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OPTIMIZATION OF BATHYMETRY FOR LONG WAVES WITH1

SMALL AMPLITUDE2

PIERRE-HENRI COCQUET∗, SEBASTIÁN RIFFO† , AND JULIEN SALOMON‡3

Abstract. This paper deals with bathymetry-oriented optimization in the case of long waves4
with small amplitude. Under these two assumptions, the free-surface incompressible Navier-Stokes5
system can be written as a wave equation where the bathymetry appears as a parameter in the6
spatial operator. Looking then for time-harmonic fields and writing the bathymetry, i.e. the bottom7
topography, as a perturbation of a flat bottom, we end up with a heterogeneous Helmholtz equation8
with impedance boundary condition. In this way, we study some PDE-constrained optimization9
problem for a Helmholtz equation in heterogeneous media whose coefficients are only bounded with10
bounded variation. We provide necessary condition for a general cost function to have at least one11
optimal solution. We also prove the convergence of a finite element approximation of the solution12
to the considered Helmholtz equation as well as the convergence of discrete optimum toward the13
continuous ones. We end this paper with some numerical experiments to illustrate the theoretical14
results and show that some of their assumptions are necessary.15

Key words. PDE-constrained optimization, Time-harmonic wave equation, Bathymetry opti-16
mization, Shallow water modelling, Helmholtz equation.17

AMS subject classifications. 35J05, 35J20, 65N30, 49Q10, 49Q12, 78A40, 78A4518

1. Introduction. Despite the fact that the bathymetry can be inaccurately19

known in many situations, wave propagation models strongly depend on this parame-20

ter to capture the flow behavior, which emphasize the importance of studying inverse21

problems concerning its reconstruction from free surface flows. In recent years a con-22

siderable literature has grown up around this subject. A review from Sellier identifies23

different techniques applied for bathymetry reconstruction [45, Section 4.2], which24

rely mostly on the derivation of an explicit formula for the bathymetry, numerical25

resolution of a governing system or data assimilation methods [33, 47].26

An alternative is to use the bathymetry as control variable of a PDE-constrained27

optimization problem, an approach used in coastal engineering due to mechanical28

constraints associated with building structures and their interaction with sea waves.29

For instance, among the several aspects to consider when designing a harbor, build-30

ing defense structures is essential to protect it against wave impact. These can be31

optimized to locally minimize the wave energy, by studying its interaction with the re-32

flected waves [34]. Bouharguane and Mohammadi [10, 40] consider a time-dependent33

approach to study the evolution of sand motion at the seabed, which could also allow34

these structures to change in time. In this case, the proposed functionals are mini-35

mized using sensitivity analysis, a technique broadly applied in geosciences. From a36

mathematical point of view, the solving of these kinds of problem is mostly numeri-37

cal. A theoretical approach applied to the modeling of surfing pools can be found in38

[20, 41], where the goal is to maximize locally the energy of the prescribed wave. The39

former proposes to determine a bathymetry, whereas the latter sets the shape and40

displacement of an underwater object along a constant depth.41
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In this paper, we address the determination of a bathymetry from an optimization42

problem, where Helmholtz equation with first-order absorbing boundary condition43

acts as a constraint. Even though this equation is limited to describe waves of small44

amplitude, it is often used in engineering due to its simplicity, which leads to explicit45

solutions when a flat bathymetry is assumed. To obtain such a formulation, we rely46

on two asymptotic approximations of the free-surface incompressible Navier-Stokes47

equations. The first one is based on a long-wave theory approach and reduces the48

Navier-Stokes system to the Saint-Venant equations. The second one considers waves49

of small amplitude from which the Saint-Venant model can be approximated by a50

wave-equation involving the bathymetry in its spatial operator. It is finally when51

considering time-harmonic solution of this wave equation that we get a Helmholtz52

equation with spatially-varying coefficients. Regarding the assumptions on the ba-53

thymetry to be optimized, we assume the latter to be a perturbation of a flat bottom54

with a compactly supported perturbation which can thus be seen as a scatterer. More-55

over, we make very few assumptions about the regularity of the bathymetry, which56

is assumed to be not smooth and possibly discontinuous [29, 38, 49]. We therefore57

end up with a constraint equation given by a time-harmonic wave equation, namely58

a Helmholtz equation, with non-smooth coefficients.59

It is worth noting that our bathymetry optimization problem aims at finding some60

parameters in our PDE that minimize a given cost function and can thus be seen as a61

parametric optimization problem (see e.g. [4, 2, 30]). Similar optimization problems62

can also be encountered when trying to identify some parameters in the PDE from63

measurements (see e.g. [14, 8]). Nevertheless, all the aforementioned references deals64

with real elliptic and coercive problems. Since the Helmholtz equation is unfortunately65

a complex and non-coercive PDE, these results do not apply.66

We also emphasize that the PDE-constrained optimization problem studied in67

the present paper falls into the class of so-called topology optimization problems. For68

practical applications involving Helmholtz-like equation as constraints, we refer to69

[48, 9] where the shape of an acoustic horn is optimized to have better transmission70

efficiency and to [35, 16, 15] for the topology optimization of photonic crystals where71

several different cost functions are considered. Although there is a lot of applied and72

numerical studies of topology optimization problems involving Helmholtz equation,73

there are only few theoretical studies as pointed out in [31, p. 2].74

Regarding the theoretical results from [31], the authors proved existence of op-75

timal solution to their PDE-constrained optimization problem as well as the conver-76

gence of the discrete optimum toward the continuous ones. Note that in this paper,77

a relative permittivity is considered as optimization parameter and that the latter78

appears as a multiplication operator in the Helmholtz differential operator. Since in79

the present study the bathymetry is assumed to be non-smooth and is involved in80

the principal part of our heterogeneous Helmholtz equation, we can not rely on the81

theoretical results proved in [31] to study our optimization problem.82

This paper is organized as follows: Section 2 presents the two approximations83

of the free-surface incompressible Navier-Stokes system, namely the long-wave the-84

ory approach and next the reduction to waves with small amplitude, that lead us to85

consider a Helmholtz equation in heterogeneous media where the bathymetry plays86

the role of a scatterer. Under suitable assumptions on the cost functional and the87

admissible set of bathymetries, in Section 3 we are able to prove the continuity of the88

control-to-state mapping and the existence of an optimal solution, in addition to the89

continuity and boundedness of the resulting wave presented in Section 4. The discrete90

optimization problem is discussed in Section 5, studying the convergence to the dis-91
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crete optimal solution as well as the convergence of a finite element approximation.92

Finally, we present some numerical results in Section 6.93

2. Derivation of the wave model. We start from the Navier-Stokes equa-94

tions to derive the governing PDE. However, due to its complexity, we introduce two95

approximations [37]: a small relative depth (Long wave theory) combined with an96

infinitesimal wave amplitude (Small amplitude wave theory). An asymptotic analysis97

on the relative depth shows that the vertical component of the depth-averaged veloc-98

ity is negligible, obtaining the Saint-Venant equations. After neglecting its convective99

inertia terms and linearizing around the sea level, it results in a wave equation which100

depends on the bathymetry. Since a variable sea bottom can be seen as an obstacle,101

we reformulate the equation as a Scattering problem involving the Helmholtz equation.102

2.1. From Navier-Stokes system to Saint-Venant equations. For t ≥ 0,103

we define the time-dependent region104

Ωt = {(x, z) ∈ Ω× R | − zb(x) ≤ z ≤ η(x, t)}105

where Ω is a bounded open set with Lipschitz boundary, η(x, t) represents the water106

level and −zb(x) is the bathymetry, a time independent and negative function. The107

water height is denoted by h = η + zb.108

109

x

z Free surface

η(x, t)

−zb(x)
h

Bottom
110

In what follows, we consider an incompressible fluid of constant density (assumed111

to be equal to 1), governed by the Navier-Stokes system112

(2.1)


∂u

∂t
+ (u · ∇)u = div (σT ) + g in Ωt,

div (u) = 0 in Ωt,

u = u0 in Ω0,

113

where u = (u, v, w)> denotes the velocity of the fluid, g = (0, 0,−g)> is the gravity114

and σT is the total stress tensor, given by115

σT = −pI + µ
(
∇u +∇u>

)
116

with p the pressure and µ the coefficient of viscosity.117

To complete (2.1), we require suitable boundary conditions. Given the outward118

normals119

ns =
1√

1 + |∇η|2

(
−∇η

1

)
, nb =

1√
1 + |∇zb|2

(
∇zb

1

)
,120

to the free surface and bottom, respectively, we recall that the velocity of the two121
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must be equal to that of the fluid:122

(2.2)


∂η

∂t
− u · ns = 0 on (x, η(x, t), t),

u · nb = 0 on (x,−zb(x), t).
123

On the other hand, the stress at the free surface is continuous, whereas at the bottom124

we assume a no-slip condition125

(2.3)

{
σT · ns = −pans on (x, η(x, t), t),

(σTnb) · tb = 0 on (x,−zb(x), t),
126

with pa the atmospheric pressure and tb an unitary tangent vector to nb.127

A long wave theory approach can then be developed to approximate the previ-128

ous model by a Saint-Venant system [25]. Denoting by H the relative depth and129

L the characteristic dimension along the horizontal axis, this approach is based on130

the approximation ε :=
H

L
� 1, leading to a hydrostatic pressure law for the non-131

dimensionalized Navier-Stokes system, and a vertical integration of the remaining132

equations. For the sake of completeness, details of this derivation in our case are133

given in Appendix. For a two-dimensional system (2.1), the resulting system is then134

