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The efect of surface chemical heterogeneity and hydrodynamics on particle transport and deposition in porous media was investigated by microscale simulations using a colloidal particle tracking model, called 3D-PTPO (Three-dimensional particle tracking model by Python® and OpenFOAM®) code. This work is aimed as a step toward modeling of transport and deposition in porous media idealized as a bundle of straight capillary tubes. Therefore, our focus is put upon a three-dimensional capillary with periodically repeating chemically heterogeneous surfaces namely crosswise strips patterned and chess board patterned. The main feature of this recent model is to renew the low ield by reconstructing the pore structure, to take the pore surface modiication induced by the volume of the deposited particles into account. The dependency of the deposition probability and the dimensionless surface coverage (Γ/Γ RSA ) on the frequency of the pitches (λ), the Péclet number (Pe) and the favorable area fraction (θ), as well as the distribution of the spatial density of deposited particles along the capillary tube were studied. The results indicate that particles tend to deposit at the leading and trailing edges of the favorable strips, and the deposition is more uniform along the patterned capillary compared to the homogeneous one. In addition, for the chemically heterogeneous capillary, in a similar manner as for the homogeneous one, a deinite plateau exists for the Γ/Γ RSA at low Péclet values. For high Pe values, the declining trend for Γ/Γ RSA versus Pe is in good agreement with the derived power law dependence already observed in the literature for fully adsorbing surfaces. Moreover, for ixed θ the deposition probability is linearly correlated with λ and for given λ, such a deposition probability is also a linear function of θ.

Introduction

Colloidal particle transport and deposition (irreversible adsorption) processes in porous media are of great environmental and industrial interest since they are critical to numerous applications ranging from drug delivery to drinking water treatment [START_REF] Tosco | Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and low rate[END_REF][START_REF] Ngene | A microluidic membrane chip for in situ fouling characterization[END_REF][START_REF] Asgharian | Prediction of particle deposition in the human lung using realistic models of lung ventilation[END_REF][START_REF] Bensaid | Numerical simulation of soot iltration and combustion within diesel particulate ilters[END_REF][START_REF] Yao | Water and waste water iltration. Concepts and applications[END_REF]. Accordingly, particle deposition on homogeneous porous media has been extensively studied both experimentally and a rich literature thereupon is available [START_REF] Elimelech | Kinetics of deposition of colloidal particles in porous media[END_REF][START_REF] Elimelech | Efect of particle size on collision eiciency in the deposition of Brownian particles with electrostatic energy barriers[END_REF][START_REF] Ryan | Colloid mobilization and transport in groundwater[END_REF][START_REF] Ko | Coupled inluence of colloidal and hydrodynamic interactions on the RSA dynamic blocking function for particle deposition onto packed spherical collectors[END_REF][START_REF] Tufenkji | Interpreting deposition patterns of microbial particles in laboratory-scale column experiments[END_REF][START_REF] Li | Nonmonotonic variations in deposition rate coeicients of microspheres in porous media under unfavorable deposition conditions[END_REF] and theoretically [START_REF] Adamczyk | Reversible and irreversible adsorption of particles on homogeneous surfaces[END_REF][START_REF] Adamczyk | Particle transfer to solid surfaces[END_REF][START_REF] Rajagopalan | Trajectory analysis of deep-bed iltration with the sphere-in-cell porous media model[END_REF][START_REF] Elimelech | Particle deposition on ideal collectors from dilute lowing suspensions: mathematical formulation, numerical solution, and simulations[END_REF][START_REF] Elimelech | Kinetics of capture of colloidal particles in packed beds under attractive double layer interactions[END_REF].

To model such a particles transport, the irst approach was to consider spatial and temporal variations of colloid concentration C incoming at a concentration C 0 in a representative elementary volume (REV). This black box Eulerian formulation results in a convectiondifusion partial diferential equation that contains terms that account for short range hydrodynamic and physicochemical interaction forces between particles and the porous medium skeleton. Usually hydrodynamic interactions are introduced through the hydrodynamic correction factors and non-hydrodynamic interactions are introduced through a DLVO potential that encompasses at least Van der Walls and electrostatic interactions. When solved for the outgoing concentration in a 1D situation, it mimics common column experiments. This allows interpretation of experimental breakthrough curves and evaluation of the pertinence of modeling reinements.

At the pore scale level usually starting from the Happel cell model, the focus is put on the determination of collector eiciency or the Sherwood number and on how they depend on hydrodynamic and physico-chemical conditions. Moreover, in most of considered systems, colloids and substrate are chemically homogeneous with smooth surfaces and the reader may refer to the review proposed by Molnar et al. for an up-to-date analysis [START_REF] Molnar | Predicting colloid transport through saturated porous media: a critical review[END_REF].

