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Abstract In the paper, by deriving an inequality involving the generating function of the

Bernoulli numbers, the author introduces a new ratio of finitely many gamma functions,

finds complete monotonicity of the second logarithmic derivative of the ratio, and simply

reviews the complete monotonicity of several linear combinations of finitely many digamma

or trigamma functions.
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1 Preliminaries and motivations

Let f(x) be an infinite differentiable function on (0,∞). If (−1)kf (k)(x) ≥ 0 for all k ≥ 0

and x ∈ (0,∞), then we call f(x) a completely monotonic function on (0,∞); see the review

papers [27, 36, 49] and [47, Chapter IV].

The classical gamma function Γ(z) can be defined by Γ(z) =
∫∞
0
tz−1e−tdt for ℜ(z) > 0;

see [1, Chapter 6], [16, Chapter 5], [45, Chapter 3], and the papers [25, 48]. In the literature,

the logarithmic derivative ψ(z) = [ln Γ(x)]′ = Γ′(z)
Γ(z) and its first derivative ψ′(z) are called,

respectively, the digamma and trigamma functions; see the papers [29, 31] and the closely

related references therein.

This paper is motivated by a sequence of papers [2, 11, 12, 18, 20, 30, 34, 35]. For a detailed

review and survey, please consult the papers [20, 30, 34, 35] and the closely related references

therein.

In the paper [2], motivated by [11, 12], the function

Γ(nx+ 1)

Γ(kx+ 1)Γ((n− k)x+ 1)
pkx(1− p)(n−k)x (1.1)
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was considered, where p ∈ (0, 1) and k, n are nonnegative integers with 0 ≤ k ≤ n.

In [18, Theorem 2.1] and [30], the function

Γ
(
1 + x

∑n
k=1 λk

)∏n
k=1 Γ(1 + λkx)

n∏
k=1

pλkx
k (1.2)

was studied independently, where n ≥ 2, λk > 0 for 1 ≤ k ≤ n, pk ∈ (0, 1) for 1 ≤ k ≤ n, and∑n
k=1 pk = 1.

In [20], the q-analogue

Γq

(
1 + x

∑n
k=1 λk

)∏n
k=1 Γq(1 + λkx)

n∏
k=1

pλkx
k (1.3)

of the function in (1.2) was investigated, where q ∈ (0, 1), n ≥ 2, λk > 0 for 1 ≤ k ≤ n,

pk ∈ (0, 1) for 1 ≤ k ≤ n with
∑n

k=1 pk = 1, and Γq(z) is the q-analogue of the gamma function

Γ(x). For information on q-analogues of the gamma function Γ(x), the digamma function ψ(z),

and the trigamma function ψ′(x), please refer to [20, 24, 42, 54] and the closely related references

therein.

In [17, Theorem 2.1] and [34, Theorem 4.1], the functions∏m
i=1 Γ(1 + νix)

∏n
j=1 Γ

(
1 + τjx

)∏m
i=1

∏n
j=1 Γ

(
1 + λijx

) (1.4)

and ∏m
i=1 Γ(1 + νix)

∏n
j=1 Γ

(
1 + τjx

)[∏m
i=1

∏n
j=1 Γ

(
1 + λijx

)]ρ (1.5)

were considered, where ρ ∈ R and λij > 0, νi =
∑n

j=1 λij , τj =
∑m

i=1 λij for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

In [30], the function ∏m
i=1[Γ(1 + νix)]

νθ
i
∏n

j=1

[
Γ
(
1 + τjx

)]τθ
j∏m

i=1

∏n
j=1

[
Γ
(
1 + λijx

)]ρλθ
ij

(1.6)

was discussed, where ρ, θ ∈ R and λij > 0, νi =
∑n

j=1 λij , τj =
∑m

i=1 λij for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

In the paper [35], the function[
Γ
(
1 + x

∑n
k=1 λk

)](∑n
k=1 λk)

θ∏n
k=1[Γ(1 + λkx)]ρλ

θ
k

(
n∏

k=1

pλk

k

)ϱx

(1.7)

was investigated, where n ≥ 2, ρ, ϱ, θ ∈ R, λk > 0 for 1 ≤ k ≤ n, and pk ∈ (0, 1) for 1 ≤ k ≤ n

with
∑n

k=1 pk = 1.