∂η

∂t

√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 +

∂(hδu)

∂x
= 0

(2.4)

135

∂(hδu)

∂t
+ δ

∂(hδu
2)

∂x
= −hδ

∂η

∂x
+ δu(x, δη, t)

∂η

∂t

(√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 − 1

)
136

+O(ε) +O(δε),(2.5)137138

where δ :=
A

H
, hδ = δη + zb and u(x, t) :=

1

hδ(x, t)

∫ δη
−zb u(x, z, t)dz. If ε → 0, we139

recover the classical derivation of the one-dimensional Saint-Venant equations.140

2.2. Small amplitudes. With respect to the classical Saint-Venant formulation,141

passing to the limit δ → 0 is equivalent to neglecting the convective acceleration terms142

and linearizing the system (2.4-2.5) around the sea level η = 0. In order to do so, we143

rewrite the derivatives as144

∂(hδu)

∂t
= hδ

∂u

∂t
+ δ

∂η

∂t
u,

∂(hδu)

∂x
= δ

∂(ηu)

∂x
+
∂(zbu)

∂x
,145

and then, taking ε, δ → 0 in (2.4-2.5) yields146 
∂η

∂t
+
∂(zbu)

∂x
= 0,

−∂(zbu)

∂t
+ zb

∂η

∂x
= 0.

147

Finally, after differentiating the first equation with respect to t and replacing the148

second into the new expression, we obtain the wave equation for a variable bathymetry.149

All the previous computations hold for the two and three-dimensional system (2.1).150

In this case, we obtain151

(2.6)
∂2η

∂t2
− div (gzb∇η) = 0.152

4
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2.3. Helmholtz formulation. Equation (2.6) defines a time-harmonic field,153

whose solution has the form η(x, t) = Re{ψtot(x)e−iωt}, where the amplitude ψtot154

satisfies155

(2.7) ω2ψtot + div (gzb∇ψtot) = 0.156

We wish to rewrite the equation above as a scattering problem. Since a variable157

bottom zb(x) := z0 + δzb(x) (with z0 a constant describing a flat bathymetry and158

δzb a perturbation term) can be considered as an obstacle, we thus assume that δzb159

has a compact support in Ω and that ψtot satisfies the so-called Sommerfeld radiation160

condition. In a bounded domain as Ω, we impose the latter thanks to an impedance161

boundary condition (also known as first-order absorbing boundary condition), which162

ensures the existence and uniqueness of the solution [43, p. 108]. We then reformulate163

(2.7) as164

(2.8)

{
div ((1 + q)∇ψtot) + k2

0ψtot = 0 in Ω,

∇(ψtot − ψ0) · n̂− ik0(ψtot − ψ0) = 0 on ∂Ω,
165

where we have introduced the parameter q(x) := δzb(x)
z0

which is assumed to be com-166

pactly supported in Ω, k0 := ω√
gz0

, n̂ the unit normal to ∂Ω and ψ0(x) = eik0x·~d is an167

incident plane wave propagating in the direction ~d (such that |~d| = 1).168

Decomposing the total wave as ψtot = ψ0 +ψsc, where ψsc represents an unknown169

scattered wave, we obtain the Helmholtz formulation170

(2.9)

{
div ((1 + q)∇ψsc) + k2

0ψsc = −div (q∇ψ0) in Ω,

∇ψsc · n̂− ik0ψsc = 0 on ∂Ω.
171

Its structure will be useful to prove the existence of a minimizer for a PDE-constrained172

functional, as discussed in the next section.173

3. Description of the optimization problem. We are interested in studying174

the problem of a cost functional constrained by the weak formulation of a Helmholtz175

equation. The latter intends to generalize the equations considered so far, whereas176

the former indirectly affects the choice of the set of admissible controls. These can be177

discontinuous since they are included in the space of functions of bounded variations.178

In this framework, we treat the continuity and regularity of the associated control-to-179

state mapping, and the existence of an optimal solution to the optimization problem.180

3.1. Weak formulation. Let Ω ⊂ R2 be a bounded open set with Lipschitz181

boundary. We consider the following general Helmholtz equation182

(3.1)

{
−div ((1 + q)∇ψ)− k2

0ψ = div (q∇ψ0) in Ω,

(1 + q)∇ψ · n̂− ik0ψ = g − q∇ψ0 · n̂ on ∂Ω,
183

where g is a source term. We assume that q ∈ L∞(Ω) and that there exists α > 0184

such that185

(3.2) for a.a. x ∈ Ω, 1 + q(x) ≥ α.186

Remark 3.1. Here we have generalized the models described in the previous sec-187

tion: if q has a fixed compact support in Ω, we have that the total wave ψtot satisfying188

5
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(2.8) is a solution to (3.1) with g = ∇ψ0 · n̂− ik0ψ0 and no volumic right-hand side;189

whereas the scattered wave ψsc satisfying (2.9) is a solution to (3.1) with g = 0. All190

the proofs obtained in this broader setting still hold true for both problems.191

A weak formulation for (3.1) is given by192

(3.3) a(q;ψ, φ) = b(q;φ), ∀φ ∈ H1(Ω),193

where194

a(q;ψ, φ) :=

∫
Ω

(
(1 + q)∇ψ · ∇φ− k2

0ψφ
)
dx− ik0

∫
∂Ω

ψφdσ,(3.4)195

b(q;φ) := −
∫

Ω

q∇ψ0 · ∇φdx+ 〈g, φ〉H−1/2,H1/2 .196
197

Note that, thanks to the Cauchy-Schwarz inequality, the sesquilinear form a is con-198

tinuous199

|a(q;ψ, φ)| ≤ C(Ω, q, α)(1 + ‖q‖L∞(Ω)) ‖ψ‖1,k0 ‖φ‖1,k0 ,200

‖ψ‖21,k0 := k2
0 ‖ψ‖

2
L2(Ω) + α ‖∇ψ‖2L2(Ω) ,201

202

where C(Ω, q, α) > 0 is a generic constant. In addition, taking φ = ψ in the definition203

of a, it satisfies a G̊arding inequality204

(3.5) Re{a(q;ψ,ψ)}+ 2k2
0 ‖ψ‖

2
L2(Ω) ≥ ‖ψ‖

2
1,k0

,205

and the well-posedness of Problem (3.3) follows from the Fredholm Alternative. Fi-206

nally, uniqueness holds for any q ∈ L∞(Ω) satisfying (3.2) owning to [27, Theorems207

2.1, 2.4].208

Remark 3.2. We briefly show here that (3.3) have a unique solution. We empha-209

size that only the uniqueness has to be proved since Freldholm alternative then ensures210

the existence. We consider ψ ∈ H1(Ω) such that a(q;ψ, φ) = 0 for all φ ∈ H1(Ω).211

Since Im{a(q;ψ,ψ)} = −k0 ‖ψ‖2L2(∂Ω), we obtain that ψ|∂Ω = 0 and the boundary con-212

dition (1 + q)∇ψ · n̂− ik0ψ = 0 then gives (1 + q)∇ψ · n̂ = 0. The unique continuation213

property [1] which holds since Ω ⊂ R2 then proves that ψ = 0.214

Regarding the case Ω ⊂ R3, we cannot conclude using the unique continuation215

property unless q satisfy additional smoothness assumptions. We refer to [27, 28]216

for further discussions and results on the existence and uniqueness of solution to the217

Helmholtz equation with variable coefficients.218

3.2. Continuous optimization problem. We are interested in solving the219

following PDE-constrained optimization problem220

(3.6)
minimize J(q, ψ),

subject to (q, ψ) ∈ UΛ ×H1(Ω), where ψ satisfies (3.3).
221

We now define the set UΛ of admissible q. We wish to find optimal q that can have222

discontinuities and we thus cannot look for q in some Sobolev spaces that are contin-223

uously embedded into C0(Ω), even if such regularity is useful for proving existence of224

minimizers (see e.g. [4, Chapter VI], [7, Theorem 4.1]). To be able to find an optimal225

6
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q satisfying (3.2) and having possible discontinuities, we follow [14] and introduce the226

following set227

UΛ = {q ∈ BV (Ω) | α− 1 ≤ q(x) ≤ Λ for a.a. x ∈ Ω} .228

Above Λ ≥ max{α− 1, 0} and BV (Ω) is the set of functions with bounded variations229

[3], that is functions whose distributional gradient belongs to the set Mb(Ω,RN ) of230

bounded Radon measures. Note that the piecewise constant functions over Ω belong231

to UΛ.232

Some useful properties of BV (Ω) can be found in [3] and are recalled below for the233

sake of completeness. This is a Banach space for the norm (see [3, p. 120, Proposition234

3.2])235

‖q‖BV (Ω) := ‖q‖L1(Ω) + |Dq|(Ω),236

where D is the distributional gradient and237

(3.7) |Dq|(Ω) = sup

{∫
Ω

q div (ϕ) dx
∣∣∣ ϕ ∈ C1

c (Ω,R2) and ‖ϕ‖L∞(Ω) ≤ 1

}
,238

is the variation of q (see [3, p. 119, Definition 3.4]).239

The weak∗ convergence in BV (Ω), denoted by240

qn ⇀ q, weak∗ in BV (Ω),241

means that242

qn → q in L1(Ω) and Dqn ⇀ Dq in Mb(Ω,RN ),243

where Dqn ⇀ Dq in Mb(Ω,RN ) means that

lim
n→+∞

∫
Ω

ψ · dDqn =

∫
Ω

ψ · dDq ∀ψ ∈ C0(Ω,RN ).