It is however well known that natural porous media are by nature of non-uniform chemical composition at the nanoscale or even at the microscale with only a fraction of their surface favorable for colloid deposition. Such heterogeneities consist in general in chemical patches that are actually randomly distributed over the medium and whose macroscopic impact depends mainly on the fraction of the adsorbing surface and the particle to patch size ratio. When the patch dimensions are much larger than the particle size, the spatial averaging in patch models gives accurate results in accordance with colloid transport experiments [START_REF] Loveland | Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling[END_REF]. Typical experiments are performed on columns packed with chemically heterogeneous sand grains at various degrees of patchwise charge heterogeneity and several spatial distributions of heterogeneity. Indeed in this case the colloid deposition rate was found to be directly proportional to the degree of porous medium chemical heterogeneity and largely insensitive to the spatial distribution of patchwise chemical heterogeneity [START_REF] Chen | Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport[END_REF]. However, when the patch size is comparable to that of the particle, both the fraction of adsorbing surface and the particle to patch size ratio become relevant parameters.

Under difusion-controlled conditions, Adamczyk et al. have studied the deposition of colloid particles on heterogeneous surfaces by means of numerical simulations of the Monte Carlo type. They considered adsorption sites as having the shape of circular disks with a inite size comparable with the size of adsorbing spheres [START_REF] Adamczyk | Irreversible adsorption of hard spheres at random site (heterogeneous) surfaces[END_REF]. They showed that on one hand when the particle/site size ratio is increased both adsorption kinetics and the maximum surface coverage increased for a ixed site density and as long as the particle/site size ratio is greater than 10, the available Random Sequential Adsorption theory extended to Random Site Surface RSA-RSS still works. This was experimentally conirmed through investigation of latex particles deposition on heterogeneous surfaces [START_REF] Adamczyk | Deposition of latex particles at heterogeneous surfaces[END_REF]. However when adsorption sites are attractive spheres that are deposited in advance on a lat surface, the problem is more complicated since it is of 3D nature [START_REF] Adamczyk | Irreversible adsorption of colloid particles on heterogeneous surfaces[END_REF]. However and as in natural substrates the charge heterogeneity is random and of arbitrary shape, systematic evaluation of deposition characteristics on such substrates is not straightforward thus heterogeneous surfaces are considered as patterned and are usually modeled by alternating adsorbing and non-adsorbing strips of given widths and densities.

To simulate colloid surface deposition one can adopt a Lagrangian or an Eulerian approach. As usual in the Lagrangian approach, individual particles are followed until they adsorb on the pore wall by solving the Langevin equation with the incorporation of retardation functions to account for hydrodynamic and non-hydrodynamic particle/collector interactions through a DLVO potential [START_REF] Unni | Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel low[END_REF][START_REF] Chang | Prediction of Brownian particle deposition in porous media using the constricted tube model[END_REF][START_REF] Fukagata | Dynamics of Brownian particles in a turbulent channel low[END_REF][START_REF] Kemps | Particle tracking model for colloid transport near planar surfaces covered with spherical asperities[END_REF][START_REF] Mahdavi | Natural Convection Study of Brownian Nano-Size Particles Inside a Water-Filled Cavity by LAGRANGIAN-Eulerian Tracking Approach[END_REF][START_REF] Mahdavimanesh | Lagrangian particle tracking: model development[END_REF].When this approach is applied to porous media represented as a packed bed of spherical collectors, calculations become diicult to tract if reasonable porosity is targeted [START_REF] Coutelieris | Low Peclet mass transport in assemblages of spherical particles for two diferent adsorption mechanisms[END_REF]. As we will see below, in this paper the accent is put upon taking into account the efect of the already adsorbed particles on low and therefore further deposition rendering the incorporation of short range interactions still less tractable.

The most used simulation method is the Eulerian one which consists in solving a difusion-convection-migration partial diferential equation where colloid/collector hydrodynamic coupling is obtained by introducing the hydrodynamic correction factors while non-hydrodynamic colloid/collector interaction is locally calculated knowing the nature of surfaces facing each other [START_REF] Kemps | Interactions between a solid spherical particle and a chemically heterogeneous planar substrate[END_REF]. This approach was used for modelling colloid deposition on janus spherical collectors [START_REF] Chatterjee | Particle deposition onto janus and patchy spherical collectors[END_REF], impinging jet low of dilute suspension on a lat heterogeneous surface [START_REF] Nazemifard | Particle deposition onto charge heterogeneous surfaces: convection-difusion-migration model[END_REF] and colloid deposition in patterned cylindrical microchannels [START_REF] Chatterjee | Particle transport in patterned cylindrical microchannels[END_REF]. All these works demonstrate that deposition concentration proile closely mimics the spatial distribution of the heterogeneity. Moreover, for strip-patterned heterogeneity, a sharp deposit concentration peak is observed at the leading edge of each favorable strip before it decays rapidly and attains a plateau over the rest of the strip but it still remains above the concentration proile for a homogeneous surface. In case of a micro-patterned channel, colloids deposition is predicted to be more regular along the channel than in the homogeneous case where particles will mainly deposit within a short distance from the inlet. From the concentration proile, the local and average Sherwood number (or collector eiciency) may be calculated. It is then demonstrated that the relative favorable surface is not the only relevant parameter but the spatial distribution of favorable patches is also important. Hence for a given fraction of favorable surface area, a larger number of favorable patches results in better deposition eiciency.

