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OPTIMIZATION OF BATHYMETRY FOR LONG WAVES WITH SMALL AMPLITUDE

This paper deals with bathymetry-oriented optimization in the case of long waves with small amplitude. Under these two assumptions, the free-surface incompressible Navier-Stokes system can be written as a wave equation where the bathymetry appears as a parameter in the spatial operator. Looking then for time-harmonic fields and writing the bottom topography as a perturbation of a flat bottom, we end up with a heterogeneous Helmholtz equation with impedance boundary condition. In this way, we study some PDE-constrained optimization problem for a Helmholtz equation in heterogeneous media whose coefficients are only bounded with bounded variation. We provide necessary condition for a general cost function to have at least one optimal solution. We also prove the convergence of a finite element approximation of the solution to the considered Helmholtz equation as well as the convergence of discrete optimum toward the continuous ones. We end this paper with some numerical experiments to illustrate the theoretical results and show that some of their assumptions could actually be removed.

Introduction

Despite the fact that the bathymetry can be inaccurately known in many situations, wave propagation models strongly depend on this parameter to capture the flow behavior, which emphasize the importance of studying inverse problems concerning its reconstruction from free surface flows. In recent years a considerable literature has grown up around this subject. A review from Sellier identifies different techniques applied for bathymetry reconstruction [START_REF] Sellier | Inverse problems in free surface flows: a review[END_REF]Section 4.2], which rely mostly on the derivation of an explicit formula for the bathymetry, numerical resolution of a governing system or data assimilation methods [START_REF] Honnorat | Lagrangian data assimilation for river hydraulics simulations[END_REF][START_REF] Van Dongeren | Beach wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations[END_REF].

An alternative is to use the bathymetry as control variable of a PDE-constrained optimization problem, an approach used in coastal engineering due to mechanical constraints associated with building structures and their interaction with sea waves. For instance, among the several aspects to consider when designing a harbor, building defense structures is essential to protect it against wave impact. These can be optimized to locally minimize the wave energy, by studying its interaction with the reflected waves [START_REF] Isebe | Optimal shape design of defense structures for minimizing short wave impact[END_REF]. Bouharguane and Mohammadi [START_REF] Bouharguane | Minimization principles for the evolution of a soft sea bed interacting with a shallow[END_REF][START_REF] Mohammadi | Optimal dynamics of soft shapes in shallow waters[END_REF] consider a timedependent approach to study the evolution of sand motion at the seabed, which could also allow these structures to change in time. In this case, the proposed functionals are minimized using sensitivity analysis, a technique broadly applied in geosciences. From a mathematical point of view, the solving of these kinds of problem is mostly numerical. A theoretical approach applied to the modeling of surfing pools can be found in [START_REF] Dalphin | Shape optimization of a moving bottom underwater generating solitary waves ruled by a forced KdV equation[END_REF][START_REF] Nersisyan | Generation of two-dimensional water waves by moving bottom disturbances[END_REF], where the goal is to maximize locally the energy of the prescribed wave. The former proposes to determine a bathymetry, whereas the latter sets the shape and displacement of an underwater object along a constant depth.

In this paper, we address the determination of a bathymetry from an optimization problem, where a reformulation of the Helmholtz equation acts as a constraint. Even though this equation is limited to describe waves of small amplitude, it is often used in engineering due to its simplicity, which leads to explicit solutions when a flat bathymetry is assumed. To obtain such a formulation, we rely on two asymptotic approximations of the free-surface incompressible Navier-Stokes equations. The first one is based on a long-wave theory approach and reduces the Navier-Stokes system to the Saint-Venant equations. The second one considers waves of small amplitude from which the Saint-Venant model can be approximated by a wave-equation involving the bathymetry in its spatial operator. It is finally when considering time-harmonic solution of this wave equation that we get a Helmholtz equation with spatially-varying coefficients. Regarding the assumptions on the bathymetry to be optimized, we assume the latter to be a perturbation of a flat bottom with a compactly supported perturbation which can thus be seen as a scatterer. Since we wish to be as closed to real-world applications as possible, we also assume that the bottom topography is not smooth and, for instance, can be discontinuous. We therefore end up with a constraint equation given by a time-harmonic wave equation, namely a Helmholtz equation, with non-smooth coefficients.

It is worth noting that our bathymetry optimization problem aims at finding some parameters in our PDE that minimize a given cost function and can thus be seen as a parametric optimization problem (see e.g. [START_REF] Banks | Estimation techniques for distributed parameter systems[END_REF], [START_REF] Allaire | Conception optimale de structures[END_REF], [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF]). Similar optimization problems can also be encountered when trying to identify some parameters in the PDE from measurements (see e.g. [START_REF] Chen | An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems[END_REF], [START_REF] Beretta | Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in eit[END_REF]). Nevertheless, all the aforementioned references deals with real elliptic and coercive problems. Since the Helmholtz equation is unfortunately a complex and non-coercive PDE, these results do not apply.

We also emphasize that the PDE-constrained optimization problem studied in the present paper falls into the class of so-called topology optimization problems. For practical applications involving Helmholtz-like equation as constraints, we refer to [START_REF] Wadbro | Shape and topology optimization of an acoustic horn-lens combination[END_REF], [START_REF] Bernland | Acoustic shape optimization using cut finite elements[END_REF] where the shape of an acoustic horn is optimized to have better transmission efficiency and to [START_REF] Jensen | Topology optimization of photonic crystal structures: a highbandwidth low-loss t-junction waveguide[END_REF], [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF], [START_REF] Christiansen | Designing photonic topological insulators with quantum-spin-hall edge states using topology optimization[END_REF] for the topology optimization of photonic crystals where several different cost functions are considered. Although there is a lot of applied and numerical studies of topology optimization problems involving Helmholtz equation, there are only few theoretical studies as pointed out in [29, p. 2].

Regarding the theoretical results from [START_REF] Haslinger | On a topology optimization problem governed by twodimensional Helmholtz equation[END_REF], the authors proved existence of optimal solution to their PDE-constrained optimization problem as well as the convergence of the discrete optimum toward the continuous ones. It is worth noting that, in this paper, a relative permittivity is considered as optimization parameter and that the latter appears as a multiplication operator in the Helmholtz differential operator. Since in the present study the bathymetry is assumed to be non-smooth and is involved in the principal part of our heterogeneous Helmholtz equation, we can not rely on the theoretical results proved in [START_REF] Haslinger | On a topology optimization problem governed by twodimensional Helmholtz equation[END_REF] to study our optimization problem.

This paper is organized as follows: Section 2 presents the two approximations of the free-surface incompressible Navier-Stokes system, namely the long-wave theory approach and next the reduction to waves with small amplitude, that lead us to consider a Helmholtz equation in heterogeneous media where the bathymetry plays the role of a scatterer. Under suitable assumptions on the cost functional and the admissible set of bathymetries, in Section 3 we are able to prove the continuity of the control-to-state mapping and the existence of an optimal solution, in addition to the continuity and boundedness of the resulting wave presented in Section 4. The discrete optimization problem is discussed in Section 5, studying the convergence to the discrete optimal solution as well as the convergence of a finite element approximation. Finally, we present some numerical results in Section 6.

Derivation of the wave model

We start from the Navier-Stokes equations to derive the governing PDE. However, due to its complexity, we introduce two approximations [START_REF] Méhauté | An Introduction to Hydrodynamics and Water Waves[END_REF]: a small relative depth (Long wave theory) combined with an infinitesimal wave amplitude (Small amplitude wave theory). An asymptotic analysis on the relative depth shows that the vertical component of the depth-averaged velocity is negligible, obtaining the Saint-Venant equations. After neglecting its convective inertia terms and linearizing around the sea level, it results in a wave equation which depends on the bathymetry. Since a variable sea bottom can be seen as an obstacle, we reformulate the equation as a Scattering problem involving the Helmholtz equation.

2.1.

From Navier-Stokes system to Saint-Venant equations. For t ≥ 0, we define the time-dependent region

Ω t = {(x, z) ∈ Ω × R | -z b (x) ≤ z ≤ η(x, t)}
where Ω is a bounded open set with Lipschitz boundary, η(x, t) represents the water level and -z b (x) is the bathymetry or bottom topography, a time independent and negative function. The water height is denoted by

h = η + z b . x z Free surface η(x, t) -z b (x) h Bottom
In what follows, we consider an incompressible fluid of constant density (assumed to be equal to 1), governed by the Navier-Stokes system (1)

       ∂u ∂t + (u • ∇) u = div (σ T ) + g in Ω t , div (u) = 0 in Ω t , u = u 0 in Ω 0 ,
where u = (u, v, w) denotes the velocity of the fluid, g = (0, 0, -g) is the gravity and σ T is the total stress tensor, given by σ T = -pI + µ ∇u + ∇u with p the pressure and µ the coefficient of viscosity.

