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FAMILIES OF SINGULAR KÄHLER-EINSTEIN METRICS

by

Eleonora Di Nezza, Vincent Guedj & Henri Guenancia

Abstract. — Refining Yau’s and Kolodziej’s techniques, we establish very precise uniform
a priori estimates for degenerate complex Monge-Ampère equations on compact Kähler
manifolds, that allow us to control the blow up of the solutions as the cohomology class and
the complex structure both vary.

We apply these estimates to the study of various families of possibly singular Kähler va-
rieties endowed with twisted Kähler-Einstein metrics, by analyzing the behavior of canon-
ical densities, establishing uniform integrability properties, and developing the first steps
of a pluripotential theory in families. This provides interesting information on the moduli
space of stable varieties, extending works by Berman-Guenancia and Song, as well as on
the behavior of singular Ricci flat metrics on (log) Calabi-Yau varieties, generalizing works
by Rong-Ruan-Zhang, Gross-Tosatti-Zhang, Collins-Tosatti and Tosatti-Weinkove-Yang.
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Introduction

Let p : X → Y be a proper, surjective holomorphic map with connected fibers be-
tween Kähler varieties. It is a central question in complex geometry to relate the geom-
etry of X to the one of Y and the fibers Xy of p. An important instance of such a situation
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is when one can endow Xy with a Kähler-Einstein metric and study the geometry of X
induced by the properties of the resulting family of metrics. This is the main theme of
this article.

Einstein metrics are a central object of study in differential geometry. A Kähler-
Einstein metric on a complex manifold is a Kähler metric whose Ricci tensor is pro-
portional to the metric tensor. This notion still makes sense on midly singular varieties
as was observed in [EGZ09, section 7]. The solution of the (singular) Calabi Conjecture
[Yau78, EGZ09] provides a very powerful existence theorem for Kähler-Einstein met-
rics with negative or zero Ricci curvature. It is important to study the ways in which
these canonical metrics behave when they are moving in families. In this paper we con-
sider the case when both the complex structure and the Kähler class vary and we try
and understand how the corresponding metrics can degenerate.

Constructing singular Kähler-Einstein metrics on a midly singular variety V boils
down to solving degenerate complex Monge-Ampère equations of the form

(ω + i∂∂ϕ)n = f eλϕdVX,

where
– π : X → V is a resolution of singularities, dVX is a volume form on X,
– ω = π∗ωV is the pull-back of a Kähler form on V,
– the sign of λ ∈ R depends on that of c1(V),
– f ∈ Lp(X) with p > 1 if the singularities of V are mild (klt singularities),

and ϕ is the unknown. The latter should be ω-plurisubharmonic (ω-psh for short), i.e.
it is locally the sum of a psh and a smooth function, and satisfies ω + i∂∂ϕ ≥ 0 in the
weak sense of currents. We let PSH(X, ω) denote the set of all such functions.

The uniform estimate. — A crucial step in order to prove the existence of a solution
to the above equation is to establish a uniform a priori estimate. In order to understand
the behavior of the solution ϕ as the cohomology class {ωV} and the complex structure
of V vary, we revisit the proof by Yau [Yau78], as well as its recent generalizations
[Koł98, EGZ09], and establish the following (see Theorem 1.1):

Theorem A. — Let X be a compact Kähler manifold of complex dimension n ∈ N∗ and let ω
be a semi-positive form such that V :=

∫
X ωn > 0. Let ν and µ = f ν be probability measures,

with 0 6 f ∈ Lp(ν) for some p > 1. Assume the following assumptions are satisfied:
(H1) there exists α > 0 and Aα > 0 such that for all ψ ∈ PSH(X, ω),∫

X
e−α(ψ−supX ψ)dν 6 Aα;

(H2) there exists C > 0 such that
(∫

X | f |
p dν

)1/p 6 C.
Let ϕ be the unique ω-psh solution ϕ to the complex Monge-Ampère equation

V−1(ω + i∂∂ϕ)n = µ,

normalized by supX ϕ = 0. Then −M 6 ϕ 6 0 where

M = 1 + C1/n A1/nq
α eα/nqbn

[
5 + eα−1C(q!)1/q A1/q

α

]
,
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1/p + 1/q = 1 and bn is a constant such that exp(−1/x) 6 bn
nx2n for all x > 0.

Remark 0.1. — Let us observe that the condition (H1) in Theorem A above guarantees
that the measure ν does not charge pluripolar sets, since any such set can be included
in the polar locus of a global ω-psh function by [GZ05, Thm. 7.2]. The existence (and
uniqueness) of the solution ϕ in Theorem A follows from [BEGZ10, Thm. A].

We also establish slightly more general versions of Theorem A valid for less regular
densities (Theorem 1.5) or big cohomology classes (Theorem 1.9). We then move on to
checking hypotheses (H1) and (H2) in various geometrical contexts.
• Hypothesis (H1). If π : X → D is a projective family whose fibers Xt = π−1(t) have
degree d with respect to a given projective embedding X ⊂ PN ×D, and ω = ωt is the
restriction of the Fubini-Study metric, we observe in Proposition 2.5 that

V =
∫

Xt

ωn
t =

∫
PN

ωn
FS ∧ [Xt] = d

is independent of t and the following uniform integrability holds.

Proposition B. — For for all ψ ∈ PSH(Xt, ωt),∫
Xt

e−
1

nd (ψ−supXt
ψ)

ωn
t 6 (4n)n · d · exp

{
− 1

nd

∫
Xt

(ψ− sup
Xt

ψ)ωn
t

}
.

The hypothesis (H1) is thus satisfied in this projective setting, with α = 1/nd, as soon
as we can uniformly control the L1-norm of ψ. We take care of this in Section 3. This
non-trivial control requires the varieties Xt to be irreducible (see Example 3.5).

Bypassing the projectivity assumption, we show that (H1) is actually satisfied for
many Kähler families of interest, by generalizing a uniform integrability result of
Skoda-Zeriahi [Sko72, Zer01] (see Theorem 2.9). This is the content of Theorem 3.4.

• Hypothesis (H2). We analyze (H2) in section 4. We show that, up to shrinking the base,
it is always satisfied if the ft’s are canonical densities associated to a proper, holomor-
phic surjective map π : X → D from a normal, Q-Gorenstein Kähler space X to the
unit disk such that the central fiber has only canonical singularities, cf Lemma 4.4 and
its application to families of Calabi-Yau varieties, Theorem F.

While previous works tend to use sophisticated arguments from Variations of Hodge
Structures (see e.g. the Appendix by Gross in [RZ11a]), we use here direct elementary
computations in adapted coordinates, in the spirit of [EGZ09, section 6].

In the context of families of varieties with negative curvature though, it is essential
to allow worse singularities than the ones described above, cf Setting 4.1 for the precise
context. The trade-off is that the canonical densities do not satisfy condition (H2) any-
more, reflecting the fact that the local potentials of the Kähler-Einstein metrics at stake
need not be bounded anymore. This legitimizes the introduction of a weaker condition
(H2’) (see Theorem 1.5 and Lemma 4.6). This allows us to derive an almost optimal
control of the potentials of Kähler-Einstein metrics along a stable family, cf Theorem E
below.
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Let us end this paragraph by emphasizing that our approach enables us to work with
singular families (i.e. families where the generic fiber is singular, cf Theorems E and F)
as opposed to all previously known results on that topic, requiring to approximate a
singular variety by smooth ones using either a smoothing or a crepant resolution.

