gas	125
		Fuel oil	189	Fuel oil	194	Fuel oil	169

For their very useful comments, we thank two anonymous referees from Energy Economics, an anonymous referee from the FAERE Working paper series, Améline Vallet and Vincent Viguié.

Apocryphal quote generally attributed to the physicist NielsBohr (1885Bohr ( -1962)).

https://pcmdi.llnl.gov/?projects/cmip/index.php

This exercise is part of a broader research programme, initiated with a global sensitivity analysis of Res-IRF[START_REF] Branger | Sensitivity analysis of an energy-economy model of the residential building sector[END_REF], which consists in evaluating the "quality", or "fitness-for-purpose," of the model[START_REF] Oreskes | Evaluation (not validation) of quantitative models[END_REF].

Calculation based on IEA (2016).

Res-IRF stands for the "Residential module of IMACLIM-R France". Res-IRF can indeed be linked to IMACLIM-R France, a CGE model developed at CIRED[START_REF] Mathy | Rethinking the role of scenarios: Participatory scripting of lowcarbon scenarios for France[END_REF]. In this work, Res-IRF is run on its own.

In the model, fuel switch can only occur when the dwelling is retrofitted. We come back to this point in section 5.

We do not present results for dwellings heated mostly by fuelwood because the main part of fuelwood is used in dwellings using also another heating fuel, and determining the main energy source in these dwellings is problematic. This makes the comparison between model outputs and observations difficult. This problem does not significantly impact aggregate results since only half a million dwellings used wood as the main heating source in 2012[START_REF] Ceren | Data on French dwellings from 1982 to 2015: number of dwellings by type and energy[END_REF].

Enquête Performance de l'Habitat, Équipements, Besoins et Usages de l'énergie (Phébus). Ministère de la transition écologique et solidaire. http://www.statistiques.developpement-durable.gouv.fr/sourcesmethodes/enquete-nomenclature/1541/0/enquete-performance-lhabitat-equipements-besoins-usages.html

Previously, the number of households had been calculated in the prospective version of the model only because the French statistical institute did not provide a scenario featuring its evolution up to 2050 until very recently(INSEE, 2018).

http://www.statistiques.developpement-durable.gouv.fr/donnees-ligne/r/pegase.html

Two caveats are in order. First, since res-IRF is a partial equilibrium model, some yearly variables are necessarily exogenous, in particular energy prices and household income. Second, as explained above, the number of households and the share of multi-family vs. single-family buildings, which are endogenous when the model is run forward in time, are forced exogenously in this hindsight exercise so that the performance of the model with respect to more central outputs can be assessed.

We prefer it to the RMSE (Root Mean Square Error), another frequently-used metric which is however known for putting too much weight on large errors[START_REF] Bennett | Characterising performance of environmental models[END_REF]. Unlike the RMSE, the MAPE produces a nonsmooth operator (it has a kink at zero) which is problematic in some optimisation contexts and explains why the RMSE is often preferred. This problem does not appear in our optimisation. Anyway,[START_REF] Snyder | Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module[END_REF] show in a similar context that results are very close for the mean average error and for the RMSE.

The simulation which minimises the R² features the same parameters values except that it includes green value and a heterogeneity parameter for fuel switch equal to

The output variables are very close so they are not presented.

Surprisingly, this number is even lower in the "uni-dimensional optimum" simulation; our interpretation is that in this simulation, more dwellings are retrofitted in the first years, so fewer opportunities for economically interesting retrofits are available at the end of the period.

The TREMI survey indicates that 4% of the single-family dwellings retrofitted over 2014-2016 had been built after2000 and 19% over 1975 -2001[START_REF] Ademe | Enquête TREMI -Travaux de Rénovation Energétique des Maisons Individuelles[END_REF]. Unfortunately more precise data are not available.

The thermal regulation for dwellings built after 2012 sets a maximum energy consumption of 50 kWh/m². In these dwellings, the heating energy bill is so low that the cost of a thermal retrofitting would excess the possible gain in energy spending.

Almost every municipality over 10 000 inhabitants is connected to the gas network. Connecting smaller municipalities generates disproportionate costs. https://www.ecologique-solidaire.gouv.fr/infrastructures-etlogistique-gazieres#e3