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Complete monotonicity for a new ratio of finitely many gamma functions

Γ(nx + 1) Γ(kx + 1)Γ((n -k)x + 1)

p kx (1 -p) (n-k)x (1.1)
was considered, where p ∈ (0, 1) and k, n are nonnegative integers with 0 ≤ k ≤ n.

In [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF]Theorem 2.1] and [START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF], the function

Γ 1 + x n k=1 λ k n k=1 Γ(1 + λ k x) n k=1 p λ k x k (1.2)
was studied independently, where n ≥ 2, λ k > 0 for 1 ≤ k ≤ n, p k ∈ (0, 1) for 1 ≤ k ≤ n, and

n k=1 p k = 1.
In [START_REF] Qi | A logarithmically completely monotonic function involving the q-gamma function[END_REF], the q-analogue

Γ q 1 + x n k=1 λ k n k=1 Γ q (1 + λ k x) n k=1 p λ k x k (1.3)
of the function in (1.2) was investigated, where q ∈ (0, 1), n ≥ 2, λ k > 0 for 1 ≤ k ≤ n, p k ∈ (0, 1) for 1 ≤ k ≤ n with n k=1 p k = 1, and Γ q (z) is the q-analogue of the gamma function Γ(x). For information on q-analogues of the gamma function Γ(x), the digamma function ψ(z), and the trigamma function ψ ′ (x), please refer to [START_REF] Qi | A logarithmically completely monotonic function involving the q-gamma function[END_REF][START_REF] Qi | Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions[END_REF][START_REF] Salem | Some completely monotonic functions associated with the q-gamma and the qpolygamma functions[END_REF][START_REF] Yin | Limit formulas related to the p-gamma and p-polygamma functions at their singularities[END_REF] and the closely related references therein.

In [START_REF] Ouimet | Complete monotonicity of a ratio of gamma functions and some combinatorial inequalities for multinomial coefficients[END_REF]Theorem 2.1] and [START_REF] Qi | A ratio of finitely many gamma functions and its properties with applications[END_REF]Theorem 4.1], the functions

m i=1 Γ(1 + ν i x) n j=1 Γ 1 + τ j x m i=1 n j=1 Γ 1 + λ ij x (1.4) 
and

m i=1 Γ(1 + ν i x) n j=1 Γ 1 + τ j x m i=1 n j=1 Γ 1 + λ ij x ρ (1.5)
were considered, where ρ ∈ R and

λ ij > 0, ν i = n j=1 λ ij , τ j = m i=1 λ ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In [START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF], the function

m i=1 [Γ(1 + ν i x)] ν θ i n j=1 Γ 1 + τ j x τ θ j m i=1 n j=1 Γ 1 + λ ij x ρλ θ ij (1.6)
was discussed, where ρ, θ ∈ R and

λ ij > 0, ν i = n j=1 λ ij , τ j = m i=1 λ ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In the paper [START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF], the function

Γ 1 + x n k=1 λ k ( n k=1 λ k ) θ n k=1 [Γ(1 + λ k x)] ρλ θ k n k=1 p λ k k ϱx (1.7) was investigated, where n ≥ 2, ρ, ϱ, θ ∈ R, λ k > 0 for 1 ≤ k ≤ n, and p k ∈ (0, 1) for 1 ≤ k ≤ n with n k=1 p k = 1.
There is a lot of literature on the various ratios of gamma functions. For a complete list of related references before 2010, please refer to the review and survey articles [START_REF] Guo | Properties and applications of a function involving exponential functions[END_REF][START_REF] Qi | Bounds for the ratio of two gamma functions[END_REF][START_REF] Qi | Bounds for the ratio of two gamma functions: from Gautschi's and Kershaw's inequalities to complete monotonicity[END_REF][START_REF] Qi | Bounds for the ratio of two gamma functions-From Wendel's and related inequalities to logarithmically completely monotonic functions[END_REF][START_REF] Qi | Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem[END_REF] and the references therein. One can also find new results on several ratios of gamma functions in [START_REF] Cringanu | Inequalities associated with ratios of gamma functions[END_REF][START_REF] Lü | Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic[END_REF][START_REF] Shen | Sharp rational bounds for the gamma function[END_REF][START_REF] Yang | Sharp Gautschi inequality for parameter 0 < p < 1 with applications[END_REF][START_REF] Yang | Complete monotonicity and inequalites involving Gurland's ratios of gamma functions[END_REF][START_REF] Zhao | Logarithmically complete monotonicity properties relating to the gamma function[END_REF], for example.