In all these models, the perfect skin condition was always considered and consequently they ignore any modiication of low pattern that would result from inite size particle deposition. This is however believed to play an important role in the strength of hydrodynamic shadowing efect especially when particle size to pore size ratio is not negligible and well after the beginning of deposition when surface coverage becomes signiicant. This was shown to be relevant for colloid deposition on homogenous surfaces of pores of various shapes. In constricted geometries, deposition was shown to occur mainly in pore bodies rather than in pore throats where the hydrodynamic shadowing efect was more eicient [START_REF] Li | Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/ diverging geometries[END_REF][START_REF] Li | Colloidal particle deposition in porous media under low: a numerical approach[END_REF]. In case of geochemically heterogeneous porous media, this is expected to have even more impact on deposit structure with a determinant inluence of the ratio of colloid size to characteristic size of heterogeneity besides the pore geometry and the low rate. Therefore, the aim of the present paper is to take into account the inite size of adsorbed particles when investigating colloids deposition in three-dimensional axisymmetric pores whose surface consists in a periodic repetition of adsorbing and non-adsorbing surfaces with a speciied topology. Here, we focus on the dependence of deposition probability and the surface coverage on parameters such as the fraction of surface heterogeneity, the spatial distribution and topology of the heterogeneous surface elements as well as the low strength. For that purpose, we use a home-made Lagrangian code that is basically a three-dimensional particle tracking model using Python® and OpenFOAM® which is presented in the next part. In the third part, simulation results are presented and discussed in the light of up to date published literature dealing with colloids deposition on heterogeneous surfaces and particularly emphasizing the efect of low change induced by adsorbed particles on the structure of the deposit. The paper ends with some concluding remarks.

Simulation cases, tools and procedure

The present work is restricted to the modeling of the process of transport and deposition of positively charged particles in a chemically heterogeneous capillary, as an element of many idealized porous medium models such as bundle of capillaries or more complex pore network models. Equivalently, we consider a single cylindrical capillary with periodically repeating heterogeneity under the form of patterned or square patch-wise adsorbing surfaces (see Fig. 1). In case of transverse strips, the leading one is always positively charged and therefore non-adsorbing. The frequency of the pitches (λ) is calculated as the ratio of the length of the capillary L to the total width p of a pitch; p being the sum of widths of adsorbing element w a and non-adsorbing one w na . The fraction of favorable area is θ = A f /A t , with A f the area of the surface wall favorable for particles deposition and A t the total surface of the capillary wall. Here we take L = 15 μm and a capillary radius R = 4 μm and the considered colloids are spherical with a radius, a p = 0.2 μm giving a ratio R/a p = 20 that is not high enough to neglect the change of the low structure due to particles deposition but it is suicient to consider a particle approaching a lat solid surface. A sensitivity analysis was undertaken beforehand to explore the efect of mesh numbers on the accuracy of our results by varying the number of grid blocks used for the numerical simulations. The deposition probability and distribution of deposited particles are compared for various mesh numbers going from 30,000 to 960,000. The results indicate that 120,000 grid blocks (40 × 40 × 75) are suicient for our computations.

General hypothesis

In the present work the following assumptions are adopted [START_REF] Díaz | Steady state numerical simulation of the particle collection eiciency of a new urban sustainable gravity settler using design of experiments by FVM[END_REF][START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF]:

(1) The luid is Newtonian and incompressible.

(2) The particle Reynolds number deined as = ua µ Re ¯/ p (where ρ and μ are the luid density and dynamic viscosity and u ¯is the luid's mean velocity under clean bed conditions) is so small that the low may be considered as laminar and non-inertial.

(3) Deposition is irreversible and both hydrodynamic and physicochemical removal of deposited particles are prohibited. (4) The scale of the variation of the low velocity over a p is small compared to the maximum velocity. We can reasonably assume that the particle transported by the low is a mass point. ( 5) The non-hydrodynamic particle-particle interaction is purely repulsive; therefore particles deposit is a monolayer.

Governing equations and boundary conditions

The governing equations for the creeping low of an incompressible Newtonian luid are the Stokes equations given by [START_REF] Wirner | Flow and Transport of Colloidal Suspensions in Porous Media[END_REF]:

= +µ v 0 p 2 (1) = v 0 (2)
where p is the pressure and v stands for the luid velocity.