Also, the continuous embedding BV (Ω) ⊂ L1(Ω) is compact. We finally recall that
the application q ∈ BV (Ω) 7→ |Dq|(Ω) ∈ R+ is lower semi-continuous with respect to
the weak∗ topology of BV . Hence, for any sequence qn ⇀ q in BV (Ω), one has

|Dq|(Ω) ≤ lim inf
n→+∞

|Dqn|(Ω).

The set UΛ is a closed, weakly∗ closed and convex subset of BV (Ω). We will also244

consider the next set of admissible parameters245

UΛ,κ = {q ∈ UΛ | |Dq|(Ω) ≤ κ}246

which possesses the aforementioned properties. Note that choosing UΛ or UΛ,κ af-247

fects the convergence analysis of the discrete optimization problem, topic discussed248

in Section 5.249

Remark 3.3. In this paper, we are interested in computing either the total wave250

satisfying (2.8) or the scattered wave solution to Equation (2.9). Since this requires251

to work with q having a fixed compact support in Ω, we also introduce the following252

set of admissible parameters253

Ũε := {q ∈ U |q(x) = 0 for a.a. x ∈ Oε} , Oε = {x ∈ Ω | dist(x, ∂Ω) ≤ ε} ,254

which is a set of bounded functions with bounded variations that have a fixed support255

in Ω. We emphasize that this set is a convex, closed and weak-∗ closed subset of256

BV (Ω). As a consequence, all the theorems we are going to prove also hold for this257

set of admissible parameters.258
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3.3. Continuity of the control-to-state mapping. In this section, we estab-259

lish the continuity of the application q ∈ U 7→ ψ(q) ∈ H1(Ω) where ψ(q) satisfies260

Problem (3.3). We assume that U ⊂ BV (Ω) is a given weakly∗ closed set satisfying261

∀q ∈ U, for a.a. x ∈ Ω, α− 1 ≤ q(x) ≤ Λ.262

Note that both UΛ, UΛ,κ and Ũε (see Remark 3.3) also satisfy these two assumptions.263

The next result consider the dependance of the stability constant with respect to the264

optimization parameter q.265

Theorem 3.4. Assume that q ∈ U and ψ ∈ H1(Ω). Then there exists a constant266

Cs(k0) > 0 that does not depend on q such that267

(3.8) ‖ψ‖1,k0 ≤ Cs(k0) sup
‖φ‖1,k0

=1

|a(q;ψ, φ)|,268

where the constant Cs(k0) > 0 only depend on the wavenumber and on Ω. In addition,269

if ψ is the solution to (3.3) then it satisfies the bound270

(3.9)

‖ψ‖1,k0 ≤ Cs(k0)C(Ω) max{k−1
0 , α−1/2}

(
‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) + ‖g‖H−1/2(∂Ω)

)
,271

where C(Ω) > 0 only depends on the domain.272

Proof. The existence and uniqueness of a solution to Problem (3.3) follows from273

[27, Theorems 2.1, 2.4].274

The proof of (3.8) proceed by contradiction assuming this inequality to be false.275

Therefore, we suppose there exist sequences (qn)n ⊂ U and (ψn)n ⊂ H1(Ω) such that276

‖qn‖BV (Ω) ≤M , ‖ψn‖1,k0 = 1 and277

(3.10) lim
n→+∞

sup
‖φ‖1,k0

=1

|a(qn;ψn, φ)| = 0.278

The compactness of the embeddings BV (Ω) ⊂ L1(Ω) and H1(Ω) ⊂ L2(Ω) yields the279

existence of a subsequence (still denoted (qn, ψn)) such that280

(3.11) ψn ⇀ ψ∞ in H1(Ω), ψn → ψ∞ in L2(Ω) and qn → q∞ ∈ U in L1(Ω).281

Compactness of the trace operator implies that lim
n→+∞

ψn|∂Ω = ψ∞|∂Ω holds strongly282

in L2(∂Ω) and thus, from (3.11) we get283

lim
n→+∞

∫
Ω

k2
0ψnφdx+ ik0

∫
∂Ω

ψnφdσ =

∫
Ω

k2
0ψ∞φdx+ ik0

∫
∂Ω

ψ∞φdσ, ∀ v ∈ H1(Ω),284

lim
n→+∞

∫
Ω

∇ψn · ∇φdx =

∫
Ω

∇ψ∞ · ∇φdx.285
286

We now pass to the limit in the term of a that involves qn, see (3.4). We start from287

(qn∇ψn,∇φ)L2(Ω) − (q∞∇ψ∞,∇φ)L2(Ω) = ((qn − q∞)∇ψn,∇φ)L2(Ω)288

+ (q∞∇(ψn − ψ∞),∇φ)L2(Ω),289290
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and use the Cauchy-Schwarz inequality to get291

|
∫

Ω

qn∇ψn·∇φdx−
∫

Ω

q∞∇ψ∞ · ∇φdx|292

≤
∣∣((qn − q∞)∇ψn,∇φ)L2(Ω)

∣∣+
∣∣(q∞∇(ψn − ψ∞),∇φ)L2(Ω)

∣∣293

≤
∥∥∥√|qn − q∞|∇φ∥∥∥

L2(Ω)

∥∥∥√|qn − q∞|∇ψn∥∥∥
L2(Ω)

294

+
∣∣(q∞∇(ψn − ψ∞),∇φ)L2(Ω)

∣∣295

≤ 2

√
Λ√
α
‖ψn‖1,k0

∥∥∥√|qn − q∞|∇φ∥∥∥
L2(Ω)

+
∣∣(∇(ψn − ψ∞), q∞∇φ)L2(Ω)

∣∣ .296
297

The right term above goes to 0 owning to q∞ ∈ L∞(Ω) and (3.11). For the other298

term, since qn → q∞ strongly in L1, we can extract another subsequence (qnk
)k such299

that qnk
→ q∞ pointwise a.e. in Ω. Also,

√
|qn − q∞||∇φ|2 ≤ 2

√
Λ|∇φ|2 ∈ L1(Ω)300

and the Lebesgue dominated convergence theorem then yields301

lim
k→+∞

∥∥∥√|qnk
− q∞|∇φ

∥∥∥
L2(Ω)

= 0.302

This gives that (see also [14, Equation (2.4)])303

(3.12) lim
k→+∞

(qnk
∇ψnk

,∇φ)L2(Ω) = (q∞∇ψ∞,∇φ)L2(Ω), ∀φ ∈ H1(Ω).304

Finally, gathering (3.12) together with (3.10) yields305

0 = lim
k→+∞

a(qnk
;ψnk

, φ) = a(q∞, ψ∞, φ), ∀φ ∈ H1(Ω),306

and the uniqueness result [27, Theorems 2.1, 2.4] shows that ψ∞ = 0 thus the whole307

sequence actually converges to 0. To get our contradiction, it remains to show that308

‖∇ψn‖L2(Ω) converges to 0 as well. From the G̊arding inequality (3.5), we have309

‖ψn‖21,k0 ≤ Re{a(qn;ψn, ψn)}+ 2k2
0 ‖ψn‖

2
L2(Ω) −−−−−→n→+∞

0,310

where we used (3.10) and the strong L2 convergence of ψn towards ψ∞ = 0. Finally311

one gets lim
n→+∞ ‖ψn‖1,k0 = 0 which contradicts ‖ψn‖1,k0 = 1 and gives the desired312

result.313

Applying then (3.8) to the solution to (3.3) finally yields314

‖ψ‖1,k0 ≤ Cs(k0) sup
‖φ‖1,k0

=1

|a(q;ψ, φ)| ≤ Cs(k0) sup
‖φ‖1,k0

=1

|b(q;φ)|315

≤ Cs(k0) sup
‖φ‖1,k0

=1

(
‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) ‖∇φ‖L2(Ω) + ‖g‖H−1/2(∂Ω) ‖φ‖H1/2(∂Ω)

)
316

≤ Cs(k0)C(Ω) max{k−1
0 , α−1/2}

(
‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) + ‖g‖H−1/2(∂Ω)

)
,317318

where C(Ω) > 0 comes from the trace inequality.319

Remark 3.5. Let us consider a more general version of Problem (3.1), given by320 {
−div ((1 + q)∇ψ)− k2

0ψ = F in Ω,

(1 + q)∇ψ · n̂− ik0ψ = G on ∂Ω.
321
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We emphasize that the estimation of the stability constant Cs(k0) with respect to the322

wavenumber has been obtained for (F,G) ∈ L2(Ω)×L2(∂Ω) for q = 0 in [32] and for323

q ∈ Lip(Ω) satisfying (3.2) in [6, 27, 28]. Since their proofs rely on Green, Rellich and324

Morawetz identities, they do not extend to the case (F,G) ∈
(
H1(Ω)