In this paper, motivated by the above seven functions in (1.1), (1.2), (1.3), (1.4), (1.5), (1.6), and (1.7), we will consider the function 

F ρ,θ (x) = n k=1 [Γ(1 + λ k x)] ρw k λ θ k Γ 1 + x n k=1 w k λ k ( n k=1 w k λ k ) θ , x ∈ (0, ∞),

A Lemma

For stating and proving our main results, we need a lemma below.

Lemma 2.1 Let H(x) = x e x -1 , x ∈ R.
Let α ≥ 0, n ≥ 2, λ k ∈ (0, ∞) and w k ∈ (0, 1) for 1 ≤ k ≤ n, and

n k=1 w k = 1. Then n k=1 w k λ k α+1 H x n k=1 w k λ k ≤ n k=1 w k λ α+1 k H x λ k . (2.1)
Proof In [30, Theorem 3.1], it was proved that the function

x α H 1 x is convex on (0, ∞) if and only if α ≥ 1. If f (x) is a convex function on an interval I ⊆ R and if n ≥ 2 and x k ∈ I for 1 ≤ k ≤ n, then f n k=1 w k x k ≤ n k=1 w k f (x k ), (2.2) 
where w k ∈ (0, 1) for 1 ≤ k ≤ n and

n k=1 w k = 1. If f (x) is a concave function, then the inequality (2.
2) is reversed. In the literature, the inequality (2.2) is called "Jensen's discrete inequality for convex functions"; see [START_REF] Mitrinović | Analytic Inequalities[END_REF]Section 1.4] and [START_REF] Mitrinović | Classical and New Inequalities in Analysis[END_REF]Chapter I]. Consequently, when

α ≥ 1 and n ≥ 2, replacing f (x) in (2.2) by x α H 1 x yields n k=1 w k x k α H 1 n k=1 w k x k ≤ n k=1 w k x α k H 1 x k
for x k ∈ (0, ∞) and w k ∈ (0, 1) with n k=1 w k = 1. Further replacing x k in the above inequality by λ k

x for x ∈ (0, ∞) yields the inequality (2.1). The proof of Lemma 2.1 is complete. Remark 2.2 In the papers [2,[START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF][START_REF] Qi | A logarithmically completely monotonic function involving the q-gamma function[END_REF][START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF][START_REF] Qi | A ratio of finitely many gamma functions and its properties with applications[END_REF][START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF], the inequalities

n k=1 λ k α+1 H x n k=1 λ k ≥ n k=1 λ α+1 k H x λ k , (2.3) 
m i=1 ν α+1 i H x ν i + n j=1 τ α+1 j H x τ j ≥ 2 m i=1 n j=1 λ α+1 ij H x λ ij , (2.4) 
or their special cases were used, where α ≥ 0, x > 0,

λ k > 0, λ ij > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, ν i = n j=1 λ ij , and τ j = m i=1 λ ij . The inequalities (2.
3) and (2.4) can be deduced from the convexity of the function x α H 1

x on (0, ∞). This was reviewed in the paper [START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF].

Complete monotonicity

Now we are in a position to state and prove our main results.

Theorem 3.1 If n ≥ 2, ρ ≥ 1, θ ≥ 0, w k , λ k > 0 for 1 ≤ k ≤ n,
and n k=1 w k = 1, then the function F ρ,θ (x) defined by (1.8) has the following properties:

1. the function F 1,0 (x) is increasing and logarithmically convex on (0, ∞); 2. for ρ ≥ 1 and θ > 0 or for ρ > 1 and θ = 0, the function F ρ,θ (x) has a unique minimum and is logarithmically convex on (0, ∞);

3. for all ρ ≥ 1 and θ ≥ 0, the logarithmic derivative [ln

F ρ,θ (x)] ′ is an increasing function from (0, ∞) onto   ρ n k=1 w k λ θ+1 k - n k=1 w k λ k θ+1 ψ(1), ∞   ;
4. for all ρ ≥ 1 and θ ≥ 0, the second derivative [ln F ρ,θ (x)] ′′ is a completely monotonic function on (0, ∞).

