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COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE

MANY GAMMA FUNCTIONS
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Dedicated to people facing and fighting COVID-19

Abstract. In the paper, by deriving an inequality involving the generating

function of the Bernoulli numbers, the author introduces a new ratio of finite

many gamma functions, finds complete monotonicity of the second logarithmic
derivative of the ratio, and simply reviews complete monotonicity of several

linear combinations of finite many digamma or trigamma functions.
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1. Preliminaries and motivations

Let f(x) be an infinite differentiable function on (0,∞). If (−1)kf (k)(x) ≥ 0 for
all k ≥ 0 and x ∈ (0,∞), then we call f(x) a completely monotonic function on
(0,∞). See the review papers [23, 32, 42] and [40, Chapter IV].

The classical gamma function Γ(z) can be defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

See [1, Chapter 6], [14, Chapter 5], the papers [22, 41], and [39, Chapter 3]. In the
literature, the logarithmic derivative

ψ(z) = [ln Γ(x)]′ =
Γ′(z)

Γ(z)
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and its first derivative ψ′(z) are respectively called the digamma and trigamma
functions. See the papers [25, 27] and closely related references therein.

This paper is motivated by a sequence of papers [2, 10, 11, 16, 18, 26, 30, 31, 36].
For detailed review and survey, please read the papers [18, 26, 30, 31, 36] and closely
related references therein.

In the paper [2], motivated by [10, 11], the function

Γ(nx+ 1)

Γ(kx+ 1)Γ((n− k)x+ 1)
pkx(1− p)(n−k)x (1.1)

was considered, where p ∈ (0, 1) and k, n are nonnegative integers with 0 ≤ k ≤ n.
In [16, Theorem 2.1] and [36], the function

Γ
(
1 + x

∑n
k=1 λk

)∏n
k=1 Γ(1 + λkx)

n∏
k=1

pλkxk (1.2)

was studied independently by those authors, where n ≥ 2, λk > 0 for 1 ≤ k ≤ n,
pk ∈ (0, 1) for 1 ≤ k ≤ n, and

∑n
k=1 pk = 1.

In [18], the q-analogue

Γq
(
1 + x

∑n
k=1 λk

)∏n
k=1 Γq(1 + λkx)

n∏
k=1

pλkxk (1.3)

of the function in (1.2) was investigated, where q ∈ (0, 1), n ≥ 2, λk > 0 for
1 ≤ k ≤ n, pk ∈ (0, 1) for 1 ≤ k ≤ n with

∑n
k=1 pk = 1, and Γq(z) is the q-

analogue of the gamma function Γ(x). For information on q-analogues of the gamma
function Γ(x), digamma function ψ(z), and trigamma function ψ′(x), please refer
to [18, 21, 38, 44] and closely related references therein.

In [15, Theorem 2.1] and [30, Theorem 4.1], the functions∏m
i=1 Γ(1 + νix)

∏n
j=1 Γ

(
1 + τjx

)∏m
i=1

∏n
j=1 Γ

(
1 + λijx

) (1.4)

and ∏m
i=1 Γ(1 + νix)

∏n
j=1 Γ

(
1 + τjx

)[∏m
i=1

∏n
j=1 Γ

(
1 + λijx

)]ρ (1.5)

were respectively considered, where ρ ∈ R and λij > 0, νi =
∑n
j=1 λij , τj =∑m

i=1 λij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In [26], the function∏m

i=1[Γ(1 + νix)]ν
θ
i
∏n
j=1

[
Γ
(
1 + τjx

)]τθj∏m
i=1

∏n
j=1

[
Γ
(
1 + λijx

)]ρλθij (1.6)

was discussed, where ρ, θ ∈ R and λij > 0, νi =
∑n
j=1 λij , τj =

∑m
i=1 λij for

1 ≤ i ≤ m and 1 ≤ j ≤ n.
In the paper [31], the function[

Γ
(
1 + x

∑n
k=1 λk

)](∑n
k=1 λk)

θ∏n
k=1[Γ(1 + λkx)]ρλ

θ
k

(
n∏
k=1

pλkk

)%x
(1.7)

was investigated, where n ≥ 2, ρ, %, θ ∈ R, λk > 0 for 1 ≤ k ≤ n, and pk ∈ (0, 1) for
1 ≤ k ≤ n with

∑n
k=1 pk = 1.
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There are a lot of literature on various ratios of gamma functions. For a much
complete list of related references before 2010, please refer to the review and survey
articles [7, 19, 20, 33, 34] and closely related references. One can also find new
results on several ratios of gamma functions in [5, 43], for example.

