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Abstract

Reverse search is a convenient method for enumerating structured objects, that can be used both to address
theoretical issues and to solve data mining problems. This method has already been successfully developed
to handle unordered trees. If the literature proposes solutions to enumerate singletons of trees, we study
in this article a more general problem, the enumeration of sets of trees – forests. By compressing each
forest into a Directed Acyclic Graph (DAG), we develop a reverse search like method to enumerate DAGs
compressing forests. Remarkably, we prove that these DAGs are in bijection with the row-Fishburn matrices,
a well-studied class of combinatorial objects. In a second step, we derive our forest enumeration to provide
algorithms for tackling two related problems : (i) the enumeration of “subforests” of a forest, and (ii) the
frequent “subforest” mining problem. All the methods presented in this article enumerate each item uniquely,
up to isomorphism.

keywords: Directed Acyclic Graph, Reverse Search, Unordered Trees, Enumeration, Forest

1 Introduction

1.1 Context of the work

Enumeration of trees is a long-term problem, where Cayley was the first to propose a formula
for counting unordered trees in the mid-19th century [9, I.5.2]. The exhaustive enumeration of
ordered and unordered trees1 was successfully tackled in the early 00’s by Nakano and Uno in
[19, 20]. In the unordered case, an extension of the algorithm has been proposed to solve the
problem of frequent substructure mining [1]. Moreover, in the field of machine learning, we have
recently demonstrated that exhaustive enumeration of the subtrees of a tree makes it possible to
design classification algorithms significantly more efficient than their counterpart without such
enumeration [5].

Our ambition in this article is to take these two problems of enumeration – trees and subtrees – to a
higher order, i.e. to enumerate sets of trees instead of singletons. Specifically, we call an irredundant
forest (shortened to forest in the sequel) a set of trees that contains no repetition – in the sense
that no tree is a subtree of another (see upcoming Subsection 1.2 for a precise definition). This

1A rooted tree is a connected graph without cycles such that there exists a special vertex called the root that has no
parent, and the other vertices have exactly one parent. Trees are called ordered or unordered whether the order among
siblings is important or not. See Subsection 1.2.
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condition of non-repetition is in line with a parsimonious enumeration approach, where the objects
considered are all different and enumerated up to isomorphism. Besides, this condition is not
restrictive since one can always introduce repetition afterwards. We are therefore interested in the
problem of enumerating forests of unordered trees, and then, given a tree or forest, to enumerate
all its “subforests” – as forests of subtrees. The latter has already been discussed in the literature,
but without consideration on isomorphism [22]. We re-emphasize that we aim to enumerate these
various items – forests and subforests – up to isomorphism.

Such an ambition immediately raises a number of obstacles. First of all, the trees are indeed
unordered, but so are the sets of trees. For the former the literature has introduced the notion of the
canonical form of a tree [20, 1], which is a unique ordered representation of an unordered tree. The
enumeration therefore focuses only on these canonical trees. Unfortunately, if it is possible to order
a set of vertices, there is no total order on the set of trees, to the best of our knowledge. In addition,
the condition of non-repetition filters the set of forests in a non-trivial way, making, a priori, the
enumeration problem trickier.

Enumeration problems are recurrent in many fields, notably combinatorial optimization and data
mining. They involve the exhaustive listing of a subset of the elements of a search set (possibly all
of them), e.g. graphs, trees or vertices of a simplex. Given the possibly high combinatorial nature
of these elements, it is essential to adopt clever exploration strategies as opposed to brute-force
enumeration, typically to avoid areas of the search set not belonging to the objective subset.

One proven way of proceeding is to provide the search set with an enumeration tree structure;
starting from the root, the branches of the tree are explored recursively, eliminating those that do not
address the problem. Based on this principle, we can notably mention the well-known “branch and
bound” method in combinatorial optimization [18] and the gSpan algorithm for frequent subgraph
mining in data mining [26]. Another of these methods is the so-called reverse search technique,
which requires that the search set has a partial order structure, and which has solved a large number
of enumeration problems since its introduction [2] until very recently [25]. Actually, the algorithms
previously introduced in the literature to enumerate trees are based on this technique [19, 20, 1].

In the present paper, we restrict ourselves to reverse search methods, for which the following
formalism is adapted from the one that can be found in [21, p. 45-51], and slightly differ from the
original definition by Avis and Fukuda [2]. We refer the reader to these two references for further
details.

Let (S,⊆) be a partially ordered set, and g : S→ {>,⊥} be a property, satisfying anti-monotonicity

∀s, t ∈ S : (s ⊆ t)∧ g(t) =⇒ g(s).

The enumeration problem for the property g is the problem of listing all elements of ES(g) = {s ∈ S :
g(s) = >}. An enumeration algorithm is an algorithm that returns ES(g).

The reverse search technique relies on inverting a reduction rule f : S \ ∅→ S, where f satisfies the
two properties of (i) covering: ∀s ∈ S \ ∅, f(s) ⊂ s and (ii) finiteness: ∀s ∈ S \ ∅, ∃k ∈ N∗, fk(s) = ∅.
Then, the expansion rule is defined as f−1(t) = {s ∈ S : f(s) = t}. This defines an enumeration tree
rooted in ∅, and repeated call to f−1 can therefore enumerates all the elements of S.
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The reverse search algorithm is shown in Al-
gorithm 1. ES(g) can be obtained from the
call of REVERSESEARCH((S,⊆), f−1, g, ∅). As
g is anti-monotone, if g(s) = ⊥, then all ele-
ments s ⊆ t also have g(t) = ⊥, and thefore
pruning the enumeration tree in s does not
miss any element of ES(g).

Algorithm 1: REVERSESEARCH

Input: (S,⊆), f−1, g, s0 ∈ S – s.t. g(s0) = >
1 output s0
2 for t ∈ {s ∈ f−1(s0)|g(s) = >} do
3 REVERSESEARCH((S,⊆), f−1, g, t)

When successfully designed, a reverse search technique should yield polynomial output delay
[15, 2], i.e., the time between the output of one element and the next is bounded by a polynomial
function in the size of the input.

Remark 1.1. It would have been possible to define directly the set S as the set of elements verifying the
property g. Separating the two induces that the reduction rule f formally depends only on S, and not on
g. This allows, once f is constructed once and for all, to filter S according to various properties g without
additional work. In particular, this is useful in the case where g depends on a tunable parameter – as in the
frequent pattern mining problem introduced in Section 6.

1.2 Precise formulation of the problem

A rooted tree T is a connected graph with no cycle such that there exists a unique vertex called the
root, which has no parent, and any vertex different from the root has exactly one parent. Rooted
trees are said unordered if the order between the sibling vertices of any vertex is not significant. As
such, the set of children of a vertex v is considered as a multiset and denoted by C(v). The leaves
L(T) are all the vertices without children. The height of a vertex v of a tree T can be recursively
defined as

H(v) =
{
0 if v ∈ L(T),
1+ maxu∈C(v)H(u) otherwise.

(1)

The height H(T) of the tree T is defined as the height of its root. The outdegree of a vertex v ∈ T
is defined as deg(v) = # C(v)2; the outdegree of T is then defined as deg(T) = maxv∈T deg(v). The
depth of a vertex v is the number of edges on the path from v to the root of the tree.

Two trees T1 and T2 are isomorphic if there exists a one-to-one correspondance φ between the
vertices of the trees such that (i) u ∈ C(v) in T1 ⇐⇒ φ(u) ∈ C(φ(v)) in T2 and (ii) the roots are
mapped together. For any vertex v of T , the subtree T [v] rooted in v is the tree composed of v and
all its descendants – denoted by D(v). S(T) denotes the set of all distinct subtrees of T , which is
the quotient set of {T [v] : v ∈ T } by the tree isomorphism relation. In this article, we consider only
unordered rooted trees that will simply be called trees in the sequel. We denote by T the set of all
trees.

As mentioned before, we are interested in this paper in the enumeration of forests. The literature
acknowledges two definitions for a forest [6, p. 172]: (i) an undirected graph in which any two
vertices are connected by at most one path or (ii) a disjoint union of trees. We adopt a variation of
the latter one, that forbids repetitions inside the forest.

2The notation # is used in this paper to denote both (i) the cardinality #S of any set S, and (ii) the number of vertices #G
of any graph G.
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Definition 1.2. A set {T1, . . . , Tn} of trees is an irredundant forest if and only if

∀i 6= j, Ti /∈ S(Tj). (2)

We denote by F the set of all irredundant forests – shortened to forests in the sequel of the paper.
Our goal is to provide a reverse search method that outputs F . As already stated, this goal raises
two major difficulties: firstly, the twofold unordered nature of forests (the set of trees and the trees
themselves), and secondly, the non-trivial condition of non-repetition. While the latter problem is
intrinsic, the main idea of this paper to address the former is to resort to the reduction of a forest
into a Directed Acyclic Graph (DAG).

T1 T2 T3

F = {T1, T2, T3}

2 3

2

R(F)

Figure 1: A forest F (left) and its DAG reduc-
tion (right). Roots of isomorphic subtrees
are identically colored, as well as the corre-
sponding vertex of the DAG. The sources of
the DAG (indicated with red arrows) corre-
spond exactly to the roots of the trees in F.
For the sake of clarity, arcs of multiplicity
greater than one are drawn only once and
their multiplicity is written next to the arc.

DAG reduction is a method meant to eliminate inter-
nal repetitions in the structure of trees and forests of
trees. Beginning with [23], DAG representations of
trees are also much used in computer graphics where
the process of condensing a tree into a graph is called
object instancing [12]. A precise definition of DAG
reduction of trees, together with algorithms to com-
pute it, are provided in [10], whereas one technique
to extend those algorithms to forests is presented in
[5, Section 3.2]. DAG reduction can be interpreted as
the construction of the quotient graph of a forest by
the tree isomorphism relation. However, in this pa-
per, we provide the general idea of DAG reduction
as a vertex coloring procedure.