A no-slip boundary condition is applied on the pore wall and on the interface between the luid and deposited particles. At the inlet, the pressure is set to a predeined value, while at the outlet it is set to zero. In order to fulill the requirement of creeping low and to investigate a large range of Péclet numbers, the pressure at the inlet will be varied between 10 -5 and 10 Pa. The Péclet number is deined as:

= Pe u D a p ( 3 
)
where D is the bulk difusion coeicient of the particles in the luid, µ ¯is the average value of velocity along the tube axis.

Methodology and tools

Since the incoming suspension is considered to be dilute, particles are injected individually, randomly and sequentially at the inlet of the geometry [START_REF] Yao | Water and waste water iltration. Concepts and applications[END_REF]. A Lagrangian method is then used to track the trajectories of the colloidal particles and once the injected particle is deposited onto the capillary wall or leaves the domain, another particle is injected. This process is then repeated until the pre-deined cut-of value of deposition probability (2%) is reached. The deposition probability is deined as the ratio of the number of deposited particles over the number of injected particles. Simulations are carried out using the 3D-PTPO code that combine OpenFOAM® (Open Field Operation and Manipulation) and Python® softwares. The detailed steps of the 3D-PTPO code are as follows: irstly, the low ield is computed using OpenFOAM® software by solving the equation of motion and obtained low ield data are recorded. Then a particle, that is reduced to its center of mass, is injected at the entrance plane (z = 0) with the initial coordinates (x,y) generated by two independent pseudo-random series [START_REF] Dieter | Pseudo-random numbers. The exact distribution of pairs[END_REF]. Secondly, the injected particle is tracked using a code developed in Python®. To track the movement of the particle in the low domain the particle velocity vector V at every position within the domain is calculated by summing its advection velocity V adv and the Brownian difusion velocity V diff . V adv is obtained from the recorded low ield by interpolating the velocity of the nearest eight mesh-nodes surrounding the actual particle position. V diff represents the random velocity of the particle due to Brownian motion at every time-step and is calculated as: 

V V i j k V ( ) ; ; t 6 µ t diff diff diff 2 2 2 2 2 2 2 2 2 r ap r (4) 
where a, b and c are random numbers drawn from a uniform distribution between -1 and 1; α, β and γ are determined by the normalization of the three random numbers, thus giving a unit vector with a random direction + + i j k, k is the Boltzmann constant and T is the absolute temperature. The values of the parameters used in the simulation are summarized in Table 1. Here we neglect the particle mobility reduction near the wall that alters its difusivity tensor. Indeed, the explicit evaluation of this reduction is of no means in this work since we do not calculate hydrodynamic forces acting on a physical particle moving near the wall albeit one could have advocated a phenomenological correction of the difusivity coeicient as particles approach the wall. The reference time t r that appears in Eq. ( 4) is chosen as [START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF]:

t r = ζ/(2 u max ) (5) 
where ζ stands for the characteristic mesh size and u max is the maximum value of the advection velocity along the z axis in the absence of any deposited particles. This implies that at most the particle can travel over a distance of one half a block sizes during the reference time. Previous studies [START_REF] Li | Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/ diverging geometries[END_REF][START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF] have shown the relevance of this choice of the reference time for particle tracking.

The position of a moving particle is obtained by summing the old position vector X old and the updated velocity multiplied by the reference time t r :

X new = X old + t r V (6) 
During the particle tracking process, four situations may occur: (1) the particle leaves the domain without deposition (Fig. 2a); (2) the center-to-center distance between the moving particle and any other particle already deposited is less than a predeined value, the transported particle will bounce back to the bulk low, and the tracking process will continue (Fig. 2b); (3) the distance between the particle center and the pore wall is less than a certain value (0.5 a p ), and the local surface wall is repulsive (positively charged), the transported particle will also bounce back to the bulk low, and the tracking process will continue (Fig. 2c); (4) the distance between the particle center to the pore wall is less than 0.5 a p and the local surface wall is attractive (negatively charged), the particle will be deposited if enough free surface is available for deposition (Fig. 2d). In that case, the meshes containing the deposited particle are considered as solid to take into account the inite particle volume, and the low ield is then recalculated and stored low data are updated. As soon as the loop for one particle inishes, another particle is injected. The injection process is repeated until the particle deposition probability deined as the ratio of the number of deposited particles over the number of injected particles, reaches a minimum value of 2%. This approach was successfully used to describe colloids deposition in narrow pores of various shapes and is extended here to reconsider those phenomena in case of heterogeneous surfaces as presented in Fig. 1 [START_REF] Li | Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/ diverging geometries[END_REF][START_REF] Li | Colloidal particle deposition in porous media under low: a numerical approach[END_REF][START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF].

