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OPTIMIZATION OF BATHYMETRY FOR LONG WAVES WITH
SMALL AMPLITUDE

PIERRE-HENRI COCQUET*, SEBASTIAN RIFFO!, AND JULIEN SALOMON?

Abstract. This paper deals with bathymetry-oriented optimization in the case of long waves
with small amplitude. Under these two assumptions, the free-surface incompressible Navier-Stokes
system can be written as a wave equation where the bathymetry appears as a parameter in the
spatial operator. Looking then for time-harmonic fields and writing the bathymetry, i.e. the bottom
topography, as a perturbation of a flat bottom, we end up with a heterogeneous Helmholtz equation
with impedance boundary condition. In this way, we study some PDE-constrained optimization
problem for a Helmholtz equation in heterogeneous media whose coefficients are only bounded with
bounded variation. We provide necessary condition for a general cost function to have at least one
optimal solution. We also prove the convergence of a finite element approximation of the solution
to the considered Helmholtz equation as well as the convergence of discrete optimum toward the
continuous ones. We end this paper with some numerical experiments to illustrate the theoretical
results and show that some of their assumptions are necessary.

Key words. PDE-constrained optimization, Time-harmonic wave equation, Bathymetry opti-
mization, Shallow water modelling, Helmholtz equation.

AMS subject classifications. 35J05, 35J20, 656N30, 49Q10, 49Q12, 78 A40, 78A45

1. Introduction. Despite the fact that the bathymetry can be inaccurately
known in many situations, wave propagation models strongly depend on this parame-
ter to capture the flow behavior, which emphasize the importance of studying inverse
problems concerning its reconstruction from free surface flows. In recent years a con-
siderable literature has grown up around this subject. A review from Sellier identifies
different techniques applied for bathymetry reconstruction [45, Section 4.2], which
rely mostly on the derivation of an explicit formula for the bathymetry, numerical
resolution of a governing system or data assimilation methods [33, 47].

An alternative is to use the bathymetry as control variable of a PDE-constrained
optimization problem, an approach used in coastal engineering due to mechanical
constraints associated with building structures and their interaction with sea waves.
For instance, among the several aspects to consider when designing a harbor, build-
ing defense structures is essential to protect it against wave impact. These can be
optimized to locally minimize the wave energy, by studying its interaction with the re-
flected waves [34]. Bouharguane and Mohammadi [10, 40] consider a time-dependent
approach to study the evolution of sand motion at the seabed, which could also allow
these structures to change in time. In this case, the proposed functionals are mini-
mized using sensitivity analysis, a technique broadly applied in geosciences. From a
mathematical point of view, the solving of these kinds of problem is mostly numeri-
cal. A theoretical approach applied to the modeling of surfing pools can be found in
[20, 41], where the goal is to maximize locally the energy of the prescribed wave. The
former proposes to determine a bathymetry, whereas the latter sets the shape and
displacement of an underwater object along a constant depth.
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In this paper, we address the determination of a bathymetry from an optimization
problem, where Helmholtz equation with first-order absorbing boundary condition
acts as a constraint. Even though this equation is limited to describe waves of small
amplitude, it is often used in engineering due to its simplicity, which leads to explicit
solutions when a flat bathymetry is assumed. To obtain such a formulation, we rely
on two asymptotic approximations of the free-surface incompressible Navier-Stokes
equations. The first one is based on a long-wave theory approach and reduces the
Navier-Stokes system to the Saint-Venant equations. The second one considers waves
of small amplitude from which the Saint-Venant model can be approximated by a
wave-equation involving the bathymetry in its spatial operator. It is finally when
considering time-harmonic solution of this wave equation that we get a Helmholtz
equation with spatially-varying coefficients. Regarding the assumptions on the ba-
thymetry to be optimized, we assume the latter to be a perturbation of a flat bottom
with a compactly supported perturbation which can thus be seen as a scatterer. More-
over, we make very few assumptions about the regularity of the bathymetry, which
is assumed to be not smooth and possibly discontinuous [29, 38, 49]. We therefore
end up with a constraint equation given by a time-harmonic wave equation, namely
a Helmholtz equation, with non-smooth coefficients.

It is worth noting that our bathymetry optimization problem aims at finding some
parameters in our PDE that minimize a given cost function and can thus be seen as a
parametric optimization problem (see e.g. [4, 2, 30]). Similar optimization problems
can also be encountered when trying to identify some parameters in the PDE from
measurements (see e.g. [14, 8]). Nevertheless, all the aforementioned references deals
with real elliptic and coercive problems. Since the Helmholtz equation is unfortunately
a complex and non-coercive PDE, these results do not apply.

We also emphasize that the PDE-constrained optimization problem studied in
the present paper falls into the class of so-called topology optimization problems. For
practical applications involving Helmholtz-like equation as constraints, we refer to
[48, 9] where the shape of an acoustic horn is optimized to have better transmission
efficiency and to [35, 16, 15] for the topology optimization of photonic crystals where
several different cost functions are considered. Although there is a lot of applied and
numerical studies of topology optimization problems involving Helmholtz equation,
there are only few theoretical studies as pointed out in [31, p. 2].

Regarding the theoretical results from [31], the authors proved existence of op-
timal solution to their PDE-constrained optimization problem as well as the conver-
gence of the discrete optimum toward the continuous ones. Note that in this paper,
a relative permittivity is considered as optimization parameter and that the latter
appears as a multiplication operator in the Helmholtz differential operator. Since in
the present study the bathymetry is assumed to be non-smooth and is involved in
the principal part of our heterogeneous Helmholtz equation, we can not rely on the
theoretical results proved in [31] to study our optimization problem.

This paper is organized as follows: Section 2 presents the two approximations
of the free-surface incompressible Navier-Stokes system, namely the long-wave the-
ory approach and next the reduction to waves with small amplitude, that lead us to
consider a Helmholtz equation in heterogeneous media where the bathymetry plays
the role of a scatterer. Under suitable assumptions on the cost functional and the
admissible set of bathymetries, in Section 3 we are able to prove the continuity of the
control-to-state mapping and the existence of an optimal solution, in addition to the
continuity and boundedness of the resulting wave presented in Section 4. The discrete
optimization problem is discussed in Section 5, studying the convergence to the dis-
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crete optimal solution as well as the convergence of a finite element approximation.
Finally, we present some numerical results in Section 6.

2. Derivation of the wave model. We start from the Navier-Stokes equa-
tions to derive the governing PDE. However, due to its complexity, we introduce two
approximations [37]: a small relative depth (Long wave theory) combined with an
infinitesimal wave amplitude (Small amplitude wave theory). An asymptotic analysis
on the relative depth shows that the vertical component of the depth-averaged veloc-
ity is negligible, obtaining the Saint-Venant equations. After neglecting its convective
inertia terms and linearizing around the sea level, it results in a wave equation which
depends on the bathymetry. Since a variable sea bottom can be seen as an obstacle,
we reformulate the equation as a Scattering problem involving the Helmholtz equation.

2.1. From Navier-Stokes system to Saint-Venant equations. For ¢t > 0,
we define the time-dependent region

Q={(z,2) e AxR| —z(z) <z <n(x,t)}

where (2 is a bounded open set with Lipschitz boundary, n(x,t) represents the water
level and —z,(z) is the bathymetry, a time independent and negative function. The
water height is denoted by h = n + zp.

a2 Free surface

n(w,t)

—2p(2)

\/ Bottom

In what follows, we consider an incompressible fluid of constant density (assumed
to be equal to 1), governed by the Navier-Stokes system

g—?—l—(u-V)u:div(aT)—l—g in Qy,
(2.1) div(u) =0 in Q,
u=ug in Qo,

where u = (u,v,w)" denotes the velocity of the fluid, g = (0,0, —g) T is the gravity
and op is the total stress tensor, given by

or =—pl+pu (Vu + VuT)

with p the pressure and p the coefficient of viscosity.
To complete (2.1), we require suitable boundary conditions. Given the outward

normals
1 (—Vn> 1 (Vzb>
nNg = —F/7— 1 , Np = —F/7—————— 1 )
\/ 1+ |[Vnl? V14 |Vl

to the free surface and bottom, respectively, we recall that the velocity of the two
3
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must be equal to that of the fluid:

0
(2.2) j?—u-nszo on (z,n(z,1),1),

u-np, =0 on (z,—z(z),t).

On the other hand, the stress at the free surface is continuous, whereas at the bottom
we assume a no-slip condition

or - Ng = —pgns on (z,n(x,t),t),
03 { r p (e, n(a,1).1)

(ornp) -, =0 on (x, —z(x),t),

with p, the atmospheric pressure and t; an unitary tangent vector to rny.

