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The notion of superconnection devised by Quillen in 1985 and used in gauge-Higgs field theory in the 1990's is applied to the spin factors (finite-dimensional euclidean Jordan algebras) recently considered as representing the finite quantum geometry of one generation of fermions in the Standard Model of particle physics.

Introduction

It is natural to expect that the finite spectrum of fundamental particles of matter corresponds to representations of a finite-dimensional algebra of quantum observables endowed with some further structure. On the basis of the spectral theory needed for quantum mechanics, these finite-dimensional algebras of quantum observables have been identified as the finite-dimensional euclidean (or formally real) Jordan algebras [START_REF] Jordan | Ubër ein Klasse nichtassoziativer hyperkomplexer Algebren[END_REF], [START_REF] Jordan | Über verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik[END_REF] and have been classified [START_REF] Jordan | On an algebraic generalization of the quantum mechanical formalism[END_REF]. These algebras are the quantum analogues of the finite-dimensional algebras of real functions, it is convenient to consider them as algebras of "real functions" on virtual "finite quantum spaces". We will use freely this analogy by refering to "the finite quantum space" corresponding to a finite-dimensional euclidean Jordan algebra. Any finite-dimensional euclidean Jordan algebra has a unit and is the direct sum of a finite number of simple ideals and the simple finitedimensional euclidean Jordan algebras fall into 3 classes :

1. The hermitian n × n-matrices J 1 n = H n (R), J 2 n = H n (C) and J 4 n = H n (H) over the reals, the complexes and the quaternions, for n ≥ 3 and

R (= H 1 (R) = H 1 (C) = H 1 (H)).
2. The spin factors J n 2 = JSpin n+1 (n ≥ 1).

3. The exceptional Jordan algebra of hermitian 3 × 3-matrices J 8 3 = H 3 (O) over the octonions.

The Jordan algebra J 8 3 is exceptional in the sense that it cannot be realized as a subspace of an associative algebra stable under the symmetrized product [START_REF] Albert | On a certain algebra of quantum mechanics[END_REF]. The classes 1 and 2 contain only special (i.e. non exceptional) Jordan algebras. However there is an important difference between Class 1 and Class 2. Namely the Jordan algebras which belong to Class 1 are the real subspaces of all hermitian elements of associative * -algebras while in the case of Class 2 the spin factors JSpin n are only Jordan subalgebras of the Jordan algebras of all hermitian elements of associative * -algebras. This fact is in particular relevant for the spin factor J 8 2 = JSpin 9 = H 2 (O) which in our approach corresponds to the finite quantum geometry of one generation of the standard model. This is the very reason of the existence of the euclidean extension J8 2 of J 8 2 which contains the internal observables of the fundamental particles of matter for one generation.

The Jordan algebra approach to the finite quantum geometry of particle physics models was originally developed [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF], [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF] in the context of the exceptional Jordan algebra J 8 3 = H 3 (O). It was realized in [START_REF] Todorov | Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra[END_REF], [START_REF] Todorov | Octonions, exceptional Jordan algebra and the role of the group F 4 in particle physics[END_REF], [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF] that the quantum geometry of one generation is captured by a special Jordan algebrathe 10-dimensional spin factor

J 8 2 = JSpin 9 = H 2 (O)(⊂ J 8 3 ) , (1.1) 
i.e. the 2 × 2 hermitian matrices with octonionic entries. The gauge symmetry group of the Standard Model (SM) of particle physics,

G SM = S(U (3) × U (2)) = SU (3) × SU (2) × U (1) Z 6 (1.2)
is the subgroup of the automorphism group Spin(9) of J 8 2 that preserves the splitting

O = C ⊕ C 3 (1.3)
and acts C-linearly on C 3 .

The splitting (1.3) is preserved by the subgroup SU (3) of the automorphism group G 2 of the octonions which was identified long ago to the colour symmetry of quarks by Gürsey and Günaydin [START_REF] Günaydin | Quark statistics and octonions[END_REF], [START_REF] Gürsey | Color quarks and octonions[END_REF]. From the point of view of physics (1.3) corresponds to the quark-lepton symmetry. Conversely, it was shown in [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF] that the unitarity and the unimodularity of SU (3) lead directly to a unital algebra structure on C ⊕ C 3 which is isomorphic to O as real algebra, SU (3) being then the group of C-linear automorphisms. In other words, this associates the quark-lepton symmetry to the unimodularity of the colour group and selects the euclidean Jordan algebras J 8 2 = H 2 (O) and J 8 3 = H 3 (O) endowed with their automorphisms preserving the splitting (1.3), (notice that H 1 (O) = R and that the H n (O) for n ≥ 4 are not Jordan algebras).

The resulting characterization of G SM was recently commented in [START_REF] Krasnov | SO(9) characterization of the standard model gauge group[END_REF] where the action of Spin(9) on a pair of octonions (that spans the spinor representation 16 O 2 of Spin [START_REF] Coquereaux | Higgs fields and superconnections[END_REF] and appear in the 27-dimensional algebra J 8

3 ) is exploited. A Jordan algebra modification of Connes' non-commutative geometry approach to the SM, [START_REF] Connes | Particle models and noncommutative geometry[END_REF], [START_REF] Chamseddine | Noncommutative geometry as a framework for unification of all fundamental interactions including gravity[END_REF] is developed in [START_REF] Boyle | The standard model, the Pati-Salam model and "Jordan geometry[END_REF].