We now describe more precisely four independent geometric settings to which we
apply the uniform estimate provided by Theorem A.

Families of manifolds of general type. — Let X be an irreducible and reduced com-
plex space endowed with a Kähler form ω and a proper, holomorphic map π : X → D.
We assume that for each t ∈ D, the (schematic) fiber Xt is a n-dimensional Kähler man-
ifold Xt of general type, i.e. such that its canonical bundle KXt is big. In particular, X is
automatically non-singular and the map π is smooth.

We fix Θ a closed differential (1, 1)-form on X which represents c1(KX/D) and set
θt = Θ|Xt .

It follows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78,
Yau78], that there exists a unique Kähler-Einstein current on Xt. This is a posi-
tive closed current Tt in c1(KXt) which is a smooth Kähler form in the ample locus
Amp(KXt), where it satisfies the Kähler-Einstein equation

Ric(Tt) = −Tt.

It can be written Tt = θt + ddc ϕt, where ϕt is the unique θt-psh function with minimal
singularities that satisfies the complex Monge-Ampère equation

(θt + ddc ϕt)
n = eϕt+ht ωn

t on Amp(KXt),

where ht is such that Ric(ωt)− ddcht = −θt and
∫

Xt
eht ωn

t = vol(KXt). For x ∈ X , set

(0.1) φ(x) := ϕπ(x)(x)

and consider

(0.2) VΘ = sup{u ∈ PSH(X , Θ); u 6 0}.
We prove that conditions (H1) and (H2) are satisfied in this setting. It then follows
from Theorem A and the plurisubharmonic variation of the Tt’s ([CGP17, Thm. A]) that
φ−VΘ is uniformly bounded on compact subsets of X , cf Theorem 5.5 and Remark 5.6:

Theorem C. — Let π : X → D be a smooth Kähler family of manifolds of general type, let
Θ ∈ c1(KX/D) be a smooth representative and let φ be the Kähler-Einstein potential as in
(0.1). Given any compact subset K b X , there exists a constant MK such that the following
inequality

−MK 6 φ−VΘ 6 MK
holds on K, where VΘ is defined by (0.2).

The same results can be proved if the family π : X → D is replaced by a smooth
family π : (X , B) → D of pairs (Xt, Bt) of log general type, i.e. such that (Xt, Bt) is klt
and KXt + Bt is big for all t ∈ D.
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Stable families. — A stable variety is a projective variety X such that X has semi- log
canonical singularities and the Q-line bundle KX is ample. We refer to [Kov13, Kol] for
a detailed account of these varieties and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kähler-Einstein metric
ω, i.e. a smooth Kähler metric on Xreg such that, if n = dimC X,

Ric(ω) = −ω and
∫

Xreg

ωn = (Kn
X).

The metric ω extends canonically across Xsing to a closed, positive current in the
class c1(KX). It is desirable to understand the singularities of ω near Xsing. In [GW16,
Thm. B], it is proved that ω has cusp singularities near the double crossings of X. More-
over, it is proved in [Son17] that the potential ϕ of ω with respect to a given Kähler form
ωX ∈ c1(KX), i.e. ω = ωX + ddc ϕ, is locally bounded on the klt locus of X. We make
this assertion more precise by establishing the following (cf. Proposition 5.9).

Proposition D. — For any ε > 0, there is a constant Cε such that

(0.3) C1 > ϕ > −(n + 1 + ε) log(− log |s|)− Cε

where (s = 0) is any reduced divisor containing the non-klt locus of X.

This estimate is almost optimal. Indeed, if X is the Satake-Baily-Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution (X, D)
which is a toroidal compactification of the ball quotient obtained by adding disjoint
abelian varieties. Then, the potential ϕ of the Kähler-Einstein metric on (X, D) with
respect to a smooth form in c1(KX + D) satisfies

ϕ = −(n + 1) log(− log |sD|) + O(1)

if (sD = 0) = D.

A slight refinement of Theorem A (cf. Theorem 1.5) allows us to establish a uniform
family version of the estimate (0.3). In order to state it, let X be a normal Kähler space
and let π : X → D be a proper, surjective, holomorphic map such that each fiber Xt has
slc singularities and KX/D is an ample Q-line bundle. If ωX ∈ c1(KX/D) is a relative
Kähler form and ωXt := ωX |Xt , then the Kähler-Einstein metric of Xt can be written as
ωXt + ddc ϕt where ϕt is uniquely determined by the equation (5.7) from section 5. The
behavior of ϕt is then described by the following (see Theorem 5.11)

Theorem E. — Let X be a normal Kähler space and let π : X → D be a proper, surjective,
holomorphic map such that
• Each schematic fiber Xt has semi- log canonical singularities.
• KX/D is an ample Q-line bundle.

In particular, Xt is a stable variety for any t ∈ D. Assume additionally that the central fiber X0
is irreducible.

Let ωXt + ddc ϕt be the Kähler-Einstein metric of Xt and let D = (s = 0) ⊂ X be a divisor
which contains Nklt(X , X0), cf (4.4). Fix some smooth hermitian metric | · | on OX (D). Up
to shrinking D, then for any ε > 0, there exists Cε > 0 such that the inequality

C1 > ϕt > −(n + 1 + ε) log(− log |s|)− Cε
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holds on Xt for any t ∈ D.

Let us finally mention the very recent results of Song, Sturm and Wang [SSW20,
Proposition 3.1] where similar bounds are derived in the context of smoothings of sta-
ble varieties over higher dimensional bases, with application towards Weil-Petersson
geometry of the KSBA compactification of canonically polarized manifolds.

Families of Q-Calabi-Yau varieties. — A Q-Calabi-Yau variety is a compact, normal
Kähler space X with canonical singularities such that the Q- line bundle KX is torsion.
Up to taking a finite, quasi-étale cover referred to as the index 1 cover (cf e.g. [KM98,
Def. 5.19]), one can assume that KX ∼Z OX. Given any Kähler class α on X, it follows
from [EGZ09] and [Pău08] that there exists a unique singular Ricci flat Kähler metric
ωKE ∈ α, i.e. a closed, positive current ωKE ∈ α with globally bounded potentials
inducing a smooth, Ricci-flat Kähler metric on Xreg.

Now, we can consider families of such varieties and ask how the bound on the po-
tentials vary. This is the content of the following (see Theorem 6.1 and Remark 6.2)

Theorem F. — Let X be a normal, Q-Gorenstein Kähler space and let π : X → D be a proper,
surjective, holomorphic map. Let α be a relative Kähler cohomology class on X represented by a
relative Kähler form ω. Assume additionaly that
• The relative canonical bundle KX/D is trivial.
• The central fiber X0 has canonical singularities.
• Assumption 3.2 is satisfied.

Up to shrinking D, each fiber Xt is a Q-Calabi-Yau variety. Let ωKE,t = ωt + ddc ϕt be the
singular Ricci-flat Kähler metric in αt, normalized by

∫
Xt

ϕtω
n
t = 0. Then, given any compact

subset K b D, there exists C = C(K) > 0 such that one has

oscXt ϕt 6 C

for any t ∈ K, where oscXt(ϕt) = supXt
ϕt − infXt ϕt.