A long wave theory approach can then be developed to approximate the previ-
ous model by a Saint-Venant system [25]. Denoting by H the relative depth and
L the characteristic dimension along the horizontal axis, this approach is based on

H
the approximation ¢ := — < 1, leading to a hydrostatic pressure law for the non-

dimensionalized Navier-Stokes system, and a vertical integration of the remaining
equations. For the sake of completeness, details of this derivation in our case are
given in Appendix. For a two-dimensional system (2.1), the resulting system is then

(2.4)
o ,|on| | dthsu)
5t 1+ (£9) 9 + B =0
d(hsw) | O(hs@®) on ,|on|?
ot +9 . —h(;% + du(x, on,t) 5t 1+ (e0) | 1
(2.5) + O(e) + O(d¢),

1 5
h5 (lL‘ ) t) e
recover the classical derivation of the one-dimensional Saint-Venant equations.

A
where § = i hs = dn + z, and u(z,t) = u(z,z,t)dz. If e — 0, we

2.2. Small amplitudes. With respect to the classical Saint-Venant formulation,
passing to the limit 6 — 0 is equivalent to neglecting the convective acceleration terms
and linearizing the system (2.4-2.5) around the sea level = 0. In order to do so, we
rewrite the derivatives as

O(hsu) ou  On_ O(hsu) 68(@) N O(zpr)

o Mg PO Tas or or

and then, taking ,d — 0 in (2.4-2.5) yields

0 d(zpu
9 | 9(zu)
ot ox
O(zpu 0

(20) + be77 =0.
ot or
Finally, after differentiating the first equation with respect to ¢t and replacing the
second into the new expression, we obtain the wave equation for a variable bathymetry.
All the previous computations hold for the two and three-dimensional system (2.1).

In this case, we obtain

207

0°n .
(2.6) o2 div (92, Vn) = 0.
4
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2.3. Helmholtz formulation. Equation (2.6) defines a time-harmonic field,
whose solution has the form n(z,t) = Re{tior(z)e™“!}, where the amplitude ;0
satisfies

(2.7) wthror + div (925 Vihior) = 0.

We wish to rewrite the equation above as a scattering problem. Since a variable
bottom zp(x) := 2z + 02p(x) (with 2zp a constant describing a flat bathymetry and
dzp a perturbation term) can be considered as an obstacle, we thus assume that dz,
has a compact support in €2 and that 1, satisfies the so-called Sommerfeld radiation
condition. In a bounded domain as €2, we impose the latter thanks to an impedance
boundary condition (also known as first-order absorbing boundary condition), which
ensures the existence and uniqueness of the solution [43, p. 108]. We then reformulate
(2.7) as
(28) le ((]. + q)thOt) + k(z)wtot = 0 in Q,

V(Ytot — o) - 1 — iko(Yror — o) =0 on 9L,

where we have introduced the parameter ¢(x) := 5%@) which is assumed to be com-
pactly supported in Q, kg := \/%, 7 the unit normal to 9 and ¥ (z) = eikor-d jg ap

incident plane wave propagating in the direction d (such that |d| = 1).
Decomposing the total wave as ¥ = Yo+ Pse, where . represents an unknown
scattered wave, we obtain the Helmholtz formulation

div (1 + q)Vthse) + kdthse = —div (¢Vihg)  in €,
quzjsc - ikoﬁfsc =0 on 0N).

(2.9)

Its structure will be useful to prove the existence of a minimizer for a PDE-constrained
functional, as discussed in the next section.

3. Description of the optimization problem. We are interested in studying
the problem of a cost functional constrained by the weak formulation of a Helmholtz
equation. The latter intends to generalize the equations considered so far, whereas
the former indirectly affects the choice of the set of admissible controls. These can be
discontinuous since they are included in the space of functions of bounded variations.
In this framework, we treat the continuity and regularity of the associated control-to-
state mapping, and the existence of an optimal solution to the optimization problem.

3.1. Weak formulation. Let  C R? be a bounded open set with Lipschitz
boundary. We consider the following general Helmholtz equation

{div ((1+q)V9) — k3 = div (¢Veho)  in €,

(3 14+ @)V -n—ikotp = g—qVipp-n  on 09,

where g is a source term. We assume that ¢ € L*°(Q2) and that there exists a > 0
such that
(3.2) for a.a. € Q, 1+¢q(z) > a.

REMARK 3.1. Here we have generalized the models described in the previous sec-
tion: if q has a fixed compact support in Q, we have that the total wave Vo Satisfying

5
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(2.8) is a solution to (3.1) with g = Vibg - i — ikotbg and no volumic right-hand side;
whereas the scattered wave Vg, satisfying (2.9) is a solution to (3.1) with g = 0. All
the proofs obtained in this broader setting still hold true for both problems.

A weak formulation for (3.1) is given by
(3.3) a(g; ¥, ¢) = b(g;9), Vo € H' (),
where

(34 algi.d) = / (1+ @)V - V3 — k209) dr —iky | vdo,
Q oQ

b(q: ¢) := —/Q(JV7/10 Nodr + (g, 0) gr-1/2 g1/

Note that, thanks to the Cauchy-Schwarz inequality, the sesquilinear form « is con-
tinuous

la(g; . 9)] < C(2.4,0)(1+ [l o o) 1Y
1017 k= K8 11720y + @ IV 2200y

1o 19M1 kg

where C(€, g, ) > 0 is a generic constant. In addition, taking ¢ = ¢ in the definition
of a, it satisfies a Garding inequality

(3.5) Re{a(g; v, )} + 283 19172y = 10117 4, »

and the well-posedness of Problem (3.3) follows from the Fredholm Alternative. Fi-
nally, uniqueness holds for any ¢ € L>°(Q) satisfying (3.2) owning to [27, Theorems
2.1, 2.4].

REMARK 3.2. We briefly show here that (3.3) have a unique solution. We empha-
size that only the uniqueness has to be proved since Freldholm alternative then ensures
the existence. We consider ¢ € H(Q) such that a(q;,$) = 0 for all ¢ € H(Q).
Since Im{a(q; ¥, v)} = —ko Hwni%am: we obtain that |aq = 0 and the boundary con-
dition (14 q)V -1 —iko = 0 then gives (1+q)Ve -7 = 0. The unique continuation
property [1] which holds since Q@ C R? then proves that 1) = 0.

Regarding the case Q C R®, we cannot conclude using the unique continuation
property unless q satisfy additional smoothness assumptions. We refer to [27, 28]
for further discussions and results on the existence and uniqueness of solution to the
Helmholtz equation with variable coefficients.

3.2. Continuous optimization problem. We are interested in solving the
following PDE-constrained optimization problem

minimize J(q, ),

3.6
(3.6) subject to (g,1) € Ux x H'(Q), where 1 satisfies (3.3).

We now define the set Uy of admissible g. We wish to find optimal ¢ that can have
discontinuities and we thus cannot look for ¢ in some Sobolev spaces that are contin-
uously embedded into C°(Q), even if such regularity is useful for proving existence of
minimizers (see e.g. [4, Chapter VI], [7, Theorem 4.1]). To be able to find an optimal

6

This manuscript is for review purposes only.



q satisfying (3.2) and having possible discontinuities, we follow [14] and introduce the
following set

Urn={qeBV(Q) |a—1<q(z) <A foraa zcQ}.

Above A > max{a —1,0} and BV (Q) is the set of functions with bounded variations
[3], that is functions whose distributional gradient belongs to the set My, (2, RY) of
bounded Radon measures. Note that the piecewise constant functions over €2 belong
to Uj.

Some useful properties of BV (2) can be found in [3] and are recalled below for the
sake of completeness. This is a Banach space for the norm (see [3, p. 120, Proposition
3.2])

lall sy (e = llallpr @) + 1Dgl(),
where D is the distributional gradient and

(3.7) |Dq|(©2) = sup {/quiv(go) dx | p € CL(Q,R?) and ol oo (o) < 1},

is the variation of ¢ (see [3, p. 119, Definition 3.4]).
The weak* convergence in BV (), denoted by

qn — q, weak™ in BV (Q),
means that
¢n — q in L*(Q) and Dg,, — Dq in My,(Q,RY),
where Dg,, — Dgq in My(£2, RY) means that
lim /w-qun = / ¥ -dDq Y € C°(Q,RN).
Q Q

n—-+oo
Also, the continuous embedding BV () C L'(£2) is compact. We finally recall that

the application ¢ € BV (Q) — |Dq|(R2) € RT is lower semi-continuous with respect to
the weak* topology of BV. Hence, for any sequence ¢, — ¢ in BV (2), one has

< limi .
| Dq|($2) < lim inf [ Dg, [(£2)

The set Uy is a closed, weakly* closed and convex subset of BV (€2). We will also
consider the next set of admissible parameters

Urw ={q € Ux | [Dg|(Q) < r}

which possesses the aforementioned properties. Note that choosing Uy or Uy, af-
fects the convergence analysis of the discrete optimization problem, topic discussed
in Section 5.