There are three Lie algebras associated with the Jordan algebra J 8 2 (1.1):

Der(J 8 2 ) = so(9) ⊂ str(J 8 2 ) = so(9, 1) ⊕ R + ⊂ co(J 8 
2 ) = so(10, 2).

(1.4)

Here so( 9) is the Lie algebra of derivations (infinitesimal automorphisms) of J 8 2 ; the structure Lie algebra str(J 8 2 ) is the derivation algebra of the positive cone

C = C(J 8 
2 ) of states (invertible elements of J 8 2 that may be written as sums of squares); so(10, 2) is the conformal Lie algebra of J 8 2 that leaves invariant the tube domain J 8 2 + iC. We shall also use in what follows the Lie algebra so(10) of the popular Grand Unified Theory (GUT), which appears here as the compact real form of the complexification of so(9, 1) but also as the semi-simple part of the maximal compact Lie subalgebra so(10) ⊕ so(2) of co(J 8 2 ). In the present paper we observe that the Quillen's notion of superconnection [START_REF] Quillen | Superconnections and the Chern character[END_REF], [START_REF] Matthai | Superconnections, Thom classes, and covariant differential forms[END_REF] readily applies to theories based on the Clifford algebra C (4n + 1, 1), n = 1, 2, ..., and we work out the bosonic mass relations (and the associated Weinberg angle) for n = 2 applying the superconnection approach to the euclidean extension of J 8 2 with an so(10) symmetry. (In earlier applications of superconnections to particle physics -see [START_REF] Coquereaux | Higgs fields and superconnections[END_REF], [START_REF] Neeman | Superconnections and internal supersymmetry dynamics[END_REF], [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF], [START_REF] Aydemir | The higgs mass, superconnection and the TeV scale[END_REF] and references therein -the bosonic mass relations and the Weinberg angle have only been computed for the U (2) electroweak model, albeit in [START_REF] Neeman | Superconnections and internal supersymmetry dynamics[END_REF] all quark and lepton quantum numbers have been fitted in a representation of the sl(5|1) Lie superalgebra.)

As noted in [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF] and elaborated in [START_REF] Krasnov | SO(9) characterization of the standard model gauge group[END_REF] one can similarly derive the electroweak subgroup U (2) of the gauge group G SM of the SM from the automorphism group Spin(5) of the spin factor J 4 2 = H 2 (H):

Aut(J 4 2 ) = Spin(5) = U (2, H) , J 4 2 = H 2 (H) (1.5)
with the alternative (but non-associative) ring O of octonions substituted by the associative division algebra H of quaternions. The superconnection approach applies equally well to the "mini internal space" J 4 2 of the electroweak model of leptons which can thus serve as a simpler "toy model" for J 8 2 . We begin in Sect. 2 by summarizing our treatment of the euclidean extension of J 8 2 , introduced in [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF],

J 8 2 := H 16 (C) ⊕ H 16 (C) = J 2 16 ⊕ J 2 16
(1.6)

(that admits an analogue J 4 2 for J 4 2 ). We recall the notion of U (n) superconnection expounded by Roepstorff [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF] and define its extension to c (4n + 1, 1). In Sect. 3 we recall the fermionic oscillator realization of C (9, 1) and characterize the 16-dimensional particle subalgebra J(P) of J 8 2 . In Sect. 4 we introduce the Higgs potential allowing a symmetry breaking minimum and derive the mass matrix for the gauge fields. Section 5 is our temporary conclusion.

Our notations and conventions are the ones of [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF] and [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF] and of [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF] in particular for the Clifford algebras and their "fermionic oscillator" (or Canonical Anticommutation Relations) representations for the even-dimensional case. Concerning the latter point, it should be mentioned that the representation of the Clifford algebra of an even-dimensional euclidean space as the CAR algebra depends on the choice of a direction of simple spinor in the sense of Elie Cartan which is the corresponding direction of the Fock vacuum [START_REF] Dubois-Violette | Complex structures and the Elie Cartan approach to the theory of spinors[END_REF]. In fact the directions of simple spinors parametrize the isometric complex structures (see also [START_REF] Dubois-Violette | Notes sur les variétés différentiables, structures complexes et quaternioniques et applications[END_REF] for a more general point of view). It is worth noting that Sections 3.2 and 3.3 of [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF] and Section 2 of [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF] contain motivated summaries of the Jordan-von Neumann-Wigner classification and that, in this respect, [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF] is a fairly complete reference. For Jordan algebras and Jordan modules our reference is [START_REF] Jacobson | Structure and representations of Jordan algebras[END_REF] and for exceptional Lie groups see [START_REF] Yokota | Exceptional Lie groups[END_REF].