To complete (1), we require suitable boundary conditions. Given the outward normals

n s = 1 1 + |∇η| 2 -∇η 1 , n b = 1 1 + |∇z b | 2 ∇z b 1 ,
to the free surface and bottom, respectively, we recall that the velocity of the two must be equal to that of the fluid:

(2)

   ∂η ∂t -u • n s = 0 on (x, η(x, t), t), u • n b = 0 on (x, -z b (x), t).
On the other hand, the stress at the free surface is continuous, whereas at the bottom we assume a no-slip condition

(3) σ T • n s = -p a n s on (x, η(x, t), t), (σ T n b ) • t b = 0 on (x, -z b (x), t),
with p a the atmospheric pressure and t b an unitary tangent vector to n b .

A long wave theory approach can then be developed to approximate the previous model by a Saint-Venant system [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF]. Denoting by H the relative depth and L the characteristic dimension along the horizontal axis, this approach is based on the approximation ε := H L 1, leading to a hydrostatic pressure law for the nondimensionalized Navier-Stokes system, and a vertical integration of the remaining equations. For the sake of completeness, details of this derivation in our case are given in Appendix. For a two-dimensional system (1), the resulting system is then

∂η ∂t 1 + (εδ) 2 ∂η ∂x 2 + ∂(h δ u) ∂x = 0 (4) ∂(h δ u) ∂t + δ ∂(h δ u 2 ) ∂x = -h δ ∂η ∂x + δu(x, δη, t) ∂η ∂t 1 + (εδ) 2 ∂η ∂x 2 -1 + O(ε) + O(δε), (5) 
where

δ := A H , h δ = δη + z b and u(x, t) := 1 h δ (x, t) δη -z b u(x, z, t)dz. If ε → 0,
we recover the classical derivation of the one-dimensional Saint-Venant equations.

2.2. Small amplitudes. With respect to the classical Saint-Venant formulation, passing to the limit δ → 0 is equivalent to neglect the convective acceleration terms and linearize the system (4-5) around the sea level η = 0. In order to do so, we rewrite the derivatives as

∂(h δ u) ∂t = h δ ∂u ∂t + δ ∂η ∂t u, ∂(h δ u) ∂x = δ ∂(ηu) ∂x + ∂(z b u) ∂x ,
and then, taking ε, δ → 0 in (4-5) yields

     ∂η ∂t + ∂(z b u) ∂x = 0, - ∂(z b u) ∂t + z b ∂η ∂x = 0.
Finally, after deriving the first equation with respect to t and replacing the second into the new expression, we obtain the wave equation for a variable bathymetry. All the previous computations hold for the three-dimensional system [START_REF] Allaire | Conception optimale de structures[END_REF]. In this case, we obtain

(6) ∂ 2 η ∂t 2 -div (gz b ∇η) = 0.
2.3. Helmholtz formulation. Equation ( 6) defines a time-harmonic field, whose solution has the form η(x, t) = Re{ψ tot (x)e -iωt }, where the amplitude ψ tot satisfies ( 7)

ω 2 ψ tot + div (gz b ∇ψ tot ) = 0.
We wish to rewrite the equation above as a scattering problem. Since a variable bottom z b (x) := z 0 + δz b (x) (with z 0 a constant describing a flat bathymetry and δz b a perturbation term) can be considered as an obstacle, we thus assume that δz b has a compact support in Ω and that ψ tot satisfies the so-called Sommerfeld radiation condition. In a bounded domain as Ω, we impose the latter thanks to an impedance boundary condition (also known as first-order absorbing boundary condition), which ensures the existence and uniqueness of the solution [40, p. 108]. We then reformulate [START_REF] Beretta | Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in eit[END_REF] as [START_REF] Bernland | Acoustic shape optimization using cut finite elements[END_REF] div

((1 + q)∇ψ tot ) + k 2 0 ψ tot = 0 in Ω, ∇(ψ tot -ψ 0 ) • n -ik 0 (ψ tot -ψ 0 ) = 0 on ∂Ω,
where we have introduced the parameter q(x) := δz b (x) z0 which is assumed to be compactly supported in Ω, k 0 := ω √ gz0 , n the unit normal to ∂Ω and ψ 0 (x) = e ik0x• d is an incident plane wave propagating in the direction d (such that | d| = 1). Decomposing the total wave as ψ tot = ψ 0 +ψ sc , where ψ sc represents an unknown scattered wave, we obtain the Helmholtz formulation [START_REF] Bouharguane | Minimization principles for the evolution of a soft sea bed interacting with a shallow[END_REF] div ((1 + q)∇ψ sc ) + k 2 0 ψ sc = -div (q∇ψ 0 ) in Ω, ∇ψ sc • n -ik 0 ψ sc = 0 on ∂Ω.

Its structure will be useful to prove the existence of a minimizer for a PDEconstrained functional, as discussed in the next section.

Description of the optimization problem

We are interested in studying the problem of a cost functional constrained by the weak formulation of a Helmholtz equation. The latter intends to generalize the equations considered so far, whereas the former indirectly affects the choice of the set of admissible controls. These can be discontinuous since they are included in the space of functions of bounded variations. In this framework, we treat the continuity and regularity of the associated control-to-state mapping, and the existence of an optimal solution to the optimization problem.

3.1. Weak formulation. Let Ω ⊂ R 2 be a bounded open set with Lipschitz boundary. We consider the following general Helmholtz equation [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] -div

((1 + q)∇ψ) -k 2 0 ψ = div (q∇ψ 0 ) in Ω, (1 + q)∇ψ • n -ik 0 ψ = g -q∇ψ 0 • n on ∂Ω,
where g is a source term. We assume that q ∈ L ∞ (Ω) and that there exists α > 0 such that [START_REF] Brown | Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations[END_REF] a.e. x ∈ Ω, 1 + q(x) ≥ α.

Remark 1. Here we have generalized the models described in the previous section: if q has a fixed compact support in Ω, we have that the total wave ψ tot satisfying (8) is a solution to [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] with g = ∇ψ 0 • n -ik 0 ψ 0 and no volumic right-hand side; whereas the scattered wave ψ sc satisfying (9) is a solution to [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] with g = 0. All the proofs obtained in this broader setting still hold true for both problems.

A weak formulation for [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] is given by ( 12) a(q; ψ, φ) = b(q; φ), ∀φ ∈ H 1 (Ω), where a(q; ψ, φ) :=

Ω (1 + q)∇ψ • ∇φ -k 2 0 ψφ dx -ik 0 ∂Ω ψφ dσ, (13) b(q; φ) := - Ω q∇ψ 0 • ∇φ dx + g, φ H -1/2 ,H 1/2 .
Note that, thanks to Cauchy-Schwarz inequality, the sesquilinear form a is continuous

|a(q; ψ, φ)| ≤ C(Ω, q, α)(1 + q L ∞ (Ω) ) ψ 1,k0 φ 1,k0 , ψ 2 1,k0 := k 2 0 ψ 2 L 2 (Ω) + α ∇ψ 2 L 2 (Ω)
, where C(Ω, q, α) > 0 is a generic constant. In addition, taking φ = ψ in the definition of a, it satisfies a Gårding inequality [START_REF] Christiansen | Designing photonic topological insulators with quantum-spin-hall edge states using topology optimization[END_REF] Re{a(q; ψ, ψ

)} + 2k 2 0 ψ 2 L 2 (Ω) ≥ ψ 2 1,k0
, and the well-posedness of Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF] follows from the Fredholm Alternative. Finally, uniqueness holds for any q ∈ L ∞ (Ω) satisfying [START_REF] Brown | Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations[END_REF] owning to [26, Theorems 2.1, 2.4].

Continuous optimization problem.

We are interested in solving the next PDE-constrained optimization problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF] minimize J(q, ψ),

subject to (q, ψ) ∈ U Λ × H 1 (Ω)
, where ψ satisfies [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF]. We now define the set U Λ of admissible q. We wish to find optimal q that can have discontinuities and we thus cannot look for q in some Sobolev spaces that are continuously embedded into C 0 (Ω), even if such regularity is useful for proving existence of minimizers (see e.g. [3, Chapter VI], [6, Theorem 4.1]). To be able to find an optimal q satisfying (11) and having possible discontinuities, we follow [START_REF] Chen | An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems[END_REF] and introduce the following set

U Λ = {q ∈ BV (Ω) | α -1 ≤ q(x) ≤ Λ a.e. x ∈ Ω } .
Above Λ ≥ max{α-1, 0} and BV (Ω) is the set of functions with bounded variations [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF], that is functions whose distributional gradient belongs to the set M b (Ω, R N ) of bounded Radon measures. Note that the piecewise constant functions over Ω belong to U Λ . Some useful properties of BV (Ω) can be found in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] and are recalled below for the sake of completeness. This is a Banach space for the norm (see [2, p. 120

, Proposition 3.2]) q BV (Ω) := q L 1 (Ω) + |Dq|(Ω),
where D is the distributional gradient and ( 16)

|Dq|(Ω) = sup Ω q div (ϕ) dx ϕ ∈ C 1 c (Ω, R 2 ) and ϕ L ∞ (Ω) ≤ 1 ,
is the variation of q (see [2, p. 119, Definition 3.4]).