Consider a forest F = {T1, . . . , Tn} to reduce. Each
vertex of each tree is given a color such that if two
distinct vertices u, v belonging respectively to Ti, Tj (not necessarily distinct) have the same color,
then Ti[u] and Tj[v] are isomorphic. Reciprocally, if two subtrees are isomorphic, their roots have to
be identically colored. Let us denote c(·) the function that associates a color to any vertex. Then,
we build a directed graph D = (V,A) with as many vertices as colors used, i.e. #V = #Im (c). For
any two vertices u, v in the forest, if u ∈ C(v), then we create an arc c(v) → c(u) in D. Note that
this definition implies that multiples arcs are possible in D, as if there exist u, u ′ ∈ C(v), for v ∈ T ,
such that T [u] and T [u ′] are isomorphic, then the arcs c(v)→ c(u) and c(v)→ c(u ′) are identical.
The graph D is a DAG [10, Proposition 1], i.e. a connected directed (multi)graph without cycles.
We refer to Figure 1 for an example of DAG reduction.

In this paper, R(F) denotes the DAG reduction of F. It is crucial to notice that the function R is
a one-to-one correspondence [10, Proposition 4], which means that DAG reduction is a lossless
compression algorithm. Since F fulfills condition (2), no tree of F is a subtree of another. If this were
the case, say Ti ∈ S(Tj), then R(Ti) would be a subDAG of R(Tj), and therefore the numbers of
roots in R(F) would be strictly less than #F. Since such a situation can not occur, there are exactly
as many roots in R(F) as there are elements in F: no information is lost. In other words, F can be
reconstructed from R(F) and R−1 stands for the inverse function.

The DAG structure inherits of some properties of trees. For a vertex v in a DAG D, we will denote
by C(v) the set of children of v. H(v) and deg(v) are inherited as well. Similarly to trees, we denote
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by D[v] the subDAG rooted in v composed of v and all its descendants D(v). Note that since D[v]
has a unique root v, it compresses a forest made of a single tree. For the simplicity of notation, we
use R−1(D[v]) to designate the tree compressed by D[v] – instead of the singleton.

In the sequel, DAGs compressing forests are called FDAGs, to distinguish them from general
directed acyclic graphs.

Since DAG compression is lossless, and since a forest can be reconstructed from its DAG reduction,
it should be clear that enumerating all forests is equivalent to enumerating all FDAGs. Yet, the latter
approach has the merit of transforming set of trees into unique objects, which makes it possible,
if able to design a canonical representation – like the trees in [20, 1], to get rid of the twofold
unordered nature of forests, as claimed earlier. Indeed, any ordering of the vertices of the DAG
induces an order on the roots of the DAG, and therefore on the elements of the forest, as well on
the vertices of the trees themselves.

1.3 Aim of the paper

To the best of our knowledge, the enumeration of DAGs has never been considered in the literature.
The aim of this article is twofold, i.e (i) to open the way by presenting a reverse search algorithm
enumerating FDAGs, in Section 2, and (ii) to derive from it an algorithm for enumerating substruc-
tures in Section 5. The frequent pattern mining problem is a classical data mining problem – see
[11] for a survey on that question – and we provide in Section 6 a slight variation of the algorithm
of Section 5 to tackle this issue. In addition, Section 3 analyses the growth of the enumeration tree
defined in Section 2, while Section 4 proposes two variations of it. In more detail, our outline is as
follows:

• The first step is to introduce a canonical form for FDAG. For trees [20, Section 3], this consisted
in associating an integer (its depth) to each vertex, and maximizing the sequence by choosing
an appropriate ordering over the vertices. The notion of depth does not apply to FDAGs,
which forces us to find another strategy. DAGs are characterized by the existence of a
topological ordering [17], and we introduce in Subsection 2.2 a topological ordering that
is unique if and only if a DAG compresses a forest. This canonical ordering is defined so
that the sequence of children of the vertices is strictly increasing, where the multisets of
children are ordered by the lexicographical order. In fact, these ordered multisets of children
are considered as formal words, which brings us to a detour through the theory of formal
languages in Subsection 2.1 to introduce useful results for the rest of the article. Compared to
trees, we have here a first gain in complexity insofar as we maximize a sequence of words
instead of a sequence of integers.

• The expansion rule used for trees [20, Section 4] is to add a new vertex in the tree as a child of
some other vertex, so that the depth-sequence remains maximal. Consequently, a single arc is
also added. On the other hand, for a FDAG, we want to be able to add either vertices or arcs
independently. In Subsection 2.3, we define three expansion rules, reflecting the full spectrum
of possible operations, so that the DAG obtained afterward is still a FDAG. Specifically, the
branching rule allows to add an arc, where the elongation and widening rules add vertices
at different height. We show in Proposition 2.10 that the rules preserve the canonicalness
and in Proposition 2.11 that they are “bijective”: any FDAG can be reached by applying the
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expansion rules to a unique FDAG. In Subsection 2.5 we derive from them an enumeration
tree covering the set of FDAGs.

• Notably, a bijection between FDAGs and row-Fishburn matrices, a class of combinatorial
objects much exploited in the literature [13, Section 2], is shown in Theorem 3.1 – which proof
lies in Appendix A. The asymptotic behavior of these matrices being well known [14, 7], this
allows us to derive from it the behavior of the enumeration tree. In return, since our bijection
is constructive, the enumeration tree can be used to enumerate row-Fishburn matrices – and
all the objects they are in bijection with – via the reverse search method. Remarkably, this
bijection operates between two objects that, at first sight, have little in common.

• For an enumeration algorithm to have any practical interest, it is necessary that the associated
enumeration tree has a “reasonable” growth – with regard to the size of the explored space.
This is the case for our algorithm since we prove, in Subsection 3.2, that a FDAG with n
vertices has a number of successors in the enumeration tree in the order of Θ(n) – and that
those successors can be computed in quasi-quadratic time. We also show, in Theorem 3.6,
that our algorithm runs with polynomial delay [15].

• Subsection 4.1 introduces a way of enumerating forests in their classical definition, i.e., with
redundancy, where some trees may be equal to or subtrees of others. The proposed method
takes a redundancy-free forest, as enumerated by our algorithm, and adds repetition in an
extra enumeration step. Finally, Subsection 4.2 concludes on enumeration by proposing sets
of constraints that make the enumeration tree finite. Indeed, since the rules only allow to
increase the height, degree or number of vertices, it is sufficient to set maximum values for
some of these parameters to achieve this goal; however the combination of parameters has to
be wisely chosen, as we show it.

• Since the structures we enumerate are forests, it is natural that the substructures we are
interested in are “subforests”. A precise definition of the latter is given in Section 5, i.e. forests
of subtrees, and are referred to as subFDAGs. An algorithm to enumerate all subFDAGs
appearing in a FDAG is also provided. The frequent subFDAG mining problem is finally
addressed in Section 6.

Concluding remarks concerning the implementation of our results in the Python library treex [3]
are briefly mentioned at the end of the article. In Appendix B, the interested reader will find an
index of frequent notations used throughout the paper.

2 Exhaustive enumeration of FDAGs

In this section, we introduce our main result, that is, a reverse search algorithm for the enumeration
of FDAGs. As we will consider the multisets of children of vertices as formal words built on
the alphabet formed by the set of vertices, we introduce in Subsection 2.1 some definitions and
results on formal languages that will be useful for the sequel. We characterize unambiguously in
Subsection 2.2 our objects of study, through the lens of topological orderings, defining a canonical
topological ordering for DAGs, that is unique if and only if a DAG compresses a forest of unordered
trees, i.e. it is a FDAG – see Theorem 2.4. We then define three expansion rules that are meant to
extend the structures of FDAGs in Subsection 2.3, and we study their properties in Subsection 2.4.
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In Subsection 2.5, we show with Theorem 2.12 that these expansion rules define an enumeration
tree on the set of FDAGs.

2.1 Preliminary: a detour through formal languages

We present in this subsection some definitions and results on formal languages that will be useful
for the sequel of Section 2.

Let A be a totally ordered finite set, called alphabet, whose elements are called letters. A word
is a finite sequence of letters of A. The length of a word w is equal to its number of letters and is
denoted by #w. There is a unique word with no letter called the empty word and denoted by ε.
The set of all words is denoted by A∗. Words can be concatenated to create a new word whose
length is the sum of the lengths of the original words; ε is the neutral element of this concatenation
operation.

The lexicographical order over A∗, denoted by <lex. is defined as follows. Let w1 = a0 · · ·ap and
w2 = b0 · · ·bq be two words, with ai, bj ∈ A. If #w1 = #w2, then w1 <lex. w2 if and only if
∃k ∈ [[0, p]], ai = bi ∀i < k and ak < bk. Otherwise, let m = min(p, q); w1 <lex. w2 if and only if
either (i) a0 · · ·am <lex. b0 · · ·bm or (ii) a0 · · ·am =lex. b0 · · ·bm and m < q – that is, p < q. Note
that, by convention, ε <lex. w for any word w.

Let w ∈ A∗. We define the suffix-cut operator SC(w), which removes the last letter of w:

SC(w) =

{
w ′ if w = w ′awith a ∈ A and w ′ ∈ A∗,
ε otherwise.

(3)

A language is a set of words satisfying some construction rules. We introduce hereafter two
languages that will be useful in the sequel of the paper.

Definition 2.1. The language of decreasing words is defined as

Λ =
{
w = a0 · · ·am ∈ A∗ : ai ≥lex. ai+1 ∀i ∈ [[0,m− 1]]

}
.

Definition 2.2. Let w ∈ Λ. The language of decreasing words bounded by w is defined as

Λw = {w ∈ Λ : w >lex. w} .

Any word w ∈ Λw is said to be minimal if and only if w ∈ Λw but SC(w) /∈ Λw.