In the case of a projective smoothing (i.e. when X admits a π-ample line bundle and
Xt is smooth for t 6= 0), the result above has been obtained previously by Rong-Zhang
[RZ11a] by using Moser iteration process.

Log Calabi-Yau families. — Let X be a compact Kähler manifold and let B = ∑ biBi be
an effective R-divisor such that the pair (X, B) has klt singularities and c1(KX + B) = 0.

It follows from [Yau78, EGZ09, BEGZ10] that one can find a unique Ricci flat metric
in each Kähler class αt. A basic problem is to understand the asymptotic behavior of
these metrics as αt approaches the boundary of the Kähler cone. Despite motivations
coming from mirror symmetry, not much is known when the norm of αt converges to
+∞ (this case is expected to be the mirror of a large complex structure limit, see [KS01]).
We thus only consider the case when αt → α0 ∈ ∂KX.

The non-collapsing case (vol(α0) > 0) can be easily understood by using Theorem A
(see Theorem 6.5). We describe here a particular instance of the more delicate collapsing
case vol(α0) = 0. Let f : X → Z be a surjective holomorphic map with connected fibers,
where Z is a normal Kähler space. Let ωX (resp. ωZ) be a Kähler form on X (resp. Z). Set
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ωt := f ∗ωZ + tωX. There exists a unique singular Ricci-flat current ωϕt := ωt + ddc ϕt
in { f ∗ωZ + tωX} for t > 0, where

∫
X ϕtω

n
X = 0. It satisfies

ωn
ϕt
= Vt · µ(X,B), where µ(X,B) = (s ∧ s̄)

1
m e−φB .

Here, s ∈ H0(X, m(KX + B)) is any non-zero section (for some m > 1) and φB is the
unique singular psh weight on OX(B) solving ddcφB = [B] and normalized by∫

X
(s ∧ s̄)

1
m e−φB = 1.

The probability measure f∗µ(X,B) has L1+ε-density with respect to ωm
Z thanks to

[EGZ18, Lem. 2.3]. It follows therefore from [EGZ09] that there exists a unique current
ω∞ ∈ {ωZ} solution of the Monge-Ampère equation

ωm
∞ = f∗µ(X,B).

In the case where X is smooth, B = 0 and c1(X) = 0, the Ricci curvature of ω∞ coincides
with the Weil-Petersson form of the fibration f of Calabi-Yau manifolds.

Understanding the asymptotic behavior of the ωϕt ’s as t→ 0 is an important problem
with a long history, we refer the reader to the thorough survey [Tos20] for references.
We prove here the following:

Theorem G. — Let (X, B) be a log smooth klt pair such that c1(KX + B) = 0 and such
that X admits a fibration f : X → Z. With the notations above, the conic Ricci-flat metrics
ωϕt ∈ { f ∗ωZ + tωX} converge to f ∗ω∞ as currents on X when t goes to 0.

When B = 0 is empty, it has been shown in [Tos10, GTZ13, TWY18, HT18] that he
metrics ωϕt converge to f ∗ω∞ in the Cα-sense on compact subsets of X \ SX for some
α > 0, where SX = f−1(SZ) and SZ denotes the smallest proper analytic subset Σ ⊂ Z
such that Σ contains the singular locus Zsing of Z and the map f is smooth on f−1(Z \Σ).

The proof of Theorem G follows the strategy developed by the above papers with
several twists that notably require the extensive use of Theorem A and conical metrics.

Acknowledgements. — We thank S.Boucksom, M.Păun, J.Song and A.Zeriahi for sev-
eral interesting discussions. We are grateful to the anonymous referees for a remarkably
careful reading, for suggesting many improvements as well as for pointing out a gap
in §3 of an earlier version. The authors are partially supported by the ANR project
GRACK.

1. Chasing the constants

Our goal in this section is to establish the following a priori estimate which is a re-
finement of the main result of Kolodziej [Koł98] (see also [EGZ09, EGZ08, DP10]):



8 ELEONORA DI NEZZA, VINCENT GUEDJ & HENRI GUENANCIA

Theorem 1.1. — Let (X, ωX) be a compact Kähler manifold of complex dimension n ∈ N∗

and let ω be a semi-positive form which is big, i.e. such that

V := Volω(X) =
∫

X
ωn > 0.

Let ν and µ = f ν be probability measures, with 0 6 f ∈ Lp(ν) for some p > 1. Assume the
following two assumptions are satisfied:
(H1) there exists α > 0 and Aα > 0 such that for all ψ ∈ PSH(X, ω),∫

X
e−α(ψ−supX ψ)dν 6 Aα;

(H2) there exists C > 0 such that
(∫

X | f |
p dν

)1/p 6 C.
Let ϕ be the unique ω-psh solution ϕ to the complex Monge-Ampère equation

V−1(ω + ddc ϕ)n = µ,

normalized by supX ϕ = 0. Then −M 6 ϕ 6 0 where

M = 1 + C1/n A1/nq
α eα/nqbn

[
5 + eα−1C(q!)1/q A1/q

α

]
,

1/p + 1/q = 1 and bn is a constant such that exp(−1/x) 6 bn
nx2n for all x > 0.

Here d = ∂ + ∂ and dc = i
2 (∂− ∂) so that ddc = i∂∂. Recall that a function ϕ : X →

R∪ {−∞} is ω-plurisubharmonic (ω-psh for short) if it is locally given as the sum of a
smooth and a psh function, and such that ω + ddc ϕ > 0 in the weak sense of currents.
We let PSH(X, ω) denote the set of all ω-psh functions.

The non-pluripolar Monge-Ampère measure of arbitrary ω-psh functions has been
defined in [BEGZ10]. It follows from assumption (H1) that the measure µ does not
charge pluripolar sets, since the latter can be defined by ω-psh functions (as follows
easily from [GZ05, Thm. 7.2] since a big class contains a Kähler current). The existence
of a unique normalized ω-psh solution to V−1(ω + ddc ϕ)n = µ follows from [BEGZ10,
Theorem A] (the case of Kähler forms had been earlier treated in [GZ07, Din09]).

We will use this result to obtain uniform a priori estimates on normalized solutions
ϕt to families of complex Monge-Ampère equations

Vt
−1(ωt + ddc ϕt)

n = µt,

when the hypotheses (H1,H2) are satisfied, i.e. the constants 1/αt, Aαt , qt, Ct in the the-
orem are actually bounded from above by uniform constants 1/α, A, q, C independent
of t. Here q denotes the conjugate exponent of p > 1, 1/p + 1/q = 1. The assumption
on this exponent is thus that p > 1 stays bounded away from 1.

The reader should keep in mind that assumption (H1) is the strongest of all. In some
applications one can assume f ≡ 1 hence (H2) is trivially satisfied.

We are going to eventually obtain a version of Theorem 1.1 that applies to big co-
homology classes, extending [BEGZ10, Theorem B]. The proof is almost identical but
explaining the statement requires to introduce various notions and technical notations,
so we first treat the case of semi-positive classes and postpone this to section 1.4.
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1.1. Preliminaries on capacities. — Let K ⊂ X be a Borel set and consider

VK,ω := (sup{ψ |ψ ∈ PSH(X, ω) and ψ 6 0 on K})∗ ,

where ∗ denotes the upper semi-continuous regularization.
The Alexander-Taylor capacity is the following:

Tω(K) := exp
(
− sup

X
VK,ω

)
.

