
HAL Id: hal-02511901
https://hal.science/hal-02511901v1

Preprint submitted on 19 Mar 2020 (v1), last revised 13 Apr 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enumeration of Unordered Forests
Florian Ingels, Romain Azaïs

To cite this version:

Florian Ingels, Romain Azaïs. Enumeration of Unordered Forests. 2020. �hal-02511901v1�

https://hal.science/hal-02511901v1
https://hal.archives-ouvertes.fr

ENUMERATION OF UNORDERED FORESTS

Florian Ingels
florian.ingels@inria.fr

Romain Azaı̈s
romain.azais@inria.fr

Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS,
INRAE, Inria, F-69342, Lyon, France

Abstract

Reverse search is a convenient method for enumerating structured objects, that can be used both to address
theoretical issues and to solve data mining problems. This method has already been successfully developed
to handle unordered trees. If the literature proposes solutions to enumerate singletons of trees, we study
in this article a more general, higher combinatorial problem, the enumeration of sets of trees – forests. By
compressing each forest into a Directed Acyclic Graph (DAG), we develop a reverse search like method
to enumerate DAG compressing forests. Remarkably, we prove that these DAG are in bijection with the
row-Fishburn matrices, a well-studied class of combinatorial objects. In a second step, we derive our forest
enumeration to provide algorithms for tackling two related problems : (i) the enumeration of “subforests”
of a forest, and (ii) the frequent “subforest” mining problem. All the methods presented in this article
enumerate each item uniquely, up to isomorphism.

keywords: Directed Acyclic Graph, Reverse Search, Unordered Trees, Enumeration, Forest

1 Introduction

1.1 Context of the work

Enumeration of trees is a long-term problem, where they were first counted in the 80’s [16]. The
exhaustive enumeration of ordered and unordered trees was successfully tackled in the early
00’s by Nakano and Uno in [17, 18]. In the unordered case, an extension of the algorithm has
been proposed to solve the problem of frequent substructure mining [1]. Moreover, in the field of
machine learning, we have recently demonstrated that exhaustive enumeration of the subtrees of
a tree makes it possible to design classification algorithms significantly more efficient than their
counterpart without such enumeration [5] .

Our ambition in this article is to take these two problems of enumeration – trees and subtrees –
to a higher order, i.e. to enumerate sets of trees where only singletons have been considered in
the literature so far. In other words, we are interested in the problem of enumerating forests of
unordered trees, and then, given a tree or forest, to enumerate all its “subforests” – as forests of
subtrees. The latter has already been discussed in the literature, but without consideration on
isomorphism [20]. We emphasize here that we aim to enumerate these various items – forests and
subforests – up to isomorphism.

1

mailto:florian.ingels@inria.fr
mailto:romain.azais@inria.fr

Such an ambition immediately raises a number of obstacles. First of all, the trees are indeed
unordered, but so are the sets of trees. For the former the literature has introduced the notion of the
canonical form of a tree [18, 1], which is a unique ordered representation of an unordered tree. The
enumeration therefore focuses only on these canonical trees. Unfortunately, if it is possible to order
a set of vertices, there is no total order on the set of trees, to the best of our knowledge. In addition,
forests belong to the powerset of trees and have an exponentially stronger combinatorics, making
the enumeration problem that much trickier.

Enumeration problems are recurrent in many fields, notably combinatorial optimization and data
mining. They involve the exhaustive listing of a subset of the elements of a search set (possibly all
of them), e.g. graphs, trees or vertices of a simplex. Given the possibly high combinatorial nature
of these elements, it is essential to adopt clever exploration strategies as opposed to brute-force
enumeration, typically to avoid areas of the search set not belonging to the objective subset.

One proven way of proceeding is to provide the search set with an enumeration tree structure;
starting from the root, the branches of the tree are explored recursively, eliminating those that do not
address the problem. Based on this principle, we can notably mention the well-known “branch and
bound” method in combinatorial optimization [15] and the gSpan algorithm for frequent subgraph
mining in data mining [24]. Another of these methods is the so-called reverse search technique,
which requires that the search set has a partial order structure, and which has solved a large number
of enumeration problems since its introduction [2] until very recently [23]. Actually, the algorithms
previously introduced in the literature to enumerate trees are based on this technique [17, 18, 1].

In the present paper, we restrict ourselves to reverse search methods, for which the following
formalism is adapted from the one that can be found in [19, p. 45-51], and slightly differ from the
original definition by Avis and Fukuda [2]. We refer the reader to these two references for further
details.

Let (S,⊆) be a partially order set, and g : S→ {>,⊥} be a property, satisfying anti-monotonicity

∀s, t ∈ S : (s ⊆ t)∧ g(t) =⇒ g(s).

The enumeration problem for the property g is the problem of listing all elements of ES(g) = {s ∈ S :
g(s) = >}. An enumeration algorithm is an algorithm that returns ES(g).

The reverse search technique relies on inverting a reduction rule f : S \ ∅→ S, where f satisfies the
two properties of (i) covering: ∀s ∈ S \ ∅, f(s) ⊂ s and (ii) finiteness: ∀s ∈ S \ ∅, ∃k ∈ N∗, fk(s) = ∅.
Then, the expansion rule is defined as f−1(t) = {s ∈ S : f(s) = t}. This defines an enumeration tree
rooted in ∅, and repeated call to f−1 can therefore enumerates all the elements of S.

The reverse search algorithm is shown in Algo-
rithm 1. ES(g) can be obtained from the call of
REVERSESEARCH((S,⊆), f−1, g, ∅). As g is anti-
monotone, if g(s) = ⊥, then all elements s ⊆ t
also have g(t) = ⊥, and thefore pruning the enu-
meration tree in s does not miss any element of
ES(g).

Algorithm 1: REVERSESEARCH

Input: (S,⊆), f−1, g, s0 ∈ S – s.t.
g(s0) = >

1 output s0;
2 for t ∈ {s ∈ f−1(s0)|g(s) = >} do
3 REVERSESEARCH((S,⊆), f−1, g, t);

2

1.2 Precise formulation of the problem

A rooted tree T is a connected graph with no cycle such that there exists a unique vertex called the
root, which has no parent, and any vertex different from the root has exactly one parent. Rooted
trees are said unordered if the order between the sibling vertices of any vertex is not significant. As
such, the set of children of a vertex v is considered as a multiset and denoted C(v). The leaves L(T)
are all the vertices without children. The height of a vertex v of a tree T can be recursively defined
as

H(v) =

{
0 if v ∈ L(T),
1+ maxu∈C(v)H(u) otherwise.

(1)

The height H(T) of the tree T is defined as the height of its root. The outdegree of a vertex v ∈ T
is defined as deg(v) = # C(v); the outdegree of T is then defined as deg(T) = maxv∈T deg(v). The
depth of a vertex v is the number of edges on the path from v to the root of the tree.

Two trees T1 and T2 are isomorphic if there exists a one-to-one correspondance φ between the
vertices of the trees such that (i) u ∈ C(v) in T1 ⇐⇒ φ(u) ∈ C(φ(v)) in T2 and (ii) the roots are
mapped together. For any vertex v of T , the subtree T [v] rooted in v is the tree composed of v and all
its descendants D(v). S(T) denotes the set of subtrees of T , which is the quotient set of {T [v] : v ∈ T }
by the tree isomorphism relation. In this article, we consider only unordered rooted trees that will
simply be called trees in the sequel. The set of all trees is denoted T .

As mentionned before, we are interested in this paper in the enumeration of forests. The literature
acknowledges two definitions for a forest [6, p. 172]: (i) an undirected graph in which any two
vertices are connected by at most one path or (ii) a disjoint union of trees. We adopt a slight
variation of the latter one:

Definition 1.1. A set {T1, . . . , Tn} of trees is a forest if and only if

∀i 6= j, Ti /∈ S(Tj). (2)

We denote F the set of all forests. Our goal is therefore to provide a reverse search like method that
outputs F . As already stated, this goal raises two major difficulties: firstly, the twofold unordered
nature of forests (the set of trees and the trees themselves), and secondly, the higher combinatorics
of forests compared to trees. While the latter problem is intrinsic, the main idea of this paper to
address the former is to resort to the reduction of a forest into a Directed Acyclic Graph (DAG).