The weak * convergence in BV (Ω), denoted by

q n q, weak * in BV (Ω), means that q n → q in L 1 (Ω) and Dq n Dq in M b (Ω, R N ).
Also, in a two-dimensional setting, the continuous embedding BV (Ω) ⊂ L 1 (Ω) is compact. We finally recall that the application q ∈ BV (Ω) → |Dq|(Ω) ∈ R + is lower semi-continuous with respect to the weak * topology of BV . Hence, for any sequence q n q in BV (Ω), one has

|Dq|(Ω) ≤ lim inf n→+∞ |Dq n |(Ω).
The set U Λ is a closed, weakly * closed and convex subset of BV (Ω). However, since its elements are not necessarily bounded in the BV -norm, we add a penalizing distributional gradient term to the cost functional J(q, ψ) to prove the existence of a minimizer to Problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF]. In this way, we introduce the set of admissible parameters U Λ,κ = {q ∈ U Λ | |Dq|(Ω) ≤ κ} which also possesses the aforementioned properties. Note that choosing U Λ or U Λ,κ affects the convergence analysis of the discrete optimization problem, topic discussed in Section 5.

Remark 2. In this paper, we are interested in computing either the total wave satisfying [START_REF] Bernland | Acoustic shape optimization using cut finite elements[END_REF] or the scattered wave solution to Equation [START_REF] Bouharguane | Minimization principles for the evolution of a soft sea bed interacting with a shallow[END_REF]. Since this requires to work with q having a fixed compact support in Ω, we also introduce the following set of admissible parameters

U ε := {q ∈ U |q(x) = 0 for a.e x ∈ O ε } , O ε = {x ∈ Ω | dist(x, ∂Ω) ≤ ε} ,
which is a set of bounded functions with bounded variations that have a fixed support in Ω. We emphasize that this set is a convex, closed and weak- * closed subset of BV (Ω). As a consequence, all the theorems we are going to prove also hold for this set of admissible parameters.

3.3.

Continuity of the control-to-state mapping. In this section, we establish the continuity of the application q ∈ U → ψ(q) ∈ H 1 (Ω) where ψ(q) satisfies Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF]. We assume that U ⊂ BV (Ω) is a given weakly * closed set satisfying

∀q ∈ U, a.e. x ∈ Ω, α -1 ≤ q(x) ≤ Λ.
Note that both U Λ , U Λ,κ and U ε (see Remark 2) also satisfy these two assumptions. The next result consider the dependance of the stability constant with respect to the optimization parameter q. Theorem 3. Assume that q ∈ U and ψ ∈ H 1 (Ω). Then there exists a constant C s (k 0 ) > 0 that does not depend on q such that (17)

ψ 1,k0 ≤ C s (k 0 ) sup φ 1,k 0 =1 |a(q; ψ, φ)|,
where the constant C s (k 0 ) > 0 only depend on the wavenumber and on Ω. In addition, if ψ is the solution to [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF] then it satisfies the bound (18)

ψ 1,k0 ≤ C s (k 0 )C(Ω) max{k -1 0 , α -1/2 } q L ∞ (Ω) ∇ψ 0 L 2 (Ω) + g H -1/2 (∂Ω) ,
where C(Ω) > 0 only depends on the domain.

Proof. The existence and uniqueness of a solution to Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF] follows from [26, Theorems 2.1, 2.4].

The proof of ( 17) proceed by contradiction assuming this inequality to be false. Therefore, we suppose there exist sequences (q n ) n ⊂ U and (ψ n

) n ⊂ H 1 (Ω) such that q n BV (Ω) ≤ M , ψ n 1,k0 = 1 and (19) lim n→+∞ sup φ 1,k 0 =1 |a(q n ; ψ n , φ)| = 0.
The compactness of the embeddings BV (Ω) ⊂ L 1 (Ω) and

H 1 (Ω) ⊂ L 2 (Ω) yields the existence of a subsequence (still denoted (q n , ψ n )) such that (20) ψ n ψ ∞ in H 1 (Ω), ψ n → ψ ∞ in L 2 (Ω) and q n → q ∞ ∈ U in L 1 (Ω).
Compactness of the trace operator implies that lim n→+∞

ψ n | ∂Ω = ψ ∞ | ∂Ω holds strongly
in L 2 (∂Ω) and thus, from [START_REF] Decoene | Asymptotic derivation of the sectionaveraged shallow water equations for river hydraulics[END_REF] we get

lim n→+∞ Ω k 2 0 ψ n φ dx + ik 0 ∂Ω ψ n φ dσ = Ω k 2 0 ψ ∞ φ dx + ik 0 ∂Ω ψ ∞ φ dσ, ∀ v ∈ H 1 (Ω), lim n→+∞ Ω ∇ψ n • ∇φ dx = Ω ∇ψ ∞ • ∇φ dx.
We now pass to the limit in the term of a that involves q n , see [START_REF] Chen | An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems[END_REF]. We start from

(q n ∇ψ n , ∇φ) L 2 (Ω) -(q ∞ ∇ψ ∞ , ∇φ) L 2 (Ω) = ((q n -q ∞ )∇ψ n , ∇φ) L 2 (Ω) + (q ∞ ∇(ψ n -ψ ∞ ), ∇φ) L 2 (Ω) ,
and use Cauchy-Schwarz inequality to get

Ω q n ∇ψ n •∇φ dx - Ω q ∞ ∇ψ ∞ • ∇φ dx ≤ ((q n -q ∞ )∇ψ n , ∇φ) L 2 (Ω) + (q ∞ ∇(ψ n -ψ ∞ ), ∇φ) L 2 (Ω) ≤ |q n -q ∞ |∇φ L 2 (Ω) |q n -q ∞ |∇ψ n L 2 (Ω) + (q ∞ ∇(ψ n -ψ ∞ ), ∇φ) L 2 (Ω) ≤ 2 √ Λ √ α ψ n 1,k0 |q n -q ∞ |∇φ L 2 (Ω) + (∇(ψ n -ψ ∞ ), q ∞ ∇φ) L 2 (Ω) .
The right term above goes to 0 owning to q ∞ ∈ L ∞ (Ω) and [START_REF] Decoene | Asymptotic derivation of the sectionaveraged shallow water equations for river hydraulics[END_REF]. For the other term, since q n → q ∞ strongly in L 1 , we can extract another subsequence (q n k ) k such that q n k → q ∞ pointwise almost everywhere in Ω. Also,

|q n -q ∞ ||∇φ| 2 ≤ 2 √ Λ|∇φ| 2 ∈ L 1 (Ω)
and the Lebesgue dominated convergence theorem then yields

lim k→+∞ |q n k -q ∞ |∇φ L 2 (Ω) = 0.
This gives that (see also [13, 

Equation (2.4)]) (21) lim k→+∞ (q n k ∇ψ n k , ∇φ) L 2 (Ω) = (q ∞ ∇ψ ∞ , ∇φ) L 2 (Ω) , ∀φ ∈ H 1 (Ω).
Finally, gathering [START_REF] Dorn | A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets[END_REF] together with [START_REF] Dalphin | Shape optimization of a moving bottom underwater generating solitary waves ruled by a forced KdV equation[END_REF] yields

0 = lim k→+∞ a(q n k ; ψ n k , φ) = a(q ∞ , ψ ∞ , φ), ∀φ ∈ H 1 (Ω),
and the uniqueness result [26, Theorems 2.1, 2.4] shows that ψ ∞ = 0 thus the whole sequence actually converges to 0. To get our contradiction, it remains to show that ∇ψ n L 2 (Ω) converges to 0 as well. From the Gårding inequality ( 14), we have

ψ n 2 1,k0 ≤ Re{a(q n ; ψ n , ψ n )} + 2k 2 0 ψ n 2 L 2 (Ω) -----→ n→+∞ 0,
where we used [START_REF] Dalphin | Shape optimization of a moving bottom underwater generating solitary waves ruled by a forced KdV equation[END_REF] and the strong L 2 convergence of ψ n towards ψ ∞ = 0. Finally one gets lim n→+∞ ψ n 1,k0 = 0 which contradicts ψ n 1,k0 = 1 and gives the desired result.

Applying then [START_REF] Coleman | An interior trust region approach for nonlinear minimization subject to bounds[END_REF] to the solution to (12) finally yields

ψ 1,k0 ≤ C s (k 0 ) sup φ 1,k 0 =1 |a(q; ψ, φ)| ≤ C s (k 0 ) sup φ 1,k 0 =1 |b(q; φ)| ≤ C s (k 0 ) sup φ 1,k 0 =1 q L ∞ (Ω) ∇ψ 0 L 2 (Ω) ∇φ L 2 (Ω) + g H -1/2 (∂Ω) φ H 1/2 (∂Ω) ≤ C s (k 0 )C(Ω) max{k -1 0 , α -1/2 } q L ∞ (Ω) ∇ψ 0 L 2 (Ω) + g H -1/2 (∂Ω)
, where C(Ω) > 0 comes from the trace inequality. 