It is shown in [GZ17, Lem. 9.17] that If K is pluripolar then VK,ω ≡ +∞ and Tω(K) = 0.
When K is not pluripolar then

– 0 6 VK.ω ∈ PSH(X, ω) and VK,ω = 0 on K off a pluripolar set;
– the Monge-Ampère measure MA(VK,ω) is concentrated on E.

We denote here and in the sequel by

MA(u) =
1
V
(ω + ddcu)n

the normalized Monge-Ampère measure of a ω-psh function u, where V =
∫

X ωn =
{ω}n is the volume of the cohomology class {ω}. It is defined for any ω-psh function
u, cf. e.g. [GZ07, § 1.1]. For a Borel set K ⊂ X, the Monge-Ampère capacity is

Capω(K) := sup
{∫

K
MA(u) ; u ∈ PSH(X, ω) and 0 6 u 6 1

}
.

This capacity also characterizes pluripolar sets, i.e.

Cap∗ω(P) = 0⇐⇒ P is pluripolar.

Here Cap∗ω is the outer capacity associated to Capω defined for any set E ⊂ X as

Cap∗ω(E) := inf{Capω(G) ; G open, E ⊂ G}.

Moreover, if K ⊂ X is a compact set than Cap∗ω(K) = Capω(K).
The Monge-Ampère and the Alexander-Taylor capacities compare as follows:

Lemma 1.2. —

Tω(K) 6 exp
[

1− 1
Capω(K)1/n

]
.

We refer the reader to [GZ05, Proposition 7.1] for a proof which also provides a re-
verse inequality that is not needed in the sequel.

1.2. Proof of Theorem 1.1. —
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1.2.1. Domination by capacity. — It follows from Hölder inequality and (H2) that

µ 6 Cν1/q,

where q is the conjugate exponent, 1/p + 1/q = 1.
Let K ⊂ X be a non pluripolar Borel set. Recall that VK,ω(x) = 0 for ν-almost every

point x ∈ K. The hypothesis (H1) therefore implies that

ν(K) 6
∫

X
e−α VK,ω dν 6 Aα Tω(K)α.

Combining previous information we obtain

µ(K) 6 CA1/q
α eα/q exp

[
− α/q

Capω(K)1/n

]
6 D Capω(K)

2,

where
D = bn

nCA1/q
α eα/q,

with bn a numerical constant such that exp(−1/x) 6 bn
nx2n for all x > 0.

We now need to relate the Monge-Ampère capacity of the sublevel sets of a ω-psh
function to the Monge-Ampère measure of similar sublevel sets:

Lemma 1.3. — Let ϕ be a bounded ω-psh function. For all s > 0 and 0 < δ < 1,

δn Capω ({ϕ < −s− δ}) 6 MA(ϕ) ({ϕ < −s})

We refer to [EGZ09, Lemma 2.2] for a proof.

1.2.2. Bounding the solution from below. — Under our assumptions (H1,H2), it follows
from general arguments that there is a unique bounded ω-psh solution ϕ of MA(ϕ) = µ
normalized by supX ϕ = 0, cf Remark 0.1. The non-expert reader could even think that
ϕ is smooth: the point here is to establish a uniform a priori bound from below.

We let f : R+ → R+ denote the function defined by

f (s) := − 1
n

log Capω ({ϕ < −s})

Observe that f is non decreasing and such that f (+∞) = +∞. It follows from our
previous estimates that for all s > 0 and 0 < δ < 1,

f (s + δ) > 2 f (s) + log δ− log D
n

.

Our next lemma guarantees that such a function reaches +∞ in finite time:

Lemma 1.4. — f (s) = +∞ for all s > 5D1/n + s0, where

s0 = inf{s > 0 | eD1/n Capω ({ϕ < −s}) < 1}.

Proof. — We define a sequence (sj) of positive reals by induction as follows,

sj+1 = sj + δj with δj = eD1/n exp(− f (sj)).
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We fix s0 large enough (as in the statement of the Lemma) so that δ0 < 1. It is
straightforward to check, by induction, that the sequence (sj) is increasing, while (δj)
is decreasing. Thus 0 < δj < 1 and

f (sj+1) > f (sj) + 1, hence f (sj) > j.

We infer δj 6 eD1/n exp(−j) and

s∞ = s0 + ∑
j>0

(sj+1 − sj) 6 s0 + ∑
j>0

eD1/n exp(−j) 6 s0 + 5D1/n.

It remains to obtain a uniform bound on s0. It follows from Chebyshev inequality
and Lemma 1.3 (used with δ = 1) that for all s > 0,

Capω ({ϕ < −s− 1}) 6 1
s

∫
X
(−ϕ)dµ,

since MA(ϕ) = µ. Hölder inequality and (H2) yield∫
X
(−ϕ)dµ 6 C

(∫
X
(−ϕ)qdν

)1/q

.

Observe that for all t > 0,

tq 6
q!
αq exp(αt)

and use (H1) to conclude that

Capω ({ϕ < −s− 1}) 6 C(q!)1/q A1/q
α

αs
.

Thus

s0 = 1 + eD1/n C(q!)1/q A1/q
α

α
is a convenient choice. This yields the desired a priori estimate and concludes the proof.

1.3. More general densities. — The setting of Theorem 1.1 is the most commonly used
in geometric applications, as it allows e.g. to construct Kähler-Einstein currents on
varieties with log-terminal singularities (see section 6). For varieties of general type
with semi log-canonical singularities (see section 5.2), one has to deal with slightly more
general densities. The following result is a refinement of [Koł98, Theorem 2.5.2] and
[EGZ09, Theorem A].

Theorem 1.5. — Let (X, ωX) be a compact Kähler manifold of complex dimension n ∈ N∗

and let ω be a semi-positive form with V := Volω(X) =
∫

X ωn > 0. Let ν and µ = f ν be
probability measures, with 0 6 f ∈ L1(ν). Assume the following assumptions are satisfied:
(H1) there exists α > 0 and Aα > 0 such that for all ψ ∈ PSH(X, ω),∫

X
e−α(ψ−supX ψ)dν 6 Aα;

(H2’) there exists C, ε > 0 such that
∫

X | f || log f |n+ε dν 6 C.
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Let ϕ be the unique ω-psh solution ϕ to the complex Monge-Ampère equation

V−1(ω + ddc ϕ)n = µ,

normalized by supX ϕ = 0. Then −M 6 ϕ 6 0 where M = M(C, ε, n, Aα).

Proof. — The proof follows the same lines as that of Theorem 1.1, so we only emphasize
the main technical differences and focus on the case ε = 1. Set, for t ≥ 0,

χ(t) = (t + 1)
n+1

∑
j=0

(−1)n+1−j (n + 1)!
j!

(log(t + 1))j.

Observe that χ is a convex function such that χ(0) = 0 and χ′(t) = (log(t + 1))n+1. Its
Legendre transform is

χ∗(s) = sup
t>0
{s · t− χ(t)} = st(s)− χ(t(s)),

where 1 + t(s) = exp(s
1

n+1 ) satisfies s = χ′(t(s)), thus

χ∗(s) = P(s
1

n+1 ) exp(s
1

n+1 )− s,

where P is the following polynomial of degree n,

P(X) =
n

∑
j=0

(−1)n−j (n + 1)!
j!