DAG reduction is a method meant to eliminate internal repetitions in the structure of trees and
forests of trees. Beginning with [21], DAG representations of trees are also much used in computer
graphics where the process of condensing a tree into a graph is called object instancing [11]. A
precise definition of DAG reduction of trees, together with algorithms to compute it, are provided
in [9], whereas one technique to extend those algorithms to forests is presented in [5, Section 3.2].
DAG reduction can be interpreted as the construction of the quotient graph of a forest by the tree
isomorphism relation. However, in this paper, we provide the general idea of DAG reduction as a
vertex coloring procedure.

Consider a forest F = {T1, . . . , Tn} to reduce. Each vertex of each tree is given a color such that if
two distinct vertices u, v belonging respectively to Ti, Tj (not necessarily distinct) have the same

3

color, then Ti[u] and Tj[v] are isomorphic. Reciprocally, if two subtrees are isomorphic, their roots
have to be identically colored. Let us denote c(·) the function that associates a color to any vertex.
Then, we build a directed graph D = (V,A) with as many vertices as colors used, i.e. #V = #Im (c).
For any two vertices u, v in the forest, if u ∈ C(v), then we create an arc c(v)→ c(u) inD. Note that
this definition implies that multiples arcs are possible in D, as if there exist u, u ′ ∈ C(v), for v ∈ T ,
such that T [u] and T [u ′] are isomorphic, then the arcs c(v)→ c(u) and c(v)→ c(u ′) are identical.
The graphD is a DAG [9, Proposition 1], i.e. a connected directed graph without cycles. We refer to
Figure 1 for an example of DAG reduction.

The DAG structure inherits of some properties of trees. For a vertex v in a DAG D, we will denote
by C(v) the set of children of v. H(v) and deg(v) are inherited as well. Similarly to trees, we denote
by D[v] the subDAG rooted in v composed of v and all its descendants D(v).

In this paper, R(F) denotes the DAG reduction
of F. It is crucial to notice that the function R is
a one-to-one correspondence, which means that
DAG reduction is a lossless compression algo-
rithm. Since F fulfills condition (2), no tree of F
is a subtree of another. If this were the case, say
Ti ∈ S(Tj), then R(Ti) would be a subDAG of
R(Tj), and therefore the numbers of roots in R(F)
would be strictly less than #F. Since such a situa-
tion cannot occur, there are exactly as many roots
in R(F) as there are elements in F: no information
is lost. In other words, F can be reconstructed
from R(F) and R−1 stands for the inverse func-
tion.

T1 T2 T3

F = {T1, T2, T3}

2 3

2

R(F)

Figure 1: A forest F (left) and its DAG reduc-
tion (right). Roots of isomorphic subtrees
are identically colored, as well as the cor-
responding vertex of the DAG. Red arrows
indicate on the DAG the roots of the trees of
F. Arcs with multiplicity greater than one are
displayed with their multiplicity number.

In the sequel, DAG compressing forests are called FDAG, to distinguish them from general directed
acyclic graphs.

Since DAG compression is lossless, and since a forest can be reconstructed from its DAG reduction,
it should be clear that enumerating all forests is equivalent to enumerating all FDAG. Yet, the latter
approach has the merit of transforming set of trees into unique objects, which makes it possible,
if able to design a canonical representation – like the trees in [18, 1], to get rid of the twofold
unordered nature of forests, as claimed earlier. Indeed, any ordering of the vertices of the DAG
induces an order on the roots of the DAG, and therefore on the elements of the forest, as well on
the vertices of the trees themselves.

1.3 Aim of the paper

To the best of our knowledge, the enumeration of DAG has never been considered in the literature.
The aim of this article is twofold, i.e (i) to open the way by presenting a reverse search algorithm
enumerating FDAG, in Section 2, and (ii) to derive from it an algorithm for enumerating substruc-
tures in Section 3. The frequent pattern mining problem is a classical data mining problem – see
[10] for a survey on that question – and we provides in Section 4 a slight variation of the algorithm
of Section 3 to tackle this issue. In more details, our outline is as follows:

4

• The first step is to introduce a canonical form for FDAG. For trees [18, Section 3], this consisted
in associating an integer (its depth) to each vertex, and maximizing the sequence by choosing
an appropriate ordering over the vertices. The notion of depth does not apply to FDAG, which
forces us to find another strategy. DAG are characterized by the existence of a topological
ordering [14], and we introduce in Subsection 2.2 a topological ordering that is unique if and
only if a DAG compresses a forest. This canonical ordering is defined so that the sequence of
children of the vertices is strictly increasing, where the multisets of children are ordered by
the lexicographical order. In fact, these ordered multisets of children are considered as formal
words, which brings us to a detour through the theory of formal languages in Subsection 2.1
to introduce useful results for the rest of the article. Compared to trees, we have here a first
gain in complexity insofar as we maximize a sequence of words instead of a sequence of
integers.

• The expansion rule used for trees [18, Section 4] is to add a new vertex in the tree as a child
of some other vertex, so that the depth-sequence remains maximal. Consequently, a single
arc is also added. On the other hand, for a FDAG, we want to be able to add either vertices
or arcs independently. In Subsection 2.3, we define three expansion rules, reflecting the
full spectrum of possible operations, so that the DAG obtained afterward is still a FDAG.
Specifically, the branching rule allows to add an arc, where the elongation and widening rules
add vertices at different height. Subsection 2.4 is primarily dedicated to showing (i) that the
rules preserve canonicalness, and (ii) that a reduction rule can be derived from them; the
resulting enumeration tree is then discussed.

• Notably, a bijection between FDAG and row-Fishburn matrices, a class of combinatorial
objects much exploited in the literature – see [12, Section 2] for an overview, is shown in
Theorem 2.11. The asymptotic behavior of these matrices being well known [13, 7], this allows
us to derive from it the behavior of the enumeration tree. In return, since our bijection is
constructive, the enumeration tree can be used to enumerate row-Fishburn matrices – and
all the objects they are in bijection with – via the reverse search method. Remarkably, this
bijection operates between two objects that, at first sight, have little in common.

• It has been mentioned above that the set of FDAG has a combinatorics in the order of the
powerset of T . For an enumeration algorithm to have any practical interest, it is necessary that
the associated enumeration tree has a “reasonable” growth – with regard to the combinatorics
of the explored space. This is the case for our algorithm since we prove, still in Subsection 2.4,
that a FDAG with n vertices has a number of successors in the enumeration tree in the order
of Θ(n). Finally, Subsection 2.5 concludes on enumeration by proposing sets of constraints
that make the enumeration tree finite. Indeed, since the rules only allow to increase the
height, degree or number of vertices, it is sufficient to set maximum values for some of these
parameters to achieve this goal; however the combination of parameters has to be wisely
chosen, as we show it.

• Since the structures we enumerate are forests, it is natural that the substructures we are
interested in are “subforests”. A precise definition of the latter is given in Section 3, i.e.
forests of subtrees, and are referred to as subFDAG. An algorithm to enumerate all subFDAG
appearing in a FDAG is also provided. The frequent subFDAG mining problem is finally

5

addressed in Section 4. Concluding remarks concerning the implementation of our results in
the Python library treex [3] are briefly mentioned at the end of the article.

2 Exhaustive enumeration of FDAG

In this section, we introduce our main result, that is, a reverse search algorithm for the enumeration
of FDAG. As we will consider the multisets of children of vertices as formal words built on
the alphabet formed by the set of vertices, we introduce in Subsection 2.1 some definitions and
results on formal languages that will be useful for the sequel. We characterize unambiguously in
Subsection 2.2 our objects of study, through the lens of topological orderings, defining a canonical
topological ordering for DAG, that is unique if and only if a DAG compresses a forest of unordered
trees, i.e. it is a FDAG – see Theorem 2.4. We then define three expansion rules that are meant to
extend the structures of FDAG in Subsection 2.3, whereas Subsection 2.4 is dedicated (i) to prove
that these rules preserve the canonicalness property and (ii) to discuss about the enumeration
tree they define with respect to the reverse search technique. Notably, we exhibit a bijection –
Theorem 2.11 – with a class of combinatorial objects from the literature, allowing us to obtain an
asymptotic expansion of the growth of the tree. In addition, we show that any FDAG has a linear
number of children in that tree in Theorem 2.13. Finally, options to constrain the enumeration
tree – on maximum number of vertices, height or outdegree – and making it finite are proposed in
Subsection 2.5.

2.1 Preliminary: a detour through formal languages

We present in this subsection some definitions and results on formal languages that will be useful
for the sequel of Section 2.