Results and discussion

Crosswise strips case

Numerical simulations of particle transport and deposit have been performed in a capillary with a chemically heterogeneous surface patterned with crosswise strips. Here, for limiting lengthy numerical simulations, the analysis is restricted to one single value of favorable surface ratio, θ = 0.5 and varying values of the strip frequency, λ.

Local deposition behavior

To assess tools and procedure capability, we irst investigate the local structure of the deposit along the capillary. For that purpose, the geometry is divided into 10 slices along the z axis (the mean low direction) and spatial distribution of deposited particles is calculated as the number of particles per unit area. It is worth noting that since gravity is ignored such a distribution is uniform in each cross section. As an illustration, on Fig. 3a, we plotted the density proile along the capillary after injection of 2000 particles at Pe = 1.5 × 10 -3 taking θ = 0.5 and λ = 5 for which the width of an adsorbing strip is four times the particle diameter. As it can be observed, the spatial distribution closely emulates the periodic nature of the heterogeneous pattern. Regarding the density trend in each adsorbing slice, peaks are seen to form at the leading and trailing edges as it was observed by others using Eulerian methods [START_REF] Nazemifard | Particle deposition onto charge heterogeneous surfaces: convection-difusion-migration model[END_REF][START_REF] Nazemifard | Particle deposition onto micropatterned charge heterogeneous substrates: trajectory analysis[END_REF]. Nazemifard et al. [START_REF] Nazemifard | Particle deposition onto charge heterogeneous surfaces: convection-difusion-migration model[END_REF][START_REF] Nazemifard | Particle deposition onto micropatterned charge heterogeneous substrates: trajectory analysis[END_REF] have proposed a phenomenological explanation of such phenomena that relies on coupled efects of hydrodynamic and colloidal interactions. When the particles are relatively far from the wall, they tend to accumulate over the unfavorable strips since they cannot get closer to the surface due to the energy barrier thereby locally depleting the immediate neighborhood of the wall. Consequently, with the presence of advection and difusion, the particles can be transferred toward the nearest favorable strips, causing an enhanced density at the leading edges. Similarly, sharp concentration peaks are also observed at the trailing edges in the present work. It should be noted here that this phenomenon is only dependent on the topology of the adsorbing/nonadsorbing zones, and should still hold for higher Pe, although it will be less spectacular since deposition density will be much lower (see hereafter). Another remarkable feature of these results are clearly seen when the actual density is compared to that obtained for homogeneous surfaces under the same conditions. It shows that deposition along the capillary is much more uniform than density corresponding to the homogeneous case. Similar behavior has also been reported by Chatterjee et al. [START_REF] Chatterjee | Particle transport in patterned cylindrical microchannels[END_REF] and Nazemifard et al. [START_REF] Nazemifard | Particle deposition onto charge heterogeneous surfaces: convection-difusion-migration model[END_REF][START_REF] Nazemifard | Particle deposition onto micropatterned charge heterogeneous substrates: trajectory analysis[END_REF] showing that in case of homogeneous surfaces most of particles will deposit within a very short distance from the inlet while heterogeneity make the deposit more uniform along the capillary. This means that particles tend to travel further along the heterogeneous capillary compared to homogeneous capillary. This is schematized in Fig. 3c andd that give 3D sectional views of deposit structure corresponding to each case.

Deposition probability versus pitches frequency

Here we investigate the evolution of the deposition probability as a function of the number of injected particles (N) at θ = 0.5 and a low Péclet number, Pe = 1.5 × 10 -3 . The particles deposition probability is deined as the ratio of the number of deposited particles over the number of injected particles and is calculated over groups of 200 parfor each simulation run [START_REF] Asgharian | Prediction of particle deposition in the human lung using realistic models of lung ventilation[END_REF]. From one run to the other, λ was varied while keeping w a = w na . All the data are gathered in Fig. 4 where the reference case of a homogeneous capillary is also shown for comparison purposes. For all λ values, we observe a behavior that is usual in the difusion-dominant regime with a plateau at the early stage of the injection process. As the number of injected particles increases, the deposition probability reaches a critical value; or a jamming probability; before it drops rather sharply to relatively low values, indicating that any newly injected particles will almost travel along the

Table 1

Parameters used for simulations. capillary without deposition [START_REF] Yao | Water and waste water iltration. Concepts and applications[END_REF]. This is similar to the well documented RSA process [START_REF] Talbot | From car parking to protein adsorption: an overview of sequential adsorption processes[END_REF]. More importantly, deposition probability obviously increases with λ although θ is constant. This is because, large λ and consequently large number of favorable strips lead to an increase of the relative number of successful attempts of particles to adsorb and that is why adsorption kinetics and the jamming coverage increase signiicantly, at a ixed site density, when the ratio a p /w a increases [START_REF] Adamczyk | Irreversible adsorption of hard spheres at random site (heterogeneous) surfaces[END_REF].