)′ ×H−1/2(∂Ω)325

but such cases can be tackled as it is done in [24, p.10, Theorem 2.5]. The case326

of Lipschitz q has been studied in [12]. As a result, the dependance of the stability327

constant with respect to k0, in the case q ∈ U and (F,G) ∈
(
H1(Ω)

)′ ×H−1/2(∂Ω),328

does not seem to have been tackled so far to the best of our knowledge.329

Remark 3.6 (H1-bounds for the total and scattered waves). From Remark 3.1,330

we obtain that the total wave ψtot and the scattered wave ψsc are solutions to (3.3),331

with respective right hand sides332

btot(q;φ) =

∫
∂Ω

(∇ψ0 · n̂− ik0ψ0)φdσ, bsc(q;φ) = −
∫

Ω

q∇ψ0 · ∇φdx.333

As a result of Theorem 3.4 and the continuity of the trace, we have334

‖ψtot‖1,k0 ≤ C(Ω)Cs(k0)k0 max{k−1
0 , α−1/2},335

‖ψsc‖1,k0 ≤ Cs(k0)α−1/2 ‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) ≤ k0Cs(k0)α−1/2 ‖q‖L∞(Ω)

√
|Ω|.336

337

We can now prove some regularity for the control-to-state mapping.338

Theorem 3.7. Let (qn)n ⊂ U be a sequence that weakly∗ converges toward q∞ in339

BV (Ω). Let (ψ(qn))n be the sequence of weak solutions to Problem (3.3). Then ψ(qn)340

converges strongly in H1(Ω) towards ψ(q∞). In other words, the mapping341

q ∈ (UΛ,weak∗) 7→ ψ(q) ∈ (H1(Ω), strong),342

is continuous.343

Proof. Since qn ⇀ q∞, weak∗ in BV (Ω) the sequence (qn)n is bounded. Using344

that U is weak∗ closed, we obtain that q∞ ∈ U . Therefore, the sequence (ψ(qn))n of345

solution to Problem (3.3) satisfies estimate (3.9) uniformly with respect to n. As a346

result, there exists some ψ∞ ∈ H1(Ω) such that the convergences (3.11) hold. Using347

then (3.12), we get that a(qn;ψ(qn), φ)→ a(q∞;ψ∞, φ).348

Since b(qn, φ) → b(q∞, φ) for all φ ∈ H1(Ω), this proves that a(q∞;ψ∞, φ) =349

b(q;φ) for all φ ∈ H1(Ω). Consequently ψ∞ = ψ(q∞) owning to the uniqueness of a350

weak solution to (3.3) and we have also proved that ψ(qn) ⇀ ψ(q∞) in H1(Ω).351

We now show that ψ(qn)→ ψ(q∞) strongly in H1. To see this, we start by noting352

that, up to extracting a subsequence (still denoted by qn), we can use (3.12) to get353

that354

lim
n→+∞

b(qn;ψ(qn)) = b(q∞;ψ(q∞)).355

Since ψ(qn), ψ(q∞) satisfy the variational problem (3.3), we infer356

(3.13) lim
n→+∞

a(qn;ψ(qn), ψ(qn)) = a(q∞;ψ(q∞), ψ(q∞)),357

where the whole sequence actually converges owing to the uniqueness of the limit.358
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Using then that ψ(qn) ⇀ ψ(q∞) in H1(Ω) together with (3.13), one gets359 ∥∥∥√1 + qn∇ψ(qn)
∥∥∥2

L2(Ω)
= a(qn;ψ(qn), ψ(qn)) + k0 ‖ψ(qn)‖2L2(Ω) + ik0 ‖ψ(qn)‖2L2(∂Ω)360

−−−−−→
n→+∞

a(q∞;ψ(q∞), ψ(q∞)) + k0 ‖ψ(q∞)‖2L2(Ω) + ik0 ‖ψ(q∞)‖2L2(∂Ω)361

=
∥∥∥√1 + q∞∇ψ(q∞)

∥∥∥2

L2(Ω)
.362

363

To show that lim
n→+∞ ‖∇ψ(qn)‖2L2(Ω) = ‖∇ψ(q∞)‖2L2(Ω), note that364

∇ψ(qn) =

√
1 + qn∇ψ(qn)√

1 + qn
.365

Using the same arguments as those to prove (3.12), we have a subsequence (same366

notation used) such that qn → q∞ pointwise a.e. in Ω and thus
√

1 + qn
−1 →367 √

1 + q∞
−1

pointwise a.e. in Ω. Due to Lebesgue’s dominated convergence theorem368

and
√

1 + qn∇ψ(qn)→
√

1 + q∞∇ψ(q∞) strongly in L2(Ω), we have369

∇ψ(qn) =

√
1 + qn∇ψ(qn)√

1 + qn
→
√

1 + q∞∇ψ(q∞)√
1 + q∞

= ∇ψ(q∞) strong in L2(Ω).370

The latter, together with the weak H1-convergence show that ψ(qn) → ψ(q∞)371

strongly in H1.372

3.4. Existence of optimal solution in UΛ. We are now in a position to prove373

the existence of a minimizer to Problem (3.6).374

Theorem 3.8. Assume that the cost function (q, ψ) ∈ UΛ 7→ J(q, ψ) ∈ R satisfies:375

(A1) There exists β > 0 and J0 such that

J(q, ψ) = J0(q, ψ) + β|Dq|(Ω),

where |Dq|(Ω) is defined in (3.7).376

(A2) ∀(q, ψ) ∈ UΛ ×H1(Ω), J0(q, ψ) ≥ m > −∞.377

(A3) (q, ψ) 7→ J0(q, ψ) is lower-semi-continuous with respect to the (weak∗,weak)378

topology of BV (Ω)×H1(Ω).379

Then the optimization problem (3.6) has at least one optimal solution in UΛ ×380

H1(Ω).381

Proof. The existence of a minimizer to Problem (3.6) can be obtained with stan-382

dard technique by combining Theorem 3.7 with weak-compactness arguments as done383

in [14, Lemma 2.1], [7, Theorem 4.1] or [31, Theorem 1]. We still give the proof for384

the sake of completeness.385

We introduce the following set386

A =
{

(q, ψ) ∈ UΛ ×H1(Ω)
∣∣ a(q;ψ, φ) = b(q;φ) ∀φ ∈ H1(Ω)

}
.387

The existence and uniqueness of solution to Problem (3.3) ensure that A is non-empty.388

In addition, combining Assumptions (A1) and (A2), we obtain that J(q, ψ) is bounded389

from below on A. We thus have a minimizing sequence (qn, ψn) ∈ A such that390

lim
n→+∞

J(qn, ψn) = inf
(q,ψ)∈A

J(q, ψ).391
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Theorem 3.4 and (A1) then gives that the sequence (qn, ψn) ∈ BV (Ω) × H1(Ω) is392

uniformly bounded with respect to n and thus admits a subsequence that converges393

towards (q∗, ψ∗) in the (weak∗,weak) topology of BV (Ω)×H1(Ω). Using now Theorem394

3.7 and the weak∗ lower semi-continuity of q 7→ |Dq|(Ω), we end up with (q∗, ψ∗) ∈ A395

and396
J(q∗, ψ∗) ≤ lim inf

n→+∞
J(qn, ψn) = inf

(q,ψ)∈A
J(q, ψ).

397

It is worth noting that the penalization term β ‖q‖BV (Ω) has been introduced only398

to obtain a uniform bound in the BV -norm for the minimizing sequence.399

3.5. Existence of optimal solution in UΛ,κ. We show here the existence of400

optimal solution to Problem (3.6) for U = UΛ,κ. Note that any q ∈ UΛ,κ is actually401

bounded in BV since402

‖q‖BV (Ω) ≤ 2 max(Λ, κ, |α− 1|).403

With this property at hand, we can get a similar result to Theorem 3.8 without adding404

a penalization term in the cost function, hence β = 0.405

Theorem 3.9. Assume that the cost function (q, ψ) ∈ UΛ,κ 7→ J(q, ψ) ∈ R satis-406

fies (A2)− (A3) given in Theorem 3.8 and that β = 0. Then the optimization problem407

(3.6) with U = UΛ,κ has at least one optimal solution.408

Proof. We introduce the following non-empty set409

A =
{

(q, ψ) ∈ UΛ,κ ×H1(Ω) | a(q;ψ, φ) = b(q;φ) ∀φ ∈ H1(Ω)
}
.410

From (A2), J(q, ψ) is bounded from below on A. We thus have a minimizing sequence411

(qn, ψn) ∈ A such that412

lim
n→+∞

J(qn, ψn) = inf
(q,ψ)∈A

J(q, ψ).413

Since (qn)n ⊂ UΛ,κ, it satisfies ‖qn‖BV (Ω) ≤ 2 max(Λ, κ, |α − 1|) and thus admits a414

convergent subsequence toward some q ∈ UΛ,κ. Theorem 3.7 then gives that ψ(qn)→415

ψ(q) strongly in H1(Ω) and the proof can be finished as the proof of Theorem 3.8.416

4. Boundedness/Continuity of solution to Helmholtz problem. In this417

section, we prove that even if the parameter q is not smooth enough for the solution418

to (3.1) to be in Hs(Ω) for some s > 1, we can still have a continuous solution. In419

order to prove such regularity for ψ, we are going to rely on the De Giorgi-Nash-420