REMARK 3.3. In this paper, we are interested in computing either the total wave
satisfying (2.8) or the scattered wave solution to Equation (2.9). Since this requires
to work with q having a fixed compact support in 2, we also introduce the following
set of admissible parameters

U.:={qeU l|g(z) =0 for aa. z € 0.}, O, = {z € Q| dist(z,00) < e},

which is a set of bounded functions with bounded variations that have a fized support
in Q. We emphasize that this set is a convex, closed and weak-+ closed subset of
BV (Q). As a consequence, all the theorems we are going to prove also hold for this
set of admissible parameters.
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3.3. Continuity of the control-to-state mapping. In this section, we estab-
lish the continuity of the application ¢ € U ~ 9(q) € H(2) where 1(q) satisfies
Problem (3.3). We assume that U C BV () is a given weakly™* closed set satisfying

Vge U, foraa xz€Q, a—1<q(z) <A

Note that both Uy, Uy . and (75 (see Remark 3.3) also satisfy these two assumptions.
The next result consider the dependance of the stability constant with respect to the
optimization parameter gq.

THEOREM 3.4. Assume that ¢ € U and ¢ € HY (). Then there exists a constant
Cs(ko) > 0 that does not depend on q such that

(3.8) 1911k, < Cs(ko)  sup la(g; 9, )],

11l 5, =1

where the constant Cs(ko) > 0 only depend on the wavenumber and on Q. In addition,
if ¢ is the solution to (3.3) then it satisfies the bound
(3.9

161, < Cs(ho)C(@) ety 02} (Il ey V8020 + 91l -2000 )

where C(Q) > 0 only depends on the domain.

Proof. The existence and uniqueness of a solution to Problem (3.3) follows from
[27, Theorems 2.1, 2.4].

The proof of (3.8) proceed by contradiction assuming this inequality to be false.
Therefore, we suppose there exist sequences (g, ), C U and (), C H'(2) such that

||qn||BV(Q) <M, H¢n||17ko =1 and

(3.10) lim — sup |a(gn; ¥n, )| = 0.

nE ]y, =1

The compactness of the embeddings BV (Q) C L*(Q2) and H'(Q) C L?*() yields the
existence of a subsequence (still denoted (g, ¥,,)) such that

(3.11) by — oo in HY(Q), 1 — oo in L*(Q) and ¢,, — goo € U in LY(Q).

Compactness of the trace operator implies that lir_~r_1 Unloa = Yeo|on holds strongly
n—-+0oo
in L2(092) and thus, from (3.11) we get

n—-+oo

lim kgwnadxﬁko/ Vo do :/ /ggqpooadwriko/ VYoo do, ¥ v € H(Q),
Q o0 Q o0

lim /Qv¢n-V$dx:/QV¢oo-V5dm.

n—-+o0o

We now pass to the limit in the term of a that involves ¢,, see (3.4). We start from

(anwna Va)LQ(Q) - (qoovwooa Va)L"’(Q) = ((Qn - QOo)vwna Va)LQ(Q)

+ (QOov(wn - ¢m)7 v¢)L2(Q)a
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and use the Cauchy-Schwarz inequality to get

’ — Goo vwn7v¢ L2 Q)‘ + ’ 7oV wn "/}oo) va)LZ(Q)’
H\/iqoo 2 (Ve

+| Qoo V (Yn — woo),vﬁﬁ)Lz(Q |

.
<2 Y2 ol g, [ VIan =01V

The right term above goes to 0 owning to ¢o, € L*(€2) and (3.11). For the other
term, since ¢, — ¢oo strongly in L', we can extract another subsequence (g,, ) such

that ¢,, — ¢oo pointwise a.e. in Q. Also, \/|gn — ¢oo||[V0|? < 2VA|V@]> € L'(Q)
and the Lebesgue dominated convergence theorem then yields

lim ‘\/\an oo ¢>‘

2

1/1 q/)oo) QOOV¢ L2(9)|

L2 (Q

k—+o0 @
This gives that (see also [14, Equation (2.4)])
(312) kEToo(an v'l/}nk; v&)LZ(Q) = (QOovwoov Va)LQ(Q), VQS € Hl (Q)

Finally, gathering (3.12) together with (3.10) yields

0= limma(an;¢nkv¢) = a(qooa'l/}ooad))v V(b € Hl(ﬂ)7

k—+

and the uniqueness result [27, Theorems 2.1, 2.4] shows that 1o, = 0 thus the whole
sequence actually converges to 0. To get our contradiction, it remains to show that
[Vtbn |l 2y converges to 0 as well. From the Garding inequality (3.5), we have

lnl sy < Redaan; Y, )} + 283 [l ) —— 0,

where we used (3.10) and the strong L? convergence of 9, towards 1, = 0. Finally
one gets Hm ||, [, , = 0 which contradicts |4, ,, = 1 and gives the desired
result.

Applying then (3.8) to the solution to (3.3) finally yields

19l 5, < Cs(ko) sup |a(g;9, )| < Cs(ko) sup  [b(g; d)]

¢”1=k0:1 Hl,kozl

< Culko) sup_ (el V80l 2oy 1Vl caqy + 11272000 161112 00

¢||1,k0=
< Cy(ko)C(Q) max{ky ', a7/} (H‘ZHLoo(Q) Vol 2 (o) + ||9||H71/2(39)) ’

where C'(2) > 0 comes from the trace inequality. d

REMARK 3.5. Let us consider a more general version of Problem (3.1), given by

—div((1+q)Vy) — k3 =F inQ,
(1+q)Vip-h—ikep =G  on Q.
9
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We emphasize that the estimation of the stability constant Cs(ko) with respect to the
wavenumber has been obtained for (F,G) € L*(Q) x L*(99) for ¢ = 0 in [32] and for
q € Lip(Q) satisfying (3.2) in [6, 27, 28]. Since their proofs rely on Green, Rellich and
Morawetz identities, they do not extend to the case (F,G) € (HI(Q))I x H=1/2(0%)
but such cases can be tackled as it is done in [24, p.10, Theorem 2.5]. The case
of Lipschitz q has been studied in [12]. As a result, the dependance of the stability

constant with respect to kg, in the case ¢ € U and (F,G) € (Hl(Q))I x H=1/2(09),
does mot seem to have been tackled so far to the best of our knowledge.

REMARK 3.6 (H!-bounds for the total and scattered waves). From Remark 3.1,
we obtain that the total wave i, and the scattered wave Vs, are solutions to (3.3),
with respective right hand sides

btot(q; d)) = AQ(V¢O = ik0¢0)ad0—7 bsc(q; ¢) = - /Q qv¢0 : V$d$

As a result of Theorem 3./ and the continuity of the trace, we have

[rotlly g, < C(Q)Culkio)ko max{hy ', a1/},
||¢sc||1,k0 < OS(]‘;O)O‘_U2 ||QHLOO(Q) ”V'(/)OHL?(Q) < kOCS(kO)O‘_l/Q ||Q||L°°(Q) V1€

We can now prove some regularity for the control-to-state mapping.

THEOREM 3.7. Let (qn)n C U be a sequence that weakly* converges toward goo in
BV (). Let (¢(qn))n be the sequence of weak solutions to Problem (3.3). Then 1(qy)
converges strongly in H'(Q) towards 1(qs). In other words, the mapping

q € (Up,weak™) — ¢(q) € (H*(Q),strong),

s continuous.

Proof. Since g, — gso, weak™ in BV () the sequence (g,), is bounded. Using
that U is weak™ closed, we obtain that ¢, € U. Therefore, the sequence (¢ (q,))n of
solution to Problem (3.3) satisfies estimate (3.9) uniformly with respect to n. As a
result, there exists some ¥, € H'(Q) such that the convergences (3.11) hold. Using
then (3.12), we get that a(gn; ¥ (qn), d) = a(goo; Yoo, D).

Since b(gn,d) — b(geo, @) for all ¢ € H(Q), this proves that a(geo; Voo, ) =
b(q; ¢) for all ¢ € H(2). Consequently oo = 1(¢s) owning to the uniqueness of a
weak solution to (3.3) and we have also proved that 1(g,) — ¥(gs0) in H* ().

We now show that () — 1(geo) strongly in H!. To see this, we start by noting
that, up to extracting a subsequence (still denoted by g¢,,), we can use (3.12) to get
that

Jm b(gn; 9(an)) = b(do0; ¥(doo))-

Since ¥(qn), ¥ (goo) satisfy the variational problem (3.3), we infer

(3.13) lim a(gn;9(gn), ¥(gn)) = a(doo; ¥(goo)s ¥(¢o0)),

n—-+oo

where the whole sequence actually converges owing to the uniqueness of the limit.
10
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359 Using then that 1(q,) — ¥(¢s) in H'(Q) together with (3.13), one gets

360 H V14 g, Vi(gn)

2

= a(qn; ¥(an), ¥(qn)) + ko ||¢(qn)||2L2(Q) +iko ||7/}(Qn)H%2(BQ)

L2Q)
361 T 0o ¥(do0), Y (9ec)) + ko % (go0) 1722y + o0 [11(g00) [ 2002
53 = [VIFevee)] ., I
364 To show that  lm ||V¢(qn)|\2Lz(Q) = ||Vw(qoo)||2Lz(Q), note that
365 Vi(gn) = \/T?Tv;i(%).