-div ((1 + q)∇ψ) -k 2 0 ψ = F in Ω, (1 + q)∇ψ • n -ik 0 ψ = G on ∂Ω.
We emphasize that the estimation of the stability constant C s (k 0 ) with respect to the wavenumber have been obtained for (F, G) ∈ L 2 (Ω) × L 2 (∂Ω) for q = 0 in [START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF] and for q ∈ Lip(Ω) satisfying [START_REF] Brown | Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations[END_REF] in [START_REF] Barucq | Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation[END_REF][START_REF] Graham | Stability and finite element error analysis for the helmholtz equation with variable coefficients[END_REF][START_REF] Graham | The helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances[END_REF]. Since their proofs rely on Green, Rellich and Morawetz identities, they do not extend to the case (F, G) ∈ H 1 (Ω) × H -1/2 (∂Ω) but such cases can be tackled as it is done in [23, p.10, Theorem 2.5]. The case of Lipschitz q has been studied in [START_REF] Brown | Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations[END_REF]. As a result, the dependance of the stability constant with respect to q, in the case q ∈ U and (F, G) ∈ H 1 (Ω) × H -1/2 (∂Ω), does not seem to have been tackled so far to the best of our knowledge.

Remark 5 (H 1 -bounds for the total and scattered waves). From Remark 1, we obtain that the total wave ψ tot and the scattered wave ψ sc are solutions to [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF], with respective right hand sides

b tot (q; φ) = ∂Ω (∇ψ 0 • n -ik 0 ψ 0 )φ dσ, b sc (q; φ) = - Ω q∇ψ 0 • ∇φ dx.
As a result of Theorem 3 and the continuity of the trace, we have

ψ tot 1,k0 ≤ C(Ω)C s (k 0 )k 0 max{k -1 0 , α -1/2 }, ψ sc 1,k0 ≤ C s (k 0 )α -1/2 q L ∞ (Ω) ∇ψ 0 L 2 (Ω) ≤ k 0 C s (k 0 )α -1/2 q L ∞ (Ω) |Ω|.
We can now prove some regularity for the control-to-state mapping. Theorem 6. Let (q n ) n ⊂ U be a sequence satisfying q n BV (Ω) ≤ M and whose weak * limit in BV (Ω) is denoted by q ∞ . Let (ψ(q n )) n be the sequence of weak solution to Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF]. Then ψ(q n ) converges strongly in H 1 (Ω) towards ψ(q ∞ ). In other words, the mapping

q ∈ (U Λ , weak * ) → ψ(q) ∈ (H 1 (Ω), strong), is continuous.
Proof. Since q n BV (Ω) ≤ M and (q n ) n ⊂ U , there exists q ∞ such that q n q ∞ , weak * in BV (Ω). Using that U is weak * closed, we obtain that q ∞ ∈ U . Note that the sequence (ψ(q n )) n of solution to Problem (12) satisfies estimate [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF] uniformly with respect to n. As a result, there exists some ψ ∞ ∈ H 1 (Ω) such that the convergences (20) hold. Using then [START_REF] Dorn | A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets[END_REF], we get that a(q n ; ψ(q n ), φ) → a(q ∞ ; ψ ∞ , φ).

Since b(q n , φ) → b(q ∞ , φ) for all φ ∈ H 1 (Ω), this proves that a(q ∞ ; ψ ∞ , φ) = b(q; φ) for all φ ∈ H 1 (Ω). Consequently ψ ∞ = ψ(q ∞ ) owning to the uniqueness of a weak solution to [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF] and we have also proved that ψ(q n ) ψ(q ∞ ) in H 1 (Ω). We now show that ψ(q n ) → ψ(q ∞ ) strongly in H 1 . To see this, we start by noting that, up to extracting a subsequence (still denoted by q n ), we can use [START_REF] Dorn | A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets[END_REF] to get that lim n→+∞ b(q n ; ψ(q n )) = b(q ∞ ; ψ(q ∞ )).

Since ψ(q n ), ψ(q ∞ ) satisfy the variational problem (12), we infer

(22) lim n→+∞ a(q n ; ψ(q n ), ψ(q n )) = a(q ∞ ; ψ(q ∞ ), ψ(q ∞ )),
where the whole sequence actually converges owing to the uniqueness of the limit. Using then that ψ(q n ) ψ(q ∞ ) in H 1 (Ω) together with [START_REF] Ern | Theory and Practice of Finite Elements[END_REF], one gets

1 + q n ∇ψ(q n ) 2 L 2 (Ω) = a(q n ; ψ(q n ), ψ(q n )) + k 0 ψ(q n ) 2 L 2 (Ω) + ik 0 ψ(q n ) 2 L 2 (∂Ω) -----→ n→+∞ a(q ∞ ; ψ(q ∞ ), ψ(q ∞ )) + k 0 ψ(q ∞ ) 2 L 2 (Ω) + ik 0 ψ(q ∞ ) 2 L 2 (∂Ω) = 1 + q ∞ ∇ψ(q ∞ ) 2 L 2 (Ω)
.

To show that lim

n→+∞ ∇ψ(q n ) 2 L 2 (Ω) = ∇ψ(q ∞ ) 2 L 2 (Ω) , note that ∇ψ(q n ) = √ 1 + q n ∇ψ(q n ) √ 1 + q n .
Using the same arguments as those to prove (21), we have a subsequence (same notation used) such that q n → q ∞ pointwise a.e. in Ω and thus

√ 1 + q n -1 → √ 1 + q ∞ -1 pointwise a.e.
in Ω. Due to Lebesgue's dominated convergence theorem and

√ 1 + q n ∇ψ(q n ) → √ 1 + q ∞ ∇ψ(q ∞ ) strongly in L 2 (Ω), we have ∇ψ(q n ) = √ 1 + q n ∇ψ(q n ) √ 1 + q n → √ 1 + q ∞ ∇ψ(q ∞ ) √ 1 + q ∞ = ∇ψ(q ∞ ) strong in L 2 (Ω).
The latter, together with the weak H 1 -convergence show that ψ(q n ) → ψ(q ∞ ) strongly in H 1 .

3.4.

Existence of optimal solution in U Λ . We are now in a position to prove the existence of a minimizer to Problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF]. Theorem 7. Assume that the cost function (q, ψ) ∈ U Λ → J(q, ψ) ∈ R satisfies:

(A1) There exists β > 0 and J 0 such that

J(q, ψ) = J 0 (q, ψ) + β|Dq|(Ω),
where |Dq|(Ω) is defined in [START_REF] Coleman | On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds[END_REF].

(A2) ∀(q, ψ) ∈ U Λ × H 1 (Ω), J 0 (q, ψ) ≥ m > -∞. (A3) (q, ψ) → J 0 (q, ψ) is lower-semi-continuous with respect to the (weak * ,weak) topology of BV (Ω) × H 1 (Ω).
Then the optimization problem (15) has at least one optimal solution in U Λ × H 1 (Ω).

Proof. The existence of a minimizer to Problem (15) can be obtained with standard technique by combining Theorem 6 with weak-compactness arguments as done in [13, Lemma 2.1], [6, Theorem 4.1] or [29, Theorem 1]. We still give the proof for the sake of completeness.

We introduce the following set

A = (q, ψ) ∈ U Λ × H 1 (Ω) a(q; ψ, φ) = b(q; φ) ∀φ ∈ H 1 (Ω) .
The existence and uniqueness of solution to Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF] ensure that A is nonempty. In addition, combining Assumptions (A1) and (A2), we obtain that J(q, ψ) is bounded from below on A. We thus have a minimizing sequence (q n , ψ n ) ∈ A such that lim n→+∞ J(q n , ψ n ) = inf (q,ψ)∈A J(q, ψ).

Theorem 3 and (A1) then gives that the sequence (q n , ψ n ) ∈ BV (Ω) × H 1 (Ω) is uniformly bounded with respect to n and thus admits a subsequence that converges towards (q * , ψ * ) in the (weak * ,weak) topology of BV (Ω) × H 1 (Ω). Using now Theorem 6 and the weak * lower semi-continuity of q → |Dq|(Ω), we end up with (q * , ψ * ) ∈ A and

J(q * , ψ * ) ≤ lim inf n→+∞ J(q n , ψ n ) = inf (q,ψ)∈A J(q, ψ).
It is worth noting that the penalization term β q BV (Ω) has been introduced only to obtain a uniform bound in the BV -norm for the minimizing sequence.

3.5. Existence of optimal solution in U Λ,κ . We show here the existence of optimal solution to Problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF] for U = U Λ,κ . Note that any q ∈ U Λ,κ is actually bounded in BV since

q BV (Ω) ≤ 2 max(Λ, κ, |α -1|).
With this property at hand, we can get a similar result to Theorem 7 without adding a penalization term in the cost function, hence β = 0. Theorem 8. Assume that the cost function (q, ψ) ∈ U Λ,κ → J(q, ψ) ∈ R satisfies (A2) -(A3) given in Theorem 7 and that β = 0. Then the optimization problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF] with U = U Λ,κ has at least one optimal solution.