Internal symmetry and superconnection

As explained in Sect. 4 of [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF] and in Sect. 2.2 of [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF] the optimal euclidean extension of J 8 2 is the direct sum (1.6) of two Jordan algebras of complex hermitian 16 × 16 matrices. It contains, in particular, the hermitean generators i Γ ab , a, b = 0, 1, . . . , 8 of the derivation algebra so(9) viewed as a sub Lie algebra of so(9, 1) ⊂ C 0 (9, 1) C (9, 0), the (restricted) structure algebra of J 8 2 . Choosing a basis (e 0 = 1, e 1 , . . . , e 7 ) of octonion units we can think of J 8 2 as generated by the 2 × 2 hermitian octonionic matrices e a = 0 e a e * a 0 , a = 0, 1, . . . , 7 (e * 0 = e 0 , e * j = -e j for j = 1, . . . , 7),

e 8 = σ 3 = 1 0 0 -1 . (2.1)
We shall represent êa by the products

Γ -1 Γ a , a = 0, 1, . . . , 8, [Γ a , Γ b ] + := Γ a Γ b + Γ b Γ a = 2δ ab , [Γ -1 , Γ a ] + = 0 , Γ 2 -1 = -1I ⇒ (Γ -1 Γ a ) 2 = 1I , (2.2) 
where Γ α , α = -1, 0, . . . , 8, generate the Clifford algebra C (9, 1). The Coxeter element ω 9,1 of C (9, 1) plays the role of chirality and commutes with so(9, 1):

γ := ω 9,1 = Γ -1 Γ 0 Γ 1 . . . Γ 7 Γ 8 , γ 2 = 1I ; [γ, Γ αβ ] = 0 for Γ αβ = 1 2 [Γ α , Γ β ] .
(2.3) In a representation in which γ = σ 3 ⊗ 1 16 the 32-dimensional Dirac spinor representation of so(9, 1), generated by Γ αβ , is reduced:

32 = 16 L ⊕ 16 R , (γ -1)16 L = 0 = (γ + 1)16 R .
(2.4)

The C (9, 1) generators anticommute with chirality and intertwine left and right chiral (Weyl) spinors

[Γ α , γ] + = 0 , Γ α : 16 L,R → 16 R,L , α = -1, 0, 1, . . . , 8 . (2.5) 
In Haag's approach [START_REF] Haag | Local Quantum Physics, Fields, Particles, Algebras[END_REF] to quantum field theory the algebra of observables is a subalgebra of gauge invariant elements (with respect to the unbroken gauge symmetry) of a larger field algebra. We shall postulate that the finite-dimensional (internal space) counterpart of the field algebra is Z 2 -graded complex Clifford algebra C 10 = C (10, C) whose algebra of derivations so(10, C) belongs to its even part. The matrices Γ αβ (2.3)provide an orthonormal (with respect to the trace product) basis of the Lie algebra so(9, 1). The corresponding hermitian matrices

Γ -1a , iΓ ab ∈ so(10, C)(⊃ so(9, 1)) , a, b = 0, 1, . . . , 7, 8, (2.6) 
belong to the exteded observable algebra J 8 2 (1.6) and form a basis of iso [START_REF] Dubois-Violette | Non-commutative differential geometry, quantum mechanics and gauge theory[END_REF] 

(i = √ -1)
. The odd part of C 10 (that anticommutes with γ)) includes its hermitian generators (iΓ -1 , Γ a , a = 0, ..., 8) and will give room to the (Lorentzian scalar) Higgs fields.

We proceed to identifying the symmetry generators and a complete set of commuting observables. Singling out e 7 ∈ O as the imaginary unit preserved by SU (3) we can write the decomposition (1.3) in the form (cf. Appendix):

O x = z + Z , z = x 0 + x 7 e 7 , Z = Z 1 e 1 + Z 2 e 2 + Z 4 e 4 , Z j = x j + x 3j(mod 7) e 7 , j = 1, 2, 4, (2.7) 
where we have used the octonionic multiplication rules of [START_REF] Baez | The octonions. (math/0105155)[END_REF] e i e i+1 = e i+3(mod 7) (= -e i+1 e i ) , i = 1, 2, . . . , 7 .

(2.8)

It is intriguing to observe that the Lie subalgebra of so(9, 1) which preserves the splitting (2.7) and acts complex linearly on Z is so(3, 1) ⊕ u(3). One could be tempted to connect it with two unbroken symmetries, the Lorentzian so(3, 1) and the colour su(3) = su(3) c , plus a u(1) whose generator will be identified with B -L. (Its conservation may be broken by a Majorana mass term.) We, however, will continue to follow here our philosophy and will interpret the finite quantum algebra in terms of internal degrees of freedom; consequently we shall only use the compact real form so(10) of the complexified so(9, 1). The Pati-Salam Lie subalgebra

su(2) L ⊕ su(2) R ⊕ su(4) ⊂ so(10) (2.9) 
appears as the maximal Lie subalgebra of so( 10) that preserves the splitting of the vector representation 10 = 6 + 4 (but not the quark lepton splitting in the spinor representation 16). It is realized as follows in terms of the matrices Γ αβ : su(4) so(6) = Span{Γ jk , j, k = 1, 2, . . . , 6} , su(2) ⊕ su(2) so(4) = Span{iΓ -1α , Γ αβ , α, β = 0, 7, 8} .