Let A be a totally ordered finite set, called alphabet, whose elements are called letters. A word
is a finite sequence of letters of A. The length of a word w is equal to its number of letters and is
denoted #w. There is a unique word with 0 letter called the empty word and denoted ε. The set of
all words is denoted A∗. Words can be concatenated to create a new word whose length is the sum
of the lengths of the original words; ε is the neutral element of this concatenation operation.

The lexicographical order over A∗, denoted <lex. is defined as follows. Let w1 = a0 · · ·ap and
w2 = b0 · · ·bq be two words, with ai, bj ∈ A. If #w1 = #w2, then w1 <lex. w2 if and only if
∃k ∈ [[0, p]], ai = bi ∀i < k and ak < bk. Otherwise, let m = min(p, q); w1 <lex. w2 if and only if
either (i) a0 · · ·am <lex. b0 · · ·bm or (ii) a0 · · ·am =lex. b0 · · ·bm and m < q – that is, p < q. Note
that, by convention, ε <lex. w for any word w.

Let w ∈ A∗. We define the suffix-cut operator SC(w), which removes the last letter of w:

SC(w) =

{
w ′ if w = w ′awith a ∈ A and w ′ ∈ A∗,
ε otherwise.

A language is a set of words satisfying some construction rules. We introduce hereafter two
languages that will be useful in the sequel of the paper.

6

Definition 2.1. The language of decreasing words is defined as

Λ =
{
w = a0 · · ·am ∈ A∗ : ai ≥lex. ai+1 ∀i ∈ [[0,m− 1]]

}
.

Definition 2.2. Let w ∈ Λ. The language of decreasing words bounded by w is defined as

Λw = {w ∈ Λ : w >lex. w} .

Any word w ∈ Λw is said to be minimal if and only if w ∈ Λw but SC(w) /∈ Λw.

As an example, if A = {0, 1, 2, 3}, then w = 211 ∈ Λ, whereas 121 /∈ Λ. In addition, Λw contains
words such as 31, 22, 21110, etc. 22 is a minimal word ofΛw as 22 >lex. 211 but SC(22) = 2 <lex. 211.

Our focus is now on the construction of the minimal words of Λw. Let w = a0 · · ·ap and w =
b0 · · ·bq ∈ Λw. Taking into account that w >lex. w and that they both are decreasing words, there
are only two possibles cases:

(i) w and w share a common prefix a0 · · ·am. Then w = a0 · · ·ambm+1 · · ·bq, and the word
a0 · · ·ambm+1 is minimal by applying successive suffix-cut operations.

(ii) w and w do not share a common prefix. Necessarily b0 >lex. a0, and then the word b0 is
minimal by applying several suffix-cut operations.

Algorithm 2: MINIMALWORDS

Input: w = a0 · · ·ap, A = {0, . . . , n}

Output: All minimal words of Λw

1 Set L to the empty list;
2 if a0 < n then
3 for i ∈ {a0 + 1, . . . , n} do
4 Add the word i to L

5 for k ∈ {1, . . . , p} do
6 if ak < ak−1 then
7 for i ∈ {ak + 1, . . . , ak−1} do
8 Add the word a0 · · ·ak−1i

to L

9 for i ∈ {0, . . . , ap} do
10 Add the word a0 · · ·api to L

11 return L

From the above, we deduce a method for construct-
ing all minimal word of Λw. First, we partition A
into disjoint – potentially empty – subsets:

A0 = {a ∈ A : a >lex. a0},

Ai = {a ∈ A : ai−1 ≥lex. a >lex. ai} ∀i ∈ {1, . . . , p},

Ap+1 = {a ∈ A : ap ≥lex. a}.

It then follows that – empty Ai’s not being con-
sidered,

• ∀b ∈ A0, the word b is minimal,

• ∀b ∈ Ai with i ∈ {1, . . . , p}, the word
a0 · · ·ai−1b is minimal,

• ∀b ∈ Ap+1, the word wb is minimal.

As we partitioned A, we have proved the following
proposition.

Proposition 2.3. The number of minimal words of Λw is exactly #A.

As a follow-up of the example some lines ago, with A = {0, 1, 2, 3} and w = 211, we apply the
proposed method to find the minimal elements of Λw. We partition A into: A0 = {3}, A1 = {2},
A2 = ∅, A3 = {0, 1}. The four minimal words are therefore 3, 22, 2111 and 2110.

Although the previous result is completely general, if we require that A = {0, . . . , n}, then the
partition method described above can be rewritten into Algorithm 2. While this is not included in
the pseudocode provided, note that the algorithm should return an empty list if a0 > n, as in this
case there would be no minimal word to look for.

7

2.2 Canonical FDAG

FDAG are unordered objects, like the trees they compress, and therefore their enumeration requires
to reflect this nature. In practice, finding a systematic way to order them makes it possible to design
a simpler reduction rule, as done for trees [18], ignoring the combinatorics of permutations. The
purpose of this subsection is to provide a unique way to order FDAG. We show that such an order
exists in Theorem 2.4, unambiguously characterizing FDAG. The approach chosen is based on the
notion of topological order.

ψ1() 3 2 1 0
ψ2() 3 2 0 1
ψ3() 2 3 0 1
ψ4() 2 3 1 0
ψ5() 1 3 0 2

Figure 2: The DAG on the left admits five topo-
logical orderings, which are shown in the table.

Topological ordering Let D be a directed
graph, where multiple arcs are allowed. A topo-
logical ordering on D is an ordering of the ver-
tices ofD such that for every arc uv from vertex
u to vertex v, u comes after v in the ordering.
Formally, ψ : D → [[0, #D − 1]] is a topolog-
ical ordering if and only if ψ is bijective and
ψ(u) > ψ(v) for all u, v ∈ D such that there
exists at least one arc uv in D. A well known
result establishes that D is a DAG if and only if it admits a topological ordering [14]. Nonetheless,
when a topological ordering exists, it is in general not unique – see Figure 2. A reverse search
enumeration of topological orderings of a given DAG can actually be found in [2, Section 3.5].

Constrained topological ordering We aim to reduce the number of possible topological orderings
of a DAG by constraining them. Let D be a DAG and ψ a topological ordering. Taking advantage
of the vertical hierarchy of DAGs, our first constraint is

∀(u, v) ∈ D2, H(u) > H(v) =⇒ ψ(u) > ψ(v). (3)

Applying (3) to the topological orderings presented in Figure 2, ψ5 must be removed, as ψ5() >
ψ5() andH() > H().

For any vertex v, and any u ∈ C(v), by definition, H(v) > H(u). Therefore, there can be no arcs
between vertices at same height. Any arbitrary order on them leads to a different topological
ordering. The next constraint we propose relies on the lexicographical order:

∀(u, v) ∈ D2, H(u) = H(v) and Cψ(u) >lex. Cψ(v) =⇒ ψ(u) > ψ(v), (4)

where Cψ(v) is the list [ψ(vi) : vi ∈ C(v)] sorted by decreasing order w.r.t. the lexicographical order.
In other words, Cψ(v) is a decreasing word – see Definition 2.1 – on the alphabet A = [[0, #D− 1]].
Table 1 illustrates the behavior of (4) on the followed example of Figure 2.
The combination of those two constraints imposes uniqueness in all cases except when there exists
(u, v) ∈ D2 such that Cψ(u) = Cψ(v) and u 6= v. It should be clear that if we impose the upcoming
condition (5), such a pathological case can not occur.

∀(u, v) ∈ D2, u 6= v =⇒ C(u) 6= C(v) (5)

Upcoming Theorem 2.4 establishes that a DAG compresses a forest if and only if the topological
order constrained by (3) and (4) is unique. In other words, an unambiguous characterization of
FDAG is exhibited.

8

(4)
Cψ1() 11 10 X
Cψ2() 00 10 7

Cψ3() 00 10 X
Cψ4() 11 10 7

Table 1: Application of (4) to the remaining topological
orderings of Figure 2 that satisfy (3). As Cψ() = Cψ(),
we only need to consider vertices and . As ψi() >
ψi() ⇐⇒ i ∈ {1, 2}, the only orderings that are kept are
ψ1 and ψ3.

Theorem 2.4. The following statements are equivalent:

(i) D fulfills (5),

(ii) there exists a unique topological ordering ψ of D that satisfies both constraints (3) and (4),

(iii) there exists a unique forest F ∈ F – cf. (2) – such that D = R(F),

where R is the DAG reduction operation defined in Subsection 1.2.