366 Using the same arguments as those to prove (3.12), we have a subsequence (same
367 notation used) such that ¢, — ¢ pointwise a.e. in Q and thus w/1+qn_1 —

368 /1+ qoo_1 pointwise a.e. in 2. Due to Lebesgue’s dominated convergence theorem
360 and /T + ¢, VY(qn) = T F Goo Vi (qoo) strongly in L?(Q), we have

_VIF@Ven) | vVIF 0 Vi)
VIta, Vi+ix

371 The latter, together with the weak H!-convergence show that 1(q,) — ¥(quo)
372 strongly in H'. O

370 Vi(qn) = V1)(qoo) strong in L*(1).

373 3.4. Existence of optimal solution in Uy. We are now in a position to prove
374 the existence of a minimizer to Problem (3.6).

375 THEOREM 3.8. Assume that the cost function (q,v) € Up — J(q,¥) € R satisfies:
(A1) There exists 8 > 0 and Jo such that

376 where |Dq| () is defined in (3.7).

377 (A2) Y(q,9) € Un x HY(Q), Jo(q,9) > m > —c0.

378 (A3) (q,%) — Jo(g, ) is lower-semi-continuous with respect to the (weak* ,weak)
379 topology of BV (Q) x HY(Q).

380 Then the optimization problem (3.6) has at least one optimal solution in Uy X
381 HY(Q).
382 Proof. The existence of a minimizer to Problem (3.6) can be obtained with stan-

383 dard technique by combining Theorem 3.7 with weak-compactness arguments as done
384 in [14, Lemma 2.1], [7, Theorem 4.1] or [31, Theorem 1]. We still give the proof for
385 the sake of completeness.

386 We introduce the following set

387 A= {(q:¢) €Ur x H'(Q) | alg;¢,¢) = blg;¢) V6 € H'(Q) }.

388 The existence and uniqueness of solution to Problem (3.3) ensure that A is non-empty.
389 In addition, combining Assumptions (A1) and (A2), we obtain that J(g, ) is bounded
390 from below on .A. We thus have a minimizing sequence (g, ¥,) € A such that

391 lim J(qn,%,) = inf J(q,).
Jm T (gn, Yn) (o (¢,%)

11
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Theorem 3.4 and (A1) then gives that the sequence (gn,%,) € BV(2) x HY(Q) is
uniformly bounded with respect to n and thus admits a subsequence that converges
towards (¢*,v*) in the (weak*,weak) topology of BV (Q)x H!(£2). Using now Theorem
3.7 and the weak* lower semi-continuity of g — |Dgq|(Q2), we end up with (¢*,¢*) € A
and
J(g*,v*) <lminf J(gn,¥n) = inf J(g,v).
(7 9") <l inf J(gn, ¥n) = inf J(g) q

It is worth noting that the penalization term 3 ||¢|| 5y () has been introduced only
to obtain a uniform bound in the BV-norm for the minimizing sequence.

3.5. Existence of optimal solution in U, .. We show here the existence of
optimal solution to Problem (3.6) for U = Uy .. Note that any ¢ € Uy, is actually
bounded in BV since

||q||BV(Q) < 2max(A, K, |a — 1]).

With this property at hand, we can get a similar result to Theorem 3.8 without adding
a penalization term in the cost function, hence 8 = 0.

THEOREM 3.9. Assume that the cost function (g,v) € Up  — J(q,¢) € R satis-
fies (A2) — (A3) given in Theorem 3.8 and that 3 = 0. Then the optimization problem
(3.6) with U = Uy, has at least one optimal solution.

Proof. We introduce the following non-empty set

A={(q,0) € Up,xe x H'(Q) | alg; ¥, ¢) = blq; ¢) Vo € H'(Q)} .

From (A2), J(q,) is bounded from below on .A. We thus have a minimizing sequence
(¢n,¥n) € A such that

lim J(gn,¥n) = inf J(q,¥).
JHm TG ¥n) = inf J(a,9)

Since (gn)n C Un,k, it satisfies [|qn || gy (o) < 2max(A, k,[a — 1[) and thus admits a
convergent subsequence toward some ¢ € Uy .. Theorem 3.7 then gives that ¢(g,) —
(q) strongly in H*(2) and the proof can be finished as the proof of Theorem 3.8. O

4. Boundedness/Continuity of solution to Helmholtz problem. In this
section, we prove that even if the parameter ¢ is not smooth enough for the solution
to (3.1) to be in H*(Q2) for some s > 1, we can still have a continuous solution. In
order to prove such regularity for 1, we are going to rely on the De Giorgi-Nash-
Moser theory [26, Chapter 8.5], [36, Chapters 3.13, 7.2] and more precisely on [42,
Proposition 3.6] which reads

THEOREM 4.1. Consider the elliptic problem associated with inhomogeneous Neu-
mann boundary condition given by

N

Lo :=div (A(x)Vv) = fo — Z
j=1

i
8l‘j7
(4.1)

N
Vo-n=h+> fin,

Jj=1

where A € L™ (Q,RN*N) satisfy the standard ellipticity condition A(z)¢ - &€ > ~[€|?
for almost all x € Q. Let p > N and assume that fo € LP/?(Q), fi € LP(Q) for all

12
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443
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j=1,--- N and h € LP71(09Q). Then the weak solution v to (4.1) satisfies

N
loll ooy < CONp. 7)ol 2y + ol oraay + 3 1l oy + 1Al os oo
j=1

4.1. C’-bound for the general Helmholtz problem. Using Theorem 4.1, we
can prove some L bound for the weak solution to Helmholtz equation with bounded
coeflicients.

THEOREM 4.2. Assume that ¢ € L>(Q) and satisfies (3.2) and g € L*(09Q). Then
the solution to Problem (3.3) satisfies

(4.2) ||1/’||00(Q) < 5(9)05(790,04) (”q“LOO(Q) HVQ/JOHLOC(Q) + ||9||L2(3Q)> )

where

Culko,0) = 1+ ((1+ K)ky " +a~/2) max{hy !, a~/2}Culko),

and C(Q) > 0 does not depend on k nor q.

Proof. We cannot readily apply Theorem 4.1 to the weak solution of Problem
(3.1) since it involves a complex valued operator. We therefore consider the Problem
satisfied by v = Re{u} and ¢ = Im{u} which is given by

—div ((1 + q)Vv) — kv = div (¢V Re{tg}) in Q,
—div (1 + ¢)V¢) — k¢ = div (¢V Im{to}) in Q,
(1+¢q)Vv-n =Re{g} — ko — gV Re{t)o} -1, on 99,
(14 ¢)VC¢-n=Im{g} +kov — ¢VIm{¢p} -7  on O

Since Problem (4.3) is equivalent to Problem (3.1), we get that the weak solution
(v,¢) € H(Q) to (4.3) satisfies the inequality (3.9). Assuming that g € L?(9€) and
using the continuous Sobolev embedding H!(Q2) C L%(Q), the (compact) embedding
HY2(0Q) C L?*(09), that ¢ € L>(Q) satisfies (3.2) and the fact that 1o is smooth
we get the next regularities

(4.3)

for =kiv € L°(Q), fin = qafi;ia{j%} € L>(Q), hy = Re{g} — ko¢ € L*(0Q),
J

for = KC € L), Fi2 =0 T2} ¢ 12(0), hy = Im{g) + ko € 12(09).
J

Applying now Theorem 4.1 to (4.3) twice with p = 3 and N = 2, one gets C°
bounds for v and ¢

2
||V||CO(Q) <0(2,3,9,7) ||V||L2(Q) + ||f0,1||L3/2(Q) + Z HfjJ”Ls(Q) + ||h1||L2(8Q) )
j=1

2
||C||CO(Q) < C(2>379,7) ||C||L2(Q) + ||f0,2||L3/2(Q) + Z Hfj’2||L3(Q) + ||h2||L2(aQ)

Jj=1

13
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Some computations with the Holder and multiplicative trace inequalities then
give
(Il 20y + 1K L20)) < 211¥] 20y »
||f071||L3/2(Q) + [ fo,2! L3/2(Q) < ]‘53 ||¢HL3/2(Q) < |Q‘1/6k(2) ||wHL2(Q) )
Hijl”LS(Q) < ||QHL<>0(Q) ”VwO“L‘X’(Q)? J=12,

171l 200y + 172l 200y < 1191l L200) + Ko 191 1200
< N9l 2 o) + ko C(\ /I 20 11l 111 -

Using then Young’s inequality yields

koo /19 22y 1121y < € (19111 + K3 19l 2
< O (IV9ll gy + K8 ¥l

where C' > 0 is a generic constant. We obtain the bound

[¥llcoy = Vllco) + I€llcoq)
< 5(9) ((1 + kg) ||1/’HL2(Q) + vaHB(Q) + ||qHL°°(Q) ||V¢O||Loo(§z) + ||9||L2(89)> I