(2.10)

In particular, we choose a basis of su(3)⊕u(1) invariant commuting observables:

2I L 3 = 1 2 (Γ 8-1 -iΓ 07 ) , 2I R 3 = - 1 2 (Γ 8-1 + iΓ 07 ) ⇒ I L 3 I R 3 = 0 , (2.11) 
B -L = i 3 (Γ 13 + Γ 26 + Γ 45 ) , (2.12) 
B and L being the baryon and the lepton numbers. The colour gauge Lie algebra su(3) c then appears as the commutant of B -L in su(4). The weak hypercharge Y and the electric charge Q are expressed as:

Y = B -L + 2I R 3 , Q = I L 3 + 1 2 Y = 1 2 (B -L) + I 3 , I 3 := I L 3 + I R 3 = - i 2 Γ 07 .
(2.13) The left and right isospins take values 0 and 1/2 so that 2I L 3 and 2I R 3 satisfy

(2I X 3 ) 3 = 2I X 3 for X = L, R ⇒ P 1 := (2I L 3 ) 2 = P 2 1 = 1I -(2I R 3 ) 2 . (2.

14)

(P 1 being the SU (2) L invariant projector on the states of weak isospin 1/2.)

We can write the (skew hermitian) matrix valued gauge field 1-form as:

A = dx µ A s µ X s = i W + i B + i G (2.15)
where s = 1, . . . , 12 = dim G SM and X s are suitable linear combination of the matrices (2.6); the three terms W , B, G correspond to the subalgebras su(2) L , u(1) Y , su(3) c , respectively, of the Lie algebra

G SM = su(2) L ⊕ u(1) Y ⊕ su(3) c (2.16)
of the gauge group G SM (1.2); they will be displayed explicitly in Sect. 3 below. We shall interrupt for a moment our exposition in order to summarize, for reader's convenience, the notion of a superconnection on the example of the gauge group U (n) acting on the exterior algebra C n as worked out in [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF]. We shall identify the Z 2 grading of C n with chirality, assuming (arbitrarily) that 0 C n is right chiral (i.e. has negative chitality) and denote by A ± left and right chiral propjections of the U (n) connection Â. We then define the

U (n) superconnection 1-form on T * M ⊗ C n by D = d + A + Φ , A = A + 0 0 A -, Φ = 0 φ * φ 0 (2.17)
where d = dx µ ∂ µ and the two by two block matrix has 2 n-1 × 2 n-1 dimensional blocks. The Z 2 grading of 1-forms is the combined grading of fields (in which A + µ and A - µ are even and Φ, φ * , φ are odd) and of differential forms (in which dx µ is odd, dx µ ∧ dx ν is even, etc.). Thus the superconnection D is odd. The corresponding curvature form is obtained using the Z 2 graded commutator:

F = F + D Φ , F = DA , D Φ = [D, Φ] + (2.

18)

where

D A = dx µ ∧ dx ν F + µν 0 0 F - µν , F ± µν = ∂ µ A ± ν -∂ ν A ± µ , while [D, Φ] + = Φ 2 + 0 (Dφ) * Dφ 0 , Dφ = D -φ + φD + = dx µ ((∂ µ + A - µ )φ -φA + µ ), (Dφ) * = dx µ ((∂ µ + A + µ )φ * -φ * A - µ ) . (2.19)
In the last two equations we have used the anticommutativity of φ ( * ) and dx µ . We observe that the above construction works once one has the notion of chirality which allows to define "the Higgs" as a matrix valued chirality changing scalar field. Remarkably, embedding our J8 2 model into C (9, 1) provides a natural notion of chirality, Eq. (2.3), such that the operator

Φ = φ α Γ α (2.20)
is chirality changing. For γ = σ 3 ⊗ 1 16 the matrices (2.19) are reproduced.

Fermionic oscillators. Particle subspace

We shall use the following fermionic oscillators' representation of C (10, C) (cf. [START_REF] Furey | SU (3) c × SU (2) × U (1) Y (×U (1) X ) as a symmetry of division algebraic ladder operators[END_REF], [START_REF] Todorov | Octonions, exceptional Jordan algebra and the role of the group F 4 in particle physics[END_REF], [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF]):

2a 0 = Γ 0 + iΓ 7 , 2a j = Γ 1 + iΓ 3 j(mod7), j = 1, 2, 4, 2a 8 = Γ 8 + Γ -1 (2a * 0 = Γ 0 -iΓ 7 , 2a * 1 = Γ 1 -iΓ 3 , ..., 2a * 8 = Γ 8 -Γ -1 ), [a µ , a ν ] + = 0 , [a µ , a * ν ] + = 2δ µν µ, ν = 0, 1 , 2, 4, 8. (3.1) 
The basic fermions and antifermions are given by the primitive idempotents of the abelian (unital) algebra generated by the Cartan subalgebra of the (complexified) so(9, 1). It is spanned by the idempotents

π ν = a ν a * ν (= π 2 ν ), π ν = a * ν a ν = 1 -π ν (π ν π ν = 0), ν = 0, 1, 2, 4, 8. (3.2) 
They belong to the euclidean extension J8 2 (1.6) of the octonionic spin factor J 8 2 . We postulate that the symmetry algebra is invariant under separate phase transformations of the quark and lepton oscillators: a µ → e iα a µ (a * µ → e -iα a * µ , µ = 0, 8), a j → e -iβ a j , (a * j → e iβ a * j , j = 1, 2, 4), or equivalently, it commutes with:

2I R 3 = 1 2 ([a 0 , a * 0 ] + [a 8 , a * 8 ]), B -L = 1 3 j=1,2,4 [a * j , a j ]. (3.3) 
The resulting symmetry subalgebra of the Pati-Salam Lie algebra (2.9) (which also preserves the complex linearity of the su(3) c action) is the u(1) extension

g ext = u(2) ⊕ u(3), u(2) = Span{a * µ a ν , µ, ν = 0, 8}, u(3) = Span{a * j a k , j, k = 1, 2, 4}, (3.4) 
of the gauge Lie algebra g SM = s(u(2) ⊕ u(3)) of the SM. In particular, the (left) electroweak su(2) L symmetry generators,

I L + = a * 8 a 0 , I L -= a * 0 a 8 , 2I L 3 = [I L + , I L -] = π 8 -π 0 , (3.5) 
are complemented by 2I R 3 and B -L (3.3) (cf (2.10) (2.11)). The u(1) centre of g SM is spanned by the hypercharge

Y = B -L + 2I R 3 = 2 3 (π 1 + π 2 + π 4 ) -π 0 -π 8 , (3.6) 
the linear combination of B -L and 2I R 3 that annihilates the right chiral (sterile) neutrino:

(ν R ) := |ν R >< ν R | = π 0 π 1 π 2 π 4 π 8 ⇒ Y (ν R ) = 0. ( 3.7) 
A general problem in theories with configuration space of the form C(M )⊗F, the product of the commutative algebra of smooth functions on a spin manifold M with a finite dimensional (not necessarily commutative or associative) algebra F, first encountered in the better developed noncommutative geometry approach [START_REF] Connes | Particle models and noncommutative geometry[END_REF], [START_REF] Chamseddine | Noncommutative geometry as a framework for unification of all fundamental interactions including gravity[END_REF], is the problem of fermion doubling (or rather quadrupling) [START_REF] Gracia-Bondia | The Standard model in noncommutative geometry and fermion doubling[END_REF], recently tackled in [START_REF] Bochniak | A spectral geometry for the Standard Model without fermion doubling[END_REF]. In order to avoid (or reduce) the problem one can simply restrict attention to the 16 dimensional particle subalgebra

J(P) = H L 8 (C) ⊕ H R 8 (C) (3.8)
of the Jordan algebra (1.6). The projector P on the particle subspace can be written as the sum of projectors and q on the lepton and the quark subspaces:

P = + q(= P 2 ), P(= 1 -P) = ¯ + q, = π 1 π 2 π 4 (L = -¯ ), ¯ = π 1 π 2 π 4 , q = j=1,2,4 U j ¯ = π 1 π 2 π 4 + π 1 π 2 π 4 + π 1 π 2 π 4 . (3.9) 
Here U j = U (a * j , a j ) is the (polarized) quadratic Jordan operator (see Eq. (3.24) of [START_REF] Todorov | Exceptional quantum algebra for the standard model of particle physics[END_REF] and references cited there):

U ν X := a * ν Xa ν + a ν Xa * ν . (3.10)
The gauge invariant states of the subalgebra J(P) are uniquely characterized by the eigenvalues of 2I L 3 (2.11) (3.5) and Y (2.13) (3.6). In particular, the chirality γ in J(P ) is determined by anyone of these quantum numbers:

γ + (-1) 2I L 3 = 0 = γ + (-1) 3Y . (3.11) 
Conversely, Eq. (3.11) determines the subalgebra J(P). The orthogonal projector P : J 2 16 ⊕ J 2 16 → J(P) is given by:

P(= + q) = 1 2 (1 -γ(-1) 2I L 3 ) = 1 2
(1 -γ(-1) 3Y ) .

(3.12)

Clearly the projector P commutes with g ext so that J(P) admits the same (extended) symmetry. The SU (2) L -invariant projectors in J(P) are determined by the eigenvalues of Y . For the left chiral particles for which P 1 = (2I L 3 ) 2 = 1 (cf. (2.14)) Y takes two values, -1 and 1 3 , of multiplicity two and six, respectively. In H R 8 (C), for P 1 = 0, the hypercharge takes four eigenvalues: two nondegenerate Y = 0, -2 and two others, Y = 4 3 , -2 3 of multiplicity three each. We note that for the electroweak model (based on the Jordan algebra J 4 2 (1.5)) -with only leptons present -the trace of the hypercharge in the left and the right particle space is -2, so that only their difference, the supertrace, vanishes (as emphasized in [START_REF] Coquereaux | Higgs fields and superconnections[END_REF]). By contrast, in the full SM the trace of Y vanishes in H L 8 and H R 8 , separately. The expression (3.12) for P together with the anticommutativity of a ( * ) j (= a j or a * j ) with γ and their left isospin independence for j = 1, 2, 4 implies that their projection on J(P) vanishes:

a ( * ) j γ = -γa ( * ) j , [I L 3 , a ( * ) j ] = 0 ⇒ Pa ( * ) j P = 0, j = 1, 2, 4. (3.13)
Thus, the projection of the Higgs field on the particle subspace commutes with the gluon field G µ (which will be expressed in terms of a ( * ) j in Eq. (4.5) below):

Φ(x) = φ0 a 0 + φ 0 a * 0 + φ8 a 8 + φ 8 a * 8 ⇒ [ Φ, G µ ] = 0. (3.14)
Then the commutator [A µ , Φ] appearing in the curvature form (cf. (2.18)),

D = d +  + Φ, D 2 = F + d Φ + dx µ [A µ , Φ] + Φ2 , F = d  + Â2 , (3.15) 
will only involve the electroweak fields which will acquire mass after the symmetry breaking.