Proof. (i) ⇐⇒ (ii) follows from the above discussion. (iii) =⇒ (i) follows from the definition of
R. Indeed, if there was two distinct vertices (u, v) ∈ D2 with the same multiset of children, they
would have been compressed as a unique vertex in the reduction. We now prove that (i) =⇒ (iii).

In the first place, if D fulfills (5), then Dmust admit a unique leaf, denoted L(D). Indeed, if there
were two leaves l1 and l2, we would have H(l1) = H(l2) = 0 but also C(l1) = C(l2) = ∅, which
would violate (5). Let r1, . . . , rk be the vertices inD that have no parent. We defineD1, . . . , Dk as the
subDAGs rooted respectively in r1, . . . , rk. Then, we define Ti = R−1(Di) and F = {T1, . . . , Tk}. The
Ti’s are well defined as all vertices in D (consequently in Di) have a different multiset of children,
and therefore compress distinct subtrees – i.e. F fulfills (2), therefore F ∈ F . Moreover,D = R(F). f

2 3

2

v

ψ(v) 0 1 2 3 4 5

Cψ(v) 0 00 000 1 211

Figure 3: A FDAGD (left) and its canonical order-
ing ψ (right). Vertices that are at the same height
are enclosed in the table between the dashed lines.
Red arrows indicates the roots of the trees of the
forest that is compressed by D.

In the sequel of the article, we shall only
consider FDAG. Consequently, from Proposi-
tion 2.4, they admit a unique topological or-
dering ψ satisfying both constraints (3) and
(4), called canonical ordering. Thus, for any
FDAG D, the associated canonical ordering ψ
will be implicitly defined. The vertices will
be numbered accordingly to their ordering, i.e
D = (v0, . . . , vn) with ψ(vi) = i. Finally, as a
consequence of constraints (3) and (4), note that
D can be partitioned in subsets of vertices with
same height, each of them containing only con-
secutive numbered vertices. Figure 3 provides an example of a FDAG and its canonical ordering.

2.3 Expansion rules

Reverse search techniques implies finding reduction rules, and then inverse them. Equally, we
will define instead three expansion rules, of which inverse will be reduction rules. An expansion
rule takes a FDAG and create a new DAG, that is “expanded” in the sense of having either more
vertices or more arcs. Expansion rules are built so that such a new DAG is still a FDAG, as it will be
proved in the next Subsection 2.4. We begin with a preliminary definition.

9

Definition 2.5. Let D be a FDAG, with D = (v0, . . . , vn). We define the two following alphabets

A= = {ψ(v) : v ∈ D,H(v) = H(vn)} = {p+ 1, . . . , n},

A< = {ψ(v) : v ∈ D,H(v) < H(vn)} = {0, . . . , p},

where p ∈ [[0, n− 1]] and ψ(·) is the canonical ordering of D.

In other words, A= contains the indices of all vertices that have the same height as the vertex with
the highest index according to ψ, andA< the indices of all vertices that have an inferior height. The
F DAG presented in Figure 3 will serve as a guideline example all along this subsection. Here, we
have A= = {4, 5} and A< = {0, 1, 2, 3}.

The three expansion rules are now introduced. LetD = (v0, . . . , vn). Each of these rules is associated
with an explicit symbol, which may be used, when necessary, to designate the rule afterward. It is
worth noting that all of these rules will operate according to the vertex of highest index, vn.

Branching rule This rule adds an arc between vn and a vertex below. The end vertex of the
new arc is chosen such that Cψ(vn) remains a decreasing word. In Figure 4, is applied on our
guideline example.

Definition 2.6. Let Cψ(vn) = a0 · · ·am. Choose am+1 ∈ A< such that am ≥lex. am+1 and add an
arc between ψ−1(am+1) and vn.

2 3

3 v . . .

ψ(v) . . . 5

Cψ(v) . . . 2111

(a)

2 3

2 v . . .

ψ(v) . . . 5

Cψ(v) . . . 2110

(b)

Figure 4: Branching rule applied to the FDAG of Figure 3. As Cψ(v5) = 211, the only letters awe
can pick from A< = {0, 1, 2, 3}, satisfying a ≤lex. 1, are 0 and 1. The only two possibles outcomes of

are the words (a) 2111 and (b) 2110.

Elongation rule This rule adds a new vertex vn+1 such thatH(vn+1) = H(vn)+1. Consequently,
the alphabets change and become A= = {n+ 1} and A< = {0, . . . , n}. Note that after using this rule,
it is not possible to ever add a new vertex at heightH(vn). See Figure 5 for an illustration of this
rule on the guideline example.

Definition 2.7. Add new vertex vn+1 such that Cψ(vn+1) = a0 ∈ A=.

Widening rule This rule adds a new vertex vn+1 at heightH(vn). The vertex is added with
children that respects the canonicalness of the DAG, that is, such that Cψ(vn+1) >lex. Cψ(vn) – as
in condition (4). In other terms, denoting Λ< the language of decreasing words on alphabet A<,
and with w = Cψ(vn), Cψ(vn+1) must be chosen in Λw< – see Definition 2.2. However, this set is
infinite, so we restrict Cψ(vn+1) to be chosen among the minimal words of Λw< . It follows from the
definition of suffix-cut operator SC(·) that, by inverting the said operator, the other words in Λw<
can be obtained by performing repeated operations. Finally, this new vertex is added to A=.

10

2 3

2

v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 4

(a)

2 3

2

v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 5

(b)

Figure 5: Elongation rule applied to the FDAG of Figure 3. As A= = {4, 5}, there are only two
choices leading to (a) Cψ(v6) = 4 and (b) Cψ(v6) = 5. The alphabets become A< = {0, . . . , 5} and
A= = {6}.

Definition 2.8. Add new vertex vn+1 such that

Cψ(vn+1) ∈
{
w ∈ Λw< : w is a minimal word of Λw<

}
with w = Cψ(vn).

From Proposition 2.3 we now that such minimal words exist. We prove in the upcoming lemma
that, as claimed,H(vn+1) = H(vn).

Lemma 2.9. Any element of Λw< defines a new vertex vn+1 such thatH(vn+1) = H(vn).

Proof. From the definition of H(·) – (1), it suffices to prove that vn+1 admits at least one child at
height h = H(vn) − 1. Let us denote b0 and a0 the first letter of, respectively, Cψ(vn+1) and Cψ(vn).
Denoting v = ψ−1(b0) and u = ψ−1(a0), we already know that H(u) = h – as ψ respects (4) and
Cψ(vn) is a decreasing word. Therefore, as by construction Cψ(vn+1) >lex. Cψ(vn), either (i) b0 = a0
and therefore v = u, either (ii) b0 >lex. a0. In the latter, as ψ respects (3) and (4),H(v) ≥ H(u) = h.
But, as b0 ∈ A<,H(v) < H(vn) = h+ 1. In both cases,H(v) = h. f

Figure 6 illustrates the use of the widening rule on the followed example. It should be noted that
the possible outcomes of are obtained by using Algorithm 2, applied with w = Cψ(vn) and p –
with A< = {0, . . . , p}.

2 3

2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 3

(a)

2 3

2 2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 22

(b)

2 3

2 3 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 2111

(c)

2 3

2 2 v . . .

ψ(v) . . . 5 6

Cψ(v) . . . 211 2110

(d)

Figure 6: We apply to the FDAG of Figure 3. Here, A< = {0, 1, 2, 3} and w = 211. As seen in
Subsection 2.1, the minimal words of Λw< are 3, 22, 2111 and 2110. Therefore, there are 4 ways to
add a new vertex v6 via the widening rule, that are such that (a) Cψ(v6) = 3, (b) Cψ(v6) = 22, (c)
Cψ(v6) = 2111 or (d) Cψ(v6) = 2110. Finally, we update A= to be equal to {4, 5, 6}.

11

2.4 Discussion on the enumeration tree of FDAG

In this subsection, we prove that the expansion rules previously defined preserve the canonicalness
property during the enumeration. We also introduce the reduction rule itself, and investigate
some properties of the enumeration tree implied by the combination of our rules and the reverse
search technique. First, we show that FDAG are in bijection with a set of particular matrices,
whose combinatorial properties are known and give us access to an asymptotic expansion of the
enumeration tree growth. Then, we prove that any FDAG has a linear number of successors1 in
this tree, which shows that its growth, although exponential, is reasonably controlled.

Proposition 2.10. The expansion rules preserve the canonicalness property.