There is a lot of literature on the various ratios of gamma functions. For a complete list of

related references before 2010, please refer to the review and survey articles [7, 21, 22, 37, 38]

and the references therein. One can also find new results on several ratios of gamma functions

in [5, 13, 43, 52, 53, 55], for example.

In this paper, motivated by the above seven functions in (1.1), (1.2), (1.3), (1.4), (1.5),

(1.6), and (1.7), we will consider the function

Fρ,θ(x) =

∏n
k=1[Γ(1 + λkx)]

ρwkλ
θ
k[

Γ
(
1 + x

∑n
k=1 wkλk

)](∑n
k=1 wkλk)θ

, x ∈ (0,∞), (1.8)
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where n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0 for 1 ≤ k ≤ n, and
∑n

k=1 wk = 1.

2 A Lemma

For stating and proving our main results, we need a lemma below.

Lemma 2.1 Let

H(x) =
x

ex − 1
, x ∈ R.

Let α ≥ 0, n ≥ 2, λk ∈ (0,∞) and wk ∈ (0, 1) for 1 ≤ k ≤ n, and
∑n

k=1 wk = 1. Then(
n∑

k=1

wkλk

)α+1

H

(
x∑n

k=1 wkλk

)
≤

n∑
k=1

wkλ
α+1
k H

(
x

λk

)
. (2.1)

Proof In [30, Theorem 3.1], it was proved that the function xαH
(
1
x

)
is convex on (0,∞)

if and only if α ≥ 1. If f(x) is a convex function on an interval I ⊆ R and if n ≥ 2 and xk ∈ I

for 1 ≤ k ≤ n, then

f

(
n∑

k=1

wkxk

)
≤

n∑
k=1

wkf(xk), (2.2)

where wk ∈ (0, 1) for 1 ≤ k ≤ n and
∑n

k=1 wk = 1. If f(x) is a concave function, then the

inequality (2.2) is reversed. In the literature, the inequality (2.2) is called “Jensen’s discrete

inequality for convex functions”; see [14, Section 1.4] and [15, Chapter I]. Consequently, when

α ≥ 1 and n ≥ 2, replacing f(x) in (2.2) by xαH
(
1
x

)
yields(

n∑
k=1

wkxk

)α

H

(
1∑n

k=1 wkxk

)
≤

n∑
k=1

wkx
α
kH

(
1

xk

)
for xk ∈ (0,∞) and wk ∈ (0, 1) with

∑n
k=1 wk = 1. Further replacing xk in the above inequality

by λk

x for x ∈ (0,∞) yields the inequality (2.1). The proof of Lemma 2.1 is complete.

Remark 2.2 In the papers [2, 18, 20, 30, 34, 35], the inequalities(
n∑

k=1

λk

)α+1

H

(
x∑n

k=1 λk

)
≥

n∑
k=1

λα+1
k H

(
x

λk

)
, (2.3)

m∑
i=1

να+1
i H

(
x

νi

)
+

n∑
j=1

τα+1
j H

(
x

τj

)
≥ 2

m∑
i=1

n∑
j=1

λα+1
ij H

(
x

λij

)
, (2.4)

or their special cases were used, where α ≥ 0, x > 0, λk > 0, λij > 0 for 1 ≤ i ≤ m and

1 ≤ j ≤ n, νi =
∑n

j=1 λij , and τj =
∑m

i=1 λij . The inequalities (2.3) and (2.4) can be deduced

from the convexity of the function xαH
(
1
x

)
on (0,∞). This was reviewed in the paper [30].

3 Complete monotonicity

Now we are in a position to state and prove our main results.

Theorem 3.1 If n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0 for 1 ≤ k ≤ n, and
∑n

k=1 wk = 1, then

the function Fρ,θ(x) defined by (1.8) has the following properties:

1. the function F1,0(x) is increasing and logarithmically convex on (0,∞);

2. for ρ ≥ 1 and θ > 0 or for ρ > 1 and θ = 0, the function Fρ,θ(x) has a unique minimum

and is logarithmically convex on (0,∞);
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3. for all ρ ≥ 1 and θ ≥ 0, the logarithmic derivative [lnFρ,θ(x)]
′ is an increasing function

from (0,∞) onto [ρ n∑
k=1

wkλ
θ+1
k −

(
n∑

k=1

wkλk

)θ+1]
ψ(1),∞

 ;

4. for all ρ ≥ 1 and θ ≥ 0, the second derivative [lnFρ,θ(x)]
′′ is a completely monotonic

function on (0,∞).