Higgs potential and bosonic Lagrangian

The bosonic action density in a gauge theory is defined as the trace of (half of) the product of the curvature with its Hodge star dual. In order to account for symmetry breaking we shall replace Φ4 by a more general fourth order expression, invariant with respect to the unbroken gauge symmetry with Lie algebra

su(3) c ⊕ u(1) Y ⊕ u(1) L ⊂ g SM , u(1) L = Span{I L 3 = Q - 1 2 Y }. (4.1)
(This extends the procedure adopted in [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF] where one subtracts from Φ2 a general U (n) invariant operator.) We shall write the Higgs potential as:

V (φ) = 1 2 tr Φ(κP 1 + P 1 ) Φ -m 2 (P 1 + κP 1 ) 2 + λφ 0 φ0 φ 8 φ8 = 1 2 (φ φ -m 2 ) 2 tr(P 1 + κ 2 P 1 ) + λφ 0 φ0 φ 8 φ8 , m, κ, λ > 0. (4.2)
Here we have used the relations (cf. (2.14)):

P 1 := 1 -P 1 = (2I R 3 ) 2 (P 1 P 1 = 0, P 1 + P 1 = 1), ΦP 1 Φ = φ φP 1 , ΦP 1 Φ = φ φP 1 , φ φ = φ 0 φ0 + φ 8 φ8 . (4.3)
It is the last, fourth order, term in (4.2) that breaks the U (2) electroweak symmetry to U (1) × U (1) (the independent change of phases of φ 0 , φ 8 ).

We shall write the bosonic Lagrangian of the SM in the form:

L(A, φ) = - 1 4 tr(F µν F µν ) + 1 2 tr(∂ µ φ∂ µ φ) + + 1 2 tr[A µ , φ][A µ , φ] + V (φ), (4.4)
where A µ is the total gauge field of the SM:

A µ = i(W + µ I + + W - µ I -+ W 3 µ I 3 + N B µ Y + 1 2 8 s=0 i,j=1,2,4 G s µ a * i λ ij s a j ), (4.5)
W µ and B µ are an SU (2) L triplet and singlet, respectively, G µ is the gluon (SU (3) c ) octet, λ s are the su(3) Gell-Mann matrices such that tr(λ s λ t ) = 2δ st .

The normalization constant N is determined from the condition that I 3 and N Y are equally normalized in J(P):

tr(I L 3 ) 2 (= 1 2 (1 + 3)) = 2 = tr(N Y ) 2 = 40 3 N 2 ⇒ N 2 = 3 20 . (4.6) 
Here we have used the calculation:

trY 2 = 1 × 2 + 1 9 × 6 + 4 + 4 9 × 3 + 16 9 × 3 = 40 3 .
Clearly, the value of N depends on the spectrum of fundamental fermions. For the leptonic (electroweak) model one has a smaller ratio, N 2 = 1 12 . We shall see that the resulting N 2 gives the value of the computed Weinberg angle.

We will obtain the (quadratic) mass form for the electroweak gauge fields,

Q(W, B) := - 1 2 tr[W + I L + + W -I L -+ W 3 I L 3 + N BY, φ] 2 , (4.7) 
by noting that [G, φ] = 0 and substituting in the third term of the Lagrangian (4.4) the components of φ(x) by constant values which minimize V (φ):

|φ α | 2 = ρ α , α = 0, 8, ρ 0 + ρ 8 = m 2 , ρ 0 ρ 8 = 0. (4.8) 
In writing down (4.7) (and later) we are omitting the (contracted) vector index µ of the gauge fields. Taking further into account the relations

[W + a * 8 a 0 + W -a * 0 a 8 , φ] 2 = [W + (φ 0 a * 8 -φ8 a 0 ), W -(φ 8 a * 0 -φ0 a 8 )] + , (4.9) 
[

W 3 I 3 + N BY, φ] 2 = 1 4 (W 3 + 2N B) 2 (φ 0 a * 0 -φ0 a 0 ) 2 + 1 4 (W 3 -2N B) 2 (φ 8 a * 8 -φ8 a 8 ) 2 , (4.10) 
and inserting the values (4.8) of φ 0 , φ 8 that minimize the potential, we find

Q(W, B) = 1 4 tr{(ρ 0 + ρ 8 )(W + W -+ W -W + ) + 1 2 ρ 0 (W 3 + 2N B) 2 + ρ 8 (W 3 -2N B) 2 } = 4m 2 W + W -+ W -W + + 1 2 (W 2 3 + 4N 2 B 2 ) + 2N BW 3 ε , ε = ε(ρ 0 , ρ 8 ) = ρ 0 -ρ 8 ρ 0 + ρ 8 = ±1. (4.11) 
Eq. (4.11) tells us that the parameter 2m appears as the mass of the charged, W ± , bosons. The mixing matrix for the neutral gauge bosons W 3 and B,