Proof. Let D = (v0, . . . , vn) be a FDAG. The proposition follows naturally from the definitions:

Let a be the letter added to w = Cψ(vn). As wa >lex. w >lex. Cψ(vn−1), the ordering is
unchanged.

The new vertex vn+1 is such thatH(vn+1) > H(vn), so condition (3) is still met.

The new vertex vn+1 is chosen so that H(vn+1) = H(vn) and Cψ(vn+1) >lex. Cψ(vn), so
condition (4) is also still met.

Therefore, any DAG obtained from D is still a FDAG. f

Algorithm 3: REDUCTIONRULE

Input: D = (v0, . . . , vn); w = Cψ(vn) ;
w ′ = Cψ(vn−1)

1 if vn is the only vertex of heightH(vn)
then

2 if #w = 1 then
3 −1 : Delete vertex vn;
4 else
5 −1 : w← SC(w);

6 else
7 if w is a minimal word of Λw

′
< then

8 −1 : Delete vertex vn;
9 else

10 −1 : w← SC(w);

SC(·) is the suffix-cut operator defined in Subsection 2.1.

The reduction rule associated to the three expan-
sion rule is presented in Algorithm 3. As men-
tioned in Subsection 1.1, through Algorithm 1
– here with g(·) = >, this reduction rule defines
an enumeration tree, whose root is set to be the
DAG with a unique leaf and no arcs. This root is
denotedD0. If we denote Ek the set of all FDAG
that are accessible from D0 in exactly k steps in
the tree – with E0 = {D0}, then Table 2 depicts
the values of #Ek for the first nine values of k2.

k 0 1 2 3 4 5 6 7 8
#Ek 1 1 3 12 61 380 2 815 24 213 237 348

Table 2: Number of DAGs accessible from
D0 in k steps in the enumeration tree.

Actually, the terms of Table 2 coincide with the
first terms of OEIS sequence A1586913, which counts the number of row-Fishburn matrices, that are
upper-triangular matrices with at least one nonzero entry in each row. The size of such a matrix is
equal to the sum of its entries.

1“successor” in the sense of “children in the enumeration tree”. We make the distinction to avoid confusion with the
children denoted with C(·).

2These numbers were obtained numerically (cf. “Implementation” at the end of the article).
3OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A158691.

12

http://oeis.org/A158691

Theorem 2.11. There exists a bijection Φ between the set of FDAG and the set of row-Fishburn matrices,
such that if D is a FDAG andM = Φ(D), then

D ∈ Ek ⇐⇒ size(M) = k.

Proof. The proof lies in Appendix A. f

This connection is to our advantage since Fishburn matrices (in general) are combinatorial objects
widely explored in the literature as they are in bijection with many others – see [12, Section 2] for a
general overview. Notably, the asymptotic expansion of the number of row-Fishburn matrices has
been conjectured first by Jelı́nek [13] and then proved by Bringmann et al. [7].

Proposition 2.12 (Jelı́nek, Bringmann et al.). As k→∞,

#Ek = k!
(
12

π2

)k(
β+O

(
1

k

))
with β = 6

√
2

π2
eπ
2/24 = 1.29706861206

Given the overall combinatorics of FDAG, it is no surprise that the enumeration tree grows
extremely fast. However, despite this combinatorial explosion, the growth of the tree is controlled,
as proven by the upcoming Theorem 2.13.

Theorem 2.13. Any FDAG D = (v0, . . . , vn) has Θ(n) successors in the FDAG enumeration tree.

Proof. We denote Cψ(vn) = a0 · · ·am. Depending on the rule chosen:

am+1 belongs to A< = {0, . . . , p}, so the maximum number of successors is at most p + 1,
and at least 1, depending on the condition am ≥lex. am+1.

The child of the new vertex is taken from A= = {p+ 1, . . . , n} so the number of successors is
exactly n− p.

Following Proposition 2.3, the number of successors is exactly #A< = p+ 1.

Combining everything, the number of successors is at least n+ 2 and at most n+ p+ 2 ≤ 2n+ 1
(as p ≤ n− 1, with equality for FDAG obtained just after using rule). f

In the previous proof, we have shown that the number of successors of a FDAG with n vertices is
between n+ 1 and 2n− 1. Figure 7 illustrates that these boundaries are tight, on 1 000 randomly
generated FDAG. The random generation of a FDAG is as follows. Starting from D0 – the root,
construct iteratively Di as a successor of Di−1 in the enumeration tree, picked at random. We stop
this random exploration at step k, and keep Dk. In Figure 7, we have generated 10 trajectories for
each k ∈ {1, . . . , 100}.

13

0 10 20 30 40 50 60 70 80
Number of vertices

0

50

100

150

N
u

m
b

er
of

su
cc

es
so

rs

Figure 7: Numbers of successors of 1 000 random
FDAG in the enumeration tree, according to their
number of vertices. Orange lines have equations
y = n+ 1 and y = 2n− 1.

To conclude, a fraction of the enumeration tree
is shown in Figure 8, illustrating the path from
the root D0 to the FDAG of Figure 3. Unex-
plored branches are ignored, but are still indi-
cated by their root.

2.5 Constraining the enumeration

In [18], the authors propose an algorithm to enu-
merate all trees with at most n vertices. They
simply check whether the current tree has n
vertices or not, and as their expansion rule adds
one vertex at a time, they decide to cut a branch
in the enumeration tree once they have reached
n vertices. Similarly, adding a vertex to a tree
can only increase its height or outdegree, so
we can proceed in the same way to enumerate
all trees with maximal height H and maximal
outdegree d. Indeed, the number of trees satisfying those constraints is finite [4, Appendix D.2].

This property also holds in our approach : following one of the three expansion rules, we can only
increase the height, outdegree or number of vertices of the FDAG. So, it makes sense to define
similar constraints on the enumeration. However, for this constrained enumeration to generate a
finite number of FDAG, constraints must be chosen wisely, as shown in the following proposition.

Proposition 2.14. The FDAG enumeration tree is finite if at least one of those set of constraints is chosen:

(i) maximum number of vertices n and maximum outdegree d,

(ii) maximum height H and maximum outdegree d.

Proof. As allows to add arcs indefinitely without changing the numbers of vertices, constrain-
ing on the maximum outdegree is mandatory in both cases. As the two others rules add vertices,
constraining by the number of vertices leads to a finite enumeration tree – (i) is proved. To conclude,
we only need to prove that cannot be repeated an infinite number of times, i.e. there is only a
finite number of new vertices that can be added at a given height, up to the maximum outdegree.
This is achieved by virtue of the upcoming lemma.

Let H > 2 and d ≥ 1. Let D be the FDAG constructed so that for each 0 ≤ h ≤ H, D has the
maximum possible number nh of vertices of height h and with maximum outdegree d. Initial
values are n0 = 1 and n1 = d.

Lemma 2.15. ∀2 ≤ h ≤ H, nh =

d∑
k=1

(
k+ nh−1 − 1

k

)(
d− k+ n0 + · · ·+ nh−2

d− k

)
.

Let h ≥ 2 be fixed. To lighten the notation, let n = nh−1 andm = n0 + · · ·+ nh−2. Let v be a vertex
to be added at height h. For any vertex vi at height h − 1, let xi be the multiplicity of vi in C(v) –

14

2

2

2 2

3

2 3

2 3 4

2 4

2 3

2 3

2 3

2 3

2 3

2

2 3

2 3

2

2 3

2 3 2 3

2 3

2 3

2 3

2

2 3 2 3

2 3

2

2 3

2

2 3

2

2 3

2

2 3 2 3

2 3

2

2 3

2 3

2 3

2

2 3

2

2 3

2

Figure 8: The path (in bold) in the FDAG enumeration tree leading to the FDAG of Figure 3. The
unexplored branches are only displayed by their root, which are shown partially transparent. The
order of insertion of the vertices of each FDAG is always the same, and follows the color code (in
the order of insertion): , , , , , and . With respect to the canonical ordering, they
are numbered 0 to 6 in the same order.

15

0 if vi /∈ C(v). Similarly, for any vertex vh with H(vj) ≤ h − 2, yj is the multiplicity of vj in C(v) –
possibly 0. By definition ofH(·) – see (1), at least one xi is non-zero. Therefore, there exist k ∈ [[1, d]]
such that:

x1 + · · ·+ xn = k
y1 + · · ·+ ym ≤ d− k

By virtue of the stars and bars theorem, for a fixed k, there are
(
k+n−1
k

)
choices for variables xi, and(

d−k+m
d−k

)
for variables yj. Summing upon all values for k proves the claim. f

Remark 2.16. In the constrained enumeration proposed in [18], all the trees with n vertices are the leaves of
the enumeration tree. To get all trees with n+ 1 vertices, it suffices to add to the enumeration all children
of these leaves, i.e. trees obtained by adding a single vertex to them. This property – moving from one
parameter value to the next by enumerating just one step further – does not hold anymore as soon as our set
of constraints involve the maximum outdegree d, both for trees and FDAG. For instance, from a FDAG of
height H, one can obtain FDAG of height H+ 1 by using once and repeating up to d− 1 times.