Proof Taking the logarithm on both sides of (1.8) and computing give

[ln F ρ,θ (x)] ′ = ρ n k=1 w k λ θ+1 k ψ(1 + λ k x) - n k=1 w k λ k θ+1 ψ 1 + x n k=1 w k λ k and [ln F ρ,θ (x)] ′′ = ρ n k=1 w k λ θ+2 k ψ ′ (1 + λ k x) - n k=1 w k λ k θ+2 ψ ′ 1 + x n k=1 w k λ k .
Making use of the formula [START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF][START_REF] Qi | A ratio of finitely many gamma functions and its properties with applications[END_REF][START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF], we obtain that

ψ ′ (1 + τ z) = ∞ 0 s 1 -e -s e -(1+τ z)s ds = 1 τ ∞ 0 H s τ e -sz ds, τ > 0 used in
[ln F ρ,θ (x)] ′′ = ∞ 0 ρ n k=1 w k λ θ+1 k H s λ k - n k=1 w k λ k θ+1 H s n k=1 w k λ k e -sx ds.
By virtue of the inequality (2.1), we derive readily that, when ρ ≥ 1 and θ ≥ 0, the second derivative [ln F ρ,θ (x)] ′′ is completely monotonic on (0, ∞). Hence, the first derivative [ln F ρ,θ (x)] ′ is increasing on (0, ∞).

When ρ = 1 and θ = 0, it is easy to see that

[ln F 1,0 (x)] ′ = n k=1 w k λ k ψ(1 + λ k x) -ψ 1 + x n k=1
w k λ k → 0 as x → 0 + . Accordingly, the first derivative [ln F 1,0 (x)] ′ > 0 on (0, ∞) and the function F 1,0 (x) is increasing on (0, ∞).

When ρ > 1 and θ = 0, it is easy to see that

[ln F ρ,0 (x)] ′ = n k=1 w k λ k ρψ(1 + λ k x) -ψ 1 + x n k=1 w k λ k → (ρ -1)ψ(1) n k=1 w k λ k < 0 as x → 0 + .
The inequality between the weighted arithmetic mean and the weighted power mean reads as

n k=1 w k λ k < n k=1 w k λ θ+1 k 1/(θ+1) , θ > 0; (3.1)
see [4, Chapter III] and the papers [START_REF] Qi | A lower bound for ratio of power means[END_REF][START_REF] Qi | New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values[END_REF]. Utilizing the mean inequality (3.1) and computing lead to 

lim x→0 + [ln F ρ,θ (x)] ′ = ρ n k=1 w k λ θ+1 k - n k=1 w k λ k θ+1 ψ ( 
[ln F ρ,θ (x)] ′ = ρ n k=1 w k λ θ+1 k lim x→∞ [ψ(1 + λ k x) -ln(1 + λ k x)] - n k=1 w k λ k θ+1 lim x→∞ ψ 1 + x n k=1 w k λ k -ln 1 + x n k=1 w k λ k + lim x→∞ ρ n k=1 w k λ θ+1 k ln(1 + λ k x) - n k=1 w k λ k θ+1 ln 1 + x n k=1 w k λ k = ln lim x→∞ n k=1 (1 + λ k x) w k λ θ+1 k ρ 1 + x n k=1 w k λ k ( n k=1 w k λ k ) θ+1 = ln n k=1 λ w k λ θ+1 k k ρ n k=1 w k λ k ( n k=1 w k λ k ) θ+1 + ln lim x→∞ x ρ n k=1 w k λ θ+1 k -( n k=1 w k λ k ) θ+1 = ln n k=1 λ w k λ θ+1 k k n k=1 w k λ k ( n k=1 w k λ k ) θ+1 + ∞ = ∞
for θ > 0, where we used the limit ′ is increasing on (0, ∞), the first derivative [ln F ρ,θ (x)] ′ has a unique zero on (0, ∞). Therefore, the functions ln F ρ,θ (x) and F ρ,θ (x) have a unique minimum on (0, ∞). The proof of Theorem 3.1 is complete.

A simple review

In this section, we simply review complete monotonicity of several linear combinations of finitely many digamma or trigamma functions. Let

ϕ δ (x) = n k=1 a k ψ(b k x + δ)
for δ ≥ 0 and a k , b k > 0. In [START_REF] Alzer | Some classes of completely monotonic functions, II[END_REF][START_REF] Guo | On complete monotonicity of linear combination of finite psi functions[END_REF][START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF], the authors proved that 1. if δ ≥ 1 2 , (a i -a j )(b i -b j ) ⋛ 0 for all 1 ≤ i, j ≤ n, and n k-1 a k ⋛ 0, then the first derivative ±ϕ ′ δ (x) is completely monotonic and, consequently, the function ±ϕ δ (x) is increasing and concave, on (0, ∞); From the proof of [30, Theorem 2.2], we can conclude that the linear combination

2. if (a i -a j )(b i -b j ) ⋛ 0 for all 1 ≤ i, j ≤ n,
n k=1 λ k 2 ψ ′ 1 + x n k=1 λ k - n k=1 λ 2 k ψ ′ (1 + λ k x) (4.1)
is a completely monotonic function on (0, ∞), where λ k > 0 for 1 ≤ k ≤ n.

