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Introduction

Numerical integration is one of the fundamen-
tal tool of scientific computation. Providing a
reliable result to such problem is important for
validated simulation [1] or for global optimiza-
tion with a continuous objective function [3].
An important work on inclusion methods for
integral equations can be found in [2]. In our
presentation, we propose an efficient guaran-
teed method for the computation of the inte-
gral of a nonlinear continuous function f be-
tween two interval endpoints [x1] and [x2], we
call interval integrals:

Definition 1 (Interval integral). Let f : R→
R, a continuous function and [x1], [x2] ∈
IR two intervals. The interval integral of f
with [x1] and [x2] as endpoints is denoted∫ [x2]
[x1]

f(x)dx and corresponds to the set

∫ [x2]

[x1]
f(x)dx =

{∫ x2

x1

f(x)dx

∣∣∣∣ x1 ∈ [x1]
x2 ∈ [x2]

}
.

(1)

This set considers all the integrals with the
endpoints taken in the intervals [x1] and [x2].
Three cases can occur whether the interval
endpoints [x1] and [x2] are disjoint, intersect
or one is included in the other.

The endpoints are disjoint As intro-
duced in [2], an interval integral as defined in

∗Corresponding author.

Definition 1 where the endpoints are disjoint
can be decomposed as follows∫ [x2]

[x1]
f(x)dx =

∫ x1

[x1]
f(x)dx

+
∫ x2

x1
f(x)dx

+
∫ [x2]
x2

f(x)dx.

(2)

The endpoints intersect The interval in-
tegral in Eq. (1) can be subdivised with∫ [x2]

[x1]
f(x)dx =

∫ [x2]

[x1,x2]
f(x)dx

⋃∫ [x2,x1]

[x2,x1]
f(x)dx

⋃∫ [x1,x2]

[x2,x1]
f(x)dx. (3)

The first and the last interval integrals in the
right member of Eq. (3) are of the same type
as the one where endpoints are disjoint except
that the integral can be equal to 0 when taking
both the same endpoints.

One endpoint is included in the other
When [x1] ⊆ [x2], we have x2 6 x1 6 x1 6 x2
and the same decomposition as in Eq. (3) is
possible:∫ [x2]

[x1]
f(x)dx =

∫ [x2,x1]

[x1]
f(x)dx,

⋃∫ [x1]

[x1]
f(x)dx,

⋃∫ [x1,x2]

[x1]
f(x)dx (4)

so we go back to the already treated kind of
interval integral that occurred in the previous
cases.

We see that in all cases, only three interval
integrals occur:∫ x

[x]
f(x)dx;

∫ [x]

x
f(x)dx;

∫ [x]

[x]
f(x)dx. (5)
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Figure 1: Example of computation of∫ x
[x] f(x)dx for X ∗ = {x∗1, x∗2, x∗3} (blue: maxi-
mum; red: minimum).
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Figure 2: Example of computation of∫ [x]
x f(x)dx for X ∗

2 = {x∗1, x∗2, x∗3}.

Producing the minimum and the maximum
of these interval integrals requires the parts
where sub-integrals are positive and parts
where they are negative. The change between
positiveness and negativeness of the integral
occurs at x such that f(x) = 0. Comput-
ing the minimum and maximum then requires
to produce the set X ∗ = {x ∈ [x] : f(x) = 0} .
The minimum and the maximum candidates
for all the interval integrals in Eq (5) can be
defined using X ∗. When the arity of X ∗ is fi-
nite, the set of candidate to consider is then
finite as well. Figure 1 provides an illustration
of the candidates for

∫ x
[x] f(x)dx. In this case,

we only have to consider 4 integral candidates
to be the minimum and the maximum. In
Figure 2, an illustration of

∫ [x]
x f(x)dx is illus-

trated. The method for the computation of an

interval integral consists in the computation
of the set X ∗ and to find all the candidates to
be the minimum and the maximum of the set
described in Eq. (1). The method then pro-
vides the interval outer approximation of this
set and also the endpoints at play.

Example We consider the computation of
the interval integral

∫ [0,1]
0

dx
1+x2 . The result is:[∫ 0

0

dx

1 + x2
,

∫ 1

0

dx

1 + x2

]
⊂ [0, 0.78543] (6)

The implementation of the computation of
any interval integral is linear on the arity
of X ∗ for

∫ [x]
x f(x)dx and

∫ x
[x] f(x)dx. For∫ [x]

[x] f(x)dx, we need to consider the backward
integrals as well since the first endpoint can be
greater than the last one. The proposed algo-
rithm is factorial on the arity of X ∗. This will
be detailed in the presentation.
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