As an example, if A = {0, 1, 2, 3}, then w = 211 ∈ Λ, whereas 121 /∈ Λ. In addition, Λw contains
words such as 31, 22, 21110, etc. 22 is a minimal word ofΛw as 22 >lex. 211 but SC(22) = 2 <lex. 211.

Our focus is now on the construction of the minimal words of Λw. Let w = a0 · · ·ap and w =
b0 · · ·bq ∈ Λw. Taking into account that w >lex. w and that they both are decreasing words, there
are only two possibles cases:

(i) w and w share a common prefix a0 · · ·am. Then w = a0 · · ·ambm+1 · · ·bq, and the word
a0 · · ·ambm+1 is minimal by applying successive suffix-cut operations.
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(ii) w and w do not share a common prefix. Necessarily b0 >lex. a0, and then the word b0 is
minimal by applying several suffix-cut operations.

From the above, we deduce a method for constructing all minimal word of Λw. First, we partition
A into disjoint – potentially empty – subsets:

A0 = {a ∈ A : a >lex. a0},

Ai = {a ∈ A : ai−1 ≥lex. a >lex. ai} 1 ≤ i ≤ p,
Ap+1 = {a ∈ A : ap ≥lex. a}.

It then follows that – empty Ai’s not being considered,

• ∀b ∈ A0, the word b is minimal,

• ∀b ∈ Ai with i ∈ {1, . . . , p}, the word a0 · · ·ai−1b is minimal,

• ∀b ∈ Ap+1, the word wb is minimal.

As we partitioned A, we have proved the following proposition.

Proposition 2.3. The number of minimal words of Λw is exactly #A.

As a follow-up of the example some lines
ago, with A = {0, 1, 2, 3} and w = 211, we
apply the proposed method to find the min-
imal elements of Λw. We partition A into:
A0 = {3}, A1 = {2}, A2 = ∅, A3 = {0, 1}. The
four minimal words are therefore 3, 22, 2111
and 2110.

Although the previous result is completely
general, if we require that A = {0, . . . , n},
then the partition method described above
can be rewritten into Algorithm 2. While
this is not included in the pseudocode pro-
vided, note that the algorithm should return
an empty list if a0 > n, as in this case there
would be no minimal word to look for.

Algorithm 2: MINIMALWORDS

Input: w = a0 · · ·ap, A = {0, . . . , n}

Output: All minimal words of Λw

1 Set L to the empty list
2 if a0 < n then
3 for i ∈ {a0 + 1, . . . , n} do
4 Add the word i to L

5 for k ∈ {1, . . . , p} do
6 if ak < ak−1 then
7 for i ∈ {ak + 1, . . . , ak−1} do
8 Add the word a0 · · ·ak−1i to L

9 for i ∈ {0, . . . , ap} do
10 Add the word a0 · · ·api to L

11 return L

2.2 Canonical FDAGs

FDAGs are unordered objects, like the trees they compress, and therefore their enumeration requires
to reflect this nature. In practice, finding a systematic way to order them makes it possible to design
a simpler reduction rule, as done for trees [20], ignoring the combinatorics of permutations. The
purpose of this subsection is to provide a unique way to order FDAGs. We show that such an order
exists in Theorem 2.4, unambiguously characterizing FDAGs. The approach chosen is based on the
notion of topological order.
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ψ1( ) 3 2 1 0
ψ2( ) 3 2 0 1
ψ3( ) 2 3 0 1
ψ4( ) 2 3 1 0
ψ5( ) 1 3 0 2

Figure 2: The DAG on the left admits five topo-
logical orderings, which are shown in the table.

Topological ordering Let D be a directed
graph, where multiple arcs are allowed. A topo-
logical ordering on D is an ordering of the ver-
tices ofD such that for every arc uv from vertex
u to vertex v, u comes after v in the ordering.
Formally, ψ : D → [[0, #D − 1]] is a topolog-
ical ordering if and only if ψ is bijective and
ψ(u) > ψ(v) for all u, v ∈ D such that there
exists at least one arc uv in D. A well known
result establishes that D is a DAG if and only if it admits a topological ordering [17]. Nonetheless,
when a topological ordering exists, it is in general not unique – see Figure 2. A reverse search
enumeration of topological orderings of a given DAG can actually be found in [2, Section 3.5].

Constrained topological ordering We aim to reduce the number of possible topological orderings
of a DAG by constraining them. Let D be a DAG and ψ a topological ordering. Taking advantage
of the vertical hierarchy of DAG, our first constraint is

∀(u, v) ∈ D2, H(u) > H(v) =⇒ ψ(u) > ψ(v). (4)

Applying (4) to the topological orderings presented in Figure 2, ψ5 must be removed, as ψ5( ) >
ψ5( ) andH( ) > H( ).

For any vertex v, and any u ∈ C(v), by definition, H(v) > H(u). Therefore, there can be no arcs
between vertices at same height. Any arbitrary order on them leads to a different topological
ordering. The next constraint we propose relies on the lexicographical order:

∀(u, v) ∈ D2, H(u) = H(v) and Cψ(u) >lex. Cψ(v) =⇒ ψ(u) > ψ(v), (5)

where Cψ(v) is the list [ψ(vi) : vi ∈ C(v)] sorted by decreasing order w.r.t. the lexicographical order.
In other words, Cψ(v) is a decreasing word – see Definition 2.1 – on the alphabet A = [[0, #D− 1]].
Table 1 illustrates the behavior of (5) on the followed example of Figure 2.

(5)
Cψ1( ) 11 10 X
Cψ2( ) 00 10 7

Cψ3( ) 00 10 X
Cψ4( ) 11 10 7

Table 1: Application of (5) to the remaining topological
orderings of Figure 2 that satisfy (4). As Cψ( ) = Cψ( ),
we only need to consider vertices and . As ψi( ) >
ψi( ) ⇐⇒ i ∈ {1, 2}, the only orderings that are kept are
ψ1 and ψ3.

The combination of those two constraints imposes uniqueness in all cases except when there exists
(u, v) ∈ D2 such that Cψ(u) = Cψ(v) and u 6= v. It should be clear that if we impose the upcoming
condition (6), such a pathological case can not occur.

∀(u, v) ∈ D2, u 6= v =⇒ C(u) 6= C(v) (6)

Upcoming Theorem 2.4 establishes that a DAG compresses a forest if and only if the topological
order constrained by (4) and (5) is unique. In other words, an unambiguous characterization of
FDAGs is exhibited.
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Theorem 2.4. The following statements are equivalent:

(i) D fulfills (6),

(ii) there exists a unique topological ordering ψ of D that satisfies both constraints (4) and (5),

(iii) there exists a unique forest F ∈ F – cf. (2) – such that D = R(F),

where R is the DAG reduction operation defined in Subsection 1.2.

Proof. (i) ⇐⇒ (ii) follows from the above discussion. (iii) =⇒ (i) follows from the definition of
R. Indeed, if there was two distinct vertices (u, v) ∈ D2 with the same multiset of children, they
would have been compressed as a unique vertex in the reduction. We now prove that (i) =⇒ (iii).

In the first place, ifD fulfills (6), thenDmust admit a unique leaf, denoted by L(D). Indeed, if there
were two leaves l1 and l2, we would have H(l1) = H(l2) = 0 but also C(l1) = C(l2) = ∅, which
would violate (6). Let r1, . . . , rk be the vertices inD that have no parent. We defineD1, . . . , Dk as the
subDAG rooted respectively in r1, . . . , rk. Then, we define Ti = R−1(Di) and F = {T1, . . . , Tk}. The
Ti’s are well defined as all vertices in D (consequently in Di) have a different multiset of children,
and therefore compress distinct subtrees – i.e. F fulfills (2), therefore F ∈ F . Moreover,D = R(F). f

2 3

2

v

ψ(v) 0 1 2 3 4 5

Cψ(v) 0 00 000 1 211

Figure 3: A FDAGD (left) and its canonical order-
ing ψ (right). Vertices that are at the same height
are enclosed in the table between the dashed lines.
Red arrows indicate the roots of the trees of the
forest that is compressed by D.

In the sequel of the article, we shall only con-
sider FDAGs. Consequently, from Proposi-
tion 2.4, they admit a unique topological or-
dering ψ satisfying both constraints (4) and
(5), called canonical ordering. Thus, for any
FDAG D, the associated canonical ordering ψ
will be implicitly defined. The vertices will
be numbered accordingly to their ordering, i.e
D = (v0, . . . , vn) with ψ(vi) = i. Finally, as a
consequence of constraints (4) and (5), note that
D can be partitioned in subsets of vertices with
same height, each of them containing only consecutive numbered vertices. Figure 3 provides an
example of a FDAG and its canonical ordering.

2.3 Expansion rules

Reverse search techniques implies finding reduction rules, and then inverse them. Equally, we
will define instead three expansion rules, of which inverse will be reduction rules. An expansion
rule takes a FDAG and create a new DAG, that is “expanded” in the sense of having either more
vertices or more arcs. Our rules are analysed at the end of the subsection, where notably we
prove in Proposition 2.10 that expansion rules preserve the canonicalness. Moreover, we show in
Proposition 2.11 that they are “bijective”: any FDAG is in the image of a unique FDAG through the
expansion rules. We begin with a preliminary definition.
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Definition 2.5. Let D be a FDAG, with D = (v0, . . . , vn). We define the two following alphabets

A= = {ψ(v) : v ∈ D,H(v) = H(vn)} = {p+ 1, . . . , n},

A< = {ψ(v) : v ∈ D,H(v) < H(vn)} = {0, . . . , p},

where p ∈ [[0, n− 1]] and ψ(·) is the canonical ordering of D.

In other words, A= contains the indices of all vertices that have the same height as the vertex with
the highest index according to ψ, andA< the indices of all vertices that have an inferior height. The
FDAG presented in Figure 3 will serve as a guideline example all along this subsection. Here, we
have A= = {4, 5} and A< = {0, 1, 2, 3}.