From the proof of [20, Theorem 3.1], we can conclude that the linear combination

n k=1 λ k 2 ψ ′ q 1 + x n k=1 λ k - n k=1 λ 2 k ψ ′ q (1 + λ k x) (4.2)
is a completely monotonic function on (0, ∞), where q ∈ (0, 1), ψ q (x) is the q-analogue of the digamma function ψ(x), and λ k > 0 for 1 ≤ k ≤ n. The function in (4.2) is the q-analogue of the one in (4.1).

From the proof of [START_REF] Qi | A ratio of finitely many gamma functions and its properties with applications[END_REF]Theorem 4.1], we can conclude that the linear combination

m i=1 ν 2 i ψ ′ (1 + ν i x) + n j=1 τ 2 j ψ ′ 1 + τ j x -ρ m i=1 n j=1 λ 2 ij ψ ′ 1 + λ ij x
for ρ ≤ 2 is a completely monotonic function on (0, ∞) and that the linear combination

m i=1 ν i ψ(1 + ν i x) + n j=1 τ j 1 + τ j x -2 m i=1 n j=1 λ ij ψ 1 + λ ij x is a Bernstein function on (0, ∞), where λ ij > 0, ν i = n j=1 λ ij , and τ j = m i=1 λ ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
For more on the Bernstein functions, please refer to [START_REF] Qi | Integral representations and properties of some functions involving the logarithmic function[END_REF][START_REF] Schilling | Bernstein Functions[END_REF] and the references therein.

From the proof of [30, Theorem 5.1], we can conclude that, if ρ ≤ 2 and θ ≥ 0, then the linear combination

m i=1 ν θ+2 i ψ ′ (1 + ν i x) + n j=1 τ θ+2 j ψ ′ 1 + τ j x -ρ m i=1 n j=1 λ θ+2 ij ψ ′ 1 + λ ij x
is completely monotonic on (0, ∞), where λ ij > 0, ν i = n j=1 λ ij , and

τ j = m i=1 λ ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In [START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF]Theorem 3.1], the linear combination

n k=1 λ k θ+2 ψ ′ 1 + x n k=1 λ k -ρ n k=1 λ θ+2 k ψ ′ (1 + λ k x)
for ρ ≤ 1 and θ ≥ 0 is proved to be completely monotonic on (0, ∞), and the linear combination

n k=1 λ k ψ 1 + x n k=1 λ k - n k=1 λ k ψ(1 + λ k x)
is proved to be a Bernstein function on (0, ∞), where n ≥ 1 and

λ k > 0 for 1 ≤ k ≤ n.
The last result in Theorem 3.1 means that the linear combination

ρ n k=1 w k λ θ+2 k ψ ′ (1 + λ k x) - n k=1 w k λ k θ+2 ψ ′ 1 + x n k=1 w k λ k
is a completely monotonic function on (0, ∞), where n ≥ 2, ρ ≥ 1, θ ≥ 0, w k , λ k > 0 for 1 ≤ k ≤ n, and n k=1 w k = 1.

Remarks

In this section, we mainly mention some conclusions of the paper [START_REF] Yang | Some properties of the generalized Gaussian ratio and their applications[END_REF], which was brought to the author's attention by an anonymous referee. 

H(z) = z e z -1 = ∞ n=0 B n z n n! = 1 - z 2 + ∞ n=1 B 2n z 2n (2n)! , |z| < 2π;
see [START_REF] Qi | A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers[END_REF][START_REF] Qi | Two closed forms for the Bernoulli polynomials[END_REF] and [START_REF] Temme | Special Functions: An Introduction to Classical Functions of Mathematical Physics[END_REF]Chapter 1]. In [START_REF] Qi | A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers[END_REF]Theorem 1.1], the ratios

|B 2(n+1) | |B2n|
for n ∈ N were bounded by

2 2n-1 -1 2 2n+1 -1 (2n + 1)(2n + 2) π 2 < |B 2(n+1) | |B 2n | < 2 2n -1 2 2n+2 -1 (2n + 1)(2n + 2) π 2 ; (5.1)
see also [START_REF] Qi | Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers[END_REF][START_REF] Shuang | Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios[END_REF][START_REF] Yang | Sharp bounds for the ratio of two zeta functions[END_REF][START_REF] Zhu | New bounds for the ratio of two adjacent even-indexed Bernoulli numbers[END_REF] and closely related references therein. In July 2021, an anonymous referee pointed out that the function F ρ,θ (x) defined in (1.8) satisfies that

