

Pharmacodynamic modeling of checkerboard data obtained with β-lactamβ-lactamases inhibitor combination: aztreonam-avibactam

Alexia Chauzy

Inserm U1070, University of Poitiers

Vienna, 21 April 2017

• ATM:

Monocyclic β -lactam antibiotic Not hydrolyzed by MBLs

• ATM:

Monocyclic β -lactam antibiotic Not hydrolyzed by MBLs

• AVI:

Non- β -lactam β -lactamase inhibitor of a broad spectrum of enzymes (Ambler Class A ESBLs, Class A KPC, Class C enzymes, and some Class D enzymes)

• ATM:

Monocyclic β -lactam antibiotic Not hydrolyzed by MBLs

PK/PD target: 60% fT>MIC

• AVI:

Non- β -lactam β -lactamase inhibitor of a broad spectrum of enzymes (Ambler Class A ESBLs, Class A KPC, Class C enzymes, and some Class D enzymes)

• ATM:

Monocyclic β-lactam antibiotic Not hydrolyzed by MBLs

PK/PD target: 60% fT>MIC

• AVI:

Non- β -lactam β -lactamase inhibitor of a broad spectrum of enzymes (Ambler Class A ESBLs, Class A KPC, Class C enzymes, and some Class D enzymes)

H₂C

PK/PD target:

• ATM:

Monocyclic β -lactam antibiotic Not hydrolyzed by MBLs

PK/PD target: 60% fT>MIC

• AVI:

Non- β -lactam β -lactamase inhibitor of a broad spectrum of enzymes (Ambler Class A ESBLs, Class A KPC, Class C enzymes, and some Class D enzymes)

PK/PD target: 50% fT> CT of 2.5mg/L

Objective:

Develop a simple semi-mechanistic modelling approach to quantify the *in vitro* antimicrobial activity of ATM-AVI combination against β-lactamases producing Enterobacteriaceae

- MIC checkerboard assays performed with 11 Enterobacteriaceae isolates with diverse βlactamases profiles
 - Checkerboards set up with 2-fold dilutions of ATM and AVI

- MIC checkerboard assays performed with 11 Enterobacteriaceae isolates with diverse βlactamases profiles
 - Checkerboards set up with 2-fold dilutions of ATM and AVI

- MIC checkerboard assays performed with 11 Enterobacteriaceae isolates with diverse βlactamases profiles
 - Checkerboards set up with 2-fold dilutions of ATM and AVI

 MIC checkerboard assays performed with 11 Enterobacteriaceae isolates with diverse βlactamases profiles

+

• Checkerboards set up with 2-fold dilutions of ATM and AVI

Bacterial suspension (0.5 x 10⁶ CFU/mL) added in each well

- MIC checkerboard assays performed with 11 Enterobacteriaceae isolates with diverse βlactamases profiles
 - Checkerboards set up with 2-fold dilutions of ATM and AVI

• **Susceptibility determination:** spectrophotometrically assessment of growth

Determination of ATM MICs (MIC_{ATM}) in the absence and in the presence of AVI at different concentrations (ranging from 0.0625 to 4 µg/mL)

Normalized ATM MICs as a function of AVI concentrations

Modelling was quite successful

12	Citrobacter freundii
17	Enterobacter cloacae

			Parameter estimate ± CV%
ID	Organism	MIC _{ATM,o} (μg/mL)	_
12	Citrobacter freundii	512 ± 32	
17	Enterobacter cloacae	33 ± 29	-

		Parameter estima		
ID	Organism	MIC _{ATM,o} (μg/mL)	MIC _{ATM,base} (µg/mL)	
12	Citrobacter freundii	512 ± 32	0.05	
17	Enterobacter cloacae	33 ± 29	0.37	

		Parameter estimate ± CV%		
ID	Organism	MIC _{ΑΤΜ,ο} (μg/mL)	MIC _{ATM,base} (µg/mL)	Efficacy ratio
12	Citrobacter freundii	512 ± 32	0.05	10207
17	Enterobacter cloacae	33 ± 29	0.37	89

		Parameter estimate ± CV%			
ID	Organism	MIC _{ΑΤΜ,ο} (μg/mL)	MIC _{ATM,base} (µg/mL)	Efficacy ratio	Potency (µg/mL)
12	Citrobacter freundii	512 ± 32	0.05	10207	0.00053 ± 38
17	Enterobacter cloacae	33 ± 29	0.37	89	0.053 ± 46

Conclusion

- An inhibitory Emax model with a baseline effect describes adequately these ATM-AVI checkerboard data
- Quantification of the wide differences between strains in terms of: Efficacy (MIC_{ATM,0}/MIC_{ATM,base} ranging between 89 and 10207) Potency (IC₅₀ ranging between 0.00022 and 0.053 μg/mL)

Conclusion

- An inhibitory Emax model with a baseline effect describes adequately these ATM-AVI checkerboard data
- Quantification of the wide differences between strains in terms of: Efficacy (MIC_{ATM,0}/MIC_{ATM,base} ranging between 89 and 10207) Potency (IC₅₀ ranging between 0.00022 and 0.053 μg/mL)

Perspective

- Derive a strain dependent threshold AVI concentration from the model
- Complete these checkerboard experiments by:
 - *in vitro* static and dynamic time-kill kinetic studies
 - *in vivo* experiments using an animal infection model
- Find a link between this simple MIC related modelling approach with the more sophisticated mechanistic models (Sy S. & Derendorf H.)

Acknowledgements

- J. Buyck, E. Marquizeau, N.Grégoire, S.Marchand, W.Couet Inserm U1070, University of Poitiers, France
- B.L.M. de Jonge AstraZeneca Pharmaceuticals, Waltham, MA, USA