The three expansion rules are now introduced. LetD = (v0, . . . , vn). Each of these rules is associated
with an explicit symbol, which may be used, when necessary, to designate the rule afterward. It is
worth noting that all of these rules will operate according to the vertex of highest index, vn.

Branching rule This rule adds an arc between vn and a vertex below. The end vertex of the
new arc is chosen such that Cψ(vn) remains a decreasing word. In Figure 4, is applied on our
guideline example.

Definition 2.6. Let Cψ(vn) = a0 · · ·am. Choose am+1 ∈ A< such that am ≥lex. am+1 and add an
arc between ψ−1(am+1) and vn.

2 3

3 v . . .

ψ(v) . . . 5

Cψ(v) . . . 2111

(a)

2 3

2 v . . .

ψ(v) . . . 5

Cψ(v) . . . 2110

(b)

Figure 4: Branching rule applied to the FDAG of Figure 3. As Cψ(v5) = 211, the only letters awe
can pick from A< = {0, 1, 2, 3}, satisfying a ≤lex. 1, are 0 and 1. The only two possibles outcomes of

are the words (a) 2111 and (b) 2110.

Elongation rule This rule adds a new vertex vn+1 such thatH(vn+1) = H(vn)+1. Consequently,
the alphabets change and become A= = {n+ 1} and A< = {0, . . . , n}. Note that after using this rule,
it is not possible to ever add a new vertex at heightH(vn). See Figure 5 for an illustration of this
rule on the guideline example.

Definition 2.7. Add new vertex vn+1 such that Cψ(vn+1) = a0 ∈ A=.

Widening rule This rule adds a new vertex vn+1 at heightH(vn). The vertex is added with
children that respects the canonicalness of the DAG, that is, such that Cψ(vn+1) >lex. Cψ(vn) – as
in condition (5). In other terms, denoting Λ< the language of decreasing words on alphabet A<,
and with w = Cψ(vn), Cψ(vn+1) must be chosen in Λw< – see Definition 2.2. However, this set is
infinite, so we restrict Cψ(vn+1) to be chosen among the minimal words of Λw< . It follows from the
definition of suffix-cut operator SC(·) that, by inverting the said operator, the other words in Λw<
can be obtained by performing repeated operations. Finally, this new vertex is added to A=.
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2 3

2

v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 4

(a)

2 3

2

v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 5

(b)

Figure 5: Elongation rule applied to the FDAG of Figure 3. As A= = {4, 5}, there are only two
choices leading to (a) Cψ(v6) = 4 and (b) Cψ(v6) = 5. The alphabets become A< = {0, . . . , 5} and
A= = {6}.

Definition 2.8. Add new vertex vn+1 such that

Cψ(vn+1) ∈
{
w ∈ Λw< : w is a minimal word of Λw<

}
with w = Cψ(vn).

From Proposition 2.3 we now that such minimal words exist. We prove in the upcoming lemma
that, as claimed,H(vn+1) = H(vn).

Lemma 2.9. Any element of Λw< defines a new vertex vn+1 such thatH(vn+1) = H(vn).

Proof. From the definition of H(·) – (1), it suffices to prove that vn+1 admits at least one child at
height h = H(vn) − 1. Let us denote b0 and a0 the first letter of, respectively, Cψ(vn+1) and Cψ(vn).
Denoting v = ψ−1(b0) and u = ψ−1(a0), we already know that H(u) = h – as ψ respects (5) and
Cψ(vn) is a decreasing word. Therefore, as by construction Cψ(vn+1) >lex. Cψ(vn), either (i) b0 = a0
and therefore v = u, either (ii) b0 >lex. a0. In the latter, as ψ respects (4) and (5),H(v) ≥ H(u) = h.
But, as b0 ∈ A<,H(v) < H(vn) = h+ 1. In both cases,H(v) = h. f

Figure 6 illustrates the use of the widening rule on the followed example. It should be noted that
the possible outcomes of are obtained by using Algorithm 2, applied to w = Cψ(vn) and p –
with A< = {0, . . . , p}.

2 3

2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 3

(a)

2 3

2 2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 22

(b)

2 3

2 3 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 2111

(c)

2 3

2 2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 2110

(d)

Figure 6: We apply to the FDAG of Figure 3. Here, A< = {0, 1, 2, 3} and w = 211. As seen in
Subsection 2.1, the minimal words of Λw< are 3, 22, 2111 and 2110. Therefore, there are 4 ways to
add a new vertex v6 via the widening rule, that are such that (a) Cψ(v6) = 3, (b) Cψ(v6) = 22, (c)
Cψ(v6) = 2111 or (d) Cψ(v6) = 2110. Finally, we update A= to be equal to {4, 5, 6}.
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2.4 Analysis of the rules

Since our goal is to enumerate FDAGs, it is required that the expansion rules indeed construct
FDAGs. This is achieved by virtue of the following proposition.

Proposition 2.10. The expansion rules preserve the canonicalness property.

Proof. Let D = (v0, . . . , vn) be a FDAG. The proposition follows naturally from the definitions:

Let a be the letter added to w = Cψ(vn). As wa >lex. w >lex. Cψ(vn−1), the ordering is
unchanged.

The new vertex vn+1 is such thatH(vn+1) > H(vn), so condition (4) is still met.

The new vertex vn+1 is chosen so that H(vn+1) = H(vn) and Cψ(vn+1) >lex. Cψ(vn), so
condition (5) is also still met.

Therefore, any DAG obtained from D is still a FDAG. f

Secondly, since our goal is to provide the FDAGs space with an enumeration tree, which will be
explored via the expansion rules, it is important that these expansion rules are “bijective” in the
following sense: for any FDAG D, there exists a unique FDAG D ′ such that D is obtained from D ′

via one of the three rules , or .

Such D ′ can be constructed via Al-
gorithm 3 as shown in upcoming
Proposition 2.11. Conditional ex-
pressions applied to D are used
to determine which modification
should be applied to construct D ′.
The gray symbol (in the algorithm)
next to these modifications indi-
cates which expansion rule allows
to retrieve D from D ′.

Proposition 2.11. Algorithm 3 ap-
plied to any FDAG constructs the
unique antecedent of this FDAG.

Algorithm 3: ANTECEDENT

Input: D = (v0, . . . , vn); w = Cψ(vn); w ′ = Cψ(vn−1)
1 if vn is the only vertex of heightH(vn) then
2 if #w = 1 then
3 Delete vertex vn
4 else
5 w← SC(w)

6 else
7 if w is a minimal word of Λw

′
< then

8 Delete vertex vn
9 else

10 w← SC(w)

SC(·) is the suffix-cut operator defined in (3).

Proof. Let D = (v0, . . . , vn) be a FDAG. Let w = Cψ(vn) and w ′ = Cψ(vn−1). Two cases can occur:
(i) either vn is the only vertex at heightH(vn), (ii) or it is not.

(i) It is clear in this case that D can not be obtained from any FDAG via the rule – otherwise
vn would not be alone at its height. Concerning and , let us look at the number of
children of vn.

(a) If vn admits only one child, it must come from an step, since would imply that
#w ≥ 2. Therefore, in this case, D can be retrieved among the outcomes of rule
applied to D ′ = (v0, . . . , vn−1).
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(b) Otherwise, when #w > 1, D can not come from an step, and must therefore come
from . Denoting v ′n the vertex with list of children SC(w) – see (3), D is one of the
outcomes of D ′ = (v0, . . . , vn−1, v

′
n) via .

(ii) following the same logic as (i),D can not be obtained via . We discrimine between rules
and be comparing w and w ′. If w is a minimal word of Λw

′
< , then D can not be obtained

from – this would break the canonical order. Therefore, in this case, D is an outcome
of rule applied to D ′ = (v0, . . . , vn−1). Otherwise, if w is not a minimal word, then it can
not be obtained from , and must come from a step, applied toD ′ = (v0, . . . , vn−1, v

′
n)

where Cψ(v ′n) = SC(w).

Whatever the case among those evoked, they correspond exactly to the conditional expressions of
the Algorithm 3, which therefore constructs the correct antecedent of D, which is unique by virtue
of the previous discussion. f

2.5 Enumeration tree

In this subsection, we construct the enumeration tree of FDAGs derived from the expansion rules
of Subsection 2.3. As aimed, their inverse is indeed a reduction rule.

Theorem 2.12. Algorithm 3 is a reduction rule, as defined in Subsection 1.1.

Proof. Let us denote f(D) the output of Algorithm 3 applied to a FDAG D. We need to prove that:
(i) f(D) is a subgraph of D and (ii) for any D 6= D0, there exists an integer k such that fk(D) = D0,
where D0 is the FDAG with one vertex and no arcs.

(i) Since Algorithm 3 deletes either one vertex and its leaving arcs, or just one arc, f(D) is indeed
a subgraph of D.

(ii) The sequence of general term fk(D) is made of discrete objects whose size is strictly decreasing,
therefore the sequence is finite and reaches D0.

f

The associated expansion rule is exactly, in light of Proposition 2.11, the union of the three expansion
rules , and . Since D0, the DAG with one vertex and no arcs, is a FDAG, by virtue of
what precedes and with Algorithm 1 – here with g(·) = >, we just defined an enumeration tree
covering the whole set of FDAGs, whose root is D0. A fraction of this enumeration tree is shown in
Figure 7, illustrating the path from the root D0 to the FDAG of Figure 3. Unexplored branches are
ignored, but are still indicated by their respective root.