3 Enumeration of forests of subtrees

Once the reverse search scheme has been set up to enumerate a certain type of structure, it is natural
to move to a finer scale by using the same scheme to enumerate substructures. However, the notion
of “substructure” is not obvious to derive from the main structure, as several choices are possible –
e.g. for trees one can think of subtrees [22, 5], subset trees [8], etc. From a practical point of view,
the enumeration of substructures permits to solve the frequent pattern mining problem – which
will be tackled in Section 4.

In this section we define forests of subtrees, which will be our substructures. Compressed as FDAG,
these objects will be called subFDAG. We then address the problem of enumerating all subFDAG
appearing in an FDAG D – similar as the one of enumerating all subtrees of a tree.

Forests of subtrees Similarly to forest being tuple of trees, forests of subtrees are tuple of subtrees,
satisfying (2). Formally:

Definition 3.1. Let F and f be two forests. f is a forest of subtrees of F if and only if

∀t ∈ f, ∃T ∈ F, t ∈ S(T).

Forest of subtrees can be directly constructed from FDAG, as shown by the upcoming proposition.
Let D be a FDAG, and V a subset of vertices of D.

Proposition 3.2. If ∀v ∈ V , C(v) ⊆ V , then V defines a FDAG ∆, such that R−1(∆) is a forest of subtrees
of R−1(D).

Proof. The demonstration is in two steps. (i) Remove fromD the vertices that does not belong to V ;
as there are no arcs that leave V by hypothesis, end up with a FDAG. Let us call ∆ this FDAG. (ii)
Let ρ be a root of ∆. By construction, ρ is also a vertex inD. Among all roots ofD, there exists a root
r such that ρ ∈ D(r). Therefore, D[ρ] is a subDAG of D[r], and then t = R−1(D[ρ]) is a subtree of

16

T = R−1(D[r]) – with T ∈ F = R−1(D). As ∆[ρ] andD[ρ] are isomorphic, t ∈ f = R−1(∆). Therefore
we have proved that ∀t ∈ f, ∃T ∈ F, t ∈ S(T). f

We say that the FDAG ∆ is a subFDAG4 of D. Figure 9 provides an example of such a construction.

2 3

2

(a)

2

(b)

t1 t2

f = {t1, t2}

(c)

T1 T2 T3

F = {T1, T2, T3}

(d)

Figure 9: Construction of a forest of subtrees from FDAG. (a) A FDAGD. The set V is circled in red.
(b) The FDAG ∆ (c) The forest f compressed by ∆. (d) The forest F compressed by D. One can spot
that t1 ∈ S(T1), t2 ∈ S(T2) so f is a forest of subtrees of F, and ∆ a subFDAG of D.

Enumeration of subFDAG We now solve the following enumeration problem: given a forest F,
find all forests of subtrees of F. Equally, given a FDAG D, find all subFDAG of D. To address this,
we make extensive use of the reverse search technique, adapting the one presented in Section 2.

Since a subFDAg is also a FDAG, it admits successors in the enumeration tree defined in Section 2.
We are interested in those of these successors who are also subFDAG (if any). In fact, since a
subFDAG can be defined from a set of vertices, all one has to do is determine which new vertex
can be chosen to expand an existing subFDAG – corresponding to a or step.The covering of
all added new arcs is implicit in this construction and corresponds to some steps of .

Let ∆ be a subFDAG ofD and v its last inserted vertex – it is also the vertex with the largest ordering
number in D. We denote by S(∆) the set of all vertices v ′ ∈ D that can be added to ∆ to expand it
to a new subFDAG. Let us call S(∆) the set of candidate vertices of ∆. More precisely:

Lemma 3.3. S(∆) is the set of vertices v ′ ∈ D that satisfies both:

(i) C(v ′) ⊆ ∆

(ii) ψ(v ′) > ψ(v)

where ψ(·) is the canonical ordering of D.

Proof. (i) This condition is necessary so that ∆ ′ = ∆∪ {v ′} fulfill the requirements for Proposition 3.2.
(ii) This condition is necessary so that ∆ ′ remains a FDAG. Asψ(v ′) > ψ(v), eitherH(v ′) = H(v)+1
– then it is a step – orH(v ′) = H(v) and Cψ(v ′) >lex. Cψ(v) – for a step. f

When S(∆) is not empty, picking s ∈ S(∆) ensure that ∆ ′ = ∆∪ {s} is a subFDAG ofD. With respect
to the enumeration tree of Section 2, ∆ is an ancestor of ∆ ′ – but not necessarily its parent, since the
steps of are implicit. ∆ ′ is called an heir of ∆. We can in turn calculate S(∆ ′), by updating S(∆):

4Not to be confused with subDAG, introduced in Subsection 1.2.

17

0

1, 2, 3

0, 1

2, 3, 4

0, 2

3

0, 2, 3

∅

0, 3

∅

0, 1, 2

3, 4, 5

0, 1, 3

4

0, 1, 3, 4

∅

0, 1, 4

∅

0, 1, 2, 3

4, 5

0, 1, 2, 4

5

0, 1, 2, 4, 5

∅

0, 1, 2, 5

∅

0, 1, 2, 3, 4

5

0, 1, 2, 3, 4, 5

∅

0, 1, 2, 3, 5

∅

Figure 10: Enumeration tree of the subFDAG of the FDAG of Figure 3, using both Algorithm 1 and
Algorithm 4. The indices of the vertices correspond to the canonical ordering defined in Figure 3. In
each vertex, the upper part corresponds to the current subFDAG ∆ whereas the lower part stands
for the set S(∆). Numbers in red indicate what changes for an heir compared to its parent.

(i) Remove from S(∆) all vertices v ′ such that ψ(s) > ψ(v ′). (ii) In D, look only after the vertices v ′

such that s ∈ C(v ′) ⊆ ∆ ∪ {s} and add them to S(∆ ′).

Algorithm 4: HEIRS

Input: D,
[
∆, S(∆)

]
1 Set L to the empty list;
2 for s ∈ S(∆) do
3 Let S ′ be a copy of S(∆);
4 S ′ ← S ′ \ {v ′ ∈ S ′ : Cψ(v ′) ≤lex. Cψ(s)};
5 S ′ ← S ′ ∪

{
v ′ ∈ D : s ∈ C(v ′) ⊆ ∆ ∪ {s}

}
;

6 Add
[
∆ ∪ {s}, S ′

]
to L;

7 return L

If ∆ ′ is an heir of ∆, then by removing the
last inserted vertex of ∆ ′, one can retrieve
∆. This define a reduction rule f, and there-
fore an enumeration tree. Algorithm 4 is
meant to construct the set f−1(∆). Apply-
ing Algorithm 1 together with it, and start-
ing from ∆ = L(D) – in this case, S(∆) is
the set of parents of L(D) of height 1– per-
mits to enumerate all subFDAG of D. Fig-
ure 10 provide an example by enumerating
all subFDAG of the FDAG of Figure 3.

4 Frequent subFDAG mining problem

Using the reverse search formalism introduced in Subsection 1.1, the frequent pattern mining problem
can be formulated as follow: from a dataset X = {s1, . . . , sn} with si ∈ S, and a fixed threshold
σ, find all elements s ∈ S that satisfies freq(s, X) ≥ σ, where freq(·) is a function, to be defined,
that counts the frequency of appearance of s in the dataset X. This problem can be solved using
Algorithm 1 with g(s, X, σ) = (freq(s, X) ≥ σ). The function g is trivially anti-monotone.

We emphasize here that each possible definition of “s appears in X” leads to a different data mining
problem. The choice of this definition is therefore of prime importance. In particular, this choice
should induce a way of calculating freq(s, X) that reflects the specificity of the chosen reduction
rule f, so that {s ∈ f−1(s0)|g(s) = >} can be constructed directly, instead of first generating f−1(s0)

18

and then filtering according to the value of g. Indeed, if g is too restrictive, and f−1(s0) too large,
one would have to enumerate objects that are not relevant to the problem, which is not desirable.