Moser theory [26, Chapter 8.5], [36, Chapters 3.13, 7.2] and more precisely on [42,421

Proposition 3.6] which reads422

Theorem 4.1. Consider the elliptic problem associated with inhomogeneous Neu-423

mann boundary condition given by424

(4.1)


Lv := div (A(x)∇v) = f0 −

N∑
j=1

∂fj
∂xj

,

∇v · n̂ = h+

N∑
j=1

fjnj ,

425

where A ∈ L∞(Ω,RN×N ) satisfy the standard ellipticity condition A(x)ξ · ξ ≥ γ|ξ|2426

for almost all x ∈ Ω. Let p > N and assume that f0 ∈ Lp/2(Ω), fj ∈ Lp(Ω) for all427
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j = 1, · · · , N and h ∈ Lp−1(∂Ω). Then the weak solution v to (4.1) satisfies428

‖v‖C0(Ω) ≤ C(N, p,Ω, γ)

‖v‖L2(Ω) + ‖f0‖Lp/2(Ω) +

N∑
j=1

‖fj‖Lp(Ω) + ‖h‖Lp−1(∂Ω)

 .429

4.1. C0-bound for the general Helmholtz problem. Using Theorem 4.1, we430

can prove some L∞ bound for the weak solution to Helmholtz equation with bounded431

coefficients.432

Theorem 4.2. Assume that q ∈ L∞(Ω) and satisfies (3.2) and g ∈ L2(∂Ω). Then433

the solution to Problem (3.3) satisfies434

(4.2) ‖ψ‖C0(Ω) ≤ C̃(Ω)C̃s(k0, α)
(
‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
,435

where436

C̃s(k0, α) = 1 +
(

(1 + k2
0)k−1

0 + α−1/2
)

max{k−1
0 , α−1/2}Cs(k0),437

and C̃(Ω) > 0 does not depend on k nor q.438

Proof. We cannot readily apply Theorem 4.1 to the weak solution of Problem439

(3.1) since it involves a complex valued operator. We therefore consider the Problem440

satisfied by ν = Re{u} and ζ = Im{u} which is given by441

(4.3)


−div ((1 + q)∇ν)− k2

0ν = div (q∇Re{ψ0}) in Ω,

−div ((1 + q)∇ζ)− k2
0ζ = div (q∇ Im{ψ0}) in Ω,

(1 + q)∇ν · n̂ = Re{g} − k0ζ − q∇Re{ψ0} · n̂, on ∂Ω,

(1 + q)∇ζ · n̂ = Im{g}+ k0ν − q∇ Im{ψ0} · n̂ on ∂Ω.

442

Since Problem (4.3) is equivalent to Problem (3.1), we get that the weak solution443

(ν, ζ) ∈ H1(Ω) to (4.3) satisfies the inequality (3.9). Assuming that g ∈ L2(∂Ω) and444

using the continuous Sobolev embedding H1(Ω) ⊂ L6(Ω), the (compact) embedding445

H1/2(∂Ω) ⊂ L2(∂Ω), that q ∈ L∞(Ω) satisfies (3.2) and the fact that ψ0 is smooth446

we get the next regularities447

f0,1 = k2
0ν ∈ L6(Ω), fj,1 = q

∂ Re{ψ0}
∂xj

∈ L∞(Ω), h1 = Re{g} − k0ζ ∈ L2(∂Ω),448

f0,2 = k2
0ζ ∈ L6(Ω), fj,2 = q

∂ Im{ψ0}
∂xj

∈ L∞(Ω), h2 = Im{g}+ k0ν ∈ L2(∂Ω).449
450

Applying now Theorem 4.1 to (4.3) twice with p = 3 and N = 2, one gets C0451

bounds for ν and ζ452

‖ν‖C0(Ω) ≤ C(2, 3,Ω, γ)

‖ν‖L2(Ω) + ‖f0,1‖L3/2(Ω) +

2∑
j=1

‖fj,1‖L3(Ω) + ‖h1‖L2(∂Ω)

 ,453

‖ζ‖C0(Ω) ≤ C(2, 3,Ω, γ)

‖ζ‖L2(Ω) + ‖f0,2‖L3/2(Ω) +

2∑
j=1

‖fj,2‖L3(Ω) + ‖h2‖L2(∂Ω)

 .454

455
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Some computations with the Holder and multiplicative trace inequalities then456

give457

(‖ν‖L2(Ω) + ‖ζ‖L2(Ω)) ≤ 2 ‖ψ‖L2(Ω) ,458

‖f0,1‖L3/2(Ω) + ‖f0,2‖L3/2(Ω) ≤ k
2
0 ‖ψ‖L3/2(Ω) ≤ |Ω|

1/6k2
0 ‖ψ‖L2(Ω) ,459

‖fj,l‖L3(Ω) ≤ ‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) , j = 1, 2,460

‖h1‖L2(∂Ω) + ‖h2‖L2(∂Ω) ≤ ‖g‖L2(∂Ω) + k0 ‖ψ‖L2(∂Ω)461

≤ ‖g‖L2(∂Ω) + k0C(Ω)
√
‖ψ‖L2(Ω) ‖ψ‖H1(Ω).462

463

Using then Young’s inequality yields464

k0

√
‖ψ‖L2(Ω) ‖ψ‖H1(Ω) ≤ C

(
‖ψ‖H1(Ω) + k2

0 ‖ψ‖L2(Ω)

)
465

≤ C
(
‖∇ψ‖L2(Ω) + k2

0 ‖ψ‖L2(Ω)

)
466
467

where C > 0 is a generic constant. We obtain the bound468

‖ψ‖C0(Ω) = ‖ν‖C0(Ω) + ‖ζ‖C0(Ω)469

≤ C̃(Ω)
((

1 + k2
0

)
‖ψ‖L2(Ω) + ‖∇ψ‖L2(Ω) + ‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
.470471

Using the definition of ‖ψ‖1,k0 on the estimate above, we get472

(4.4)
‖ψ‖C0(Ω) ≤ C̃(Ω)

((
(1 + k2

0)k−1
0 + α−1/2

)
‖ψ‖1,k0

+ ‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
.

473

To apply the a priori estimate (3.9), we recall that the H−1/2 norm can be replaced474

by a L2 norm (since g ∈ L2(∂Ω)) and then,475

‖ψ‖1,k0 ≤ C(Ω) max{k−1
0 , α−1/2}Cs(k0)

(
‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) + ‖g‖L2(∂Ω)

)
476

≤ C(Ω) max{k−1
0 , α−1/2}Cs(k0) max{1,

√
|Ω|}

(
‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
477478

Finally, combining the latter expression with (4.4), we obtain that the weak so-479

lution to the Helmholtz equation satisfies480

‖ψ‖C0(Ω) ≤ C̃(Ω)
(

1 +
(

(1 + k2
0)k−1

0 + α−1/2
)

max{k−1
0 , α−1/2}Cs(k0)

)
481

×
(
‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
,482

483

where C̃(Ω) > 0.484

Remark 4.3. 1. For the one-dimensional Helmholtz problem, the a priori485

estimate (3.9) and the continuous embedding H1(I) ⊂ C0(I) directly gives486

the continuity of u over a give interval I487

‖ψ‖C0(I) ≤ C ‖ψ‖1,k0 ≤ C(k0)
(
‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖H−1/2(∂Ω)

)
.488

Remark that we do not need to assume that g ∈ L2(∂Ω).489
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2. For the two-dimensional Helmholtz problem with q = 0, we can get the above490

C0 estimate from the embedding H2(Ω) ↪→ C0(Ω) since491

‖ψ‖C0(Ω) ≤ C ‖ψ‖H2(Ω) ,492

for a generic constant C. We can then see that the estimate (4.2) has actually493

the same dependance with respect to k0 as the H2-estimate in [32, p. 677,494

Proposition 3.6].495

4.2. C0-bounds for the total and scattered waves. Thanks to Remark 3.1496

and following the proof of Theorem 4.2, these bounds can be roughly obtained by497

setting g = ∇ψ0 · n̂ − ik0ψ0 and omitting the L∞-norms in (4.4) for the total wave498

ψtot, and simply by setting g = 0 in the case the scattered wave ψsc. Using after the499

H1-bounds from Remark 3.6, we actually get500

‖ψtot‖C0(Ω) ≤ C̃(Ω)k0

((
(1 + k2

0)k−1
0 + α−1/2

)
max{k−1

0 , α−1/2}Cs(k0) + 1
)

501

‖ψsc‖C0(Ω) ≤ C̃(Ω)k0

((
(1 + k2

0)k−1
0 + α−1/2

)
α−1/2Cs(k0) + 1

)
‖q‖L∞(Ω) .502

503

We emphasize that the previous estimates show that the scattered wave ψsc van-504

ishes in Ω if q → 0. This is expected since, if q = 0, there is no obstacle to scatter the505

incident wave which amounts to saying that ψtot = ψ0.506

5. Discrete optimization problem and convergence results. This section507

is devoted to the finite element discretization of the optimization problem (3.6). We508

consider a quasi-uniform family of triangulations (see [23, p. 76, Definition 1.140])509