3 Growth of the tree

In this section, we analyse the enumeration tree defined in Section 2. In Subsection 3.1, we exhibit a
bijection – Theorem 3.1 – between FDAGs and a class of combinatorial objects from the literature,
allowing us to obtain an asymptotic expansion of the growth of the tree. In Subsection 3.2, we
show that any FDAG has a linear number of children in that tree in Theorem 3.3, and that the time
complexity to construct those children is quadratic – see Proposition 3.5. Finally, Theorem 3.6 states
that our algorithm runs with polynomial delay [15].
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Figure 7: The path (in bold) in the FDAGs enumeration tree leading to the FDAG of Figure 3. The
unexplored branches are only displayed by their root, which are shown partially transparent. The
order of insertion of the vertices of each FDAG is always the same, and follows the color code (in
the order of insertion): , , , , , and . With respect to the canonical ordering, they
are numbered 0 to 6 in the same order.
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3.1 Asymptotic growth

In this subsection, we show that FDAGs are in bijection with a set of particular matrices, whose com-
binatorial properties are known and give us access to an asymptotic expansion of the enumeration
tree growth.

Let us denote Ek the set of all FDAGs that
are accessible from D0 in exactly k steps in
the enumeration tree – with E0 = {D0}; then
Table 2 depicts the values of #Ek for the first
nine values of k3.

k 0 1 2 3 4 5 6 7 8
#Ek 1 1 3 12 61 380 2,815 24,213 237,348

Table 2: Number of FDAGs accessible from D0 in
k steps in the enumeration tree.

Actually, the terms of Table 2 coincide with the first terms of OEIS sequence A1586914, which counts
the number of row-Fishburn matrices, that are upper-triangular matrices with at least one nonzero
entry in each row. The size of such a matrix is equal to the sum of its entries.

Theorem 3.1. There exists a bijection Φ between the set of FDAGs and the set of row-Fishburn matrices,
such that if D is a FDAG andM = Φ(D), then

D ∈ Ek ⇐⇒ size(M) = k.

Proof. The proof lies in Appendix A. f

This connection is to our advantage since Fishburn matrices (in general) are combinatorial objects
widely explored in the literature as they are in bijection with many others – see [13, Section 2] for a
general overview. Notably, the asymptotic expansion of the number of row-Fishburn matrices has
been conjectured first by Jelı́nek [14] and then proved by Bringmann et al. [7].

Proposition 3.2 (Jelı́nek, Bringmann et al.). As k→∞,

#Ek = k!
(
12

π2

)k(
β+O

(
1

k

))
with β = 6

√
2

π2
eπ
2/24 = 1.29706861206 . . . .

3.2 Branching factor

Given the overall structure of FDAGs, it is no surprise that the enumeration tree grows extremely
fast. However, despite this combinatorial explosion, we show in this subsection that the branching
factor, i.e., the outdegree of the nodes in the enumeration tree, is controlled. Actually, we prove
that any FDAG has a linear number of successors5 in the enumeration tree.

Theorem 3.3. Any FDAG D has Θ(#D) successors in the FDAG enumeration tree.

Proof. Let D = (v0, . . . , vn) be a FDAG. We denote Cψ(vn) = a0 · · ·am. Depending on the rule
chosen:
3These numbers were obtained numerically (cf. “Implementation” at the end of the article).
4OEIS Foundation Inc. (2021), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A158691.
5“successor” in the sense of “children in the enumeration tree”. We make the distinction to avoid confusion with the
children denoted by C(·).
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am+1 belongs to A< = {0, . . . , p}, so the maximum number of successors is at most p + 1,
and at least 1, depending on the condition am ≥lex. am+1.

The child of the new vertex is taken from A= = {p+ 1, . . . , n} so the number of successors is
exactly n− p.

Following Proposition 2.3, the number of successors is exactly #A< = p+ 1.

Combining everything, the number of successors is at least n+ 2 and at most n+ p+ 2 ≤ 2n+ 1
(as p ≤ n− 1, with equality for FDAGs obtained just after using rule). f

In the previous proof, we have shown that the number of successors of a FDAG with n vertices is
between n+ 1 and 2n− 1. Figure 8 illustrates that these boundaries are tight, on 1 000 randomly
generated FDAGs. A random FDAG is constructed as follows.

Definition 3.4 (Random FDAG). Let k ≥ 0. Starting from D0 – the root, construct iteratively Di as a
successor of Di−1 in the enumeration tree, picked uniformly at random. We stop after k steps, and keep Dk.

In Figure 8, we have generated 10 random
FDAGs for each k ∈ {1, . . . , 100}.

It is indeed a suitable property that any FDAG
admits a linear number of successors; but it
would be of little use if the time required to
compute those successors is too important. We
demonstrate in the following proposition that
temporal complexity is manageable. There are
two possible strategies: (i) one can keep the
enumeration tree in memory, and store on each
node only the increment allowing to construct
a FDAG from its predecessor; or (ii) one can
explicitly build the successors by copying the
starting FDAG, so that the tree can be forgotten.
Depending on whether one wants to build the
tree itself or only the FDAGs that compose it,
one will choose either strategy.

0 10 20 30 40 50 60 70
Number of vertices

0

50

100

150
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rs

Figure 8: Numbers of successors of 1,000 ran-
dom FDAGs in the enumeration tree, according
to their number of vertices. Orange lines have
equations y = n+ 1 and y = 2n− 1.

Proposition 3.5. Computing the successors of any FDAG D has complexity:

(i) O(#Ddeg(D)) if the construction is incremental from D;

(ii) O
(
(#Ddeg(D))2

)
if the construction involves copying D.

Proof. LetD = (v0, . . . , vn) be a FDAG with n+1 vertices, with Cψ(vn) = a0 · · ·am,A< = {0, . . . , p}

and A= = {p + 1, . . . , n}. Although the alphabets A< and A= can be retrieved in linear time, it is
more efficient to maintain the pair (n, p) during enumeration; how to update these indices has
already been presented in Subsection 2.3, when introducing each expansion rule.

The explicit construction of the successors in case (ii) requires to copy the vertices of D and their
children, leading to a complexity in the order of

∑n
i=0(1+ deg(vi)), which can be roughly bounded

by (n+ 1)(deg(D) + 1).
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Depending on the expansion rule, the complexity for computing the new vertex or new arc varies:

The last letter of Cψ(vn) determines the number of successors – but it is no more than p+ 1.
In case (i), although we could just store the information of the new letter, it is better to
copy Cψ(vn) and add the new letter and store the result. Indeed, this allows to always have
the knowledge of Cψ(vn) in the enumeration tree. The complexity for case (i) is therefore
bounded by deg(vn)(p+ 1); whereas it is p+ 1 in case (ii) since Cψ(vn) is already copied.

Each successor is obtained by picking one element of A= = {p+ 1, . . . , n}. The complexity is
exactly (up to a constant) n− p in both cases.

The successors are obtained by Algorithm 2, involving copying subwords of Cψ(vn) – the
overall complexity is bounded by (p+ 1)deg(vn).

The overall complexity is therefore of the order of 2(p + 1)deg(vn) + n − p in case (i) and of
(n+1)(deg(D)+1) [(p+ 1)(deg(vn) + 1) + n− p] in case (ii). Using rough bounds, with deg(vn) ≤
deg(D) and p ≤ n, we end up with the stated complexity. f

Whereas Figure 8 shows the number of suc-
cessors of 1,000 random FDAGs, we measured
the time needed to compute explicitly – i.e., im-
plying copy, which is case (ii) in the previous
Proposition 3.5 – these successors. The results
are depicted in Figure 9, where we plotted (in
blue) the total time tD for computing all suc-
cessors of a given FDAG D, and (in red) what
we call amortized time, i.e. tD/(#Ddeg(D))2. As
expected from Proposition 3.5, one can observe
an asymptotic quadratic behaviour for the total
time (in blue); concerning amortized time (in
red), despite some variability, the upper bound
seems to be constant.

The computations have been made on a Mac-
Book Pro (2014) with an Intel Core i7 2.8 GHz
processor and 16 GB of RAM.

0 10 20 30 40 50 60 70 80
Number of vertices

0

10

20

30
C

om
p

u
ta

ti
on

ti
m

e
of

su
cc

es
so

rs
(s

)

0

2

4

6

8

10

A
m

or
ti

ze
d

ti
m

e
(1

0−
4

s)

Figure 9: Total computation time (in blue) and
amortized time (in red) for the explicit con-
struction of the successors of the 1,000 random
FDAGs of Figure 8, according to their number
of vertices.

3.3 Polynomial delay

Let E≤K+1 =
⋃
k≤K+1 Ek be the set of all FDAGs reachable in at most K+ 1 steps from the root of the

FDAG enumeration tree. In this subsection, we show that the time complexity for enumerating
E≤K+1 can be expressed as a function of the cardinality of E≤K and has polynomial delay.

Theorem 3.6. Enumerating E≤K+1 has time complexity O(K2#E≤K).

Proof. We adopt the configuration where we keep the enumeration tree in memory and where each
node contains the incremental information to construct a FDAG from its predecessor.
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We first observe the following: as D0, the root, has one vertex and no arcs, and since the rules of
expansion can only add one vertex and/or increase the degree of the last vertex by one, for any
D ∈ Ek, it follows naturally that #D ≤ k+ 1 and deg(D) ≤ k. It implies that the time complexity
for generating the successors of a FDAG in Ek is O(k2), according to case (i) of Proposition 3.5.

Thus, enumerating all the elements of Ek+1 requires a time complexity of O(k2#Ek). It follows that
we have a complexity of O

(∑
k≤K k

2#Ek
)

for enumerating E≤K+1. Since k ≤ K and
∑
k≤K #EK =

#E≤K, we end up with the announced complexity. f

As such, our algorithm has a polynomial delay, which is desirable for this kind of enumeration [15].

4 Variations on the enumeration tree

In this section, two variants of the enumeration tree presented in Section 2 are introduced. Sub-
section 4.1 proposes a way to enumerate forests in their classical sense, i.e., where redundancies
within the forest are accepted, by adding an extra step following the previous enumeration. Finally,
options to constrain the enumeration tree – on maximum number of vertices, height or outdegree –
and making it finite are proposed in Subsection 4.2.