Proof Taking the logarithm on both sides of (1.8) and computing give

[lnFρ,θ(x)]
′ = ρ

n∑
k=1

wkλ
θ+1
k ψ(1 + λkx)−

(
n∑

k=1

wkλk

)θ+1

ψ

(
1 + x

n∑
k=1

wkλk

)
and

[lnFρ,θ(x)]
′′ = ρ

n∑
k=1

wkλ
θ+2
k ψ′(1 + λkx)−

(
n∑

k=1

wkλk

)θ+2

ψ′

(
1 + x

n∑
k=1

wkλk

)
.

Making use of the formula

ψ′(1 + τz) =

∫ ∞

0

s

1− e−s
e−(1+τz)sds =

1

τ

∫ ∞

0

H

(
s

τ

)
e−szds, τ > 0

used in [30, 34, 35], we obtain that

[lnFρ,θ(x)]
′′ =

∫ ∞

0

[
ρ

n∑
k=1

wkλ
θ+1
k H

(
s

λk

)
−

(
n∑

k=1

wkλk

)θ+1

H

(
s∑n

k=1 wkλk

)]
e−sxds.

By virtue of the inequality (2.1), we derive readily that, when ρ ≥ 1 and θ ≥ 0, the second deriva-

tive [lnFρ,θ(x)]
′′ is completely monotonic on (0,∞). Hence, the first derivative [lnFρ,θ(x)]

′ is

increasing on (0,∞).

When ρ = 1 and θ = 0, it is easy to see that

[lnF1,0(x)]
′ =

n∑
k=1

wkλk

[
ψ(1 + λkx)− ψ

(
1 + x

n∑
k=1

wkλk

)]
→ 0

as x→ 0+. Accordingly, the first derivative [lnF1,0(x)]
′ > 0 on (0,∞) and the function F1,0(x)

is increasing on (0,∞).

When ρ > 1 and θ = 0, it is easy to see that

[lnFρ,0(x)]
′ =

n∑
k=1

wkλk

[
ρψ(1 + λkx)− ψ

(
1 + x

n∑
k=1

wkλk

)]
→ (ρ− 1)ψ(1)

n∑
k=1

wkλk < 0

as x→ 0+.

The inequality between the weighted arithmetic mean and the weighted power mean reads

as
n∑

k=1

wkλk <

(
n∑

k=1

wkλ
θ+1
k

)1/(θ+1)

, θ > 0; (3.1)

see [4, Chapter III] and the papers [32, 39]. Utilizing the mean inequality (3.1) and computing

lead to

lim
x→0+

[lnFρ,θ(x)]
′ =

[
ρ

n∑
k=1

wkλ
θ+1
k −

(
n∑

k=1

wkλk

)θ+1]
ψ(1) < 0
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for ρ ≥ 1 and θ > 0, where ψ(1) = −0.577 . . . , and to

lim
x→∞

[lnFρ,θ(x)]
′ = ρ

n∑
k=1

wkλ
θ+1
k lim

x→∞
[ψ(1 + λkx)− ln(1 + λkx)]

−

(
n∑

k=1

wkλk

)θ+1

lim
x→∞

[
ψ

(
1 + x

n∑
k=1

wkλk

)
− ln

(
1 + x

n∑
k=1

wkλk

)]

+ lim
x→∞

[
ρ

n∑
k=1

wkλ
θ+1
k ln(1 + λkx)−

(
n∑

k=1

wkλk

)θ+1

ln

(
1 + x

n∑
k=1

wkλk

)]

= ln lim
x→∞

[∏n
k=1(1 + λkx)

wkλ
θ+1
k

]ρ(
1 + x

∑n
k=1 wkλk

)(∑n
k=1 wkλk)θ+1

= ln

(∏n
k=1 λ

wkλ
θ+1
k

k

)ρ
(∑n

k=1 wkλk
)(∑n

k=1 wkλk)θ+1 + ln lim
x→∞

xρ
∑n

k=1 wkλ
θ+1
k −(

∑n
k=1 wkλk)