As long as the strip width is greater than the mesh size, the behavior approaches that of a homogeneous adsorbing capillary for high λ values. The other interesting limit is for λ = 1 for which the irst half of the capillary is non-adsorbing and the second half is adsorbing. In such a situation, there is a greater probability for a particle to be transported over the favorable section without deposition [START_REF] Chatterjee | Particle transport in patterned cylindrical microchannels[END_REF]. This demonstrates that for a given θ, the deposition probability is highly dependent on the distribution of the surface charge. Moreover and as for a homogeneous adsorbing surface, the simulation results are represented in terms of the surface coverage (Γ) by dividing the total area of projection of deposited particles by the capillary surface. For the chemically heterogeneous surfaces, instead of the total capillary surface, only the adsorbing surface is used. Obtained results are commonly presented in dimensionless form Γ/Γ RSA with Γ RSA being the upper limit of surface coverage. Using the Random Sequential Adsorption (RSA) method, Γ RSA equals 0.546 for non-interacting hard spheres adsorbing on a homogeneous lat surface under difusion regime [START_REF] Talbot | From car parking to protein adsorption: an overview of sequential adsorption processes[END_REF]. On Fig. 5, the variation of Γ/Γ RSA versus the number of injected particles is plotted, where the dependence on λ for θ = 0.5 under difusion-dominant regime can be examined. It should be noted that as long as λ is low, adsorption eiciency is small and the asymptotic value of Γ/Γ RSA is signiicantly below unity due to low deposition probability. For high λ, however, the adsorbing eiciency is clearly promoted by the thinness of adsorbing slices and Γ is signiicantly higher than Γ RSA as a consequence of the fact that the projection of adsorbed particles often go beyond the border of adsorbing slices.

Influence of the Péclet number

To go further, the dependence of Γ/Γ RSA on Pe was considered in order to investigate the inluence of the low strength and its induced changes on the structure of the deposit. For that purpose, seven simulation runs were carried out over 6 decades with Pe ranging from 1.5 × 10 -3 to 1.5 × 10 3 , while keeping both θ and λ constant (θ = 0.5 and λ = 5). The raw data corresponding to each Pe value was irst plotted in terms of Γ/Γ RSA versus the number of injected particles. The latter was increased until the deposition probability reached 2%.

Finally, the asymptotic values of Γ/Γ RSA were plotted against Pe. Obtained results are displayed on Fig. 6 showing the existence of two distinct regimes: a difusion-dominant regime for low Péclet numbers and a advection-dominant regime at high Péclet numbers that are connected through a transition regime. In the difusion-dominant regime, the surface coverage is almost independent of Pe while in the advection-dominant one, the surface coverage is a decreasing function of Pe. At low Pe, deposition is a RSA-like Process and features a plateau while when particles transport is mainly governed by advection, the hydrodynamic shadowing efect comes into play. This well documented phenomenon [START_REF] Toth | Adsorption Theory, Modeling and Analysis[END_REF][START_REF] Sasidharan | Coupled efects of hydrodynamics and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media[END_REF] is named so since, in this regime, there is an exclusion area behind already adsorbed particles that is prohibited for newly injected ones. By increasing Pe, such a surface is consequently increased resulting in a decrease of the surface coverage [START_REF] Yao | Water and waste water iltration. Concepts and applications[END_REF][START_REF] Veerapen | In-depth permeability damage by particle deposition at high low rates[END_REF]. This behavior is in all respects similar to the case of a homogeneous capillary as one could expect. It is to be noted that the value of Γ RSA used for scaling the data in Fig. 6 is dependent on λ (asymptotic values in Fig. 5) and is of 0.546 for homogeneous case. This Péclet dependent surface coverage was evidenced in column experiments when latex particle suspensions are let to low at increasing velocity in adsorbing sandpack porous media [START_REF] Ko | Coupled inluence of colloidal and hydrodynamic interactions on the RSA dynamic blocking function for particle deposition onto packed spherical collectors[END_REF]. Although obtained surface coverage data were plotted as a function of luid velocity rather than Péclet number, their results are very similar to those shown on Fig. 6. Similar results were also found in case of experiments performed on columns packed with silicone carbide [START_REF] Veerapen | In-depth permeability damage by particle deposition at high low rates[END_REF]. It was also numerically evidenced by studying colloid deposition in adsorbing pores of various shapes [START_REF] Li | Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/ diverging geometries[END_REF][START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF]. Marijn et al. [START_REF] Van Loenhout | Hydrodynamic low induced anisotropy in colloid adsorption[END_REF] have investigated latex particles deposition on a lat adsorbing surface under unidirectional laminar low conditions. They showed experimentally that, in advection dominant regime, the characteristic length of the exclusion area along the low direction should increase with Pe as Pe n , with n = 0.87. However other investigations based on theoretical considerations predict that the Sherwood number; Sh, that represents the non-dimensional lux of particles toward collecting surface should scale as Pe 1/3 [START_REF] Nazemifard | Particle deposition onto charge heterogeneous surfaces: convection-difusion-migration model[END_REF][START_REF] Nazemifard | Particle deposition onto micropatterned charge heterogeneous substrates: trajectory analysis[END_REF][START_REF] Coutelieris | The efect of Peclet on the Sherwood number in high porosity granular media[END_REF]. Because the density of adsorbing particles and hence the surface coverage is proportional to the colliding lux multiplied by the collection eiciency, η, and as η is predicted to depend on Pe as Pe -2/3 [START_REF] Russel | Colloidal Dispersions[END_REF], Γ is expected to decrease as Pe -1/3 in the advection dominant regime. This power law is displayed on Fig. 6 showing a reasonable agreement with our results. It must be noted, however, that in previous works on homogeneous adsorbing surfaces [START_REF] Li | Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/ diverging geometries[END_REF][START_REF] Lopez | Simulation of surface deposition of colloidal spheres under low[END_REF][START_REF] Veerapen | In-depth permeability damage by particle deposition at high low rates[END_REF] a closer it was found with this power law. Fig. 2. Sketches of possible particle trajectories: (a) lowing through the capillary without deposition; (b) particle approaching a deposited particle (in grey line) and bouncing back to the bulk low (in orange line); (c) particle approaching a repulsive zone and bouncing back to the bulk low (in green line); (d) particle approaching an attractive zone and deposited when enough surface is available. (For interpretation of the references to colour in this igure legend, the reader is referred to the web version of this article.)