4.1 Extension to forests with repetitions

The enumeration tree constructed in Section 2 only allows to enumerate, in their compressed form,
irredundant forests, where no tree can be a subtree of (or equal to) another. In this subsection, we
propose a method to enumerate forests in the usual sense, without this non-redundancy restriction.

Let F be a forest in the classical sense, i.e., where some trees may be identical to or subtrees of other
trees. If we compute D = R(F), by definition, all these redundancies will be lost: the trees which
are subtrees of another will be compressed with these subtrees in the obtained DAG, and those
which are identical will be compressed in the same source of the DAG. This is why we specified in
Subsection 1.2 that DAG compression is lossless if and only if the forest is irredundant.

We can preserve the information lost by the compression if we keep, in addition, a presence vector.
Let us rewrite D = (v0, . . . , vn) according to the canonical order. Each tree T ∈ F is associated
with an index i ∈ {0, . . . , n} such that T = R−1(D[vi]). The presence vector πF : {0, . . . , n} → N is
constructed such that πF(i) counts how many times the tree R−1(D[vi]) appears in F. Thus, the
couple (D,πf) completely characterizes the forest F. To enumerate all (redundant) forests, it is
therefore sufficient to enumerate both all FDAGs (corresponding to irredundant forests) and the
presence vectors that may be associated with them.

LetD be an FDAG constructed in the FDAG enumeration tree. We define πD as the presence vector
associated to the (irredundant) forest R−1(D). This vector can be computed in a linear traversal of
D, where the sources of D are assigned a value of 1 and the other vertices are assigned a value of 0.
Adding redundancies in a forest means incrementing the presence vector, each +1 resulting in a
new tree, whether it is equal to an existing tree or a subtree of it.

Our strategy is to enumerate, from πD, all presence vectors corresponding to forests whose DAG
reduction would be exactly D. To do so, we use a reverse search structure, with the following
expansion rule (E). Let j be the index of the last increment, initialized to j = 0.
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Definition 4.1 (E). Choose any index j ′ ≥ j. Increase π(j ′) by one and set j← j ′.

This rule allows to get any presence vector from πD in a unique way, i.e., each index must be
increased to its desired final value before moving to the next index. This defines an enumeration
tree of presence vectors. If we implement this tree in such a way that each node contains only
the new index j ′, we obtain an algorithm that enumerates each presence vector from its parent
in constant time and space. The growth of this (infinite) new enumeration tree is given by the
following proposition.

Proposition 4.2. The number of redundant forests that can be constructed in at most k ≥ 1 steps from
R−1(D) – following expansion rule (E) – is given by

(
n+1+k
k

)
− 1.

Proof. We first notice that the expected number is exactly the same as the number of presence
vectors constructible in at most k steps from πD. We then notice that if the current node (in the
presence vector enumeration tree) has index j, then it has n + 1 − j successors by the expansion
rule (E) of Definition 4.1. For instance, since the starting index is 0, for k = 1, we obtain the indices
0, . . . , n in one copy each. We denote by np(j) the number of times the index j appears in the nodes
obtained in exactly p steps from the origin. Thus, n1(j) = 1 by the above. Each index j ′ ≤ j existing
at step p− 1will induce a successor with index j at step p, so that np(j) =

∑j
j ′=0 np−1(j

′).

We establish by induction on p that np(j) =
(
k−1+j
j

)
, using the so called hockey-stick identity∑m

r=0

(
n+r
r

)
=
(
n+1+m
m

)
[16]. Since the number of presence vectors that can be constructed in at most

k ≥ 1 steps from πD is given by
∑k
p=1

∑n
j=0 np(j), we obtain the expected result after applying

twice the hockey-stick identity. f

We can merge the enumeration tree of repetitions with the enumeration tree of FDAGs, to form a
single enumeration tree, which enumerates forests in the classical sense (and in compressed form),
as follows: the nodes of the enumeration tree carry a couple (FDAG, presence vector), and the
available expansion rules are , , and (E). However, successors created with the last
rule produce branches where it becomes the only rule available. In other words, once one chooses
repetition, one can not modify any longer the topology of the FDAG – this is to ensure that each
forest can only be enumerated in a unique way.

4.2 Constraining the enumeration

In [20], the authors propose an algorithm to enumerate all trees with at most n vertices. They
simply check whether the current tree has n vertices or not, and as their expansion rule adds one
vertex at a time, they decide to cut a branch in the enumeration tree once they have reached n
vertices. Similarly, adding a vertex to a tree can only increase its height or outdegree, so we can
proceed in the same way to enumerate all trees with maximal height H and maximal outdegree d.
Indeed, the number of trees satisfying those constraints is finite [4, Appendix D.2].

This property also holds with the approach presented in Section 2: following one of the three
expansion rules, we can only increase the height, outdegree or number of vertices of the FDAG.
So, it makes sense to define similar constraints on the enumeration. However, for this constrained
enumeration to generate a finite number of FDAGs, constraints must be chosen wisely, as shown in
the following proposition.
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Proposition 4.3. The enumeration tree of FDAGs is finite if at least one of those set of constraints is chosen:

(i) maximum number of vertices n and maximum outdegree d,

(ii) maximum height H and maximum outdegree d.

Proof. As allows to add arcs indefinitely without changing the numbers of vertices, constrain-
ing on the maximum outdegree is mandatory in both cases. As the two others rules add vertices,
constraining by the number of vertices leads to a finite enumeration tree – (i) is proved. To conclude,
we only need to prove that can not be repeated an infinite number of times, i.e. there is only a
finite number of new vertices that can be added at a given height, up to the maximum outdegree.
This is achieved by virtue of the upcoming lemma.

Let H > 2 and d ≥ 1. Let D be the FDAG constructed so that for each 0 ≤ h ≤ H, D has the
maximum possible number nh of vertices of height h and with maximum outdegree d. Initial
values are n0 = 1 and n1 = d.

Lemma 4.4. ∀2 ≤ h ≤ H, nh =

d∑
k=1

(
k+ nh−1 − 1

k

)(
d− k+ n0 + · · ·+ nh−2

d− k

)
.

Let h ≥ 2 be fixed. To lighten the notation, let n = nh−1 andm = n0 + · · ·+ nh−2. Let v be a vertex
to be added at height h. For any vertex vi at height h − 1, let xi be the multiplicity of vi in C(v) –
0 if vi /∈ C(v). Similarly, for any vertex vh with H(vj) ≤ h − 2, yj is the multiplicity of vj in C(v) –
possibly 0. By definition ofH(·) – see (1), at least one xi is non-zero. Therefore, there exist k ∈ [[1, d]]
such that:

x1 + · · ·+ xn = k
y1 + · · ·+ ym ≤ d− k

By virtue of the stars and bars theorem, for a fixed k, there are
(
k+n−1
k

)
choices for variables xi, and(

d−k+m
d−k

)
for variables yj. Summing upon all values for k proves the claim. f

Remark 4.5. In the constrained enumeration proposed in [20], all the trees with n vertices are the leaves of
the enumeration tree. To get all trees with n+ 1 vertices, it suffices to add to the enumeration all children
of these leaves, i.e. trees obtained by adding a single vertex to them. This property – moving from one
parameter value to the next by enumerating just one step further – does not hold anymore as soon as our set
of constraints involve the maximum outdegree d, both for trees and FDAGs. For instance, from a FDAG of
height H, one can obtain FDAG of height H+ 1 by using once and repeating up to d− 1 times.

5 Enumeration of forests of subtrees

Once the reverse search scheme has been set up to enumerate a certain type of structure, it is natural
to move to a finer scale by using the same scheme to enumerate substructures. However, the notion
of “substructure” is not obvious to derive from the main structure, as several choices are possible –
e.g. for trees one can think of subtrees [24, 5], subset trees [8], etc. From a practical point of view,
the enumeration of substructures permits to solve the frequent pattern mining problem – which
will be tackled in Section 6.
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In this section we define forests of subtrees, which will be our substructures. Compressed as
FDAGs, these objects will be called subFDAGs. We then address the problem of enumerating all
subFDAGs appearing in an FDAG D – similar as the one of enumerating all subtrees of a tree.

Forests of subtrees Similarly to forest being tuple of trees, forests of subtrees are tuple of subtrees,
satisfying (2). Formally:

Definition 5.1. Let F and f be two forests. f is a forest of subtrees of F if and only if

∀t ∈ f, ∃T ∈ F, t ∈ S(T).

Forests of subtrees can be directly constructed from FDAGs, as shown by the upcoming proposition.
Let D be a FDAG, and V be a subset of vertices of D.

Proposition 5.2. If ∀v ∈ V , C(v) ⊆ V , then V defines a FDAG ∆, such that R−1(∆) is a forest of subtrees
of R−1(D).

Proof. We recall from Subsection 1.2 that the notation D[v] stands for the subDAG of D rooted in v
composed of v and all its descendants D(v). The notation R−1(D[v]) stands for the tree compressed
by D[v]. The demonstration is in two steps. (i) Remove from D the vertices that does not belong to
V ; as there are no arcs that leave V by hypothesis, end up with a FDAG. Let us call ∆ this FDAG. (ii)
Let ρ be a root of ∆. By construction, ρ is also a vertex inD. Among all roots ofD, there exists a root
r such that ρ ∈ D(r). Therefore, D[ρ] is a subDAG of D[r], and then t = R−1(D[ρ]) is a subtree of
T = R−1(D[r]) – with T ∈ F = R−1(D). As ∆[ρ] andD[ρ] are isomorphic, t ∈ f = R−1(∆). Therefore
we have proved that ∀t ∈ f, ∃T ∈ F, t ∈ S(T). f

We say that the FDAG ∆ is a subFDAG6 ofD. Figure 10 provides an example of such a construction.