In this article, the problem we consider is the following: given a set of trees X = {T1, . . . , Tn}, account
for forests of subtrees that appear simultaneously in different Ti’s. In other words, if we denote F i
the set of all forest of subtrees appearing in the forest formed by {Ti}, we are interested in the study
of ∩i∈Iσ F i where Iσ ⊆ [[1, n]], such that #Iσ ≥ σ · n.

A first, naive strategy would be to first build the F i’s, e.g. by using Algorithm 4 on R(Ti), and then
construct ∩i∈Iσ F i for all possible choices of Iσ. Obviously, this approach has its weaknesses: (i)
many subFDAG will be enumerated for nothing or in several copies, and (ii) it does not take into
account that X is itself a forest. Our aim is to propose a variant of Algorithm 4 that, applied to R(X),
would enumerate only subFDAG appearing in the R(Ti)’s with a large enough frequency.

Given a forest F = {T1, . . . , Tn} and its DAG compression D = R(F), we have to retrieve, for each
vertex in D, their origin in the dataset, that is, from which tree they come from. This issue has
already been addressed in a previous article [5, Section 3.3], and has led to the concept of origin.
For any vertex v ∈ D, the origin of v is defined as

o(v) =
{
i ∈ [[1, n]] : R−1(D[v]) ∈ S(Ti)

}
.

In others words, o(v) represents the set of trees for which R−1(D[v]) is a subtree. We state in [5,
Proposition 3.4] that origins can be iteratively computed in one exploration of D. The proof lies in
the property that if i ∈ o(v), then for all v ′ ∈ D(v), i ∈ o(v ′) – as R−1(D[v ′]) ∈ S(R−1(D[v])).

Let ∆ be a subFDAG of D. For ∆ to compress a forest of subtrees of a tree Ti, it is necessary that
i ∈ o(v) for all v ∈ V0. Therefore, the set of trees for which ∆ compress a forest of subtrees – the
origin of ∆, denoted o(∆) – is equal to

o(∆) =
⋂
v∈V0

o(v).

If ∆ ′ = ∆∪ {s} is an heir of ∆ – as defined earlier, then o(∆ ′) = o(∆)∩o(s). Algorithm 4 can therefore
be refined so that ∆ ′ should be ignored if o(∆ ′) = ∅ – as ∆ ′ does not anymore compresses any forest
of subtrees actually present in the trees of F.

So far we neglected the threshold σ. We only want to keep subFDAG that appear in at least σ% of
the data. If # o(∆)/#F < σ, then the successors of ∆ are not investigated.

Indeed, as o(·) is a decreasing func-
tion, successors of ∆ cannot exceed the
threshold again. We can finally intro-
duce Algorithm 5 that solves the fre-
quent subFDAG mining problem for
trees. With the notations of Subsec-
tion 1.1, this algorithm builds the set
{∆ ′ ∈ f−1(∆)|freq(∆ ′, F) ≥ σ}, with
freq(∆ ′, F) = # o(∆ ′)/#F. The set is also
built directly, without any posterior fil-
tering, which is suitable as discussed in
Subsection 1.1.

Algorithm 5: FREQUENTHEIRS

Input: D = R(F),
[
∆, S(∆), o(∆)

]
, σ

1 Set L to the empty list;
2 for s ∈ S(∆) do
3 if o(∆) ∩ o(s) 6= ∅ and #(o(∆) ∩ o(s)) ≥ σ · #F

then
4 Let S ′ be a copy of S(∆);
5 S ′ ← S ′ \ {v ′ ∈ S ′ : Cψ(v ′) ≤lex. Cψ(s)};
6 S ′ ← S ′ ∪

{
v ′ ∈ D : s ∈ C(v ′) ⊆ D0 ∪ {s}

}
;

7 Add
[
∆ ∪ {s}, S ′, o(∆) ∩ o(s)

]
to L;

8 return L

19

We stated earlier that we wanted to avoid generating unnecessary or multiple copies of subFDAG,
which is achieved with Algorithm 5. We now empirically study what we have gained from this, by
comparing the use of Algorithm 5 on D = R(F), with the use of Algorithm 4 on each R(Ti). As in
Subsection 2.4, we generated 1 000 random DAGs, 10 repetitions for each k ∈ {1, . . . , 100}, creating
Dk as a random exploration in k steps of the enumeration tree defined in Section 2. We assume
Dk = R(f) where f = {R−1(Dk[r]) : r root of Dk}. For each Dk, we have computed the quotient

Q(Dk) =
number of subFDAG of Dk enumerated via Algorithm 5∑

r root of Dk

number of subFDAG of Dk[r] enumerated via Algorithm 4

0 10 20 30 40 50 60 70 80
Number of vertices

0.2

0.4

0.6

0.8

1.0

Q
u

ot
ie

nt
Q

Figure 11: Quotient Q(D) according to the num-
ber of vertices of D. Here 1 000 random FDAG
are displayed.

with parameter σ = 0 when using Algorithm 5.
The results are provided in Figure 11. Despite
a rather marked variability, there is a general
trend of decreasing as the number of vertices in-
creases. We obtain fairly low quotients, around
20%, quite quickly. Given the combinatorial ex-
plosion of the objects to be enumerated, such
an advantage is of the greatest interest.

Implementation

The treex library for Python [3] is designed
to manipulate rooted trees, with a lot of diver-
sity (ordered or not, labeled or not). It offers
options for random generation, visualization,
edit operations, conversions to other formats,
and various algorithms. The enumeration of
Section 2 and the algorithms of Section 3 and 4 have been implemented as a module of treex so
that the interested reader can manipulate the concepts discussed in this paper in a ready-to-use
manner. Installing instructions and the documentation of treex can be found from [3].

Acknowledgments

This work has been supported by the European Union’s H2020 project ROMI. The authors would
like to thank Dr. Arnaud Mary for his helpful suggestions on the final draft of the article.

References

[1] Tatsuya Asai, Hiroki Arimura, Takeaki Uno, and Shin-Ichi Nakano. Discovering frequent substructures
in large unordered trees. In International Conference on Discovery Science, pages 47–61. Springer, 2003.

[2] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1-
3):21–46, 1996.

[3] Romain Azaı̈s, Guillaume Cerutti, Didier Gemmerlé, and Florian Ingels. treex: a python package for
manipulating rooted trees. The Journal of Open Source Software, 4, 2019.

20

[4] Romain Azaı̈s, Jean-Baptiste Durand, and Christophe Godin. Approximation of trees by self-nested
trees. In ALENEX 2019 - Algorithm Engineering and Experiments, pages 1–24, San Diego, United States,
January 2019. URL: https://hal.archives-ouvertes.fr/hal-01294013, doi:10.10860.

[5] Romain Azaı̈s and Florian Ingels. The weight function in the subtree kernel is decisive. arXiv preprint
arXiv:1904.05421, 2019.

[6] Edward A Bender and S Gill Williamson. Lists, Decisions and Graphs. S. Gill Williamson, 2010.

[7] Kathrin Bringmann, Yingkun Li, and Robert C Rhoades. Asymptotics for the number of row-fishburn
matrices. European Journal of Combinatorics, 41:183–196, 2014.

[8] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in neural
information processing systems, pages 625–632, 2002.

[9] Christophe Godin and Pascal Ferraro. Quantifying the degree of self-nestedness of trees: application
to the structural analysis of plants. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 7(4):688–703, 2010.

[10] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current status and
future directions. Data mining and knowledge discovery, 15(1):55–86, 2007.

[11] John C. Hart and Thomas A. DeFanti. Efficient antialiased rendering of 3-d linear fractals. SIGGRAPH
Comput. Graph., 25(4):91–100, July 1991. URL: http://doi.acm.org/10.1145/127719.122728,
doi:10.1145/127719.122728.

[12] Hsien-Kuei Hwang and Emma Yu Jin. Asymptotics and statistics on fishburn matrices and their
generalizations. arXiv preprint arXiv:1911.06690, 2019.

[13] Vı́t Jelı́nek. Counting general and self-dual interval orders. Journal of Combinatorial Theory, Series A,
119(3):599–614, 2012.

[14] Arthur B Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562, 1962.

[15] Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008, pages 105–132. Springer, 2010.

[16] Fionn Murtagh. Counting dendrograms: a survey. Discrete Applied Mathematics, 7(2):191–199, 1984.