Using the definition of [|¢[|, , on the estimate above, we get

wy  Mews SO (A + R +a™2) 10l
+ 114l oo (0 IVY0ll Lo () + 1191l 22002 )

To apply the a priori estimate (3.9), we recall that the H~1/2 norm can be replaced
by a L? norm (since g € L*(9)) and then,

9]l g, < C(2) max{hy ', a™/?}Cs(ko) (Hq”LOO(Q) Vol 20y + ||9||L2(asz)>
< C(Q)max{k; ', o~ /?}Cy (ko) max{1, \/|Q[} (||q||L°°(Q) Vol Lo (o) + H9HL2(69)>I

Finally, combining the latter expression with (4.4), we obtain that the weak so-
lution to the Helmholtz equation satisfies

[l oy < C) (14 (1 +kkg " +a™"/2) max{ky ', a=/21Ci (ko) )
x <||QHL°°(Q) IVeoll oo () + ||9||L2(an)) ;

where C(Q) > 0. d

REMARK 4.3. 1. For the one-dimensional Helmholtz problem, the a priori
estimate (3.9) and the continuous embedding H*(I) C C°(I) directly gives
the continuity of u over a give interval I

1llcoqry < € Nl ey < Clho) (llall e e 900l e oy + 19117201 ) -

Remark that we do not need to assume that g € L?(052).
14
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2. For the two-dimensional Helmholtz problem with ¢ = 0, we can get the above
CO estimate from the embedding H*(Q) — C°(Q) since

19l o) < C Yl g2, -

for a generic constant C'. We can then see that the estimate (4.2) has actually
the same dependance with respect to ko as the H?-estimate in [32, p. 677,
Proposition 3.6].

4.2. C'-bounds for the total and scattered waves. Thanks to Remark 3.1
and following the proof of Theorem 4.2, these bounds can be roughly obtained by
setting g = Vb - o — ikoto and omitting the L*-norms in (4.4) for the total wave
Yrot, and simply by setting ¢ = 0 in the case the scattered wave 4.. Using after the
H'-bounds from Remark 3.6, we actually get

rotlleogay < Cko (((1+B)hg " +a~Y/2) max{ky, a1/} Cu(ko) +1)
sclleagay < Cko (((1+ kAT +a72) a™2Cy(ko) +1) gl =

We emphasize that the previous estimates show that the scattered wave ¥, van-
ishes in  if ¢ — 0. This is expected since, if ¢ = 0, there is no obstacle to scatter the
incident wave which amounts to saying that 1, = .

5. Discrete optimization problem and convergence results. This section
is devoted to the finite element discretization of the optimization problem (3.6). We
consider a quasi-uniform family of triangulations (see [23, p. 76, Definition 1.140])
{Th}>0 of © and the corresponding finite element spaces

Vi = {6n € C(@Q) | ¢nlr € P1(T), VT € Tr} .

Note that thanks to Theorem 4.2, the solution to the general Helmholtz equation (3.1)
is continuous, which motivates to use continuous piecewise linear finite elements. We
are going to look for a discrete optimal bathymetry that belongs to some finite element
spaces K and we thus introduce the following set of discrete admissible parameters

U,=UnNKy.

The full discretization of the optimization problem (3.6) then reads

(5.1) Find ¢ € Uy, such that J(q}) < J(qn), Yan € Un,
where JN(qh) = J(qn,¥n(gr)) is the reduced cost-functional and ¥y := ¥p(qn) € Vi
satisfies the discrete Helmholtz problem

(5.2) a(qn; ¥n, on) = b(qn; ¢n), Yén € Vp.

The existence of solution to Problem (5.2) is going to be discussed in the next sub-
section.

Before giving the definition of K, we would like to discuss briefly the strategy
for proving that the discrete optimal solution converges toward the continuous ones.
To achieve this, we need to pass to the limit in inequality (5.1). Since J is only
lower-semi-continuous with respect to the weak® topology of BV, we can only pass
to the limit on one side of the inequality and the continuity of J is then going to be

15
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needed to pass to the limit on the other side to keep this inequality valid as h — 0.

We discuss first the case U = U, for which Theorem 3.8 gives the existence of optimal
g but only if § > 0. Since we have to pass to the limit in (5.1), we need that
i | Dgp|(§2) = |Dg|(S2). Since the total variation is only continuous with respect to

the strong topology of BV, we have to approximate any g € Up by some g, € Uy
such that

,1}3%) lg — qh”BV(Q) =0.

However, from [5, p. 8, Example 4.1] there exists an example of a BV -function v
that cannot be approximated by piecewise constant function vy, over a given mesh in
such a way that im |Duvy|(Q) = [Dv|(€2). Nevertheless, if one consider an adapted
mesh that depends on a given function v € BV (Q) N L>(N), we get the existence
of piecewise constant function on this specific mesh that strongly converges in BV
toward v (see [13, p. 11, Theorem 4.2]). As a result, when considering U = Uy, we

use the following discrete set of admissible parameters
Kni={an € L=(Q) | qulr € P1(T), VT € T} .

Note that, from Theorem [13, p. 10, Theorem 4.1 and Remark 4.2], the set U, =
Ua N Kp1 defined above has the required density property hence its introduction as
a discrete set of admissible parameter.

In the case U = U, ,, we will not need the density of Uj, for the strong topology of
BV but only for the weak® topology. The discrete set of admissible parameters is
then going to be Uy, = Up, . N Kp 0 with

Kno=A{an € L=(Q) | gnlr € Po(T), VT € Tn} .

We show below the convergence of discrete optimal solution to the continuous one
for both cases highlighted above.

5.1. Convergence of the Finite element approximation. We prove here
some useful approximations results for any U}, defined above. We have the following
convergence result whose proof can be found in [24, p. 22, Lemma 4.1] (see also [27,
p. 10, Theorem 4.1]).

THEOREM 5.1. Let g, € Uy and v(qn) € H'(Q) be the solution to the variational
problem

a(Qh; w(qh)v (b) = b(Qh» ¢)7 V(Z5 € Hl(Q)
Let S* : (qn, f) € Up x L3(Q) — S*(qn, f) = ¥* € HY(Q) be the solution operator
associated to the following problem

Find 1/)* € HI(Q) such that a(qh; (ba 7/}*) = (d),?)L?(Q)’ Vd’ € HI(Q)

Denote by C, the continuity constant of the bilinear form a(qp;-,-), which does not
depend on h since qn € Uy, and define the adjoint approximation property by

S*(qn, f) —
SV = sup  inf 15* (qn, f) ¢h||1,k0.
feL2(Q) ¢h€Vh ||fHL2(Q)

Assume that the spaces Vy, satisfies
(53) 2Cak05(vh) < 17
then the solution ¥n(qn) to Problem (5.2) satisfies

¥(an) — ¥nlan)lly g, < 2Ca ¢3I€11;h l¥(an) — onlly k, -
16
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We emphasize that the above error estimates in fact implies the existence and
uniqueness of a solution to the discrete problem (5.2) (see [39, Theorem 3.9]). In the
case ¢ € C%1(Q) where Q is a convex Lipschitz domain, Assumption (5.3) has been
discussed in [27, p. 11, Theorem 4.3] and roughly amounts to say that (5.3) holds if
k2h is small enough. Since the proof rely on HZ2-regularity for a Poisson problem, we
cannot readily extend the argument here since we can only expect to have 1 € H'(Q)
and that S* also depend on the meshsize. We can still show that (5.3) is satisfied for
small enough h.

LEMMA 5.2. Assume that qn, € Uy weak™ converges toward ¢ € BV (Q). Then
(5.3) is satisfied for small enough h.

Proof. Note first that Theorem 3.7 also holds for the adjoint problem and thus
li * -5 =0.
Jim |15 (an, f) = 57(¢, )l g, = 0

Using the density of smooth functions in H' and the properties of the piecewise linear
interpolant [23, p. 66, Corollary 1.122], we have that

. o 157(a ) = dnllig,
lim sup  inf =0,
h—0 \ rer2(Q) $n€Vh ||f||L2(Q)
and thus a triangular inequality shows that (5.3) holds for small enough h. 0

We can now prove a discrete counterpart to Theorem 3.7.

THEOREM 5.3. Let (qp)n C Uy be a sequence that weakly* converges toward q in
BV (). Let (¢¥n(qn))n be the sequence of discrete solutions to Problem (5.2). Then
¥(qn) converges, as h goes to 0, strongly in HY(Q) towards 1(q) satisfying Problem
(3.3).

Proof. For h small enough, Lemma 5.2 ensures that (5.3) holds and a triangular
inequality then yields

¥n(an) — V(@ k, < I¥nlan) — (@)l g, + 1¥(an) — Y@l 4,
<2C, @32& [¥(an) — dnlly g, + 11¥(an) — V(@)1 4,

< (14+200) [9(an) = ()14, +2Ca ,inf i) = 6l -

Theorem 3.7 gives that the first term above goes to zero as h — 0. For the second
one, we can use the density of smooth function in H' to get that it goes to zero as
well. d

5.2. Convergence of the discrete optimal solution: Case U, = Uy NKy, 1.
We are now in a position to prove the convergence of a discrete optimal design towards
a continuous one in the case

U=Uy, Up=U,x ﬂlch,l.