F 1,0 (x) = n k=1 [Γ(1 + λ k x)] w k Γ 1 + x n k=1 w k λ k = n k=1 λ w k k n k=1 w k λ k n k=1 [Γ(λ k x)] w k Γ x n k=1 w k λ k ≜ n k=1 λ w k k n k=1 w k λ k R n;λ,w (x)
for x ∈ (0, ∞) and that, making use of the double inequality (5.1) and subtle computation, Yang-Xi-Zheng [START_REF] Yang | Some properties of the generalized Gaussian ratio and their applications[END_REF] investigated some properties, including two integral representations, an asymptotic expansion, a Maclaurin series, complete monotonicity, inequalities, and approximations, of the functions ln R(x) and ln R 1

x . We note that the complete monotonicity of the function ln R(x) is a special case of Theorem 3.1.

It is easy to see that the special case for n = 2,

w 1 = w 2 = 1 2 , x = 1, λ 1 = s, and λ 2 = t of the function [R n;λ,w (x)] 2 = n k=1 [Γ(λ k x)] w k Γ x n k=1 w k λ k 2
for n ≥ 2, w k , λ k > 0 with 1 ≤ k ≤ n, and n k=1 w k = 1 is just Gurland's ratio T (s, t) = Γ(s)Γ(t) [Γ((s + t)/2)] 2 , which was first defined in [START_REF] Gurland | An inequality satisfied by the gamma function[END_REF]. In [START_REF] Qi | Bounds for the ratio of two gamma functions[END_REF][START_REF] Tian | Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders[END_REF], a detailed survey and review of Gurland's ratio T (s, t) and related results were given. In [START_REF] Yang | Some properties of the generalized Gaussian ratio and their applications[END_REF], the functions T 1 p , 3 p and T 1 p , 5 p , along with their statistical backgrounds, were mentioned. Now the question presents itself: can one establish similar integral representations, a similar asymptotic expansion, similar Maclaurin series, similar inequalities, and similar approximations for the functions ln F ρ,θ (x) and ln F ρ,θ 1 x to those in the paper [START_REF] Yang | Some properties of the generalized Gaussian ratio and their applications[END_REF]? Remark 5.2 For ρ > 1 and θ ≥ 0, we have

F ρ,θ (x) F 1,θ (x) = n k=1 [Γ(1 + λ k x)] (ρ-1)w k λ θ k ,
which has a unique minimum and is logarithmically convex on (0, ∞). This implies that the introduction of the parameter ρ in the function F ρ,θ (x) is significant and is not trivial.

Remark 5.3 This paper is a revised version of the electronic preprint [START_REF] Qi | Complete monotonicity for a new ratio of finite many gamma functions[END_REF], and a companion of the series of papers [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF][START_REF] Qi | A logarithmically completely monotonic function involving the q-gamma function[END_REF][START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF][START_REF] Qi | A ratio of finitely many gamma functions and its properties with applications[END_REF][START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF][START_REF] Qi | Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions[END_REF] and the references therein.

( 1 . 8 ). 2 F

 182 No. Qi: A NEW RATIO OF FINITELY MANY GAMMA FUNCTIONS 513 where n ≥ 2, ρ ≥ 1, θ ≥ 0, w k , λ k > 0 for 1 ≤ k ≤ n, and n k=1 w k = 1.
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 102 . Qi: A NEW RATIO OF FINITELY MANY GAMMA FUNCTIONS 515 for ρ ≥ 1 and θ > 0, where ψ(1) = -0.577 . . . , and to lim x→∞

  lim x→∞ [ln x -ψ(x)] = 0 from [8, Theorem 1] and [9, Section 1.4]. As a result, since the first derivative [ln F ρ,θ (x)]

  then the function ±ϕ 0 (x) is completely monotonic on (0, ∞) if and only if n k=1 a k = 0 and n k=1 a k ln b k ⋛ 0.
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