[17] Shin-Ichi Nakano. Efficient generation of plane trees. Information Processing Letters, 84(3):167–172, 2002.

[18] Shin-ichi Nakano and Takeaki Uno. Efficient generation of rooted trees. National Institute for Informatics
(Japan), Tech. Rep. NII-2003-005E, 8, 2003.

[19] Sebastian Nowozin. Learning with structured data: applications to computer vision. PhD thesis, Berlin
Institute of Technology, 2009.

[20] Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal solutions of feedback
problems. Discrete Applied Mathematics, 117(1-3):253–265, 2002.

[21] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication system. In Proceedings of
the May 21-23, 1963, Spring Joint Computer Conference, AFIPS ’63 (Spring), pages 329–346, New York,
NY, USA, 1963. ACM. URL: http://doi.acm.org/10.1145/1461551.1461591, doi:10.1145/
1461551.1461591.

[22] S.V.N. Vishwanathan and Alexander J Smola. Fast kernels on strings and trees. Advances on Neural
Information Proccessing Systems, 14, 2002.

[23] Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara. Enumeration of nonisomorphic
interval graphs and nonisomorphic permutation graphs. Theoretical Computer Science, 806:310–322, 2020.

[24] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings., pages 721–724. IEEE, 2002.

21

https://hal.archives-ouvertes.fr/hal-01294013
http://dx.doi.org/10.10860
http://doi.acm.org/10.1145/127719.122728
http://dx.doi.org/10.1145/127719.122728
http://doi.acm.org/10.1145/1461551.1461591
http://dx.doi.org/10.1145/1461551.1461591
http://dx.doi.org/10.1145/1461551.1461591

A A bijection between FDAG and row-Fishburn matrices

This section is dedicated to the proof of Theorem 2.11, which is in two steps. First, we recall the
natural bijection between FDAG and their adjacency matrices; the latter are then put into bijection
with the row-Fishburn matrices.

FDAG↔ Reduced adjacency matrix LetD = (v0, . . . , vn) be a FDAG constructed in k steps from
D0 in the enumeration tree defined in Subsection 2.4. The adjacency matrix of D is defined as
A = (Ai,j)i,j∈[[n,0]]2 where, ifm if the multiplicity of vj in C(vi), thenAi,j = m – possibly 0 if vj /∈ C(vi).
By construction of D, as vn is the last inserted vertex, it has no parents, so An,· is a column of zeros;
and as v0 is a leaf, it has no children, soA·,0 is a row of zeros. We define the reduced adjacency matrix
M as the matrix A deprived of this column and this row. Therefore,M = (Ai,j)i∈[[n,1]],j∈[[n−1,0]]. As a
vertex can not be a parent to any vertex introduced after it, we have Ai,j = 0 for all i ≤ j – so that
M is an upper-triangular matrix. In addition, as all vertices except v0 have at least one child, there
is at least one non-zero entry in each row ofM. Therefore,M is a row-Fishburn matrix. However,
we have no guarantee that this matrix verifies size(M) = k.

Reduced adjacency matrix → Incremental adjacency matrix Let D = (v0, . . . , vn) be a FDAG,
and M its reduced adjacency matrix. Let Mi be the row of M corresponding to Cψ(vi). The
incremental adjacency matrix M̂ is defined as:{

M̂1 =M1

M̂i+1 =Mi+1 	Mi

where the 	 operation is defined as follow: given two rows a0 · · ·an and b0 · · ·bn, then denoting
j = min{i : ai 6= bi}, and c = aj − bj,

a0 · · · aj−1 aj aj+1 · · ·an
	 b0 · · · bj−1 bj bj+1 · · ·bn
= 0 · · · 0 c aj+1 · · ·an

.

We claim that this new matrix M̂ is a row-Fishburn matrix of size k, if D ∈ Ek. Actually, sinceM
was already a row-Fishburn matrix, we just have to check that the size is correct. Let us consider vi
and vi+1. The vertex vi+1 has been constructed from vi by using either or , and potentially
several after that – let us say p ≥ 0 times. Therefore, if the claim is correct, the sum over M̂i+1

should be exactly p+ 1. Consider the operation by which vi+1 was added in the first place:

Cψ(vi+1) is reduced to a single element a, such that a >lex. Cψ(vi). Therefore, the index j of
the first non-zero coefficient of Mi+1 is ahead of the one of Mi so that the coefficient c of
	 is equal to the j-th coefficient of Mi+1 minus zero. Since the rule adds children to
respect decreasing words, the p extra coefficients are added to the right of the j-th coefficient
(including it) and therefore they are kept unchanged in the 	 operation. Eventually, the sum
overMi+1 is p+ 1 and so is the sum over M̂i+1.

22

Cψ(vi+1) is built from Cψ(vi) with Algorithm 2, and therefore they (i) share a common
prefix, possibly empty and (ii) then differ by a single letter. The index of that letter inMi+1

corresponds to the index j defined in 	. Therefore, the coefficient c is – before any
– equal to one. The argument of letters being added to the right of j still hold and
therefore the sum over M̂i+1 is also p+ 1.

To conclude the proof, we have to exhibit the inverse function of the mapping we just defined. This
will prove that this mapping is indeed a bijection, and then the theorem holds.

Incremental adjacency matrix → Reduced adjacency matrix Let M and M̂ be constructed as
before. From M̂, we can define a matrixM ′ as:{

M ′1 = M̂1

M ′i+1 =M
′
i ⊕ M̂i+1

where the ⊕ operation is defined as follow: given two words a0 · · ·an and b0 · · ·bn, then denoting
j = min{i : bi 6= 0}, and c = aj + bj,

a0 · · ·aj−1 aj aj+1 · · ·an
⊕ b0 · · ·bj−1 bj bj+1 · · ·bn
= a0 · · ·aj−1 c bj+1 · · ·bn

.

By construction, ⊕ is the inverse operation of 	, so that we have the following lemma:

Lemma A.1. The following properties hold:

• Mi ⊕ (Mi+1 	Mi) =Mi+1

• (Mi ⊕ M̂i+1)	Mi = M̂i+1

Thefore,M =M ′.

The FDAG of Figure 3 is reproduced below to illustrates the stages of the proof. This FDAG is
constructed in 7 steps, that are (in this order): , , , , , and . The matrices
A,M and M̂ are given in Figure 12. One can see that M̂ is of size 7, as expected.

Remark A.2. It should be noted that (general) Fishburn matrices, with at least one non-zero entry on each
row and column, are in bijection with FDAG compressing forests made of a unique tree. Indeed, via the
bijection above, as such FDAG have a unique root, it must be the last inserted vertex, and therefore, each
column admits at least one non-zero entry (otherwise it would be another root).

Remark A.3. It is possible to enumerate row-Fishburn matrices by using the previous bijection and the
FDAG enumeration tree together. Nevertheless, things are a little simpler in this case and the equivalent of
the operations and can be merged, giving two rules for matrix expansion:

(R1) Increase one coefficient to the (inclusive) left of the rightmost nonzero coefficient of the top row by 1.

(R2) Increase the dimension of the matrix by 1 (to the left and top), all new coefficients set to zero. Set one
coefficient of the top row to 1.

23

2 3

2

v

ψ(v) 0 1 2 3 4 5

Cψ(v) 0 00 000 1 211

A v5 v4 v3 v2 v1 v0


v5 . 0 0 1 2 0

v4 . . 0 0 1 0

v3 . . . 0 0 3

v2 0 2

v1 1

v0

M v4 v3 v2 v1 v0


v5 0 0 1 2 0

v4 . 0 0 1 0

v3 . . 0 0 3

v2 . . . 0 2

v1 1

M̂ v4 v3 v2 v1 v0


v5 0 0 1 2 0

v4 . 0 0 1 0

v3 . . 0 0 1

v2 . . . 0 1

v1 1

Figure 12: The FDAG of Figure 3 reproduced (top left), its adjacency matrix A (top right), its
reduced adjacency matrixM (bottom left) and its incremental adjacency matrix M̂ (bottom right).
Dots represent zeros corresponding to Ai,j elements with i ≤ j.

24

	Introduction
	Context of the work
	Precise formulation of the problem
	Aim of the paper

	Exhaustive enumeration of FDAG
	Preliminary: a detour through formal languages
	Canonical FDAG
	Expansion rules
	Discussion on the enumeration tree of FDAG
	Constraining the enumeration

	Enumeration of forests of subtrees
	Frequent subFDAG mining problem
	A bijection between FDAG and row-Fishburn matrices