2 3

2

(a)

2

(b)

t1 t2

f = {t1, t2}

(c)

T1 T2 T3

F = {T1, T2, T3}

(d)

Figure 10: Construction of a forest of subtrees from FDAG. (a) A FDAG D. The set V is circled in
red. (b) The FDAG ∆ (c) The forest f compressed by ∆. (d) The forest F compressed by D. One can
spot that t1 ∈ S(T1), t2 ∈ S(T2) so f is a forest of subtrees of F, and ∆ a subFDAG of D.

6Not to be confused with subDAG, introduced in Subsection 1.2. A subDAG admits a single root and therefore compresses
a single tree, whereas a subFDAG admits several roots and compresses a forest.
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Enumeration of subFDAGs We now solve the following enumeration problem: given a forest F,
find all forests of subtrees of F. Equally, given a FDAG D, find all subFDAGs of D. To address this,
we make extensive use of the reverse search technique, adapting the one presented in Section 2.

Since a subFDAG is also a FDAG, it admits successors in the enumeration tree defined in Section 2.
We are interested in those of these successors who are also subFDAGs (if any). In fact, since a
subFDAG can be defined from a set of vertices, all one has to do is determine which new vertex
can be chosen to expand an existing subFDAG – corresponding to a or step.The covering of
all added new arcs is implicit in this construction and corresponds to some steps of .

Let ∆ be a subFDAG ofD and v its last inserted vertex – it is also the vertex with the largest ordering
number in ∆. We denote by S(∆) the set of all vertices v ′ ∈ D that can be added to ∆ to expand it to
a new subFDAG. Let us call S(∆) the set of candidate vertices of ∆. More precisely:

Lemma 5.3. S(∆) is the set of vertices v ′ ∈ D that satisfies both:

(i) C(v ′) ⊆ ∆

(ii) ψ(v ′) > ψ(v)

where ψ(·) is the canonical ordering of D.

Proof. (i) This condition is necessary so that ∆ ′ = ∆∪ {v ′} fulfill the requirements for Proposition 5.2.
(ii) This condition is necessary so that ∆ ′ remains a FDAG. Asψ(v ′) > ψ(v), eitherH(v ′) = H(v)+1
– then it is a step – orH(v ′) = H(v) and Cψ(v ′) >lex. Cψ(v) – for a step. f

Algorithm 4: HEIRS

Input: D,
[
∆, S(∆)

]
1 Set L to the empty list
2 for s ∈ S(∆) do
3 Let S ′ be a copy of S(∆)
4 S ′ ← S ′ \ {v ′ ∈ S ′ : Cψ(v ′) ≤lex. Cψ(s)}
5 S ′ ← S ′ ∪

{
v ′ ∈ D : s ∈ C(v ′) ⊆ ∆ ∪ {s}

}
6 Add

[
∆ ∪ {s}, S ′

]
to L

7 return L

When S(∆) is not empty, picking s ∈ S(∆) en-
sure that ∆ ′ = ∆ ∪ {s} is a subFDAG of D. With
respect to the enumeration tree of Section 2, ∆ is
an ancestor of∆ ′ – but not necessarily its parent,
since the steps of are implicit. ∆ ′ is called
an heir of ∆. We can in turn calculate S(∆ ′), by
updating S(∆): (i) remove from S(∆) all vertices
v ′ such that ψ(s) > ψ(v ′); (ii) in D, look only
after the vertices v ′ such that s ∈ C(v ′) ⊆ ∆∪ {s}
and add them to S(∆ ′).

If ∆ ′ is an heir of ∆, then by removing the last inserted vertex of ∆ ′, one can retrieve ∆. This define
a reduction rule f, and therefore an enumeration tree. Algorithm 4 is meant to construct the set
f−1(∆). Applying Algorithm 1 together with it, and starting from ∆ = L(D)7 – in this case, S(∆) is
the set of parents of L(D) of height 1 – permits to enumerate all subFDAGs ofD. Figure 11 provide
an example by enumerating all subFDAGs of the FDAG of Figure 3.

6 Frequent subFDAG mining problem

Using the reverse search formalism defined in Subsection 1.1, the frequent pattern mining problem can
be formulated as follows: from a dataset X = {s1, . . . , sn} with si ∈ S, and a fixed threshold σ, find

7where L(D) designates the leaf of D, i.e. the only vertex without children.
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∅
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∅

Figure 11: Enumeration tree of the subFDAGs of the FDAG of Figure 3, using both Algorithm 1 and
Algorithm 4. The indices of the vertices correspond to the canonical ordering defined in Figure 3. In
each vertex, the upper part corresponds to the current subFDAG ∆ whereas the lower part stands
for the set S(∆). Numbers in red indicate what changes for an heir compared to its parent.

all elements s ∈ S that satisfy freq(s, X) ≥ σ, where freq(·) is a function that counts the frequency of
appearance of s in the dataset X. This problem can be solved using Algorithm 1 with the function
g(s, X, σ) = (freq(s, X) ≥ σ), which is trivially anti-monotone.

We emphasize here that each possible definition of “s appears in X” leads to a different data mining
problem. The choice of this definition is therefore of prime importance. In particular, this choice
should induce a way of calculating freq(s, X) that reflects the specificity of the reduction rule f, so
that {s ∈ f−1(s0)|g(s) = >} can be constructed directly, instead of first generating f−1(s0) and then
filtering according to the value of g. Indeed, if g is too restrictive, and f−1(s0) too large, one would
have to enumerate objects that are not relevant to the enumeration problem, which is not desirable.

In this article, the problem we consider is the following: given a set of trees X = {T1, . . . , Tn}, account
for forests of subtrees that appear simultaneously in different Ti’s. In other words, if we denote
F i the set of all forests of subtrees appearing in the forest formed by {Ti}, we are interested in the
study of ∩i∈Iσ F i where Iσ ⊆ [[1, n]], such that #Iσ ≥ σ · n.

A first, naive strategy would be to first build the F i’s, e.g. by using Algorithm 4 on R(Ti), and then
construct ∩i∈Iσ F i for all possible choices of Iσ. Obviously, this approach has its weaknesses: (i)
many subFDAGs will be enumerated for nothing or in several copies, and (ii) it does not take into
account that X is itself a forest. Our aim is to propose a variant of Algorithm 4 that, applied to R(X),
would enumerate only subFDAGs appearing in the R(Ti)’s with a large enough frequency.

Given a forest F = {T1, . . . , Tn} and its DAG compression D = R(F), we have to retrieve, for each
vertex in D, their origin in the dataset, that is, from which tree they come from. This issue has
already been addressed in a previous article [5, Section 3.3], and has led to the concept of origin.
For any vertex v ∈ D, the origin of v is defined as

o(v) =
{
i ∈ [[1, n]] : R−1(D[v]) ∈ S(Ti)

}
,
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where R−1(D[v]) designates the tree compressed by the subDAG D[v] rooted in v. In other words,
o(v) represents the set of trees for which R−1(D[v]) is a subtree. We state in [5, Proposition 3.4] that
origins can be iteratively computed in one exploration of D. The proof lies in the property that if
i ∈ o(v), then for all v ′ ∈ D(v), i ∈ o(v ′) – as R−1(D[v ′]) ∈ S(R−1(D[v])).

Let ∆ be a subFDAG of D. For ∆ to compress a forest of subtrees of a tree Ti, it is necessary that
i ∈ o(v) for all v ∈ ∆. Therefore, the set of trees for which ∆ compress a forest of subtrees – the
origin of ∆, denoted by o(∆) – is equal to

o(∆) =
⋂
v∈∆

o(v).

If ∆ ′ = ∆∪ {s} is an heir of ∆ – as defined earlier, then o(∆ ′) = o(∆)∩o(s). Algorithm 4 can therefore
be refined so that ∆ ′ should be ignored if o(∆ ′) = ∅ – as ∆ ′ does not anymore compresses any forest
of subtrees actually present in the trees of F.

So far we neglected the threshold σ. We only want to keep subFDAGs that appear in at least σ%
of the data. If # o(∆)/#F < σ, then the successors of ∆ are not investigated. Indeed, as o(·) is a
decreasing function, successors of ∆ can not exceed the threshold again.

We can finally introduce Algo-
rithm 5 that solves the frequent
subFDAG mining problem for
trees. With the notations of Subsec-
tion 1.1, this algorithm builds the
set {∆ ′ ∈ f−1(∆)|freq(∆ ′, F) ≥ σ},
with freq(∆ ′, F) = # o(∆ ′)/#F. The
set is also built directly, without
any posterior filtering, which is
suitable as discussed at the begin-
ning of the present subsection.

Algorithm 5: FREQUENTHEIRS

Input: D = R(F),
[
∆, S(∆), o(∆)

]
, σ

1 Set L to the empty list
2 for s ∈ S(∆) do
3 if o(∆) ∩ o(s) 6= ∅ and #(o(∆) ∩ o(s)) ≥ σ · #F then
4 Let S ′ be a copy of S(∆)
5 S ′ ← S ′ \ {v ′ ∈ S ′ : Cψ(v ′) ≤lex. Cψ(s)}
6 S ′ ← S ′ ∪

{
v ′ ∈ D : s ∈ C(v ′) ⊆ D0 ∪ {s}

}
7 Add

[
∆ ∪ {s}, S ′, o(∆) ∩ o(s)

]
to L

8 return L

We stated earlier that we wanted to avoid generating unnecessary or multiple copies of subFDAGs,
which is achieved with Algorithm 5. We now empirically study what we have gained from this,
by comparing the use of Algorithm 5 on D = R(F), with the use of Algorithm 4 on each R(Ti). As
in Subsection 3.2, we generated 1 000 random FDAGs Dk, 10 repetitions for each k ∈ {1, . . . , 100},
creatingDk as in Definition 3.4. We assumeDk = R(f) where f = {R−1(Dk[r]) : r source of Dk}. For
each Dk, we have computed the quotient