1 2N ε 2N ε 4N 2 ,
has determinant 0 for ε 2 = 1 as ensured by the last equation (4.8). This implies the existence of a zero mass photon. The physical neutral gauge fields A γ and the Z-boson diagonalize the mixing matrix by a rotation on the Weinberg angle:

A γ = cB -εsW 3 , , Z = εsB + cW 3 , c 2 = cos 2 θ w = 1 1 + 4N 2 = 5 8 , s 2 = sin 2 θ w = 4N 2 1 + 4N 2 = 3 8 , (4.12) 
for 4N 2 = 3 5 , (4.6). The relations (4.12) just reflect the fermion spectrum:

tg 2 θ w = 4N 2 = tr J(P) (2I L 3 ) 2 tr J(P) Y 2 (= 3 5 
). (

No wonder that the same result is derived in grand unified theories. For 4N 2 = 1 3 , the value in the leptonic model based on J 4 2 , we would have reproduced the result s 2 = 1 4 of [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF] (also obtained in [START_REF] Coquereaux | Higgs fields and superconnections[END_REF] and earlier, under different premises, in work of Neeman and Fairley, cited in [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF]).

The constant κ in V (φ) (4.2) does not appear in the mass matrix for the gauge bosons. It does affect, however, the mass square of the Higgs mass identified as the coefficient 8m 2 (1 + κ 2 ) to φ φ in the quadratic term of V (φ) giving

m 2 H = 2(1 + κ 2 )m 2 w . (4.14) 
This allows to accomodate the observed relation 16m h ≈ 25m w for κ 1 2 . We end with two remarks placing our result in a more familiar context.

1. The Lagrangian (4.4) involves no coupling constants. A way to introduce the gauge coupling g of the charged W -bosons and the gluons consists in replacing L(A, φ) (4.4) by 1 g 2 L(gA, gφ), a scaling that preserves the kinetic (and, more generally, the quadratic) term (cf. [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF]); we then identify (a multiple of) g with the W and G gauge coupling. The couplings g of the Z boson and e of the photon A γ are determined by g and the Weinberg angle:

g = g tg θ w , e 2 = g 2 sin 2 θ w , (4.15) 
yielding in our case g 2 = 5 3 g 2 = 8 3 e 2 . 2. Our calculation (as well as that of [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF] and in the work cited there) is classical, corresponding to a tree quantum field theoretic approximation. According to the renormalization group analysis the coupling constants g, g , . . . depend on the energy scale (or the momentum transfer -a dependance now confirmed experimentally). Our argument, or a similar one in a grand unified theory, is believed to be exact at "unification scale" (at inaccessibly high energy -up to 10 15 -10 16 GeV ). The measured value of sin 2 θ w is 0.2312 (at momentum transfer 91.4 GeV c ). The value sin 2 θ w = 1 4 based on the U (2) electroweak theory is, in fact, closer to it than the value 3/8 computed for the full SM.

Outlook

The fact that the euclidean extensions of the spin factors J 4 2 and J 8 2 are related to the "structure Clifford algebras" C (5, 1) and C (9, 1) makes the superconnection approach of [START_REF] Quillen | Superconnections and the Chern character[END_REF], [START_REF] Matthai | Superconnections, Thom classes, and covariant differential forms[END_REF], adopted by physicists and neatly formulated in [START_REF] Roepstorff | Superconnections and the Higgs field[END_REF], particularly natural. The generators Γ a of C (4n + 1, 1) (n = 1, 2) anticommute with the chirality operator γ = ω 4n+1,1 and intertwine between the (internal symmetry counterpart of) left and right chiral fermions. This begs to identify the (multicomponent) scalar field Φ(x) = a φ a (x)Γ a , or rather P Φ(x)P (5.1) where P projects on the particle subspace (excluding antiparticles) with the matrix valued odd part of the superconnection associated with the Higgs field.

The detailed explicit calculation of Sects. 3, 4 aimed to demonstrate the accessibility and the relative simplicity of this approach.

The inclusion of a fermionic term into the Lagrangian involves some subtleties and will be dealt with in future work.

Let us make some comments on the description of the theory of fundamental particles of matter for one generation of the Standard Model given here. One has an internal quantum space which corresponds to the Jordan algebra J 8 2 = JSpin 9 of hermitian 2 × 2-matrices over O acted by the subgroup of automorphisms preserving the splitting

O = C ⊕ C 3 which is the subgroup G SM (1.2) of Aut(J 8 
2 ) = Spin(9, 0). One also has an external classical space which corresponds to the algebra C(M ) of real functions on spacetime acted by the subgroup of automorphisms preserving the Minkowskian structure which is the Poincaré group. Particles are then described by modules over J 8 2 and C(M ) respectively that is by the Clifford algebra C 9 or its hermitian part for the internal structure and by the module S of sections of the (Weyl) spin bundles for the external structure. These modules being equivariant respectively by G SM and by the Poincaré group. Here, we have taken into account C 9 × S as a module over C(M ) and investigated the corresponding (super-)gauge theory. This is not the only possibility. Indeed, from the very beginning C 9 × S is a module over the Jordan algebra J

8 2 × C(M ) = C(M, J 8 
2 ). In [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF] differential calculi over general Jordan algebras and a corresponding theory of connections over Jordan modules have been defined, which has been further developed in [START_REF] Carotenuto | Differential calculus on Jordan algebra and Jordan modules[END_REF]. Thus it would be more natural to write an action for the theory of (super-)connections over the Jordan algebra C(M, J 8 2 ) (cf. the approach of [START_REF] Dubois-Violette | Non-commutative differential geometry and new models of gauge theory[END_REF], [START_REF] Dubois-Violette | Non-commutative differential geometry, quantum mechanics and gauge theory[END_REF] and [START_REF] Dubois-Violette | Lectures on graded differential algebras and noncommutative geometry[END_REF]). If one does that, a lot of supplementary scalar fields appear, namely the components of the connection in the quantum directions (i.e. over the part J 8 2 ).