θ+1

= ln

(∏n
k=1 λ

wkλ
θ+1
k

k

)ρ
(∑n

k=1 wkλk
)(∑n

k=1 wkλk)θ+1 +∞

= ∞

for θ > 0, where we used the limit

lim
x→∞

[lnx− ψ(x)] = 0

from [8, Theorem 1] and [9, Section 1.4]. As a result, since the first derivative [lnFρ,θ(x)]
′ is

increasing on (0,∞), the first derivative [lnFρ,θ(x)]
′ has a unique zero on (0,∞). Therefore, the

functions lnFρ,θ(x) and Fρ,θ(x) have a unique minimum on (0,∞). The proof of Theorem 3.1

is complete.

4 A simple review

In this section, we simply review complete monotonicity of several linear combinations of

finitely many digamma or trigamma functions.

Let

ϕδ(x) =

n∑
k=1

akψ(bkx+ δ)

for δ ≥ 0 and ak, bk > 0. In [3, 6, 12], the authors proved that

1. if δ ≥ 1
2 , (ai−aj)(bi−bj) ⋛ 0 for all 1 ≤ i, j ≤ n, and

∑n
k−1 ak ⋛ 0, then the first derivative

±ϕ′δ(x) is completely monotonic and, consequently, the function ±ϕδ(x) is increasing and

concave, on (0,∞);

2. if (ai − aj)(bi − bj) ⋛ 0 for all 1 ≤ i, j ≤ n, then the function ±ϕ0(x) is completely

monotonic on (0,∞) if and only if
∑n

k=1 ak = 0 and
∑n

k=1 ak ln bk ⋛ 0.

From the proof of [30, Theorem 2.2], we can conclude that the linear combination(
n∑

k=1

λk

)2

ψ′

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λ2kψ
′(1 + λkx) (4.1)
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is a completely monotonic function on (0,∞), where λk > 0 for 1 ≤ k ≤ n.

From the proof of [20, Theorem 3.1], we can conclude that the linear combination(
n∑

k=1

λk

)2

ψ′
q

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λ2kψ
′
q(1 + λkx) (4.2)

is a completely monotonic function on (0,∞), where q ∈ (0, 1), ψq(x) is the q-analogue of the

digamma function ψ(x), and λk > 0 for 1 ≤ k ≤ n. The function in (4.2) is the q-analogue of

the one in (4.1).

From the proof of [34, Theorem 4.1], we can conclude that the linear combination

m∑
i=1

ν2i ψ
′(1 + νix) +

n∑
j=1

τ2j ψ
′(1 + τjx

)
− ρ

m∑
i=1

n∑
j=1

λ2ijψ
′(1 + λijx

)
for ρ ≤ 2 is a completely monotonic function on (0,∞) and that the linear combination

m∑
i=1

νiψ(1 + νix) +

n∑
j=1

τjψ
(
1 + τjx

)
− 2

m∑
i=1

n∑
j=1

λijψ
(
1 + λijx

)
is a Bernstein function on (0,∞), where λij > 0, νi =

∑n
j=1 λij , and τj =

∑m
i=1 λij for

1 ≤ i ≤ m and 1 ≤ j ≤ n. For more on the Bernstein functions, please refer to [33, 41] and the

references therein.

From the proof of [30, Theorem 5.1], we can conclude that, if ρ ≤ 2 and θ ≥ 0, then the

linear combination
m∑
i=1

νθ+2
i ψ′(1 + νix) +

n∑
j=1

τθ+2
j ψ′(1 + τjx

)
− ρ

m∑
i=1

n∑
j=1

λθ+2
ij ψ′(1 + λijx

)
is completely monotonic on (0,∞), where λij > 0, νi =

∑n
j=1 λij , and τj =

∑m
i=1 λij for

1 ≤ i ≤ m and 1 ≤ j ≤ n.