X j.

We let the reader check that (H2’) is equivalent to || f ||χ ≤ C′, where || f ||χ denotes
the Luxemburg norm of f ,

|| f ||χ := inf
{

r > 0,
∫

X
χ(| f |/r)dν ≤ 1

}
.

Let K ⊂ X be a non pluripolar Borel set. It follows from Hölder-Young inequality
[BBE+19, Proposition 2.15] that

µ(K) ≤ 2C′||1K||χ∗ ,
where ||1K||χ∗ = inf{r > 0, ν(K)χ∗(1/r) ≤ 1} = rK, with

χ∗(1/rK) =
1

ν(K)
.

We are interested in the behavior of this function as ν(K) approaches zero, i.e. for
small values of rK. Observe that χ∗(s) ≤ exp(2s

1
n+1 ) for s ≥ 1/rn, hence

ν(K) ≤ δn =⇒ µ(K) ≤ 2C′rK ≤
2n+2C′

(− log ν(K))n+1 .

Recall that (H1) and Lemma 1.2 yield

ν(K) ≤ Aαeα exp
(
− α

Capω(K)1/n

)
It follows that for ν(K) ≤ δn,

µ(K) ≤ C′′ Capω(K)
1+1/n,
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and we can then conclude by reasoning as in Lemma 1.4. This completes the proof
when ε = 1. The proof for arbitrary ε > 0 is similar, the crucial point being the domina-
tion of µ by a multiple of Cap1+ε/n

ω , with an exponent 1 + ε/n > 1.

1.4. Big cohomology classes. — We now consider a similar situation where the refer-
ence cohomology class α is still big but no longer semi-positive. We assume for con-
venience that the ambient manifold (X, ωX) is again compact Kähler, but one could
equally well develop this material when X belongs to the Fujiki class (i.e. when X is
merely bimeromorphic to a Kähler manifold).

By definition α is big if it contains a Kähler current, i.e. there is a positive current T ∈ α
and ε > 0 such that T > εωX. It follows from [Dem92] that one can further assume that
T has analytic singularities, i.e. it can be locally written T = ddcu, with

u =
c
2

log

[
s

∑
j=1
| f j|2

]
+ v,

where c > 0, v is smooth and the f j’s are holomorphic functions.

Definition 1.6. — We let Amp(α) denote the ample locus of α, i.e. the Zariski open
subset of all points x ∈ X for which there exists a Kähler current in α with analytic
singularities which is smooth in a neighborhood of x.

It follows from the work of Boucksom [Bou04] that one can find a single Kähler
current T0 with analytic singularities in α such that

Amp(α) = X \ Sing T0.

We fix θ a smooth closed differential (1, 1)-form representing α. Following Demailly,
one defines the following θ-psh function with minimal singularities:

Vθ := sup{u ; u ∈ PSH(X, θ) and u ≤ 0}.

Definition 1.7. — A θ-psh function ϕ has minimal singularities if for every other θ-psh
function u, there exists C ∈ R such that u 6 ϕ + C.

There are plenty of such functions, which play the role here of bounded functions
when α is semi-positive. Demailly’s regularization result [Dem92] insures that α con-
tains many θ-psh functions which are smooth in Amp(α). In particular a θ-psh function
ϕ with minimal singularities is locally bounded in Amp(α). The Monge-Ampère mea-
sure (θ + ddc ϕ)n is thus well defined in Amp(α) in the sense of Bedford and Taylor
[BT82].

Definition 1.8. — It follows from the work of Boucksom [Bou02] that∫
Amp(α)

(θ + ddc ϕ)n =: Vα > 0

is independent of ϕ, it is the volume of the cohomology class α.

One can therefore develop a pluripotential theory in the Zariski open set Amp(α).
This was done in [BEGZ10], where the following properties have been established:

– the class PSH(X, θ) enjoys several compactness properties;



14 ELEONORA DI NEZZA, VINCENT GUEDJ & HENRI GUENANCIA

– the operator MA(ϕ) = V−1
α (θ + ddc ϕ)n is a well defined probability measure on

the set of θ-psh functions with minimal singularities;
– the extremal functions VK,θ = sup{u ; u ∈ PSH(X, θ) and u 6 0 on K} and the

Alexander-Taylor capacity Tθ(K) = exp (− supX VK,θ) enjoy similar properties as
in the semi-positive case;

– in particular it compares similarly to the Monge-Ampère capacity

Capθ(K) := sup
{∫

K
MA(u) ; u ∈ PSH(X, θ) and 0 6 u−Vθ 6 1

}
;

– the comparison principle holds so Lemma 1.3 holds here as well.
The same proof as above therefore produces the following uniform a priori estimate,

which is a refinement of [BEGZ10, Thm. 4.1]:

Theorem 1.9. — Let (X, ωX) be a compact Kähler manifold of complex dimension n ∈N∗. Let
α be a big cohomology class of volume Vα > 0 and fix θ a smooth closed differential (1, 1)-form
representing α.

Let ν and µ = f ν be probability measures, with 0 6 f ∈ Lp(ν) for some p > 1. Assume the
following assumptions are satisfied:

(H1) ∃α > 0, Aα > 0 such that ∀ψ ∈ PSH(X, θ),
∫

X e−α(ψ−supX ψ)dν 6 Aα;

(H2) there exists C > 0 such that
(∫

X | f |
p dν

)1/p 6 C.
Let ϕ be the unique θ-psh function with minimal singularities such that

Vα
−1(θ + ddc ϕ)n = µ,

and supX ϕ = 0. Then −M 6 ϕ−Vθ 6 0 where

M = 1 + C1/n A1/nq
α eα/nqbn

[
5 + eα−1C(q!)1/q A1/q

α

]
,

where bn is a uniform constant such that exp(−1/x) 6 bn
nx2n for all x > 0.

Remark 1.10. — We also have an analogue of Theorem 1.5 in the big setting.

2. Uniform integrability

We wish to apply the previous uniform estimates when the complex structure of the
underlying manifold is moving. In this section we pay a special attention to assumption
(H1), by generalizing an integrability result of Skoda-Zeriahi [Sko72, Zer01].

2.1. Notations. — In all what follows, given a positive real number r, we denote by
Dr := {z ∈ C; |z| < r} the open disk of radius r in the complex plane. If r = 1, we
simply write D for D1.

Setting 2.1. — Let X be an irreducible and reduced complex Kähler space. We let π : X →
D denote a proper, surjective holomorphic map such that each fiber Xt = π−1(t) is a n-
dimensional, reduced, irreducible, compact Kähler space, for any t ∈ D.
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For later purposes, we pick a covering {Uα}α of X by open sets admitting an embed-
ding jα : Uα ↪→ CN for some N > n + 1. Moreover, we fix a Kähler form ω on X . Up to
refining the covering, the datum of ω is equivalent to the datum of Kähler metrics on
open neighborhoods of jα(Uα) ⊂ CN that agree on each intersection Ureg

α ∩Ureg
β . Equiv-

alently, ω is a genuine Kähler metric on Xreg such that (jα)∗(ω|Ureg
α
) is the restriction of

a Kähler metric defined on a an open neighborhood of jα(Uα) ⊂ CN .
Let us point out that this definition of a Kähler metric on a singular space X is much

more restrictive than merely asking for a Kähler metric on Xreg (even say, by requiring
that the latter has local potentials near Xsing, and that those are bounded). One impor-
tant property that Kähler metrics satisfy is that their pull back under a modification is
a smooth form (i.e. locally the restriction of a smooth form under a local embedding in
CN); in particular, it is dominated by a Kähler form.