It is an open problem to classify these fields and to analyse their relevance for physics. Warning : Our presentation of O at the beginning of this appendix is clearly related to the Cayley-Dickson construction applied to the transition from H to O by adding the "new" imaginary unit i, but this i ∈ O should not be confused with the complex number i involved in the complexification C 9 of C (9, 0) in [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics II[END_REF] and in C (10, C) in Section 3.

Once one works in O, it is much more natural to index a basis of the imaginary octonionic units by the field Z 7 of the integers modulo 7. Among such a choice the choice of [START_REF] Baez | The octonions. (math/0105155)[END_REF] is particularly nice since in the basis (e α ) α∈Z7 of [START_REF] Baez | The octonions. (math/0105155)[END_REF] e α e β = e γ ⇒ e 2α e 2β = e 2γ so that everything is fixed by setting e 1 e 2 = e 4 (which is then necessary for the consistence) and we stick to the above choice for O. In such a basis e 7 (" = e 0 ") has the particularity to be invariant by dilatation e α7 = e 7 , ∀α ∈ Z 7 and is unique under this condition since 7 is a prime number (i.e.Z 7 is a field).

Since in our approach the splitting O = C⊕C 3 is fundamentally linked to the color symmetry of quarks and to the quark-lepton symmetry [START_REF] Dubois-Violette | Exceptional quantum geometry and particle physics[END_REF], it is natural to identify i ∈ O as i = e 7 (" = e 0 ") in this frame. This justifies our choice of notations all along our paper. The relation i = e 7 must be supplemented by e 1 = e 1 , e 2 = e 2 and e 3 = e 4 to express the previous items in term of basis (e α ) α∈Z7 of [START_REF] Baez | The octonions. (math/0105155)[END_REF].

Appendix:√ 3 2 2 = 2 defines an automorphism of J 8 2 λ 1 x 3 x2 x3 λ 2 x 1 x 2 x1 λ 3 

 32283 The splitting O = C ⊕ C 3 and the associated Z 3 -symmetry The splitting O = C ⊕ C 3 corresponds to the choice of an imaginary unit i ∈ O which plays the role of the complex imaginary i ∈ C. One can then write an octonion x ∈ O as x = z + k Z k e k = z + Z where z and the Z k are elements of C = R + iR(⊂ O) and where (e k ) is the canonical basis of C 3 , k ∈ {1, 2, 3}. One recovers the product of O by setting    i 2 = -1 ie k = -e k i e k e = -δ k 1 + m ε k m e m i.e. the e k generate a quaternionic subalgebra. The subgroup of G 2 = Aut(O) which preserves i ∈ O is isomorphic to SU (3) and is identified in our picture to the colour group SU (3) c (⊂ G 2 ) while the splitting O = C ⊕ C 3 is identified to the quark-lepton symmetry, C 3 for the quark and C for the lepton.Following[START_REF] Yokota | Exceptional Lie groups[END_REF], let us consider the center Z 3 of SU (3) c , this is the subgroup of G 2 induced by the action w of j = -1 2 + i ∈ O on x = z + Z ∈ O as w(x) = w(z + Z) = z + jZ where Z = (Z k ) ∈ C 3 ⊂ O and jZ = (jZ k) is the diagonal action. Then, by construction w ∈ G 2 and the subgroup of G 2 which commutes with w is againSU (3) c ⊂ G 2 .Consider the Jordan algebra J 8 JSpin 9 = H 2 (O) of the hermitian octonionic 2 × 2 matrices. The group of automorphisms of J8 2 is the group Spin(9) which induces an action of Z 3 on J 8 2 . The subgroup of Aut(J8 2 ) = Spin(9) which commutes with this action (i.e. with w 2 ) is the group G SM defined by (1.2) which preserves the splitting O = C ⊕ C 3 and the C-linearity in C 3 .Consider now the exceptional Jordan algebra J8 3 = H 3 (O), then the mappingw 3 :  of J 8 3 (i.e. w 3 ∈ F 4 = Aut(J 83)) and induces an action of Z 3 on J8 3 . The subgroup of F 4 which commutes with this action (i.e. with w 3 ) is the subgroup of Aut(J 8 3 ) = F 4 isomorphic to SU (3) × SU (3)/Z 3 which preserves the splitting O = C ⊕ C 3 and the C-linearity in C 3 , [34]. This subgroup was denoted as SU (3) c × SU (3) ew /Z 3 in [16].

  the relations of O (i.e. the multiplication table of O) are translational invariant e α e β = e γ ⇒ e α+1 e β+1 = e γ+1 and invariant by the dilatation by 2, i.e.
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