Q(Dk) =
number of subFDAGs of Dk enumerated via Algorithm 5∑

r source of Dk

number of subFDAGs of Dk[r] enumerated via Algorithm 4

with parameter σ = 0 when using Algorithm 5. The results are provided in Figure 12. Despite a
rather marked variability, there is a general trend of decreasing as the number of vertices increases.
We obtain fairly low quotients, around 20%, quite quickly. Given the combinatorial explosion of
the objects to be enumerated, such an advantage is of the greatest interest.
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Implementation

The treex library for Python [3] is designed
to manipulate rooted trees, with a lot of di-
versity (ordered or not, labeled or not). It
offers options for random generation, visual-
ization, edit operations, conversions to other
formats, and various algorithms. The enu-
meration of Section 2 and the algorithms
of Section 5 and 6 have been implemented
as a module of treex so that the inter-
ested reader can manipulate the concepts dis-
cussed in this paper in a ready-to-use man-
ner. Installing instructions and the documen-
tation of treex can be found from [3].
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Figure 12: Quotient Q(D) according to the num-
ber of vertices of D. Here 1 000 random FDAGs
are displayed.
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A A bijection between FDAGs and row-Fishburn matrices

This section is dedicated to the proof of Theorem 3.1, which is in two steps. First, we recall the
natural bijection between FDAGs and their adjacency matrices; the latter are then put into bijection
with the row-Fishburn matrices.
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FDAG↔ Reduced adjacency matrix LetD = (v0, . . . , vn) be a FDAG constructed in k steps from
D0 in the enumeration tree defined in Subsection 2.5. The adjacency matrix of D is defined as
A = (Ai,j)i,j∈[[n,0]]2 where, ifm is the multiplicity of vj in C(vi), thenAi,j = m – possibly 0 if vj /∈ C(vi).
By construction of D, as vn is the last inserted vertex, it has no parents, so An,· is a column of zeros;
and as v0 is a leaf, it has no children, soA·,0 is a row of zeros. We define the reduced adjacency matrix
M as the matrix A deprived of this column and this row. Therefore,M = (Ai,j)i∈[[n,1]],j∈[[n−1,0]]. As a
vertex can not be a parent to any vertex introduced after it, we have Ai,j = 0 for all i ≤ j – so that
M is an upper-triangular matrix. In addition, as all vertices except v0 have at least one child, there
is at least one non-zero entry in each row ofM. Therefore,M is a row-Fishburn matrix. However,
we have no guarantee that this matrix verifies size(M) = k.

Reduced adjacency matrix → Incremental adjacency matrix Let D = (v0, . . . , vn) be a FDAG,
and M its reduced adjacency matrix. Let Mi be the row of M corresponding to Cψ(vi). The
incremental adjacency matrix M̂ is defined as:{

M̂1 =M1

M̂i+1 =Mi+1 	Mi

where the 	 operation is defined as follow: given two rows a0 · · ·an and b0 · · ·bn, then denoting
j = min{i : ai 6= bi}, and c = aj − bj,

a0 · · · aj−1 aj aj+1 · · ·an
	 b0 · · · bj−1 bj bj+1 · · ·bn
= 0 · · · 0 c aj+1 · · ·an

.

We claim that this new matrix M̂ is a row-Fishburn matrix of size k, if D ∈ Ek. Actually, sinceM
was already a row-Fishburn matrix, we just have to check that the size is correct. Let us consider vi
and vi+1. The vertex vi+1 has been constructed from vi by using either or , and potentially
several after that – let us say p ≥ 0 times. Therefore, if the claim is correct, the sum over M̂i+1

should be exactly p+ 1. Consider the operation by which vi+1 was added in the first place:

Cψ(vi+1) is reduced to a single element a, such that a >lex. Cψ(vi). Therefore, the index j of
the first non-zero coefficient of Mi+1 is ahead of the one of Mi so that the coefficient c of
	 is equal to the j-th coefficient of Mi+1 minus zero. Since the rule adds children to
respect decreasing words, the p extra coefficients are added to the right of the j-th coefficient
(including it) and therefore they are kept unchanged in the 	 operation. Eventually, the sum
overMi+1 is p+ 1 and so is the sum over M̂i+1.

Cψ(vi+1) is built from Cψ(vi) with Algorithm 2, and therefore they (i) share a common
prefix, possibly empty and (ii) then differ by a single letter. The index of that letter inMi+1

corresponds to the index j defined in 	. Therefore, the coefficient c is – before any
– equal to one. The argument of letters being added to the right of j still hold and
therefore the sum over M̂i+1 is also p+ 1.

To conclude the proof, we have to exhibit the inverse function of the mapping we just defined. This
will prove that this mapping is indeed a bijection, and then the theorem holds.
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Incremental adjacency matrix → Reduced adjacency matrix Let M and M̂ be constructed as
before. From M̂, we can define a matrixM ′ as:{

M ′1 = M̂1

M ′i+1 =M
′
i ⊕ M̂i+1

where the ⊕ operation is defined as follow: given two words a0 · · ·an and b0 · · ·bn, then denoting
j = min{i : bi 6= 0}, and c = aj + bj,

a0 · · ·aj−1 aj aj+1 · · ·an
⊕ b0 · · ·bj−1 bj bj+1 · · ·bn
= a0 · · ·aj−1 c bj+1 · · ·bn

.

By construction, ⊕ is the inverse operation of 	, so that we have the following lemma:

Lemma A.1. The following properties hold:

• Mi ⊕ (Mi+1 	Mi) =Mi+1

• (Mi ⊕ M̂i+1)	Mi = M̂i+1

Thefore,M =M ′.

The FDAG of Figure 3 is reproduced below to illustrates the stages of the proof. This FDAG is
constructed in 7 steps, that are (in this order): , , , , , and . The matrices
A,M and M̂ are given in Figure 13. One can see that M̂ is of size 7, as expected.

2 3

2

v

ψ(v) 0 1 2 3 4 5

Cψ(v) 0 00 000 1 211

A v5 v4 v3 v2 v1 v0


v5 . 0 0 1 2 0

v4 . . 0 0 1 0

v3 . . . 0 0 3

v2 . . . . 0 2

v1 . . . . . 1

v0 . . . . . .

M v4 v3 v2 v1 v0


v5 0 0 1 2 0

v4 . 0 0 1 0

v3 . . 0 0 3

v2 . . . 0 2

v1 . . . . 1

M̂ v4 v3 v2 v1 v0


v5 0 0 1 2 0

v4 . 0 0 1 0

v3 . . 0 0 1

v2 . . . 0 1

v1 . . . . 1

Figure 13: The FDAG of Figure 3 reproduced (top left), its adjacency matrix A (top right), its
reduced adjacency matrixM (bottom left) and its incremental adjacency matrix M̂ (bottom right).
Dots represent zeros corresponding to Ai,j elements with i ≤ j.
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Remark A.2. It should be noted that (general) Fishburn matrices, with at least one non-zero entry on each
row and column, are in bijection with FDAGs compressing forests made of a unique tree. Indeed, via the
bijection above, as such FDAG have a unique root, it must be the last inserted vertex, and therefore, each
column admits at least one non-zero entry (otherwise it would be another root).

Remark A.3. It is possible to enumerate row-Fishburn matrices by using the previous bijection and the
FDAGs enumeration tree together. Nevertheless, things are a little simpler in this case and the equivalent of
the operations and can be merged, giving two rules for matrix expansion:

(R1) Increase one coefficient to the (inclusive) left of the rightmost nonzero coefficient of the top row by 1.

(R2) Increase the dimension of the matrix by 1 (to the left and top), all new coefficients set to zero. Set one
coefficient of the top row to 1.

B Index of frequent notations

Trees & DAGs v designates indifferently a vertex of a tree T or a DAG D.

C(v) children of v: all vertices connected to an arc leaving v

deg(v) outdegree of v: number of children of v

D(v) descendants of v: children of v, their children, and so on

H(v) height of v: length of the longest path from v to a leaf

#T, #D number of vertices

T [v], D[v] subtree/subDAG rooted in v and composed of v and D(v)
L(T),L(D) leaves: vertices without any children

deg(T),deg(D) outdegree: maximum outdegree among all vertices

S(T) the set of all distinct subtrees of T

T the set of all trees

F the set of all forests, i.e. sets of trees such that no tree is a subtree of another

DAG reduction D designates a FDAG, F a forest.

R(F) DAG reduction of the forest F

R−1(D) the forest F compressed by D, so that R(F) = D

R−1(D[v]) the tree T compressed by D[v], so that R({T }) = D[v]

Canonical FDAGs Let D be a fixed FDAG, v any vertex of D and vn the vertex with highest index in the
canonical ordering.

ψ(·) canonical topological ordering of D

Cψ(v) C(v) sorted by decreasing order on the indices defined by ψ(·)
A= the indices of all vertices of Dwith same height as vn

A< the indices of all vertices of Dwith strictly inferior height as vn
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Λ< the set of all decreasing words on A<, i.e. where each letter is greater than or equal to those
who follow, w.r.t. the lexicographical order

Λw< the set of all decreasing words bounded by w, i.e. all words in Λ< that are greater than or
equal to w, w.r.t. the lexicographical order

SC(w) suffix-cut operator: the word w deprived of its last letter

Enumeration tree

D0 the FDAG with one vertex and no arcs

Ek the set of FDAGs that are accessible in exactly k steps from D0 in the FDAGs enumeration
tree

πD presence vector: πD(i) counts how many times the tree R−1(D[vi]) appears in the forest
R−1(D), for any FDAG D = (v0, . . . , vn) and i ∈ {0, . . . , n}.

Forests of subtrees Let ∆ be a subFDAG of D, and v any vertex. Let F = R−1(D).

S(∆) candidate vertices of ∆: the set of all vertices v ′ of D so that ∆ ∪ {v ′} is still a subFDAG of D

o(v) origin of v: the set of indices i so that R−1(D[v]) is a subtree of Ti ∈ F.
o(∆) origin of ∆: the set of indices i so that R−1(∆) is a forest of subtrees of Ti ∈ F.
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