Hence the set of discrete control is composed of piecewise linear function on 7.

THEOREM 5.4. Assume that (A1) — (A2) — (A3) from Theorem 3.8 hold and that
the cost function Jo : (q,%) € Uy x HY(Q) — Jo(q,7) € R is continuous with respect
to the (weak™, strong) topology of BV (Q) x HY(Q). Let (g}, ¥n(q})) € Uan X Vi be

17
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an optimal pair of (5.1). Then the sequence (g;)n C Un is bounded and there exists a
subsequence (same notation used) and g* € Up such that ¢f — ¢* weakly* in BV (Q),
»(q;) — ¥(q*) strongly in H'(2) and

J(q*) < J(q), Yq € Us.

Hence any accumulation point of (¢}, ¢¥n(q})) is an optimal pair for Problem (3.6).

Proof. Let gp € Up p, be given as
qa(z) = A, Yz € Q.

Then Dgp = 0. Since ¥,(ga) is well-defined and converges toward 1(ga) strongly in
H' (see Theorem 5.4), we have that

J(qn) = J(qn, ¥n(qa)) = Jo(aa,¥n(an)) P Jo(an, ¥ (qa))-
As a result, using that (¢}, ¢¥n(q};)) is an optimal pair to Problem (5.2), we get that

BID(q;)(22) < —Jo(an, ¥ular)) + J(qn, ¥ulga)) < —m+ Jo(qa, ¥nlqa)),

and thus the sequence (g;)5, C Ua j, C Uy is bounded in BV () uniformly with respect
to h. We can then assume that it has a subsequence that converges and denote by
q* € Uy its weak* limit and Theorem 5.3 then shows that ¢ (q}) — ¥(¢*) strongly
in H1(2). The lower semi-continuity of .J ensures that

J(g" (q) = I(q") < liminf J(qy) = lim inf J(gj,, ¥n(q))-

Now, let ¢ € Uy, using the density of smooth functions in BV, one gets that there

exists a sequence g, € Un,p such that [|gn — ¢"|| gy (o) — O (see also [5, p. 10, Remark
4.2]). From Theorem 5.3, one gets 1y, (qn) — ©(q) strongly in H'(Q) and the conti-

nuity of J ensure that J(gn) — J(g). Since J(g;;) < J(gn) for all ¢, € Uy p, one gets
by passing to the inf-limit that

J(¢*) <liminf J(¢}) < liminf J(qz) = J(q), Yq € Ua,
h—0 h—0

and the proof is complete.

5.3. Convergence of the discrete optimal solution: Case Uy, = Uy ,NKp 0.
We are now in a position to prove the convergence of discrete optimal design toward
continuous one in the case

U=Upk, Up =Urx NEKpp.

Hence the set of discrete control is composed of piecewise constant functions on 7
that satisfy
Yan € Un, llanll gy (o) < 2max(A, &, [a —1).

We can compute explicitly the previous norm by integrating by parts the total varia-
tion (see e.g. [5, p. 7, Lemma 4.1]). This reads

Yan € Un, [Danl(@) = Y |FlllanllFl,
FeFi

18
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where F? is the set of interior faces and |[gs]|r is the jump of g, on the interior face
F = 0Ty N 0Ty meaning that |[qn]|F = |qn|m, — |gn|Ts, Where | - |1, denotes the value
of the a finite element function on the face T;. Note then that any ¢; € U, can only
have either a finite number of discontinuity or jumps that are not too large.

THEOREM b5.5. Assume that § =0 and (A2) — (A3) from Theorem 3.8 hold and
that the cost function J : (q,%) € Uy x HY(Q) — J(q,v) € R is continuous with
respect to the (weak™, strong) topology of BV (Q) x H*(Q). Let (¢}, ¢n(q})) € Un X Vy,
be an optimal pair of (5.1). Then the sequence (q};)n C U, is bounded and there
exists ¢* € U, such that ¢ — ¢* weakly* in BV (Q), ¥(q}) = ¥(¢*) strongly in
HY(Q) and

J(q*) < J(q), Vq € Uy.
Hence any accumulation point of (g5, v¥n(qy)) is an optimal pair for Problem (3.6).

Proof. Since (q;,)n belong to Uy, it satisfies [|qn| gy (o) < 2max(A, &, o —1|) and
is thus bounded uniformly with respect to h. We denote by ¢* € Uy ., the weak® limit
of a converging subsequence. Theorem 5.4 then shows that vy, (¢;;) converges strongly
in H'(Q) toward ¥(q*).

Now, let ¢ € Uy ., using the density of smooth function in BV, one gets that there ex-
ists a sequence ¢, € Uy, such that g, — ¢ weak™ in BV () (see also [5, Introduction]).
From Theorem 5.3, one gets 1y, (qn) — %(q) strongly in H() and the continuity of

J ensure that J(gn) — J(g). The proof can then be done as in Theorem 5.4. O

6. Numerical experiments. In this section, we tackle numerically the opti-
mization problem (3.6), when it is constrained to the total amplitude ;. described
by (2.8). We focus on two examples: a damping problem, where the computed ba-
thymetry optimally reduces the magnitude of the incoming waves; and an inverse
problem, in which we recover the bathymetry from the observed magnitude of the

waves. .
lktoéL’d

In what follows, we consider an incident plane wave ¥g(z) = e propagating
in the direction d = (0 1)7, with
wo 2
ko= —, wo = —, Tp =20, g = 9.81, 29 = 3.
0 N wo Ty 0 g 20
For the space domain, we set Q = [0, L]?, where L = 118—0’7. We also impose a L>°-

constraint on the variable ¢, namely that ¢ > —0.9.

6.1. Numerical methods. We discretize the space domain by using a struc-
tured triangular mesh of 8192 elements, that is a space step of Ax = Ay = 8.476472.

For the discretization of 1., we use a P!-finite element method. The optimized
parameter ¢ is discretized through a P9-finite element method. Hence, on each tri-
angle, the approximation of 1. is determined by three nodal values, located at the
edges of the triangle, and the approximation of ¢ is determined by one nodal value,
placed at the center of gravity of the triangle.

On the other hand, we perform the optimization through a subspace trust-region
method, based on the interior-reflective Newton method described in [18] and [17].
Each iteration involves the solution of a linear system using the method of precondi-
tioned conjugate gradients, for which we supply the Hessian multiply function. The
computations are achieved with MATLAB (version 9.4.0.813654 (R2018a)).

REMARK 6.1. The next numerical experiments aims at going further than the
previous analysis. As a consequence, the considered setting does not meet all the
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assumptions of Theorem 5./ (as well as those of Theorem 5.5, see Section 6.3) which
states the convergence of the optimum of the discretized/discr ete problem toward the
optimum of the continuous one. Indeed, regarding Theorem 5.4, the optimization
parameters shall be unbounded functions and we omit the penalization term B|Dq|(Q)
with > 0 in the considered cost functions.

6.2. Example 1: a wave damping problem. We first consider the minimiza-
tion of the cost functional

2
W,
J(Qv wtm) = 70 / |wt0t<xa y)|2d.’1,‘dy,
Qo
where Qy = [%, %]2 is the domain where the waves are to be damped. The bathym-
etry is only optimized on a subset €, = [£, 3L]2 C Q.

The results are shown in Figure 1 for the bathymetry and Figure 2 for the wave.
We observe that the optimal bathymetry we obtain is highly oscillating. In our exper-
iments, this oscillation remained at every level of space discretization we have tested.
This could be related to the fact that in all our results, ¢ € BV(§2). Note also that
the damping is more efficient over §},. This fact is consistent with the results of the
next experiment.

q(z,y)

Figure 1: Optimal bathymetry for a wave damping problem. The yellow part rep-
resents )y and the red part corresponds to the nodal points associated with ¢q. The
black plane corresponds to the level of the flat bathymetry.
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(a) Norm of the numerical solution.

R(Wror (2, 9)e o

n(t:U)l

(b) Real part of the incident wave. (c) Real part of the numerical solution.

Figure 2: Numerical solution of a wave damping problem. The yellow part represents
Qo and the red part corresponds to the nodal points associated with q.

6.3. Example 2: an inverse problem. Many inverse problems associated
to Helmholtz equation have been studied in the literature. We refer for example
to [19, 22, 46] and the references therein. Note that in most of these papers the inverse
problem rather consists in determining the location of a scatterer or its shape, often
meaning that g(x,y) is assumed to be constant inside and outside the scatterer. On
the contrary, the inverse problem we consider in this section consists in determining
a full real valued function.