In this paper, motivated by the above seven functions (1.1), (1.2), (1.3), (1.4),
(1.5), (1.6), and (1.7), we will consider the function

F (x) =

∏n
k=1[Γ(1 + λkx)]ρwkλ

θ
k[

Γ
(
1 + x

∑n
k=1 wkλk

)](∑n
k=1 wkλk)

θ , x ∈ (0,∞), (1.8)

where n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0 for 1 ≤ k ≤ n, and
∑n
k=1 wk = 1.

2. A lemma

For stating and proving our main results, we need the following lemma.

Lemma 2.1. Let

H(x) =
x

ex − 1
, x ∈ R.

Let α ≥ 0, n ≥ 2, λk ∈ (0,∞) and wk ∈ (0, 1) for 1 ≤ k ≤ n, and
∑n
k=1 wk = 1.

Then (
n∑
k=1

wkλk

)α+1

H

(
x∑n

k=1 wkλk

)
≤

n∑
k=1

wkλ
α+1
k H

(
x

λk

)
. (2.1)

Proof. It is well known that the function H(x) is the generating function of the
Bernoulli numbers. See [17, 24] and [39, Chapter 1]. In [26, Theorem 3.1], it was
proved that the function xαH

(
1
x

)
is convex on (0,∞) if and only if α ≥ 1. If f(x)

is a convex function on an interval I ⊆ R and if n ≥ 2 and xk ∈ I for 1 ≤ k ≤ n,
then

f

(
n∑
k=1

wkxk

)
≤

n∑
k=1

wkf(xk), (2.2)

where wk ∈ (0, 1) for 1 ≤ k ≤ n and
∑n
k=1 wk = 1. If f(x) is a concave function, the

inequality (2.2) is reversed. In the literature, the inequality (2.2) is called Jensen’s
discrete inequality for convex functions. See [12, Section 1.4] and [13, Chapter I].
Consequently, when α ≥ 1 and n ≥ 2, replacing f(x) in (2.2) by xαH

(
1
x

)
yields(

n∑
k=1

wkxk

)α
H

(
1∑n

k=1 wkxk

)
≤

n∑
k=1

wkx
α
kH

(
1

xk

)
for xk ∈ (0,∞) and wk ∈ (0, 1) with

∑n
k=1 wk = 1. Further replacing xk in the

above inequality by λk
x for x ∈ (0,∞) yields the inequality (2.1). The proof of

Lemma 2.1 is complete. �

Remark 2.1. In the papers [2, 16, 18, 26, 30, 31, 36], inequalities(
n∑
k=1

λk

)α+1

H

(
x∑n

k=1 λk

)
≥

n∑
k=1

λα+1
k H

(
x

λk

)
, (2.3)

m∑
i=1

να+1
i H

(
x

νi

)
+

n∑
j=1

τα+1
j H

(
x

τj

)
≥ 2

m∑
i=1

n∑
j=1

λα+1
ij H

(
x

λij

)
, (2.4)
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or their special cases were used, where α ≥ 0, x > 0, λk > 0, λij > 0 for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, νi =

∑n
j=1 λij , and τj =

∑m
i=1 λij . The inequalities (2.3) and (2.4)

can be deduced from convexity of the function xαH
(
1
x

)
on (0,∞). This has been

reviewed in the paper [26].

3. Complete monotonicity

Now we are in a position to state and prove our main results.

Theorem 3.1. If n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0 for 1 ≤ k ≤ n, and
∑n
k=1 wk = 1,

then the function F (x) defined by (1.8) has the following properties:

(1) the function F (x) has a unique minimum on (0,∞);
(2) the logarithmic derivative [lnF (x)]′ is an increasing function from (0,∞)

onto [ρ n∑
k=1

wkλ
θ+1
k −

(
n∑
k=1

wkλk

)θ+1]
ψ(1),∞

 ;

(3) the second derivative [lnF (x)]′′ is a completely monotonic function on (0,∞).