Proof. We introduce the following non-empty set

A = (q, ψ) ∈ U Λ,κ × H 1 (Ω) | a(q; ψ, φ) = b(q; φ) ∀φ ∈ H 1 (Ω) .
From (A2), J(q, ψ) is bounded from below on A. We thus have a minimizing sequence (q n , ψ n ) ∈ A such that lim n→+∞ J(q n , ψ n ) = inf (q,ψ)∈A J(q, ψ).

Since (q n ) n ⊂ U Λ,κ , it satisfies q n BV (Ω) ≤ 2 max(Λ, κ, |α -1|) and thus admits a convergent subsequence toward some q ∈ U Λ,κ . Theorem 6 then gives that ψ(q n ) → ψ(q) strongly in H 1 (Ω) and the proof can be finished as the proof of Theorem 7.

Boundedness/Continuity of solution to Helmholtz problem

In this section, we prove that even if the parameter q is not smooth enough for the solution to [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] to be in H s (Ω) for some s > 1, we can still have continuous solution. In order to prove such regularity for ψ, we are going to rely on the De Giorgi-Nash-Moser theory [ 

             Lv := div (A(x)∇v) = f 0 - N j=1 ∂f j ∂x j , ∇v • n = h + N j=1 f j n j ,
where A ∈ L ∞ (Ω, R N ×N ) satisfy the standard ellipticity condition A(x)ξ • ξ ≥ γ|ξ| 2 for a.e. x ∈ Ω. Let p > N and assume that f 0 ∈ L p/2 (Ω), f j ∈ L p (Ω) for all j = 1, • • • , N and h ∈ L p-1 (∂Ω). Then the weak solution v to (23) satisfies

v C 0 (Ω) ≤ C(N, p, Ω, γ)   v L 2 (Ω) + f 0 L p/2 (Ω) + N j=1 f j L p (Ω) + h L p-1 (∂Ω)   .
4.1. C 0 -bound for the general Helmholtz problem. Using Theorem 9, we can prove some L ∞ bound for the weak solution to Helmholtz equation with bounded coefficients.

Theorem 10. Assume that q ∈ L ∞ (Ω) and satisfies (11) and g ∈ L 2 (∂Ω). Then the solution to Problem (12) satisfies

(24) ψ C 0 (Ω) ≤ C(Ω) C s (k 0 , α) q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g L 2 (∂Ω) ,
where

C s (k 0 , α) = 1 + (1 + k 2 0 )k -1 0 + α -1/2 max{k -1 0 , α -1/2 }C s (k 0 ),
and C(Ω) > 0 does not depend on k nor q.

Proof. We cannot readily apply Theorem 9 to the weak solution of Problem [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF] since it involves a complex valued operator. We therefore consider the Problem satisfied by ν = Re{u} and ζ = Im{u} which is given by ( 25)

           -div ((1 + q)∇ν) -k 2 0 ν = div (q∇ Re{ψ 0 }) in Ω, -div ((1 + q)∇ζ) -k 2 0 ζ = div (q∇ Im{ψ 0 }) in Ω, (1 + q)∇ν • n = Re{g} -k 0 ζ -q∇ Re{ψ 0 } • n, on ∂Ω, (1 + q)∇ζ • n = Im{g} + k 0 ν -q∇ Im{ψ 0 } • n on ∂Ω.
Since Problem ( 25) is equivalent to Problem [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF], we get that the weak solution (ν, ζ) ∈ H 1 (Ω) to ( 25) satisfies the inequality [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF]. Assuming that g ∈ L 2 (∂Ω) and using the continuous Sobolev embedding H 1 (Ω) ⊂ L 6 (Ω), the (compact) embedding H 1/2 (∂Ω) ⊂ L 2 (∂Ω), that q ∈ L ∞ (Ω) satisfies [START_REF] Brown | Multiscale Petrov-Galerkin method for highfrequency heterogeneous Helmholtz equations[END_REF] and the fact that ψ 0 is smooth we get the next regularities

f 0,1 = k 2 0 ν ∈ L 6 (Ω), f j,1 = q ∂ Re{ψ 0 } ∂x j ∈ L ∞ (Ω), h 1 = Re{g} -k 0 ζ ∈ L 2 (∂Ω), f 0,2 = k 2 0 ζ ∈ L 6 (Ω), f j,2 = q ∂ Im{ψ 0 } ∂x j ∈ L ∞ (Ω), h 2 = Im{g} + k 0 ν ∈ L 2 (∂Ω).
Applying now Theorem 9 to (25) twice with p = 3 and N = 2, one gets C 0 bounds for ν and

ζ ν C 0 (Ω) ≤ C(2, 3, Ω, γ)   ν L 2 (Ω) + f 0,1 L 3/2 (Ω) + 2 j=1 f j,1 L 3 (Ω) + h 1 L 2 (∂Ω)   , ζ C 0 (Ω) ≤ C(2, 3, Ω, γ)   ζ L 2 (Ω) + f 0,2 L 3/2 (Ω) + 2 j=1 f j,2 L 3 (Ω) + h 2 L 2 (∂Ω)   .
Some computations with the Holder and multiplicative trace inequalities then give

( ν L 2 (Ω) + ζ L 2 (Ω) ) ≤ 2 ψ L 2 (Ω) , f 0,1 L 3/2 (Ω) + f 0,2 L 3/2 (Ω) ≤ k 2 0 ψ L 3/2 (Ω) ≤ |Ω| 1/6 k 2 0 ψ L 2 (Ω) , f j,l L 3 (Ω) ≤ q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) , j = 1, 2, h 1 L 2 (∂Ω) + h 2 L 2 (∂Ω) ≤ g L 2 (∂Ω) + k 0 ψ L 2 (∂Ω) ≤ g L 2 (∂Ω) + k 0 C(Ω) ψ L 2 (Ω) ψ H 1 (Ω) .
Using then Young's inequality yields

k 0 ψ L 2 (Ω) ψ H 1 (Ω) ≤ C ψ H 1 (Ω) + k 2 0 ψ L 2 (Ω) ≤ C ∇ψ L 2 (Ω) + k 2 0 ψ L 2 (Ω)
where C > 0 is a generic constant. We obtain the bound

ψ C 0 (Ω) = ν C 0 (Ω) + ζ C 0 (Ω) ≤ C(Ω) 1 + k 2 0 ψ L 2 (Ω) + ∇ψ L 2 (Ω) + q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g L 2 (∂Ω) .
Using the definition of ψ 1,k0 on the estimate above, we get ( 26)

ψ C 0 (Ω) ≤ C(Ω) (1 + k 2 0 )k -1 0 + α -1/2 ψ 1,k0 + q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g L 2 (∂Ω) .
To apply the a priori estimate [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF], we recall that the H -1/2 norm can be replaced by a L 2 norm (since g ∈ L 2 (∂Ω)) and then,

ψ 1,k0 ≤ C(Ω) max{k -1 0 , α -1/2 }C s (k 0 ) q L ∞ (Ω) ∇ψ 0 L 2 (Ω) + g L 2 (∂Ω) ≤ C(Ω) max{k -1 0 , α -1/2 }C s (k 0 ) max{1, |Ω|} q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g L 2 (∂Ω)
Finally, combining the latter expression with Equation ( 26), we obtain that the weak solution to the Helmholtz equation satisfies

ψ C 0 (Ω) ≤ C(Ω) 1 + (1 + k 2 0 )k -1 0 + α -1/2 max{k -1 0 , α -1/2 }C s (k 0 ) × q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g L 2 (∂Ω) ,
where C(Ω) > 0.

Remark 11.

(1) For the one-dimensional Helmholtz problem, the a priori estimate [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF] and the continuous embedding H 1 (I) ⊂ C 0 (I) directly gives the continuity of u over a give interval

I ψ C 0 (I) ≤ C ψ 1,k0 ≤ C(k 0 ) q L ∞ (Ω) ∇ψ 0 L ∞ (Ω) + g H -1/2 (∂Ω) .
It is worth noting that we do not need to assume that g ∈ L 2 (∂Ω).

(2) For the two-dimensional Helmholtz problem with q = 0, we can get the above C 0 estimate from the embedding H 2 (Ω) → C 0 (Ω) since

ψ C 0 (Ω) ≤ C ψ H 2 (Ω) ,
for a generic constant C. We can then see that the estimate (24) has actually the same dependance with respect to k 0 as the H 2 -estimate in [30, p. 677, Proposition 3.6].

4.2. C 0 -bounds for the total and scattered waves. Thanks to Remark 1 and following the proof of Theorem 10, these bounds can be roughly obtained by setting g = ∇ψ 0 • n -ik 0 ψ 0 and omitting the L ∞ -norms in [START_REF] Graham | Stability and finite element error analysis for the helmholtz equation with variable coefficients[END_REF] for the total wave ψ tot , and simply by setting g = 0 in the case the scattered wave ψ sc . Using after the H 1 -bounds from Remark 5, we actually get

ψ tot C 0 (Ω) ≤ C(Ω)k 0 (1 + k 2 0 )k -1 0 + α -1/2 max{k -1 0 , α -1/2 }C s (k 0 ) + 1 ψ sc C 0 (Ω) ≤ C(Ω)k 0 (1 + k 2 0 )k -1 0 + α -1/2 α -1/2 C s (k 0 ) + 1 q L ∞ (Ω) .
We emphasize that the previous estimates show that the scattered wave ψ sc vanishes in Ω if q → 0. This is expected since, if q = 0, there is no obstacle to scatter the incident wave which amounts to saying that ψ tot = ψ 0 .