Chess board patterned case

In this section, the focus is laid upon heterogeneity consisting of chess board patterns. Moreover to compare deposition in the present case with the former one, the test case is restricted to one surface ratio value, θ = 0.5, and to difusion-dominant regime where the deposit probability is signiicant.

Surface coverage

For the case of chess board patterned capillaries, as for alternating adsorbing non-adsorbing strips, irst square patches of equal size of 3 μm were considered, so that λ = 5 along any generating line and an adsorbing surface fraction of θ = 0.5 (see Fig. 1). The runs were performed in the difusive regime taking Pe = 1.5 × 10 -3 and particles deposition was followed by varying the number of injected particles until adsorption was over. A sectional view of the deposit is shown on Fig. 7a for both kinds of spatial distribution of chemical heterogeneity. However, since it is diicult to draw any conclusions from this view of deposit, again the variation of Γ/Γ RSA as a function of the number of injected particles, N, is displayed on Fig. 7b. Then we may note that at low N values, the surface coverage is a linear function of N for both heterogeneity patterns. Since such a situation corresponds to clean bed conditions, the efective collection eiciency; η ef ; or the slope of these curves, is the same in both cases suggesting that this property is insensitive to the pattern form and only depends on θ and λ. For large N however, it could be seen that Γ/Γ RSA corresponding to the chess board pattern is higher than in case of transverse strips. Indeed, as we emphasized in Section 3.1, the average density of deposited particles at the leading and trailing edges of a favorable zone is often greater than its mean value over the whole zone. Thereby the observed results are direct consequences of higher deposition probability and the increase of total contour length of the heterogeneity area when a chess board pattern is adopted. Pham et al. [START_REF] Pham | Efect of spatial distribution of porous matrix surface charge heterogeneity on nanoparticle attachment in a packed bed[END_REF] have reported similar behavior by numerically investigating nano-particles deposition in packed beds with four diferent patterns of surface charge heterogeneity and the same of favorable surface. In their work spherical collectors that are favorable for nano-particles attachment are placed at diferent locations. They show that when heterogeneity is randomly or uniformly distributed, nano-particles capture is more eicient compared to the case of transverse strip pattern. Indeed, for the chess board patterned capillary or more generally a random mixture pattern, the particles have more time and higher opportunity to move towards and collide with the favorable surfaces as they propagate through the domain.

Effect of the favorable surface ratio

In order to investigate the inluence of a favorable surface ratio, θ, on particles deposition, nine simulation runs were carried out at the same Pe = 1.5 × 10 -3 for θ ranging from 0.2 to 1. In these simulations, the pattern was unchanged keeping λ = 5 but the size of adsorbing patches was modiied to give diferent values of θ. Again, the obtained results are irst presented in terms of the number of deposited particles versus the number of incoming particles and all the data are gathered in Fig. 8. For a chemically heterogeneous porous medium consisting in a random distribution of favorable and unfavorable zones, the deposition eiciency also named the efective eiciency η efective is generally given simply as a weighted average of favorable and unfavorable deposition eiciencies:

η efective = θη f + (1 -θ)η u (7) 
where η f and η u stand respectively for favorable and unfavorable deposition eiciencies. Since the particle can only adsorb if the projection of its center lies within the favorable zone, and no particles can deposit on an unfavorable one (η u = 0), Eq. ( 7) simpliies to: value and η f is the deposition eiciency for a completely favorable surface. Eq. ( 8) provides a remarkably accurate prediction of the deposition eiciency for surfaces with macroscopic charge heterogeneity, even when the dimension of the heterogeneous zones is comparable to the particle dimensions.