For each t ∈ D, we set
ωt := ω|Xt .

An easy yet important observation is the following.

Lemma 2.2. — In the Setting 2.1 and using the notation above, the quantity
∫

Xt
ωn

t is inde-
pendent of t ∈ D. We will denote it by V in the following.

Proof. — The function D 3 t 7→
∫

Xt
ωn

t coincides with the push-forward current π∗ωn

of bidimension (1, 1). Its distributional differential is zero as d commutes with π∗ and
ω is closed.

We fix a smooth, closed differential (1, 1)-form Θ on X and set θt = Θ|Xt . Up to
shrinking D, one will always assume that there exists a constant CΘ > 0 such that

(2.1) − CΘω 6 Θ 6 CΘω.

In particular, one has the inclusion PSH(Xt, θt) ⊆ PSH(Xt, CΘωt). We assume that
the cohomology classes {θt} ∈ H1,1(Xt, R) are psef, i.e. the sets PSH(Xt, θt) are non-
empty for all t. The notions of (quasi)-plurisubharmonic functions, positive currents
and Monge-Ampère measure are well defined on singular spaces [Dem85].

2.2. Uniform integrability index. — Recall from [Dem82, Déf. 3] that if T is a closed,
positive current of bi-dimension (p, p) on a complex space X and if x ∈ X is a closed
point, then the Lelong number of T at x is defined as the limit

(2.2) ν(T, x) := lim
r→0
↓ 1

r2p

∫
{ψ<r}

T ∧ (ddcψ)p

where ψ := ∑i∈I |gi|2 and (gi)i∈I is a (finite) system of generators of the maximal ideal
mX,x ⊂ OX,x. It is proved in loc. cit. that the limit above is a decreasing limit, indepen-
dent of the choice of the generators. Moreover, one has the formula

(2.3) ν(T, x) =
∫
{x}

T ∧ (ddc log ψ)p

cf [Dem82, bottom of p. 45]. Finally, if ϕ is a θ-psh function on X for some smooth,
closed (1, 1)-form θ, then the Lelong number of ϕ at a given point x ∈ X is defined to
be the quantity ν(θ + ddc ϕ, x).
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Proposition 2.3. — In the Setting 2.1, let ϕt ∈ PSH(Xt, θt) be a collection of θt-psh functions
on Xt. Then

sup
t∈D1/2

sup
x∈Xt

ν(ϕt, x) < +∞.

Proof. — Let U′α b Uα be a relatively compact open subset such that the U′α are still
a covering of X . Up to adding more elements to the initial covering, one can always
assume that one can find such a refinement. One picks cut-off functions χα such that
χα ≡ 1 on U′α and Supp(χα) ⊂ Uα. Now, let x ∈ X ; there exists α = α(x) such that
x ∈ U′α. Recall that we have an embedding jα : Uα → CN ; we set x′ := jα(x) and
Gx′ : CN 3 z 7→ log(∑N

i=1 |zi − x′i |2). One can easily check that there exists a constant
A > 0, independent of the point x now ranging in the compact set π−1(D1/2), such
that the function

Hx := χα· j∗αGx′

defines an Aω-psh function on the whole X . By the formula (2.3), one has

ν(ϕt, x) =
∫
{x}

(θt + ddc ϕt) ∧ (ddc(j∗αGx′)|Xt)
n−1

6
∫

U′α∩Xt

(θt + ddc ϕt) ∧ (ddcHx)
n−1

6
∫

U′α∩Xt

(θt + ddc ϕt) ∧ (Aωt + ddcHx)
n−1

6
∫

Xt

(CΘωt + ddc ϕt) ∧ (Aωt + ddcHx)
n−1

= CΘ An−1·V.

The conclusion follows.

It follows from Skoda’s integrability theorem [Sko72] that the Lelong number ν(ϕt, x)
controls the local integrability index α(ϕt, x) of a θt-psh function ϕt,

α(ϕt, x) := sup
{

c > 0 ; e−cϕt ∈ L2
loc(Xt, x)

}
,

via
1

ν(ϕt, x)
6 α(ϕt, x) 6

n
ν(ϕt, x)

.

Proposition 2.3 thus yields:

Corollary 2.4. — In the Setting 2.1, the following quantity

α(Θ) := inf
{

α(ϕt, x); t ∈ D1/2, x ∈ Xt, ϕt ∈ PSH(Xt, θt)
}

is positive.
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2.3. Skoda’s integrability theorem in families: the projective case. — Zeriahi [Zer01]
has established a uniform version of Skoda’s integrability theorem. We now further
generalize Zeriahi’s result by establishing its family version.

We first provide a very explicit result in the projective case which does not rely on
Corollary 2.4 unlike its general Kähler analogue that will be given later, cf. Theorem 2.9.
This should also help the reader in following the somehow tricky computations in the
general Kähler case.

Proposition 2.5. — Let V ⊆ PN be a projective variety of complex dimension n and degree d.
Let ω = ωFS|V and ϕ ∈ PSH(V, ω) be such that supV ϕ = 0. Then∫

V
e−

1
nd ϕωn 6 (4n)n · d · exp

{
− 1

nd

∫
V

ϕωn
}

.

To our knowledge, the inequality given in Proposition 2.5 above is new.

Remark 2.6. — When π : X → D is a projective family whose fibers have degree d
with respect to a given projective embedding, the above result gives the integrability of
e−

1
nd ϕt on Vt := π−1(t). In particular, one gets α(ωFS) > 1

2nd .

Proof. — Embedding P1 in P2 if necessary, we assume without loss of generality that
N ≥ 2. We first claim that it is enough to prove the Proposition when ϕ is smooth.
Indeed, thanks to [CGZ13, Cor. C], there exists a sequence of smooth functions ϕn ∈
PSH(V, ωFS) decreasing pointwise to ϕ. Let εn := supV ϕn; by Hartog’s theorem, we
have εn → 0. If the Proposition holds for smooth functions, we will have∫

V
e−

1
nd ϕn ωn 6 e

εn ·(d−1)
nd (4n)n · d · exp

{
− 1

nd

∫
V

ϕnωn
}

Using Fatou Lemma and the monotone convergence theorem, we deduce the expected
inequality for ϕ. From now on, one assumes that ϕ is smooth.