Discrete optimization problem and convergence results

This section is devoted to the finite element discretization of the optimization problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF]. We consider a quasi-uniform family of triangulations (see [22, p. 76, Definition 1.140]) {T h } h>0 of Ω and the corresponding finite element spaces

V h = φ h ∈ C(Ω) | φ h | T ∈ P 1 (T ), ∀T ∈ T h .
Note that thanks to Theorem 10, the solution to the general Helmholtz equation ( 10) is continuous, which motivates to use continuous piecewise linear finite elements. We are going to look for a discrete optimal design that belongs to some finite element spaces K h and we thus introduce the following set of discrete admissible parameters

U h = U ∩ K h .
The full discretization of the optimization problem (15) then reads

(27) Find q * h ∈ U h such that J(q * h ) ≤ J(q h ), ∀q h ∈ U h ,
where J(q h ) = J(q h , ψ h (q h )) is the reduced cost-functional and

ψ h := ψ h (q h ) ∈ V h satisfies the discrete Helmholtz problem (28) a(q h ; ψ h , φ h ) = b(q h ; φ h ), ∀φ h ∈ V h .
The existence of solution to Problem ( 28) is going to be discussed in the next subsection.

Before giving the definition of K h , we would like to discuss briefly the strategy for proving that the discrete optimal solution converges toward the continuous ones. To achieve this, we need to pass to the limit in inequality [START_REF] Graham | The helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances[END_REF]. Since J is only lower-semi-continuous with respect to the weak * topology of BV , we can only pass to the limit on one side of the inequality and the continuity of J is then going to be needed to pass to the limit on the other side to keep this inequality valid as h → 0. We discuss first the case U = U Λ for which Theorem 7 gives the existence of optimal q but only if β > 0. Since we have to pass to the limit in [START_REF] Graham | The helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances[END_REF], we need that lim h→0 |Dq h |(Ω) = |Dq|(Ω). Since the total variation is only continuous with respect to the strong topology of BV , we have to approximate any q ∈ U Λ by some q h ∈ U h such that lim h→0 q -q h BV (Ω) = 0.

However, from [4, p. 8, Example 4.1] there exists an example of a BV -function v that cannot be approximated by piecewise constant function v h over a given mesh in such a way that lim h→0 |Dv h |(Ω) = |Dv|(Ω). Nevertheless, if one consider an adapted mesh that depends on a given function v ∈ BV (Ω) ∩ L ∞ (Ω), we get the existence of piecewise constant function on this specific mesh that strongly converges in BV toward v (see [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF]p. 11,Theorem 4.2]). As a result, when considering U = U Λ , we use the following discrete set of admissible parameters

K h,1 = {q h ∈ L ∞ (Ω) | q h | T ∈ P 1 (T ), ∀T ∈ T h } .
Note that, from Theorem [12, p. 10, Theorem 4.1 and Remark 4.2], the set U h = U Λ ∩ K h,1 defined above has the required density property hence motivated its introduction as a discrete set of admissible parameter. In the case U = U Λ,κ , we will not need the density of U h for the strong topology of BV but only for the weak * topology. The discrete set of admissible parameters is then going to be U h = U Λ,κ ∩ K h,0 with

K h,0 = {q h ∈ L ∞ (Ω) | q h | T ∈ P 0 (T ), ∀T ∈ T h } .
We show below the convergence of discrete optimal solution to the continuous one for both cases highlighted above. 5.1. Convergence of the Finite element approximation. We prove here some useful approximations results for any U h defined above. We have the following convergence result whose proof can be found in [START_REF] Esterhazy | On stability of discretizations of the Helmholtz equation[END_REF]p. 22,Lemma 4.1] (see also [START_REF] Graham | Stability and finite element error analysis for the helmholtz equation with variable coefficients[END_REF]p. 10,Theorem 4.1]).

Theorem 12. Let q h ∈ U h and ψ(q h ) ∈ H 1 (Ω) be the solution to the variational problem

a(q h ; ψ(q h ), φ) = b(q h , φ), ∀φ ∈ H 1 (Ω). Let S * : (q h , f ) ∈ U h × L 2 (Ω) → S * (q h , f ) = ψ * ∈ H 1 (Ω)
be the solution operator associated to the following problem

Find ψ * ∈ H 1 (Ω) such that a(q h ; φ, ψ * ) = (φ, f ) L 2 (Ω) , ∀φ ∈ H 1 (Ω).
Denote by C a the continuity constant of the bilinear form a(q h ; •, •), which does not depend on h since q h ∈ U h , and define the adjoint approximation property by

δ(V h ) := sup f ∈L 2 (Ω) inf φ h ∈V h S * (q h , f ) -φ h 1,k0 f L 2 (Ω)
.

Assume that the spaces V h satisfies

(29) 2C a k 0 δ(V h ) ≤ 1,
then the solution ψ h (q h ) to Problem (28) satisfies

ψ(q h ) -ψ h (q h ) 1,k0 ≤ 2C a inf φ h ∈V h ψ(q h ) -φ h 1,k0 .
We emphasize that the above error estimates in fact implies the existence and uniqueness of a solution to the discrete problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] (see [START_REF] Löhndorf | Wavenumber-explicit hp-bem for high frequency scattering[END_REF]Theorem 3.9]). In the case q ∈ C 0,1 (Ω) where Ω is a convex Lipschitz domain, Assumption (29) has been discussed in [START_REF] Graham | Stability and finite element error analysis for the helmholtz equation with variable coefficients[END_REF]p. 11,Theorem 4.3] and roughly amounts to say that (29) holds if k 2 0 h is small enough. Since the proof rely on H 2 -regularity for a Poisson problem, we cannot readily extend the argument here since we can only expect to have ψ ∈ H 1 (Ω) and that S * also depend on the meshsize. We can still show that ( 29) is satisfied for small enough h. Lemma 1. Assume that q h ∈ U h weak * converges toward q ∈ BV (Ω). Then (29) is satisfied for small enough h.

Proof. Note first that Theorem 6 also holds for the adjoint problem and thus lim h→0 S * (q h , f ) -S * (q, f ) 1,k0 = 0.

Using the density of smooth functions in H 1 and the properties of the piecewise linear interpolant [22, p. 66, Corollary 1.122], we have that lim

h→0 sup f ∈L 2 (Ω) inf φ h ∈V h S * (q, f ) -φ h 1,k0 f L 2 (Ω) = 0,
and thus a triangular inequality shows that (29) holds for small enough h.

We can now prove a discrete counterpart to Theorem 6.

Theorem 13. Let (q h ) h ⊂ U h be a sequence satisfying q h BV (Ω) ≤ M and whose weak * limit in BV (Ω) is denoted by q. Let (ψ h (q h )) h be the sequence of discrete solutions to Problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF]. Then ψ(q h ) converges, as h goes to 0, strongly in H 1 (Ω) towards ψ(q) satisfying Problem [START_REF] Bȇlík | Approximation by piecewise constant functions in a BV metric[END_REF].

Proof. For h small enough, Lemma 1 ensures that (29) holds and a triangular inequality then yields

ψ h (q h ) -ψ(q) 1,k0 ≤ ψ h (q h ) -ψ(q h ) 1,k0 + ψ(q h ) -ψ(q) 1,k0 ≤ 2C a inf φ h ∈V h ψ(q h ) -φ h 1,k0 + ψ(q h ) -ψ(q) 1,k0 ≤ (1 + 2C a ) ψ(q h ) -ψ(q) 1,k0 + 2C a inf φ h ∈V h ψ(q) -φ h 1,k0 .
Theorem 6 gives that the first term above goes to zero as h → 0. For the second one, we can use the density of smooth function in H 1 to get that it goes to zero as well.

Convergence of the discrete optimal solution: Case

U h = U Λ ∩ K h,1 .
We are now in a position to prove the convergence of a discrete optimal design towards a continuous one in the case

U = U Λ , U h = U Λ ∩ K h,1 .
Hence the set of discrete control is composed of piecewise linear function on T h .

Theorem 14. Assume that (A1) -(A2) -(A3) from Theorem 7 hold and that the cost function J 0 : (q, ψ) ∈ U Λ × H 1 (Ω) → J 0 (q, ψ) ∈ R is continuous with respect to the (weak * , strong) topology of BV (Ω) × H 1 (Ω). Let (q * h , ψ h (q * h )) ∈ U Λ,h × V h be an optimal pair of [START_REF] Graham | The helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances[END_REF]. Then the sequence (q * h ) h ⊂ U Λ is bounded and there exists q * ∈ U Λ such that q * h q * weakly * in BV (Ω), ψ(q * h ) → ψ(q * ) strongly in H 1 (Ω) and J(q * ) ≤ J(q), ∀q ∈ U Λ .