Proof. Taking the logarithm on both sides of (1.8) and computing give

[lnF (x)]′ = ρ

n∑
k=1

wkλ
θ+1
k ψ(1 + λkx)−

(
n∑
k=1

wkλk

)θ+1

ψ

(
1 + x

n∑
k=1

wkλk

)
and

[lnF (x)]′′ = ρ

n∑
k=1

wkλ
θ+2
k ψ′(1 + λkx)−

(
n∑
k=1

wkλk

)θ+2

ψ′

(
1 + x

n∑
k=1

wkλk

)
.

Making use of the formula

ψ′(1 + τz) =

∫ ∞
0

s

1− e−s
e−(1+τz)sds =

1

τ

∫ ∞
0

H

(
s

τ

)
e−szds, τ > 0

used in [26, 30, 31, 36], we obtain

[lnF (x)]′′ =

∫ ∞
0

[
ρ

n∑
k=1

wkλ
θ+1
k H

(
s

λk

)

−

(
n∑
k=1

wkλk

)θ+1

H

(
s∑n

k=1 wkλk

)]
e−sxds.

By virtue of the inequality (2.1), we derive readily that, when ρ ≥ 1 and θ ≥ 0,
the second derivative [lnF (x)]′′ is completely monotonic on (0,∞). Hence, the first
derivative [lnF (x)]′ is increasing on (0,∞).

The inequality between the weighted arithmetic mean and the weighted power
mean reads that

n∑
k=1

wkλk <

(
n∑
k=1

wkλ
θ+1
k

)1/(θ+1)

, θ ≥ 0. (3.1)
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See [4, Chapter III] and the papers [28, 35]. Utilizing the mean inequality (3.1) and
computing lead to

lim
x→0+

[lnF (x)]′ =

[
ρ

n∑
k=1

wkλ
θ+1
k −

(
n∑
k=1

wkλk

)θ+1]
ψ(1) < 0

for ρ ≥ 1 and θ ≥ 0, where ψ(1) = −0.577 . . . , and

lim
x→∞

[lnF (x)]′ = ρ

n∑
k=1

wkλ
θ+1
k lim

x→∞
[ψ(1 + λkx)− ln(1 + λkx)]

−

(
n∑
k=1

wkλk

)θ+1

lim
x→∞

[
ψ

(
1 + x

n∑
k=1

wkλk

)
− ln

(
1 + x

n∑
k=1

wkλk

)]

+ lim
x→∞

[
ρ

n∑
k=1

wkλ
θ+1
k ln(1 + λkx)−

(
n∑
k=1

wkλk

)θ+1

ln

(
1 + x

n∑
k=1

wkλk

)]

= ln lim
x→∞

[∏n
k=1(1 + λkx)wkλ

θ+1
k

]ρ(
1 + x

∑n
k=1 wkλk

)(∑n
k=1 wkλk)

θ+1

= ln

(∏n
k=1 λ

wkλ
θ+1
k

k

)ρ
(∑n

k=1 wkλk
)(∑n

k=1 wkλk)
θ+1 + ln lim

x→∞
xρ

∑n
k=1 wkλ

θ+1
k −(

∑n
k=1 wkλk)

θ+1

= ln

(∏n
k=1 λ

wkλ
θ+1
k

k

)ρ
(∑n

k=1 wkλk
)(∑n

k=1 wkλk)
θ+1 +∞

=∞,
where we used the limit

lim
x→∞

[lnx− ψ(x)] = 0

in [8, Theorem 1] and [9, Section 1.4]. As a result, since the first derivative [lnF (x)]′

is increasing on (0,∞), the first derivative [lnF (x)]′ has a unique zero on (0,∞).
Therefore, the function lnF (x), and then F (x), has a unique minimum on (0,∞).
The proof of Theorem 3.1 is complete. �

4. A simple review

In this section, we simply review complete monotonicity of several linear combi-
nations of finite many digamma or trigamma functions.