The projective logarithmic kernel on PN ×PN is defined by the following formula

G(x, y) := log
(
||x ∧ y||
||x|| · ||y||

)
, x, y ∈ PN ,

writing x, y in homogeneous coordinates. By [AAZ20, Lem. 4.1], for any fixed y, x 7→
G(x, y) is a non positive ωFS-psh function in PN such that (ωFS + ddc

xG(·, y))N = δy. We
set g = G|V and gy = g(·, y). By definition, gy has Lelong number one at y. Therefore, it
follows from [Dem85, Cor. 4.8] that ωn

gy
:= (ω + ddcg(·, y))n > δy. From Stokes formula

(cf Lemma 2.11 below) it follows that

ϕ(y) >
∫

V
ϕωn

gy
=
∫

V
ϕ(ω + ddcgy) ∧ωn−1

gy

=
∫

V
ϕω ∧ωn−1

gy
+
∫

V
gy(ω + ddc ϕ) ∧ωn−1

gy
−
∫

V
gyω ∧ωn−1

gy

>
∫

V
ϕω ∧ωn−1

gy
+
∫

V
gyωϕ ∧ωn−1

gy
,
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using that gy 6 0. One obtains similarly∫
V

ϕω ∧ωn−1
gy

>
∫

V
ϕω2 ∧ωn−2

gy
+
∫

V
gyω ∧ωϕ ∧ωn−2

gy

>
∫

V
ϕω2 ∧ωn−2

gy
+
∫

V
gyωϕ ∧ωn−1

gy
,

where the second inequality follows from∫
V

gyω ∧ωϕ ∧ωn−2
gy

=
∫

V
gyωϕ ∧ωn−1

gy
+
∫

V
dgy ∧ dcgy ∧ωϕ ∧ωn−2

gy
>
∫

V
gyωϕ ∧ωn−1

gy
.

Iterating the process n times we end up with

ϕ(y) >
∫

V
ϕωn + n

∫
V

gyωϕ ∧ωn−1
gy

.

Hence ∫
V

e−
1

nd ϕωn 6 exp
{
− 1

nd

∫
V

ϕωn
}
· I

where

I :=
∫

y∈V
exp

{
−1

d

∫
x∈V

gy(x)ωϕ(x) ∧ωgy(x)n−1
}

ω(y)n

The (n, n)-form 1
d ·ωϕ ∧ωn−1

gy
induces a probability measure on V given that∫

V
ωϕ ∧ωn−1

gy
=
∫

PN
ωϕ ∧ωn−1

gy
∧ [V] = {ωFS}n · {V} = d.

From Jensen’s inequality, one can then derive

I 6
1
d

∫
y∈V

∫
x∈V

e−g(x,y) ωϕ(x) ∧ (ω(x) + ddc
xg(x, y))n−1 ∧ω(y)n.

Lemma 2.8 (i) yields

ωϕ(x) ∧ (ω(x) + ddc
xg(x, y))n−1 6 e−2(n−1)g(x,y)ωϕ(x) ∧ω(x)n−1.

Lemma 2.8 (ii) below (for δ = 1/2n) now yields

I 6
1
d

∫
y∈V

∫
x∈V

e(−2n+1)g(x,y)ωϕ(x) ∧ω(x)n−1 ∧ω(y)n

=
1
d

∫
x∈V

(∫
y∈V

[
e−2(1− 1

2n )g(x,y)ω(y)
]n
)

ωϕ(x) ∧ω(x)n−1

6 (4n)n
∫

x∈V

(
1
d

∫
y∈V

(ω + ddcχ 1
2n
◦ gx)

n
)

ωϕ(x) ∧ω(x)n−1

= (4n)n
∫

x∈V
ωϕ(x) ∧ω(x)n−1 = (4n)n · d.

Remark 2.7. — The same arguments as above show that for any γ ∈ (0, 2)∫
V

e−
γ
nd ϕωn 6 Cγ · d exp

{
− γ

nd

∫
V

ϕωn
}

,
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where Cγ > 0 depends on n and γ. We have fixed γ = 1 in the above proposition to
simplify the statement.

Lemma 2.8. — With the notations of the proof of Proposition 2.5 above, we fix a point y ∈ V
and set g := gy. Moreover, let δ ∈ (0, 1) be a given number. Then, the following set of
inequalities hold as currents on V.
(i) ωg 6 e−2gω

(ii) δ
2 e−2(1−δ)gω 6 ω + ddcχδ ◦ g

Here, χδ is the function defined on R by the expression χδ(t) := e2δt

4δ .

It is understood here that we take derivatives w.r.t. x and the estimates are uniform
both in x and y.

Proof. — We proceed in three steps.

Step 1. Reduction to a computation on CN .
First of all we observe that the function g as well as the (1, 1)-currents ω and ωg are
the restriction to V of a function or (1, 1)-currents on PN . As positivity is preserved by
restriction to a subvariety, it is enough to prove the inequalities of currents above on
the whole PN where they make sense as well.

Now, recall that PU(N, C) acts transitively on PN by transformations preserving ωFS
and an isometry u sends Gy to Gu(y). Therefore it suffices to prove all the inequalities
above on PN , for the special point y = [1 : 0 : · · · : 0]. We work in the affine chart
(U1, z) where U1 := {x ∈ PN : x1 6= 0} and z := (zj)j, zj = xj/x1. In these coordinates
ωFS|U1 =

1
2 ddc log(1 + ‖z‖2). Note that U1 is dense in PN and both ωFS, ωG are smooth

on the complement PN \U1; thus it is sufficient to prove the inequalities on U1 ' CN .
We actually claim that is is sufficient to prove the inequalities on U1 \ {y}, where all

the currents involved are smooth differential forms. This is because neither of the pos-
itive currents e−2GωFS and ωFS + ddcχδ ◦ G on PN puts any mass on {y}. This follows
from the integrability of e−2G for the first one (recall that N > 2) and the boundedness
of χδ ◦ G for the second one.

As observed in [AAZ20, Lem. 4.1], for (x, y := [1 : 0 · · · : 0]) ∈ U1 ×U1 we have

G(x, y) = N(z, 0)− 1
2

log(1 + ‖z‖2)

where z = z(x) and N(z, 0) := 1
2 log ‖z‖2. Thus in U1 we have e−2G = 1 + 1

‖z‖2 and

ω(x) + ddc
xGy(x) = ddc

zN(z, 0) =
1
2

ddc
z log ‖z‖2.

Let us define β := ddc‖z‖2 = i ∑N
k=1 dzk ∧ dz̄k and let α1 := ∑N

k=1 z̄kdzk.

Step 2. Proof of Item (i).
Standard computations give

(ωFS)jk̄ =
(1 + ‖z‖2)δjk̄ − z̄jzk

2(1 + ‖z‖2)2 and Njk̄ =
1
2
·
‖z‖2δjk̄ − z̄jzk

‖z‖4
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or equivalently

ωFS =
1
2

(
1

1 + ‖z‖2 β− 1
(1 + ‖z‖2)2 iα1 ∧ ᾱ1

)
and ωG =

1
2

(
1
‖z‖2 β− 1

‖z‖4 iα1 ∧ ᾱ1

)
The matrix A(z) := (zi z̄j)ij is semipositive with rank at most one and trace ‖z‖2. There-
fore, if λ, µ ∈ R (they can depend on z), the matrix λId + µA is hermitian with eigen-
values λ (with multiplicity N− 1) and λ+ ‖z‖2 · µ (with multiplicity one). In particular,
it is semipositive if and only if λ > max(0,−‖z‖2 · µ).
The computations above show that the eigenvalues of the (1, 1)-form λβ + µiα1 ∧ ᾱ1
with respect to β are λ and λ + ‖z‖2 · µ. Now, if C is some non-negative constant, the
(1, 1)-form Ce−2gωFS −ωG can be rewritten as follows

1
2(1 + ‖z‖2)‖z‖4 ·

[
(C− 1)‖z‖2(1 + ‖z‖2) · β +

[
(1 + ‖z‖2)− C‖z‖2] · iα1 ∧ ᾱ1

]
.