Hence any accumulation point of (q * h , ψ h (q * h )) is an optimal pair for Problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF]. Proof. Let q Λ ∈ U Λ,h be given as

q Λ (x) = Λ, ∀x ∈ Ω.
Then Dq Λ = 0. Since ψ h (q Λ ) is well-defined and converges toward ψ(q Λ ) strongly in H 1 (see Theorem 14), we have that

J(q Λ ) = J(q Λ , ψ h (q Λ )) = J 0 (q Λ , ψ h (q Λ )) ---→ h→0 J 0 (q Λ , ψ(q Λ )).
As a result, using that (q * h , ψ h (q * h )) is an optimal pair to Problem (28), we get that β|D(q * h )|(Ω) ≤ -J 0 (q * h , ψ h (q * h )) + J(q Λ , ψ h (q Λ )) ≤ -m + J 0 (q Λ , ψ h (q Λ )), and thus the sequence (q * h ) h ⊂ U Λ,h ⊂ U Λ is bounded in BV (Ω) uniformly with respect to h. We can then assume that it converges and denote by q * ∈ U Λ its weak * limit and Theorem 13 then shows that ψ h (q * h ) → ψ(q * ) strongly in H 1 (Ω). The lower semi-continuity of J ensures that J(q * , ψ(q * )) = J(q * ) ≤ lim inf h→0 J(q * h ) = lim inf h→0 J(q * h , ψ h (q * h )). Now, let q ∈ U Λ , using the density of smooth functions in BV , one gets that there exists a sequence q h ∈ U Λ,h such that q h -q * BV (Ω) → 0 (see also [START_REF] Bartels | Total variation minimization with finite elements: convergence and iterative solution[END_REF]p. 10,Remark 4.2]). From Theorem 13, one gets ψ h (q h ) → ψ(q) strongly in H 1 (Ω) and the continuity of J ensure that J(q h ) → J(q). Since J(q * h ) ≤ J(q h ) for all q h ∈ U Λ,h , one gets by passing to the inf-limit that

J(q * ) ≤ lim inf h→0 J(q * h ) ≤ lim inf h→0 J(q h ) = J(q), ∀q ∈ U Λ ,
and the proof is complete.

Convergence of the discrete optimal solution: Case

U h = U Λ,κ ∩ K h,0 .
We are now in a position to prove the convergence of discrete optimal design toward continuous one in the case

U = U Λ,κ , U h = U Λ,κ ∩ K h,0 .
Hence the set of discrete control is composed of piecewise constant functions on T h that satisfy

∀q h ∈ U h , q h BV (Ω) ≤ 2 max(Λ, κ, |α -1|).
We can compute explicitly the previous norm by integrating by parts the total variation (see e.g. [START_REF] Bartels | Total variation minimization with finite elements: convergence and iterative solution[END_REF]p. 7,Lemma 4.1]). This reads

∀q h ∈ U h , |Dq h |(Ω) = F ∈F i |F ||[q h ]| F |,
where F i is the set of interior faces and |[q h ]| F is the jump of q h on the interior face

F = ∂T 1 ∩ ∂T 2 meaning that |[q h ]| F = |q h | T1 -|q h | T2
, where | • | Ti denotes the value of the a finite element function on the face T i . Note then that any q h ∈ U h can only have either a finite number of discontinuity or jumps that are not too large.

Theorem 15. Assume that β = 0 and (A2) -(A3) from Theorem 7 hold and that the cost function J : (q, ψ) ∈ U Λ × H 1 (Ω) → J(q, ψ) ∈ R is continuous with respect to the (weak * , strong) topology of BV (Ω)×H 1 (Ω). Let (q * h , ψ h (q * h )) ∈ U h ×V h be an optimal pair of [START_REF] Graham | The helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances[END_REF]. Then the sequence (q * h ) h ⊂ U Λ,κ is bounded and there exists q * ∈ U Λ,κ such that q * h q * weakly * in BV (Ω), ψ(q * h ) → ψ(q * ) strongly in H 1 (Ω) and J(q * ) ≤ J(q), ∀q ∈ U Λ .

Hence any accumulation point of (q * h , ψ h (q * h )) is an optimal pair for Problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF].

Proof. Since (q * h ) h belong to U h , it satisfies q h BV (Ω) ≤ 2 max(Λ, κ, |α -1|) and is thus bounded uniformly with respect to h. We denote by q * ∈ U Λ,κ its weak * limit. Theorem 14 then shows that ψ h (q * h ) converges strongly in H 1 (Ω) toward ψ(q * ). Now, let q ∈ U Λ,κ , using the density of smooth function in BV , one gets that there exists a sequence q h ∈ U h such that q h q weak * in BV (Ω) (see also [START_REF] Bartels | Total variation minimization with finite elements: convergence and iterative solution[END_REF]Introduction]). From Theorem 13, one gets ψ h (q h ) → ψ(q) strongly in H 1 (Ω) and the continuity of J ensure that J(q h ) → J(q). The proof can then be done as in Theorem 14.

Numerical experiments

In this section, we tackle numerically the optimization problem [START_REF] Christiansen | Acoustic and photonic topological insulators by topology optimization[END_REF], when it is constrained to the total amplitude ψ tot described by [START_REF] Bernland | Acoustic shape optimization using cut finite elements[END_REF]. We focus on two examples: a damping problem, where the computed bathymetry optimally reduces the magnitude of the incoming waves; and an inverse problem, in which we recover the bathymetry from the observed magnitude of the waves.

In what follows, we consider an incident plane wave ψ 0 (x) = e ik0x• d propagating in the direction d = (0 1) , with

k 0 = ω 0 √ gz 0 , ω 0 = 2π T 0 , T 0 = 20, g = 9.81, z 0 = 3.
For the space domain, we set Ω = [0, L] 2 , where L = 10π k0 . We also impose a L ∞ -constraint on the variable q, namely that q ≥ -0.9.

6.1. Numerical methods. We discretize the space domain by using a structured triangular mesh of 8192 elements, that is a space step of ∆x = ∆y = 8.476472.

For the discretization of ψ sc , we use a P 1 -finite element method. The optimized parameter q is discretized through a P 0 -finite element method. Hence, on each triangle, the approximation of ψ sc is determined by three nodal values, located at the edges of the triangle, and the approximation of q is determined by one nodal value, placed at the center of gravity of the triangle.

On the other hand, we perform the optimization through a subspace trust-region method, based on the interior-reflective Newton method described in [START_REF] Coleman | An interior trust region approach for nonlinear minimization subject to bounds[END_REF] and [START_REF] Coleman | On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds[END_REF]. Each iteration involves the solving of a linear system using the method of preconditioned conjugate gradients, for which we supply the Hessian multiply function. The computations are achieved with MATLAB (version 9.4.0.813654 (R2018a)).

Remark 16. We emphasize that the setting of our numerical experiments presented below does not meet all the assumptions of Theorems 14 and 15 which state the convergence of the optimum of the discretized/discete problem toward the optimum of the continuous one. Indeed, regarding Theorem 14, we do not consider discrete optimization parameters that are piecewise affine bounded functions and the cost functions considered does not have the regularization term β|Dq|(Ω) with β > 0. Concerning Theorem 15 we look for q h that are bounded and piecewise constant but we did not demand that |Dq h |(Ω) ≤ κ for some κ > 0. Nevertheless, we have observed in our numerical experiments that |Dq * h |(Ω) remains bounded when h varies. We can thus conjecture that Theorem 15 actually applies to the two test cases considered in this paper.

6.2.

Example 1: a wave damping problem. We first consider the minimization of the cost functional

J(q, ψ tot ) = ω 2 0 2 Ω0 |ψ tot (x, y)| 2 dxdy,
where Ω 0 = [ L 6 , 5L 6 ] 2 is the domain where the waves are to be damped. The bathymetry is only optimized on a subset Ω q = [ L 4 , 3L 4 ] 2 ⊂ Ω 0 . The results are shown in Figure 1 for the bathymetry and Figure 2 for the wave. We observe that the optimal topography we obtain is highly oscillating. In our experiments, this oscillation remained at every level of space discretization we have tested. This could be related to the fact that in all our results, q ∈ BV (Ω). Note Appendix: derivation of Saint-Venant system

For the sake of completeness and following the standard procedure described in [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF] (see also [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF][START_REF] Sainte-Marie | Vertically averaged models for the free surface Euler system. derivation and kinetic interpretation[END_REF]), we derive the Saint-Venant equations from the Navier-Stokes system. For simplicity of presentation, system (1) is restricted to two dimensions, but a more detailed derivation of the three-dimensional case can be found in [START_REF] Decoene | Asymptotic derivation of the sectionaveraged shallow water equations for river hydraulics[END_REF]. Since our analysis focuses on the shallow water regime, we introduce the parameter ε := H L , where H denotes the relative depth and L is the characteristic dimension along the horizontal axis. The importance of the nonlinear terms is represented by the ratio δ := A H , with A the maximum vertical amplitude. We then use the change of variables where C 0 = √ gH is the characteristic dimension for the horizontal velocity. Assuming the viscosity and atmospheric pressure to be constants, we define their respective dimensionless versions by

x := x L , z := z H , t := C 0 L t,
µ := µ C 0 L , p a := p a gH .
Dropping primes after rescaling, the dimensionless system (1) reads To derive the Saint-Venant equations, we use an asymptotic analysis in ε. In addition, we assume a small viscosity coefficient µ = εµ 0 .