{Th}h>0 of Ω and the corresponding finite element spaces510

Vh =
{
φh ∈ C(Ω) | φh|T ∈ P1(T ), ∀T ∈ Th

}
.511512

Note that thanks to Theorem 4.2, the solution to the general Helmholtz equation (3.1)513

is continuous, which motivates to use continuous piecewise linear finite elements. We514

are going to look for a discrete optimal bathymetry that belongs to some finite element515

spaces Kh and we thus introduce the following set of discrete admissible parameters516

Uh = U ∩ Kh.517

The full discretization of the optimization problem (3.6) then reads518

(5.1) Find q∗h ∈ Uh such that J̃(q∗h) ≤ J̃(qh), ∀qh ∈ Uh,519

where J̃(qh) = J(qh, ψh(qh)) is the reduced cost-functional and ψh := ψh(qh) ∈ Vh520

satisfies the discrete Helmholtz problem521

(5.2) a(qh;ψh, φh) = b(qh;φh), ∀φh ∈ Vh.522

The existence of solution to Problem (5.2) is going to be discussed in the next sub-523

section.524

Before giving the definition of Kh, we would like to discuss briefly the strategy525

for proving that the discrete optimal solution converges toward the continuous ones.526

To achieve this, we need to pass to the limit in inequality (5.1). Since J is only527

lower-semi-continuous with respect to the weak∗ topology of BV , we can only pass528

to the limit on one side of the inequality and the continuity of J is then going to be529
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needed to pass to the limit on the other side to keep this inequality valid as h→ 0.530

We discuss first the case U = UΛ for which Theorem 3.8 gives the existence of optimal531

q but only if β > 0. Since we have to pass to the limit in (5.1), we need that532
lim
h→0
|Dqh|(Ω) = |Dq|(Ω). Since the total variation is only continuous with respect to533

the strong topology of BV , we have to approximate any q ∈ UΛ by some qh ∈ Uh534

such that535

lim
h→0
‖q − qh‖BV (Ω) = 0.536

However, from [5, p. 8, Example 4.1] there exists an example of a BV -function v537

that cannot be approximated by piecewise constant function vh over a given mesh in538

such a way that lim
h→0
|Dvh|(Ω) = |Dv|(Ω). Nevertheless, if one consider an adapted539

mesh that depends on a given function v ∈ BV (Ω) ∩ L∞(Ω), we get the existence540

of piecewise constant function on this specific mesh that strongly converges in BV541

toward v (see [13, p. 11, Theorem 4.2]). As a result, when considering U = UΛ, we542

use the following discrete set of admissible parameters543

Kh,1 = {qh ∈ L∞(Ω) | qh|T ∈ P1(T ), ∀T ∈ Th} .544

Note that, from Theorem [13, p. 10, Theorem 4.1 and Remark 4.2], the set Uh =545

UΛ ∩ Kh,1 defined above has the required density property hence its introduction as546

a discrete set of admissible parameter.547

In the case U = UΛ,κ, we will not need the density of Uh for the strong topology of548

BV but only for the weak∗ topology. The discrete set of admissible parameters is549

then going to be Uh = UΛ,κ ∩ Kh,0 with550

Kh,0 = {qh ∈ L∞(Ω) | qh|T ∈ P0(T ), ∀T ∈ Th} .551

We show below the convergence of discrete optimal solution to the continuous one552

for both cases highlighted above.553

5.1. Convergence of the Finite element approximation. We prove here554

some useful approximations results for any Uh defined above. We have the following555

convergence result whose proof can be found in [24, p. 22, Lemma 4.1] (see also [27,556

p. 10, Theorem 4.1]).557

Theorem 5.1. Let qh ∈ Uh and ψ(qh) ∈ H1(Ω) be the solution to the variational558

problem559

a(qh;ψ(qh), φ) = b(qh, φ), ∀φ ∈ H1(Ω).560

Let S∗ : (qh, f) ∈ Uh × L2(Ω) 7→ S∗(qh, f) = ψ∗ ∈ H1(Ω) be the solution operator561

associated to the following problem562

Find ψ∗ ∈ H1(Ω) such that a(qh;φ, ψ∗) = (φ, f)L2(Ω), ∀φ ∈ H1(Ω).563

Denote by Ca the continuity constant of the bilinear form a(qh; ·, ·), which does not564

depend on h since qh ∈ Uh, and define the adjoint approximation property by565

δ(Vh) := sup
f∈L2(Ω)

inf
φh∈Vh

‖S∗(qh, f)− φh‖1,k0
‖f‖L2(Ω)

.566

Assume that the spaces Vh satisfies567

(5.3) 2Cak0δ(Vh) ≤ 1,568

then the solution ψh(qh) to Problem (5.2) satisfies569

‖ψ(qh)− ψh(qh)‖1,k0 ≤ 2Ca inf
φh∈Vh

‖ψ(qh)− φh‖1,k0 .570
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We emphasize that the above error estimates in fact implies the existence and571

uniqueness of a solution to the discrete problem (5.2) (see [39, Theorem 3.9]). In the572

case q ∈ C0,1(Ω) where Ω is a convex Lipschitz domain, Assumption (5.3) has been573

discussed in [27, p. 11, Theorem 4.3] and roughly amounts to say that (5.3) holds if574

k2
0h is small enough. Since the proof rely on H2-regularity for a Poisson problem, we575

cannot readily extend the argument here since we can only expect to have ψ ∈ H1(Ω)576

and that S∗ also depend on the meshsize. We can still show that (5.3) is satisfied for577

small enough h.578

Lemma 5.2. Assume that qh ∈ Uh weak∗ converges toward q ∈ BV (Ω). Then579

(5.3) is satisfied for small enough h.580

Proof. Note first that Theorem 3.7 also holds for the adjoint problem and thus581

lim
h→0
‖S∗(qh, f)− S∗(q, f)‖1,k0 = 0.582

Using the density of smooth functions in H1 and the properties of the piecewise linear583

interpolant [23, p. 66, Corollary 1.122], we have that584

lim
h→0

(
sup

f∈L2(Ω)

inf
φh∈Vh

‖S∗(q, f)− φh‖1,k0
‖f‖L2(Ω)

)
= 0,585

and thus a triangular inequality shows that (5.3) holds for small enough h.586

We can now prove a discrete counterpart to Theorem 3.7.587

Theorem 5.3. Let (qh)h ⊂ Uh be a sequence that weakly∗ converges toward q in588

BV (Ω). Let (ψh(qh))h be the sequence of discrete solutions to Problem (5.2). Then589

ψ(qh) converges, as h goes to 0, strongly in H1(Ω) towards ψ(q) satisfying Problem590

(3.3).591

Proof. For h small enough, Lemma 5.2 ensures that (5.3) holds and a triangular592

inequality then yields593

‖ψh(qh)− ψ(q)‖1,k0 ≤ ‖ψh(qh)− ψ(qh)‖1,k0 + ‖ψ(qh)− ψ(q)‖1,k0594

≤ 2Ca inf
φh∈Vh

‖ψ(qh)− φh‖1,k0 + ‖ψ(qh)− ψ(q)‖1,k0595

≤ (1 + 2Ca) ‖ψ(qh)− ψ(q)‖1,k0 + 2Ca inf
φh∈Vh

‖ψ(q)− φh‖1,k0 .596
597

Theorem 3.7 gives that the first term above goes to zero as h → 0. For the second598

one, we can use the density of smooth function in H1 to get that it goes to zero as599

well.600

5.2. Convergence of the discrete optimal solution: Case Uh = UΛ ∩Kh,1.601

We are now in a position to prove the convergence of a discrete optimal design towards602

a continuous one in the case603

U = UΛ, Uh = UΛ ∩ Kh,1.604

Hence the set of discrete control is composed of piecewise linear function on Th.605

Theorem 5.4. Assume that (A1)− (A2)− (A3) from Theorem 3.8 hold and that606

the cost function J0 : (q, ψ) ∈ UΛ ×H1(Ω) 7→ J0(q, ψ) ∈ R is continuous with respect607

to the (weak∗, strong) topology of BV (Ω) × H1(Ω). Let (q∗h, ψh(q∗h)) ∈ UΛ,h × Vh be608
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an optimal pair of (5.1). Then the sequence (q∗h)h ⊂ UΛ is bounded and there exists a609

subsequence (same notation used) and q∗ ∈ UΛ such that q∗h ⇀ q∗ weakly∗ in BV (Ω),610

ψ(q∗h)→ ψ(q∗) strongly in H1(Ω) and611

J̃(q∗) ≤ J̃(q), ∀q ∈ UΛ.612

Hence any accumulation point of (q∗h, ψh(q∗h)) is an optimal pair for Problem (3.6).613

Proof. Let qΛ ∈ UΛ,h be given as614

qΛ(x) = Λ, ∀x ∈ Ω.615

Then DqΛ = 0. Since ψh(qΛ) is well-defined and converges toward ψ(qΛ) strongly in616

H1 (see Theorem 5.4), we have that617

J̃(qΛ) = J(qΛ, ψh(qΛ)) = J0(qΛ, ψh(qΛ)) −−−→
h→0

J0(qΛ, ψ(qΛ)).618

As a result, using that (q∗h, ψh(q∗h)) is an optimal pair to Problem (5.2), we get that619