= effective f (8) 

Conclusions

In this work, the proposed 3D-PTPO code is shown to be a useful and lexible tool for the microscale simulation of colloidal particle transport and deposition in a 3D chemically heterogeneous capillary. The main conclusions that can be drawn are as follows:

(i) The coupled efect of the charge heterogeneity and the three-dimensional velocity ield can bring out a complex concentration distribution of deposited particles on the wall, leading to a higher density of deposited particles at the leading and trailing edges of each favorable strip, and the deposition is more uniform along the patterned capillary compared to the homogeneous one.

(ii) The deposition probability is in line with the frequency of the pitches. Under the same favorable surface ratio, θ, a smaller pitch length will result in a higher deposition probability and accordingly a higher dimensionless surface coverage. Moreover, for the difusion-dominant regime at low Pe, the surface coverage is close to the Γ RSA and features a relatively stable plateau. For the advection-dominant regime at high Pe, the declining trend of Γ/Γ RSA versus Pe is in good agreement with the derived power law dependence of surface coverage versus Pe for the considered ratios a p /w a . (iii) The deposition eiciency increases linearly with the favorable area fraction. Although the simulations performed are not exhaustive and have been limited to special choices of Péclet number and/or favorable surface ratio, this study provides insight in designing artiicially heterogeneous porous media for particle capture in various engineering and biomedical applications. Furthermore, the model can be further improved by incorporating other heterogeneous patterns and more importantly by decreasing the capillary size to particle size. 

Fig. 1 .

 1 Fig. 1. Surface heterogeneity is modeled as alternate attractive and repulsive bands: (a): Crosswise strips patterned; (b): Chess board patterned. White and blue colors represent positively and negatively charged regions respectively. Particles are positively charged. (For interpretation of the references to colour in this igure legend, the reader is referred to the web version of this article.)

  Parameters Values Particle radius, a p (m) 2 × 10 -7 Length of the capillary, L (m) 1.5 × 10 -5 Boltzmann constant, k (J/°K) 1.38 × 10 -23 Temperature, T (°K) 293.15 Dynamic viscosity, μ (Pa s) 10 -3

Fig. 3 .

 3 Fig. 3. (a) Spatial density distribution of the deposited particles versus the z coordinate at N = 2000, Pe = 1.5 × 10 -3 for both heterogeneous (λ = 5 and θ = 0.5) and homogeneous capillary; (b) schematic representation of particle behavior near the boundaries between the favorable and unfavorable strips (after Nazemifard et al. [32,41]). 3D sectional view of the heterogeneous (c) and homogeneous (d) capillary. The red objects represent the deposited particles; the low occurs from left to right. (For interpretation of the references to colour in this igure legend, the reader is referred to the web version of this article.)

( 8 )Fig. 4 .

 84 Fig. 4. Variation of deposition probability versus the number of injected particles (N) for heterogeneous (with diferent λ) and homogeneous capillaries. (Pe = 1.5 × 10 -3 , θ = 0.5).

Fig. 5 .

 5 Fig. 5. Variation of the dimensionless surface coverage versus N for a heterogeneous capillary with diferent λ (Pe = 1.5 × 10 -3 , θ = 0.5).

Fig. 6 .

 6 Fig. 6. Variation of dimensionless surface coverage Γ/Γ RSA for the chemically heterogeneous capillary, λ = 5 and θ = 0.5 (a) Γ/Γ RSA versus N at diferent Pe; (b) Γ inal /Γ RSA as a function of Pe.

Fig. 7 .

 7 Fig. 7. (a) 3D sectional view (left: crosswise strips patterned), (right: chess board patterned) of the heterogeneous capillary with deposited particles; (b) variation of dimensionless surface coverage Γ/Γ RSA versus the number of injected particles, N, for crosswise strips patterned and chess board patterned capillaries. For both cases, θ = 0.5, pitch length = 3 μm and Pe = 1.5 × 10 -3 .

Fig. 8 .

 8 Fig. 8. (a) 3D sectional view of the heterogeneous capillary with deposited particles, λ = 5, Pe = 1.5 × 10 -3 , θ is ranging from 0.2 to 1; (b) variation of the number of deposited particles versus the number of injected particles (N) with diferent θ; (c) the dependence of the efective collector eiciency (η efective /η f ) on θ (λ = 5, Pe = 1.5 × 10 -3 ).
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