In [35, Theorem 3.1], the linear combination(
n∑

k=1

λk

)θ+2

ψ′

(
1 + x

n∑
k=1

λk

)
− ρ

n∑
k=1

λθ+2
k ψ′(1 + λkx)

for ρ ≤ 1 and θ ≥ 0 is proved to be completely monotonic on (0,∞), and the linear combination(
n∑

k=1

λk

)
ψ

(
1 + x

n∑
k=1

λk

)
−

n∑
k=1

λkψ(1 + λkx)

is proved to be a Bernstein function on (0,∞), where n ≥ 1 and λk > 0 for 1 ≤ k ≤ n.

The last result in Theorem 3.1 means that the linear combination

ρ

n∑
k=1

wkλ
θ+2
k ψ′(1 + λkx)−

(
n∑

k=1

wkλk

)θ+2

ψ′

(
1 + x

n∑
k=1

wkλk

)
is a completely monotonic function on (0,∞), where n ≥ 2, ρ ≥ 1, θ ≥ 0, wk, λk > 0 for

1 ≤ k ≤ n, and
∑n

k=1 wk = 1.

5 Remarks

In this section, we mainly mention some conclusions of the paper [51], which was brought

to the author’s attention by an anonymous referee.
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Remark 5.1 It is well known that the Bernoulli numbers Bn can be generated by

H(z) =
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
= 1− z

2
+

∞∑
n=1

B2n
z2n

(2n)!
, |z| < 2π;

see [19, 28] and [45, Chapter 1]. In [19, Theorem 1.1], the ratios
|B2(n+1)|
|B2n| for n ∈ N were

bounded by

22n−1 − 1

22n+1 − 1

(2n+ 1)(2n+ 2)

π2
<

|B2(n+1)|
|B2n|

<
22n − 1

22n+2 − 1

(2n+ 1)(2n+ 2)

π2
; (5.1)

see also [26, 44, 50, 56] and closely related references therein. In July 2021, an anonymous

referee pointed out that the function Fρ,θ(x) defined in (1.8) satisfies that

F1,0(x) =

∏n
k=1[Γ(1 + λkx)]

wk

Γ
(
1 + x

∑n
k=1 wkλk

) =

∏n
k=1 λ

wk

k∑n
k=1 wkλk

∏n
k=1[Γ(λkx)]

wk

Γ
(
x
∑n

k=1 wkλk
) ≜

∏n
k=1 λ

wk

k∑n
k=1 wkλk

Rn;λ,w(x)

for x ∈ (0,∞) and that, making use of the double inequality (5.1) and subtle computation,

Yang–Xi–Zheng [51] investigated some properties, including two integral representations, an

asymptotic expansion, a Maclaurin series, complete monotonicity, inequalities, and approxima-

tions, of the functions lnR(x) and lnR
(
1
x

)
. We note that the complete monotonicity of the

function lnR(x) is a special case of Theorem 3.1.

It is easy to see that the special case for n = 2, w1 = w2 = 1
2 , x = 1, λ1 = s, and λ2 = t of

the function

[Rn;λ,w(x)]2 =

[∏n
k=1[Γ(λkx)]

wk

Γ
(
x
∑n

k=1 wkλk
)]2

for n ≥ 2, wk, λk > 0 with 1 ≤ k ≤ n, and
∑n

k=1 wk = 1 is just Gurland’s ratio

T (s, t) =
Γ(s)Γ(t)

[Γ((s+ t)/2)]2
,

which was first defined in [10]. In [21, 46], a detailed survey and review of Gurland’s ratio

T (s, t) and related results were given. In [51], the functions T
(
1
p ,

3
p

)
and T

(
1
p ,

5
p

)
, along with

their statistical backgrounds, were mentioned.

Now the question presents itself: can one establish similar integral representations, a similar

asymptotic expansion, similar Maclaurin series, similar inequalities, and similar approximations

for the functions lnFρ,θ(x) and lnFρ,θ

(
1
x

)
to those in the paper [51]?

Remark 5.2 For ρ > 1 and θ ≥ 0, we have

Fρ,θ(x)

F1,θ(x)
=

n∏
k=1

[Γ(1 + λkx)]
(ρ−1)wkλ

θ
k ,

which has a unique minimum and is logarithmically convex on (0,∞). This implies that the

introduction of the parameter ρ in the function Fρ,θ(x) is significant and is not trivial.

Remark 5.3 This paper is a revised version of the electronic preprint [23], and a com-

panion of the series of papers [18, 20, 30, 34, 35, 40] and the references therein.
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