Let

φδ(x) =

n∑
k=1

akψ(bkx+ δ)

for δ ≥ 0 and ak, bk > 0. In [3, 6, 11], the authors proved that

(1) if δ ≥ 1
2 , (ai − aj)(bi − bj) R 0 for all 1 ≤ i, j ≤ n, and

∑n
k−1 ak R 0, then

the first derivative ±φ′δ(x) is completely monotonic and, consequently, the
function ±φδ(x) is increasing and concave, on (0,∞).

(2) if (ai−aj)(bi−bj) R 0 for all 1 ≤ i, j ≤ n, then the function ±φ0(x) is com-

pletely monotonic on (0,∞) if and only if
∑n
k=1 ak = 0 and

∑n
k=1 ak ln bk R

0.
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From the proof of [36, Theorem 2.2], we can conclude that the linear combination(
n∑
k=1

λk

)2

ψ′

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λ2kψ
′(1 + λkx) (4.1)

is a completely monotonic function on (0,∞), where λk > 0 for 1 ≤ k ≤ n.
From the proof of [18, Theorem 3.1], we can conclude that the linear combination(

n∑
k=1

λk

)2

ψ′q

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λ2kψ
′
q(1 + λkx) (4.2)

is a completely monotonic function on (0,∞), where q ∈ (0, 1), ψq(x) is the q-
analogue of the digamma function ψ(x), and λk > 0 for 1 ≤ k ≤ n. The function
in (4.2) is the q-analogue of the one in (4.1).

From the proof of [30, Theorem 4.1], we can conclude that the linear combination
m∑
i=1

ν2i ψ
′(1 + νix) +

n∑
j=1

τ2j ψ
′(1 + τjx

)
− ρ

m∑
i=1

n∑
j=1

λ2ijψ
′(1 + λijx

)
for ρ ≤ 2 is a completely monotonic function on (0,∞) and the linear combination

m∑
i=1

νiψ(1 + νix) +

n∑
j=1

τjψ
(
1 + τjx

)
− 2

m∑
i=1

n∑
j=1

λijψ
(
1 + λijx

)
is a Bernstein function on (0,∞), where λij > 0, νi =

∑n
j=1 λij , and τj =

∑m
i=1 λij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. For details on the Bernstein functions, please refer
to [29, 37] and closely related references therein.

From the proof of [26, Theorem 5.1], we can conclude that, if ρ ≤ 2 and θ ≥ 0,
then the linear combination

m∑
i=1

νθ+2
i ψ′(1 + νix) +

n∑
j=1

τθ+2
j ψ′

(
1 + τjx

)
− ρ

m∑
i=1

n∑
j=1

λθ+2
ij ψ′

(
1 + λijx

)
is completely monotonic on (0,∞), where λij > 0, νi =

∑n
j=1 λij , and τj =∑m

i=1 λij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In [31, Theorem 3.1], the linear combination(

n∑
k=1

λk

)θ+2

ψ′

(
1 + x

n∑
k=1

λk

)
− ρ

n∑
k=1

λθ+2
k ψ′(1 + λkx)

for ρ ≤ 1 and θ ≥ 0 is proved to be completely monotonic on (0,∞) and the linear
combination (

n∑
k=1

λk

)
ψ

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λkψ(1 + λkx)

is proved to be a Bernstein function on (0,∞), where n ≥ 1 and λk > 0 for
1 ≤ k ≤ n.

The last result in Theorem 3.1 means that the linear combination

ρ

n∑
k=1

wkλ
θ+2
k ψ′(1 + λkx)−

(
n∑
k=1

wkλk

)θ+2

ψ′

(
1 + x

n∑
k=1

wkλk

)
is a completely monotonic function on (0,∞), where n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0
for 1 ≤ k ≤ n, and

∑n
k=1 wk = 1.



A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS 7

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics

Series 55, 10th printing, Dover Publications, New York and Washington, 1972.

[2] H. Alzer, Complete monotonicity of a function related to the binomial probability, J. Math.
Anal. Appl. 459 (2018), no. 1, 10–15; available online at https://doi.org/10.1016/j.jmaa.

2017.10.077.

[3] H. Alzer and C. Berg, Some classes of completely monotonic functions, II, Ramanujan J. 11
(2006), no. 2, 225–248; available online at https://doi.org/10.1007/s11139-006-6510-5.

[4] P. S. Bullen, Handbook of Means and Their Inequalities, Revised from the 1988 original [P.
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