Given the bathymetry

5 L 3L 3L
Gref (2, y) = o (@=Dw-17) | (=T +w=)?)

)
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where 7 = 1073, we try to reconstruct it on the domain Q, = [%, 3L)2 U [3F, TL]?
minimizing the cost functional

2
J(q7 wtot) = % /Q W}tot(xy y) - wfef($7 y)‘gdxd?%
0

where 1.5 is the amplitude associated with ¢,y and Qo = [% -0, % +4]%, 6 = %.
Note that in this case, €2, is not contained in €.

In Figure 3, we observe that the part of the bathymetry that does not belong
to the observed domain €2y is not recovered by the procedure. On the contrary, the
bathymetry is well reconstructed in the part of the domain corresponding to €.

gre(z,y) — gz, y)|

(a) Reconstruction error.

Gref (2, 9)

q(z,y)

<
=~ 500

- -
400 N — 300

(b) Actual bathymetry. (c) Reconstructed bathymetry.

Figure 3: Detection of a bathymetry from a wavefield. The yellow part represents Qg
and the red part corresponds to the nodal points associated with q.
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In this example, the assumptions of Theorem 5.5 are also relaxed. Indeed, though
we look for bounded and piecewise constant g, we do not demand that |[Dg,|(Q2) < k
for some x > 0. Nevertheless, we have observed in our numerical experiments that
|Dgr|(2) = O(h™*), for some s > 0. This result is reported in Figure 4.

1400 * h [Da

—h <
1200 vh

1000 [

Figure 4: Norm of Dg(Q2) (blue stars), for various values of h.

It is worth noting that these numerical results show that imposing an upper bound
on |Dgy,| (using either a penalization term in the cost function or imposing it in the
admissible set) is crucial to prove the existence of optimal bathymetry (see Theorems
3.8 and 3.9).
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Appendix: derivation of Saint-Venant system. For the sake of complete-
ness and following the standard procedure described in [25] (see also [11, 44]), we
derive the Saint-Venant equations from the Navier-Stokes system. For simplicity of
presentation, system (2.1) is restricted to two dimensions, but a more detailed deriva-
tion of the three-dimensional case can be found in [21]. Since our analysis focuses on
the shallow water regime, we introduce the parameter € := —, where H denotes the
relative depth and L is the characteristic dimension along the horizontal axis. The

A
importance of the nonlinear terms is represented by the ratio § := T with A the

maximum vertical amplitude. We then use the change of variables

/ z / < / C(0
== =, U=t
TS T L"
and
O B N R
T80, T T seCy T AT Y T gHY

where Cy = v/gH is the characteristic dimension for the horizontal velocity. Assuming
the viscosity and atmospheric pressure to be constants, we define their respective
dimensionless versions by
ro_ K. Pa
B P ™ gm
23

This manuscript is for review purposes only.



740

749

762

Dropping primes after rescaling, the dimensionless system (2.1) reads

ou 8u ou\ 8;0 0 8u

0 1 0u Ow
05, <“(gaz+ax))

ow ow Jw op
2 —_r_
€0 ( 5( oz T 0z )) 0z !

0 ou  ,0w 0 ow
”ax( (5 +¢ ax)>+25az (”a)
ou Ow

(6.3) o, =0

The boundary conditions in (2.2) remains similar and reads

on o on |”
_su! 2 |
5u8 +w= e 1+ (e0) 5| 0 (z,0n(z,t),1),
(6.4)
13
ua—? +w=0 on (x, —zp(x),t).

However, the rescaled boundary conditions in (2.3) are now given by

ou\ 0 1 0u  Ow 0
(6.5) (p 29 é)x) 8777 +u (5282 + é)x) =paa—z on (z,0n(z,t),t),
ou 20w 0 ow
(66) 62/L (82’ +e a) ain + (p - 25”8;;) = Pa on (1’, (577((E,t),t),

and at the bottom (z, —zp(x),t):
ou\ 0z 10u  Ow
(p-2onf) G o (150 <57
Oou 50w\ [0z ow Oz
—on(5; +°5;) (ax) (25“3 P) o

To derive the Saint-Venant equations, we use an asymptotic analysis in €. In
addition, we assume a small viscosity coefficient

(6.7)

K= E&lo-

A first simplification of the system consists in deriving an explicit expression for p,
known as the hydrostatic pressure. Indeed, after rearranging the terms of order £2 in
(6.2) and integrating in the vertical direction, we get

ou ow Ou
_ 2 _ - 7
Dl 2,t) = O(=26) + (61— 2) + dyug ( Ju o 2u O (m,n,t)>
)
(6.8) + p(x,on,t) — 255/105%)(% n,t).
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765 To compute explicitly the last term, we combine (6.5) with (6.6) to obtain

o ow B 5/ 0N\2
W e = 2esu g wont) = (1- 07 (52))

ou on 2
767 §) (p—2epo—— )| =
7:38 + (6 ) <p EHo o (1"7777 )) <8x) s
769 that can be combined with (6.8) to obtain
770 (6.9) p(z, z,t) = (dn — 2) + pa + O(&)).

I As a second approximation, we integrate vertically equations (6.3) and (6.1). We
2 introduce hs = dn+ z5. Due to the Leibnitz integral rule and the boundary conditions
3 in (6.4), integrating the mass equation (6.3) gives

M Ou Ow
774 [Zb(%+&>dz—0
A e an Dz
UCT (/Zb udz) — du(z, 57],75)% — u(z, —Zb,t)% + w(x,on,t) —w(x, —z,t) =0
, n J|on[” . othsm) _
12 Bt 1+ (e9) o + e 0.

778 To treat the momentum equation (6.1), we notice that Equation (6.3) allows us to
779 rewrite the convective acceleration terms as
Ou du  ou?  duw

780 u— + =

R PR P P

781 Its integration, combined with the boundary conditions in (6.4), leads to

mou du o ( °n ) o Oz
782 /—z,, (u&t+w&z') dz = s /_Zbu dz | —du (a:,én,t)% —u (am—zb,t)%

783 + u(zx,on,t) - w(z, on,t) —u(z, —2p,t) - w(x, —2p, 1)
(hsu?) an o’

78 = on,t)=1/1 0)2 |

o L)t on ) I 1+ (02| 91

786 where we have introduced the depth-averaged velocity

1 b
787 u(x,t) = T d) /_Zb u(x, z,t)dz.

788 The vertical integration of the left-hand side of (6.1) then brings

MT u o du  Ou A(hst)  0(hsu?)

—2zp

790 + 8%u(x, on, t)8n< 1+ (0)2
791 ot
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— 0
To deal with the term hsu2, we start from (6.9) which shows that a—p = O(6). Plug-
x

ging this expression into (6.1) yields

From boundary conditions (6.5) and (6.7), we obtain

0
%(% on,t) = O(e2), 6%‘(:57 2,1) = O(e).
Consequently, u(z, z,t) = u(z,0,t) + O(e) and then u(z, z,t) —u(x, t) = O(e). Hence,
we have the approximation
_ on
hsu? = hsT> + / (@ —u)?dz = hsu® + O(e?)

—2zp

and finally
MT u o u  Ou A(hst)  0(hsu?) 5
an an 2
2 on 2 _
(6.10) + 5%u(z, dn, t) py ( 14 (£0) o 1).

We then integrate the right-hand side of Equation (6.1)

mroap w0 [du o (du a9 [dw
[ (5) vom (25 (52) o2 (50)) )

@aiu(xa(snvt) - ﬂoau(xv_zbat):| .

_ n
——5h5+0(€5)+5|:8 92 prw

ox

Combining this expression with (6.10), we get the vertical integration of the momen-
tum equation:

(6.11)
% 14 (e6)? % : + a(g;u) -0

a(gim + 53(}(‘9?2) _ fhé% + [f?;(x,an,t) - %%(m, zb,t)]
(6.12) + du(x, (577,t)g7z< 1+ (e6)? % i - 1) + O(e),

The convergence of (6.12) is guaranteed by the boundary equations (6.5) and (6.7),
from which we get

Fo Ju _ o Ou . 4
5 az(x,én,t)—(’)(eé), 6 az(a:, zp, t) = O(e).

Hence the system (2.4-2.5).
26

This manuscript is for review purposes only.



818

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

21]

(22]
23]

24]

A.

A.

g =3 8

—

REFERENCES

. Alessandrini. Strong unique continuation for general elliptic equations in 2d. J. Math. Anal.

Appl, 386:669-676, 2012.

. Allaire and M. Schoenauer. Conception optimale de structures, volume 58. Springer, 2007.
. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity

Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York, 2000.

. T. Banks and K. Kunisch. Estimation techniques for distributed parameter systems. Springer

Science & Business Media, 2012.

. Bartels. Total variation minimization with finite elements: convergence and iterative solution.

SIAM Journal on Numerical Analysis, 50(3):1162-1180, 2012.

. Barucq, T. Chaumont-Frelet, and C. Gout. Stability analysis of heterogeneous Helmholtz

problems and finite element solution based on propagation media approximation. Mathe-
matics of Computation, 86(307):2129-2157, 2017.