δ
A first simplification of the system consists in deriving an explicit expression for p, known as the hydrostatic pressure. Indeed, after rearranging the terms of order ε 2 in [START_REF] Honnorat | Lagrangian data assimilation for river hydraulics simulations[END_REF] As a second approximation, we integrate vertically equations ( 32) and [START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF]. We introduce h δ = δη +z b . Due to the Leibnitz integral rule and the boundary conditions in [START_REF] Jensen | Topology optimization of photonic crystal structures: a highbandwidth low-loss t-junction waveguide[END_REF], integrating the mass equation ( 32 To deal with the term h δ u 2 , we start from [START_REF] Nersisyan | Generation of two-dimensional water waves by moving bottom disturbances[END_REF] which shows that ∂p ∂x = O(δ).

Plugging this expression into (30) yields

∂ 2 u ∂z 2 = O(ε).
From boundary conditions [START_REF] Ladyzhenskaya | tseva. Linear and quasilinear elliptic equations[END_REF] and [START_REF] Löhndorf | Wavenumber-explicit hp-bem for high frequency scattering[END_REF], we obtain ∂u ∂z (x, δη, t) = O(ε 2 ), ∂u ∂z (x, z b , t) = O(ε).

Consequently, u(x, z, t) = u(x, 0, t) + O(ε) and then u(x, z, t) -u(x, t) = O(ε). Hence, we have the approximation 

h δ u 2 = h δ u 2 + δη -z b (u -u)
The convergence of ( 41) is guaranteed by the boundary equations ( 34) and [START_REF] Löhndorf | Wavenumber-explicit hp-bem for high frequency scattering[END_REF], from which we get µ 0 ε ∂u ∂z (x, δη, t) = O(εδ), µ 0 ε ∂u ∂z (x, -z b , t) = O(ε).

Hence the system (4-5).

Remark 4 .

 4 Let us consider a more general version of Problem[START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; comparison with Saint-Venant and Boussinesq systems[END_REF], given by

25 ,

 25 Chapter 8.5],[START_REF] Ladyzhenskaya | tseva. Linear and quasilinear elliptic equations[END_REF] Chapters 3.13,[START_REF] Beretta | Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in eit[END_REF].2] and more precisely on [39, Proposition 3.6] which reads Theorem 9. Consider the elliptic problem associated with inhomogeneous Neumann boundary condition given by[START_REF] Esterhazy | On stability of discretizations of the Helmholtz equation[END_REF] 

  (a) Norm of the numerical solution. (b) Real part of the incident wave.(c) Real part of the numerical solution.

Figure 2 .

 2 Figure 2. Numerical solution of a wave damping problem. The yellow part represents Ω 0 and the red part corresponds to the nodal points associated with q.

( a )

 a Reconstruction error. (b) Actual bathymetry.(c) Reconstructed bathymetry.

Figure 3 .

 3 Figure 3. Detection of a bathymetry from a wavefield. The yellow part represents Ω 0 and the red part corresponds to the nodal points associated with q.

  and integrating in the vertical direction, we getp(x, z, t) = O(ε 2 δ) + (δη -z) + εδµ 0To compute explicitly the last term, we combine[START_REF] Ladyzhenskaya | tseva. Linear and quasilinear elliptic equations[END_REF] with[START_REF] Méhauté | An Introduction to Hydrodynamics and Water Waves[END_REF] to obtain p(x, δη, t) -2εδµ 0 ∂w ∂z (x, δη, t) = p a 1 -(εδ) 2 ∂η ∂x = (δη -z) + p a + O(εδ).

						2
		+ (εδ) 2 p -2εµ 0	∂u ∂x	(x, η, t)	∂η ∂x	2	,
	that can be combined with (37) to obtain				
	(38)	p(x, z, t)				
				∂u ∂x	+ 2	∂w ∂z	-	∂u ∂x	(x, η, t)
	(37)	+ p(x, δη, t) -2εδµ 0	∂w ∂z	(x, η, t).	

  ) givesTo treat the momentum equation[START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF], we notice that Equation (32) allows us to rewrite the convective acceleration terms asThe vertical integration of the left-hand side of (30) then brings

											δη -z b	∂u ∂x	+	∂w ∂z	dz = 0
	∂ ∂x	δη -z b	udz -δu(x, δη, t)	∂η ∂x	--z b , t)	∂z b ∂x	+ w(x, δη, t) -w(x, -z b , t) = 0
											∂η ∂t	1 + (εδ) 2 ∂η ∂x	2	+	∂(h δ u) ∂x	= 0.
											u	∂u ∂x	+ w	∂u ∂z	=	∂u 2 ∂x	+	∂uw ∂z	.
	Its integration, combined with the boundary conditions in (33), leads to
	δη -z b		u	∂u ∂x	+ w	∂u ∂z	dz =	∂ ∂x	δη -z b
									=	∂(h δ u 2 ) ∂x	+ u(x, δη, t)	∂η ∂t	1 + (εδ) 2 ∂η ∂x	2	,
	where we have introduced the depth-averaged velocity
									u(x, t) :=	1 h δ (x, t)	δη -z b	u(x, z, t)dz.
	δη -z b	δ	∂u ∂t	+ δ 2 u	∂u ∂x	+ w	∂u ∂z	dz = δ	∂(h δ u) ∂t	+ δ 2 ∂(h δ u 2 ) ∂x
											+ δ 2 u(x, δη, t)	∂η ∂t	1 + (εδ) 2 ∂η ∂x

u 2 dz -δu 2 (x, δη, t) ∂η ∂x -u 2 (x, -z b , t) ∂z b ∂x + u(x, δη, t) • w(x, δη, t) -u(x, -z b , t) • w(x, -z b , t) 2 -1 .

  2 dz = h δ u 2 + O(ε 2 )We then integrate the right-hand side of Equation[START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF] Combining this expression with[START_REF] Nittka | Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains[END_REF], we get the vertical integration of the momentum equation:

	and finally											
	δη -z b	δ	∂u ∂t	+ δ 2 u	∂u ∂x	+ w	∂u ∂z		dz = δ	∂(h δ u) ∂t	+ δ 2 ∂(h δ u 2 ) ∂x	+ O(ε 2 δ 2 )
	(39)														+ δ 2 u(x, δη, t)	∂η ∂t	1 + (εδ) 2 ∂η ∂x	2	-1 .
		δη -z b	-	∂p ∂x	+ δ	µ 0 ε	∂ ∂z	∂u ∂z	+ εδµ 0 2	∂ ∂x	∂u ∂x	+	∂ ∂z	∂w ∂x	dz
	= -δh δ 1 + (εδ) 2 ∂η ∂x 2 + ∂(h δ u) ∂η ∂x + O(εδ) + δ ∂x = 0 (x, -z ∂η µ 0 ε ∂u ∂z (x, δη, t) -µ 0 ε ∂u ∂z ∂t (40)
				∂(h δ u) ∂t	+ δ	∂(h δ u 2 ) ∂x	= -h δ	∂η ∂x	+	µ 0 ε	∂u ∂z	(x, δη, t) -	µ 0 ε	∂u ∂z	(x, -z b , t)
													+ δu(x, δη, t)	∂η ∂t	1 + (εδ) 2 ∂η ∂x

b , t) . 2 -1 + O(ε),
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also that the damping is more efficient over Ω q . This fact is coherent with the results of the next experiment. 6.3. Example 2: an inverse problem. Many inverse problems associated to Helmholtz equation have been studied in the literature. We refer for example to [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF][START_REF] Dorn | A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets[END_REF][START_REF] Thompson | A review of finite-element methods for time-harmonic acoustics[END_REF] and the references therein. Note that in most of these papers the inverse problem rather consists in determining the location of a scatterer or its shape, often meaning that q(x, y) is assumed to be constant inside and outside it. On the contrary, the inverse problem we consider in this section consists in determining a full real valued function.

Given the bathymetry

, where τ = 10 -3 , we try to reconstruct it on the domain

where ψ ref is the amplitude associated with q ref and Ω 0 = [ 3L 4 -δ, 3L 4 + δ] 2 , δ = L 6 . Note that in this case, Ω q is not contained in Ω 0 .

In Figure 3, we observe that the part of the bathymetry that does not belong to the observed domain Ω 0 is not recovered by the procedure. On the contrary, the bathymetry is well reconstructed in the part of the domain corresponding to Ω 0 .