β|D(q∗h)|(Ω) ≤ −J0(q∗h, ψh(q∗h)) + J(qΛ, ψh(qΛ)) ≤ −m+ J0(qΛ, ψh(qΛ)),620

and thus the sequence (q∗h)h ⊂ UΛ,h ⊂ UΛ is bounded in BV (Ω) uniformly with respect621

to h. We can then assume that it has a subsequence that converges and denote by622

q∗ ∈ UΛ its weak∗ limit and Theorem 5.3 then shows that ψh(q∗h) → ψ(q∗) strongly623

in H1(Ω). The lower semi-continuity of J ensures that624

J(q∗, ψ(q∗)) = J̃(q∗) ≤ lim inf
h→0

J̃(q∗h) = lim inf
h→0

J(q∗h, ψh(q∗h)).625

Now, let q ∈ UΛ, using the density of smooth functions in BV , one gets that there626

exists a sequence qh ∈ UΛ,h such that ‖qh − q∗‖BV (Ω) → 0 (see also [5, p. 10, Remark627

4.2]). From Theorem 5.3, one gets ψh(qh) → ψ(q) strongly in H1(Ω) and the conti-628

nuity of J ensure that J̃(qh)→ J̃(q). Since J̃(q∗h) ≤ J̃(qh) for all qh ∈ UΛ,h, one gets629

by passing to the inf-limit that630

J̃(q∗) ≤ lim inf
h→0

J̃(q∗h) ≤ lim inf
h→0

J̃(qh) = J̃(q), ∀q ∈ UΛ,631

and the proof is complete.632

5.3. Convergence of the discrete optimal solution: Case Uh = UΛ,κ∩Kh,0.
We are now in a position to prove the convergence of discrete optimal design toward
continuous one in the case

U = UΛ,κ, Uh = UΛ,κ ∩ Kh,0.

Hence the set of discrete control is composed of piecewise constant functions on Th
that satisfy

∀qh ∈ Uh, ‖qh‖BV (Ω) ≤ 2 max(Λ, κ, |α− 1|).

We can compute explicitly the previous norm by integrating by parts the total varia-
tion (see e.g. [5, p. 7, Lemma 4.1]). This reads

∀qh ∈ Uh, |Dqh|(Ω) =
∑
F∈Fi

|F ||[qh]|F |,
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where F i is the set of interior faces and |[qh]|F is the jump of qh on the interior face633

F = ∂T1 ∩ ∂T2 meaning that |[qh]|F = |qh|T1
− |qh|T2

, where | · |Ti
denotes the value634

of the a finite element function on the face Ti. Note then that any qh ∈ Uh can only635

have either a finite number of discontinuity or jumps that are not too large.636

Theorem 5.5. Assume that β = 0 and (A2)− (A3) from Theorem 3.8 hold and637

that the cost function J : (q, ψ) ∈ UΛ × H1(Ω) 7→ J(q, ψ) ∈ R is continuous with638

respect to the (weak∗, strong) topology of BV (Ω)×H1(Ω). Let (q∗h, ψh(q∗h)) ∈ Uh×Vh639

be an optimal pair of (5.1). Then the sequence (q∗h)h ⊂ UΛ,κ is bounded and there640

exists q∗ ∈ UΛ,κ such that q∗h ⇀ q∗ weakly∗ in BV (Ω), ψ(q∗h) → ψ(q∗) strongly in641

H1(Ω) and642

J̃(q∗) ≤ J̃(q), ∀q ∈ UΛ.643

Hence any accumulation point of (q∗h, ψh(q∗h)) is an optimal pair for Problem (3.6).644

Proof. Since (q∗h)h belong to Uh, it satisfies ‖qh‖BV (Ω) ≤ 2 max(Λ, κ, |α− 1|) and645

is thus bounded uniformly with respect to h. We denote by q∗ ∈ UΛ,κ the weak∗ limit646

of a converging subsequence. Theorem 5.4 then shows that ψh(q∗h) converges strongly647

in H1(Ω) toward ψ(q∗).648

Now, let q ∈ UΛ,κ, using the density of smooth function in BV , one gets that there ex-649

ists a sequence qh ∈ Uh such that qh ⇀ q weak∗ in BV (Ω) (see also [5, Introduction]).650

From Theorem 5.3, one gets ψh(qh) → ψ(q) strongly in H1(Ω) and the continuity of651

J ensure that J̃(qh)→ J̃(q). The proof can then be done as in Theorem 5.4.652

6. Numerical experiments. In this section, we tackle numerically the opti-653

mization problem (3.6), when it is constrained to the total amplitude ψtot described654

by (2.8). We focus on two examples: a damping problem, where the computed ba-655

thymetry optimally reduces the magnitude of the incoming waves; and an inverse656

problem, in which we recover the bathymetry from the observed magnitude of the657

waves.658

In what follows, we consider an incident plane wave ψ0(x) = eik0x·~d propagating659

in the direction ~d = (0 1)>, with660

k0 =
ω0√
gz0

, ω0 =
2π

T0
, T0 = 20, g = 9.81, z0 = 3.661

For the space domain, we set Ω = [0, L]2, where L = 10π
k0

. We also impose a L∞-662

constraint on the variable q, namely that q ≥ −0.9.663

6.1. Numerical methods. We discretize the space domain by using a struc-664

tured triangular mesh of 8192 elements, that is a space step of ∆x = ∆y = 8.476472.665

For the discretization of ψsc, we use a P1-finite element method. The optimized666

parameter q is discretized through a P0-finite element method. Hence, on each tri-667

angle, the approximation of ψsc is determined by three nodal values, located at the668

edges of the triangle, and the approximation of q is determined by one nodal value,669

placed at the center of gravity of the triangle.670

On the other hand, we perform the optimization through a subspace trust-region671

method, based on the interior-reflective Newton method described in [18] and [17].672

Each iteration involves the solution of a linear system using the method of precondi-673

tioned conjugate gradients, for which we supply the Hessian multiply function. The674

computations are achieved with MATLAB (version 9.4.0.813654 (R2018a)).675

Remark 6.1. The next numerical experiments aims at going further than the676

previous analysis. As a consequence, the considered setting does not meet all the677
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assumptions of Theorem 5.4 (as well as those of Theorem 5.5, see Section 6.3) which678

states the convergence of the optimum of the discretized/discr ete problem toward the679

optimum of the continuous one. Indeed, regarding Theorem 5.4, the optimization680

parameters shall be unbounded functions and we omit the penalization term β|Dq|(Ω)681

with β > 0 in the considered cost functions.682

6.2. Example 1: a wave damping problem. We first consider the minimiza-683

tion of the cost functional684

J(q, ψtot) =
ω2

0

2

∫
Ω0

|ψtot(x, y)|2dxdy,685

where Ω0 = [L6 ,
5L
6 ]2 is the domain where the waves are to be damped. The bathym-686

etry is only optimized on a subset Ωq = [L4 ,
3L
4 ]2 ⊂ Ω0.687

The results are shown in Figure 1 for the bathymetry and Figure 2 for the wave.688

We observe that the optimal bathymetry we obtain is highly oscillating. In our exper-689

iments, this oscillation remained at every level of space discretization we have tested.690

This could be related to the fact that in all our results, q ∈ BV (Ω). Note also that691

the damping is more efficient over Ωq. This fact is consistent with the results of the692

next experiment.693

Figure 1: Optimal bathymetry for a wave damping problem. The yellow part rep-
resents Ω0 and the red part corresponds to the nodal points associated with q. The
black plane corresponds to the level of the flat bathymetry.
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(a) Norm of the numerical solution.

(b) Real part of the incident wave. (c) Real part of the numerical solution.

Figure 2: Numerical solution of a wave damping problem. The yellow part represents
Ω0 and the red part corresponds to the nodal points associated with q.

6.3. Example 2: an inverse problem. Many inverse problems associated694

to Helmholtz equation have been studied in the literature. We refer for example695

to [19, 22, 46] and the references therein. Note that in most of these papers the inverse696

problem rather consists in determining the location of a scatterer or its shape, often697

meaning that q(x, y) is assumed to be constant inside and outside the scatterer. On698

the contrary, the inverse problem we consider in this section consists in determining699

a full real valued function.700

Given the bathymetry701

qref (x, y) := e
−τ

(
((x−L4 )2+(y−L4 )2

)
+ e
−τ

(
(x− 3L

4 )2+(y− 3L
4 )2

)
,702
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where τ = 10−3, we try to reconstruct it on the domain Ωq = [L8 ,
3L
8 ]2 ∪ [ 5L

8 ,
7L
8 ]2, by703

minimizing the cost functional704

J(q, ψtot) =
ω2

0

2

∫
Ω0

|ψtot(x, y)− ψref (x, y)|2dxdy,705

where ψref is the amplitude associated with qref and Ω0 = [ 3L
4 − δ,

3L
4 + δ]2, δ = L

6 .706

Note that in this case, Ωq is not contained in Ω0.707

In Figure 3, we observe that the part of the bathymetry that does not belong708

to the observed domain Ω0 is not recovered by the procedure. On the contrary, the709

bathymetry is well reconstructed in the part of the domain corresponding to Ω0.710

(a) Reconstruction error.

(b) Actual bathymetry. (c) Reconstructed bathymetry.

Figure 3: Detection of a bathymetry from a wavefield. The yellow part represents Ω0

and the red part corresponds to the nodal points associated with q.