Bastide, P.-H. Cocquet, and D. Ramalingom. Penalization model for Navier-Stokes-Darcy
equation with application to porosity-oriented topology optimization. Mathematical Models
and Methods in Applied Sciences (M3AS), 28(8):1481-1512, 2018.

. Beretta, S. Micheletti, S. Perotto, and M. Santacesaria. Reconstruction of a piecewise

constant conductivity on a polygonal partition via shape optimization in EIT. Journal of
Computational Physics, 353:264—280, 2018.

. Bernland, E. Wadbro, and M. Berggren. Acoustic shape optimization using cut finite el-

ements. International Journal for Numerical Methods in Engineering, 113(3):432-449,
2018.

Bouharguane and B. Mohammadi. Minimization principles for the evolution of a soft sea
bed interacting with a shallow. International Journal of Computational Fluid Dynamics,
26(3):163-172, 2012.

. Bristeau and J. Sainte-Marie. Derivation of a non-hydrostatic shallow water model; com-

parison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical
Systems - Series B (DCDS-B), 10(4):733-759, 2008.

. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency

heterogeneous Helmholtz equations. In M. Griebel and M. Schweitzer, editors, Meshfree
Methods for Partial Differential Equations VIII, Springer Lecture notes in computational
science and engineering 115, pages 85-115. Springer, 2017.

. Bélik and M. Luskin. Approximation by piecewise constant functions in a BV metric.

Mathematical Models and Methods in Applied Sciences, 13(3):373-393, 2003.

. Chen and J. Zou. An augmented Lagrangian method for identifying discontinuous parameters

in elliptic systems. SIAM Journal on Control and Optimization, 37(3):892-910, 1999.

E. Christiansen, F. Wang, O. Sigmund, and S. Stobbe. Designing photonic topological
insulators with quantum-spin-hall edge states using topology optimization. Nanophotonics,
2019.

E. Christiansen, F. Wang, S. Stobbe, and O. Sigmund. Acoustic and photonic topological
insulators by topology optimization. In Metamaterials, Metadevices, and Metasystems
2019, volume 11080, page 1108003. International Society for Optics and Photonics, 2019.

. Coleman and Y. Li. On the convergence of interior-reflective Newton methods for nonlinear

minimization subject to bounds. Mathematical Programming, 67(1):189-224, 1994.

. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject

to bounds. SIAM Journal of Optimization, 6(2):418-445, 1996.

. Colton, J. Coyle, and P. Monk. Recent developments in inverse acoustic scattering theory.

SIAM Review, 42(3):369-414, 2000.

. Dalphin and R. Barros. Shape optimization of a moving bottom underwater generating

solitary waves ruled by a forced KdV equation. Journal of Optimization Theory and
Applications, 180(2):574-607, 2019.

. Decoene, L. Bonaventura, E. Miglio, and F. Saleri. Asymptotic derivation of the section-

averaged shallow water equations for river hydraulics. Mathematical Models and Methods
in Applied Sciences (M3AS), 19:387-417, 2009.

. Dorn, E. Miller, and C. Rappaport. A shape reconstruction method for electromagnetic

tomography using adjoint fields and level sets. Inverse Problems, 16(5):1119-1156, 2000.
Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied
Mathematical Sciences. Springer-Verlag New York, 2004.

. Esterhazy and J. M. Melenk. On stability of discretizations of the Helmholtz equation. In

Numerical analysis of multiscale problems, volume 83 of Lecture Notes in Computational

27

This manuscript is for review purposes only.



[25]

[26]
27]

(28]

[29]
(30]

(31]

(32]
(33]
(34]
(35]

[36]

[44]

Science and Engineering, pages 285-324. Springer Verlag, Berlin, Heidelberg, 2012.

J.-F. Gerbeau and B. Perthame. Derivation of viscous Saint-Venant system for laminar shallow
water; numerical validation. Discrete and Continuous Dynamical Systems - Series B
(DCDS-B), 1(1):89-102, 2001.

D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics
in Mathematics. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2001.

I. Graham and S. Sauter. Stability and finite element error analysis for the Helmholtz equation
with variable coefficients. Mathematics of Computation, 89(321):105-138, 2020.

I. G. Graham, O. R. Pembery, and E. A. Spence. The Helmholtz equation in heterogeneous
media: a priori bounds, well-posedness, and resonances. Journal of Differential Equations,
266(6):2869-2923, 2019.

L. S. Griffiths and R. Porter. Focusing of surface waves by variable bathymetry. Applied Ocean
Research, 34:150-163, 2012.

J. Haslinger and R. A. Mékinen. Introduction to shape optimization: theory, approximation,
and computation. SIAM, 2003.

J. Haslinger and R. A. E. Méikinen. On a topology optimization problem governed by
two-dimensional Helmholtz equation. Computational Optimization and Applications,
62(2):517-544, 2015.

U. Hetmaniuk. Stability estimates for a class of Helmholtz problems. Communications in
Mathematical Sciences, 5(3):665-678, 2007.

M. Honnorat, J. Monnier, and F.-X. Le Dimet. Lagrangian data assimilation for river hydraulics
simulations. Computing and Visualization in Science, 12(5):235-246, 2009.

D. Isebe, P. Azerad, B. Mohammadi, and F. Bouchette. Optimal shape design of defense
structures for minimizing short wave impact. Coastal Engineering, 55(1):35-46, 2008.

J. S. Jensen and O. Sigmund. Topology optimization of photonic crystal structures: a high-
bandwidth low-loss t-junction waveguide. JOSA B, 22(6):1191-1198, 2005.

O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic equations, volume 46
of Mathematics in Science and Engineering. Academic Press, New York, 1968.

B. Le Méhauté. An Introduction to Hydrodynamics and Water Waves. Springer Study Edition.
Springer-Verlag, New York, 1976.

H. Lee. Implicit Discontinuous Galerkin Scheme for Discontinuous Bathymetry in Shallow
Water Equations. KSCE Journal of Civil Engineering, 24(9):2694-2705, SEP 2020.

M. Lohndorf and J. M. Melenk. Wavenumber-explicit hp-bem for high frequency scattering.
SIAM Journal on Numerical Analysis, 49(6):2340-2363, 2011.

B. Mohammadi and A. Bouharguane. Optimal dynamics of soft shapes in shallow waters.
Computers and Fluids, 40(1):291-298, 2011.

H. Nersisyan, D. Dutykh, and E. Zuazua. Generation of two-dimensional water waves by moving
bottom disturbances. IMA Journal of Applied Mathematics, 80(4):1235-1253, 2014.

R. Nittka. Regularity of solutions of linear second order elliptic and parabolic boundary value
problems on Lipschitz domains. Journal of Differential Equations, 251:860-880, 2011.
J.-C. Nédélec. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic

Problems, volume 144 of Applied Mathematical Sciences. Springer-Verlag, New York, 2001.

J. Sainte-Marie. Vertically averaged models for the free surface Euler system. derivation and
kinetic interpretation. Mathematical Models and Methods in Applied Sciences (M3AS),
21(3):459-490, 2011.

M. Sellier. Inverse problems in free surface flows: a review. Acta Mechanica, 227(3):913-935,
2016.

L. Thompson. A review of finite-element methods for time-harmonic acoustics. Journal of The
Acoustical Society of America, 119(3):1315-1330, 2006.

A. van Dongeren, N. Plant, A. Cohen, D. Roelvink, M. C. Haller, and P. Catalan. Beach wizard:
Nearshore bathymetry estimation through assimilation of model computations and remote
observations. Coastal Engineering, 55(12):1016-1027, 2008.

E. Wadbro, R. Udawalpola, and M. Berggren. Shape and topology optimization of an acoustic
horn-lens combination. Journal of Computational and Applied Mathematics, 234(6):1781—
1787, 2010.

N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva. An entropy stable nodal
discontinuous Galerkin method for the two dimensional shallow water equations on un-
structured curvilinear meshes with discontinuous bathymetry. Journal of Computational
Physics, 340:200-242, JUL 1 2017.

28

This manuscript is for review purposes only.



	Introduction
	Derivation of the wave model
	From Navier-Stokes system to Saint-Venant equations
	Small amplitudes
	Helmholtz formulation

	Description of the optimization problem
	Weak formulation
	Continuous optimization problem
	Continuity of the control-to-state mapping
	Existence of optimal solution in U
	Existence of optimal solution in U,

	Boundedness/Continuity of solution to Helmholtz problem
	C0-bound for the general Helmholtz problem
	C0-bounds for the total and scattered waves

	Discrete optimization problem and convergence results
	Convergence of the Finite element approximation
	Convergence of the discrete optimal solution: Case Uh=UKh,1
	Convergence of the discrete optimal solution: Case Uh=U,Kh,0

	Numerical experiments
	Numerical methods
	Example 1: a wave damping problem
	Example 2: an inverse problem

	References