711
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In this example, the assumptions of Theorem 5.5 are also relaxed. Indeed, though712

we look for bounded and piecewise constant qh, we do not demand that |Dqh|(Ω) ≤ κ713

for some κ > 0. Nevertheless, we have observed in our numerical experiments that714

|Dqh|(Ω) = O(h−s), for some s > 0. This result is reported in Figure 4.715

Figure 4: Norm of Dqh(Ω) (blue stars), for various values of h.

It is worth noting that these numerical results show that imposing an upper bound716

on |Dqh| (using either a penalization term in the cost function or imposing it in the717

admissible set) is crucial to prove the existence of optimal bathymetry (see Theorems718

3.8 and 3.9).719
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Appendix: derivation of Saint-Venant system. For the sake of complete-724

ness and following the standard procedure described in [25] (see also [11, 44]), we725

derive the Saint-Venant equations from the Navier-Stokes system. For simplicity of726

presentation, system (2.1) is restricted to two dimensions, but a more detailed deriva-727

tion of the three-dimensional case can be found in [21]. Since our analysis focuses on728

the shallow water regime, we introduce the parameter ε :=
H

L
, where H denotes the729

relative depth and L is the characteristic dimension along the horizontal axis. The730

importance of the nonlinear terms is represented by the ratio δ :=
A

H
, with A the731

maximum vertical amplitude. We then use the change of variables732

x′ :=
x

L
, z′ :=

z

H
, t′ :=

C0

L
t,733

and734

u′ :=
u

δC0
, w′ :=

w

δεC0
, η′ :=

η

A
, z′b :=

zb
H
, p′ :=

p

gH
.735

where C0 =
√
gH is the characteristic dimension for the horizontal velocity. Assuming736

the viscosity and atmospheric pressure to be constants, we define their respective737

dimensionless versions by738

µ′ :=
µ

C0L
, p′a :=

pa
gH

.739
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Dropping primes after rescaling, the dimensionless system (2.1) reads740

δ
∂u

∂t
+ δ2

(
u
∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+ 2δ

∂

∂x

(
µ
∂u

∂x

)
,(6.1)741

+ δ
∂

∂z

(
µ
( 1

ε2

∂u

∂z
+
∂w

∂x

))
742

ε2δ

(
∂w

∂t
+ δ
(
u
∂w

∂x
+ w

∂w

∂z

))
= −∂p

∂z
− 1

(6.2)

743

+ δ
∂

∂x

(
µ
(∂u
∂z

+ ε2 ∂w

∂x

))
+ 2δ

∂

∂z

(
µ
∂w

∂z

)
,744

∂u

∂x
+
∂w

∂z
= 0.(6.3)745

746

The boundary conditions in (2.2) remains similar and reads747

(6.4)


−δu∂η

∂x
+ w =

∂η

∂t

√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 on (x, δη(x, t), t),

u
∂zb
∂x

+ w = 0 on (x,−zb(x), t).

748

However, the rescaled boundary conditions in (2.3) are now given by749 (
p− 2δµ

∂u

∂x

)
∂η

∂x
+ µ

(
1

ε2

∂u

∂z
+
∂w

∂x

)
= pa

∂η

∂x
on (x, δη(x, t), t),(6.5)750

δ2µ

(
∂u

∂z
+ ε2 ∂w

∂x

)
∂η

∂x
+

(
p− 2δµ

∂w

∂z

)
= pa on (x, δη(x, t), t),(6.6)751

752

and at the bottom (x,−zb(x), t):753

(6.7)

ε

(
p− 2δµ

∂u

∂x

)
∂zb
∂x

+ δµ

(
1

ε

∂u

∂z
+ ε

∂w

∂x

)
−δµ

(∂u
∂z

+ ε2 ∂w

∂x

)(∂zb
∂x

)2

+ ε

(
2δµ

∂w

∂z
− p
)
∂zb
∂x

= 0.

754

755

To derive the Saint-Venant equations, we use an asymptotic analysis in ε. In756

addition, we assume a small viscosity coefficient757

µ = εµ0.758

A first simplification of the system consists in deriving an explicit expression for p,759

known as the hydrostatic pressure. Indeed, after rearranging the terms of order ε2 in760

(6.2) and integrating in the vertical direction, we get761

p(x, z, t) = O(ε2δ) + (δη − z) + εδµ0

(
∂u

∂x
+ 2

∂w

∂z
− ∂u

∂x
(x, η, t)

)
762

+ p(x, δη, t)− 2εδµ0
∂w

∂z
(x, η, t).(6.8)763

764
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To compute explicitly the last term, we combine (6.5) with (6.6) to obtain765

p(x, δη, t)− 2εδµ0
∂w

∂z
(x, δη, t) = pa

(
1− (εδ)2

(∂η
∂x

)2
)

766

+ (εδ)2

(
p− 2εµ0

∂u

∂x
(x, η, t)

)(
∂η

∂x

)2

,767
768

that can be combined with (6.8) to obtain769

(6.9) p(x, z, t) = (δη − z) + pa +O(εδ).770

As a second approximation, we integrate vertically equations (6.3) and (6.1). We771

introduce hδ = δη+zb. Due to the Leibnitz integral rule and the boundary conditions772

in (6.4), integrating the mass equation (6.3) gives773 ∫ δη

−zb

(
∂u

∂x
+
∂w

∂z

)
dz = 0774

∂

∂x

(∫ δη

−zb
udz

)
− δu(x, δη, t)

∂η

∂x
− u(x,−zb, t)

∂zb
∂x

+ w(x, δη, t)− w(x,−zb, t) = 0775

∂η

∂t

√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 +

∂(hδu)

∂x
= 0.776

777

To treat the momentum equation (6.1), we notice that Equation (6.3) allows us to778

rewrite the convective acceleration terms as779

u
∂u

∂x
+ w

∂u

∂z
=
∂u2

∂x
+
∂uw

∂z
.780

Its integration, combined with the boundary conditions in (6.4), leads to781 ∫ δη

−zb

(
u
∂u

∂x
+ w

∂u

∂z

)
dz =

∂

∂x

(∫ δη

−zb
u2dz

)
− δu2(x, δη, t)

∂η

∂x
− u2(x,−zb, t)

∂zb
∂x

782

+ u(x, δη, t) · w(x, δη, t)− u(x,−zb, t) · w(x,−zb, t)783

=
∂(hδu2)

∂x
+ u(x, δη, t)

∂η

∂t

√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2,784

785

where we have introduced the depth-averaged velocity786

u(x, t) :=
1

hδ(x, t)

∫ δη

−zb
u(x, z, t)dz.787

The vertical integration of the left-hand side of (6.1) then brings788 ∫ δη

−zb

[
δ
∂u

∂t
+ δ2

(
u
∂u

∂x
+ w

∂u

∂z

)]
dz = δ

∂(hδu)

∂t
+ δ2 ∂(hδu2)

∂x
789

+ δ2u(x, δη, t)
∂η

∂t

(√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 − 1

)
.790

791
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To deal with the term hδu2, we start from (6.9) which shows that
∂p

∂x
= O(δ). Plug-792

ging this expression into (6.1) yields793

∂2u

∂z2
= O(ε).794

From boundary conditions (6.5) and (6.7), we obtain795

∂u

∂z
(x, δη, t) = O(ε2),

∂u

∂z
(x, zb, t) = O(ε).796

Consequently, u(x, z, t) = u(x, 0, t)+O(ε) and then u(x, z, t)−u(x, t) = O(ε). Hence,797

we have the approximation798

hδu2 = hδu
2 +

∫ δη

−zb
(u− u)2dz = hδu

2 +O(ε2)799

and finally800 ∫ δη

−zb

[
δ
∂u

∂t
+ δ2

(
u
∂u

∂x
+ w

∂u

∂z

)]
dz = δ

∂(hδu)

∂t
+ δ2 ∂(hδu

2)

∂x
+O(ε2δ2)801

+ δ2u(x, δη, t)
∂η

∂t

(√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 − 1

)
.(6.10)802

803

We then integrate the right-hand side of Equation (6.1)804 ∫ δη

−zb

[
− ∂p

∂x
+ δ

µ0

ε

∂

∂z

(
∂u

∂z

)
+ εδµ0

(
2
∂

∂x

(
∂u

∂x

)
+

∂

∂z

(
∂w

∂x

))]
dz805

= −δhδ
∂η

∂x
+O(εδ) + δ

[
µ0

ε

∂u

∂z
(x, δη, t)− µ0

ε

∂u

∂z
(x,−zb, t)

]
.806

807

Combining this expression with (6.10), we get the vertical integration of the momen-808

tum equation:809

∂η

∂t

√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 +

∂(hδu)

∂x
= 0

(6.11)

810

∂(hδu)

∂t
+ δ

∂(hδu
2)

∂x
= −hδ

∂η

∂x
+

[
µ0

ε

∂u

∂z
(x, δη, t)− µ0

ε

∂u

∂z
(x,−zb, t)

]
811

+ δu(x, δη, t)
∂η

∂t

(√
1 + (εδ)2

∣∣∣∣∂η∂x
∣∣∣∣2 − 1

)
+O(ε),(6.12)812

813

The convergence of (6.12) is guaranteed by the boundary equations (6.5) and (6.7),814

from which we get815

µ0

ε

∂u

∂z
(x, δη, t) = O(εδ),

µ0

ε

∂u

∂z
(x,−zb, t) = O(ε).816

Hence the system (2.4–2.5).817
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