The latter form is semipositive if and only if C > 1. This proves (i).

Step 3. Proof of Item (ii).
Observe that χδ is convex increasing with 0 6 χ′δ 6 1/2 for t 6 0. Standard computa-
tions give ddcχδ ◦ G = χ′δ ◦ G ddcG + χ′′δ ◦ G dG ∧ dcG. Next, we have

ddcG =
1

2‖z‖2(1 + ‖z‖2)

[
β− 1 + 2‖z‖2

‖z‖2(1 + ‖z‖2)
· iα1 ∧ ᾱ1

]
with the notation introduced in Step 1. Similarly, one finds

dG ∧ dcG =
1

4‖z‖4(1 + ‖z‖2)2 iα1 ∧ ᾱ1.

To lighten notation, we will from now on write χ′ (resp. χ′′) to denote χ′δ ◦ G (resp.
χ′′δ ◦ G). One has

ωFS + ddcχδ ◦ G =
1

2(1 + ‖z‖2)

[(
1 +

χ′

‖z‖2

)
β +

1
2 χ′′ − χ′(1 + 2‖z‖2)

‖z‖4(1 + ‖z‖2)
iα1 ∧ ᾱ1

]
.

As a result, the two eigenvalues λ, µ of ωFS + ddcχδ ◦G with respect to ωFS are given by

λ = 1 +
χ′

‖z‖2

and

µ = (1 + ‖z‖2) ·
(

1 +
χ′

‖z‖2 +
1
2 χ′′ − χ′(1 + 2‖z‖2)

‖z‖2(1 + ‖z‖2)

)
= (1 + ‖z‖2 − χ′) +

χ′′

2‖z‖2

Using the definition of χ and the fact that e−2G = 1 + 1
‖z‖2 , one easily sees that λ >

1
2 e−2(1−δ)G and µ > δ

2 e−2(1−δ)G. The conclusion follows.
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2.4. Skoda’s integrability theorem in families: the general case. — In this section,
we bypass the projectivity assumption and establish a quite general family version of
Skoda’s integrability theorem, valid for families of compact Kähler varieties:

Theorem 2.9. — In Setting 2.1, let us choose a positive number α ∈ (0, α(Θ)), which is
possible thanks to Corollary 2.4. Then, there exist constant Aα, C > 0 such that for all t ∈ D1/2
and for all ϕt ∈ PSH(Xt, θt) with supXt

ϕt = 0,

(2.4)
∫

Xt

e−αϕt ωn
t 6 C exp

{
−Aα

∫
Xt

ϕtω
n
t

}
.

Proof. — The proof follows the same strategy as in [Zer01], as presented in [GZ17,
Thm. 2.50]. There exists a finite number of trivializing charts {Uτ} of X such that
π−1(D1/2) ⊂ ∪τUτ. The statement will then follow if we prove the bound for the
integral on the left-hand side replacing Xt by Xt ∩Uτ. Moreover, w.l.o.g we can assume
that we have an immersion jτ : Uτ ↪→ B, where B is the unit ball in CN . Up to shrinking
Uτ, one can also assume that there exists a smooth function ρ on B such that supB ρ =
−2 and Θ|Uτ = ddc j∗τρ. We define ρt := (j∗τρ)|Uτ∩Xt ; this is a potential of θt|Uτ∩Xt . Note
that ψt := ϕt + ρt is a non-positive psh function in Uτ ∩ Xt such that

(2.5) ϕt − 2 > ψt > ϕt − Cτ

for some constant Cτ > 0 depending only on Uτ. It is also clear that proving (2.4) is
equivalent to showing that

(2.6)
∫

Uτ∩Xt

e−αψt ωn
t 6 Cτ exp

{
−Aα,τ

∫
Uτ∩Xt

ψtω
n
t

}
,

for some constants Cτ, Aα,τ that do not depend on t.

Claim 2.10. — It is sufficient to prove (2.6) for smooth, non-positive psh functions ψt on
Uτ ∩ Xt such that

(2.7) ddcψt > (j∗τddc‖z‖2)|Xt .

Proof of Claim 2.10. — Indeed, as∫
Uτ∩Xt

e−αψt ωn
t 6 eα

∫
Uτ∩Xt

e−α(ψt+j∗τ‖z‖2)ωn
t ,

we can replace ψt by the function ψt + j∗τ‖z‖2, bounded above by −1. Next, thanks to a
result of Fornaess-Narasimhan [FN80, Thm. 5.5], one can write ψt as a decreasing limit
of non-positive, smooth psh functions on Uτ ∩ Xt (up to shrinking Uτ possibly). The
combination of the monotone convergence theorem and the integrability of e−αϕt on Xt
provided by Corollary 2.4 settles the claim.

From now on, we assume that ψt is smooth, and we work exclusively on Uτ that we
view inside the unit ball B of CN . By abuse of notation, we will denote by B ∩ Xt the
set Uτ ∩ Xt. In the same vein, we will identify the coordinate functions z = (z1, . . . , zN)
on B ⊂ CN with their pull-back by jτ on Uτ.
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Let us pick some number t ∈ D1/2 and some point x ∈ B∩ Xt. We denote by Φx the
automorphism of the unit ball B that sends x to the origin and consider

Gx(z) := log ‖Φx(z)‖

the pluricomplex Green function of the unit ball B. Recall that Gx is the unique
plurisubharmonic function in B such that (ddcGx)N = δx in the weak sense of currents,
Gx 6 0 and Gx is identically zero on ∂B. Standard computations yield

(2.8) ddcGx 6
C0

‖Φx(z)‖2 ddc‖z‖2 on B.

for some dimensional constant C0 = C0(N) > 0.
Since [Xt|B] is a positive (N − n, N − n)-current on B and the singular set of the re-
striction of the Green function Gx|Xt is compact (it is indeed equal to {x}), the mixed
Monge-Ampère measure (ddcGx)n ∧ [Xt] is well defined [GZ17, Prop. 3.15] and it has a
Dirac mass with coefficient > 1 at the point x. Since ψt 6 0 we then have

ψt(x) >
∫

B
ψt(ddcGx)

n ∧ [Xt] =
∫

B∩Xt

ψt(ddcGx)
n.

Now, we have the following result, which is Stokes’ formula in a context of isolated
singularities.

Lemma 2.11. — Let X ⊂ BCN (0, 2) be a a proper, n-dimensional complex subspace of the ball
of radius 2 in CN , center at the origin. Let u, v, w be psh functions on BCN (0, 2) with isolated
singularities, i.e. they are smooth outside a discrete set of points in BCN (0, 2) which we assume
does not meet ∂BCN (0, 1). Finally, let B := BCN (0, 1) ∩ X. Then, we have

(2.9)
∫

∂B
(udcv− vdcu) ∧ (ddcw)n−1 =

∫
B
(uddcv− vddcu) ∧ (ddcw)n−1

We include a proof for the reader’s convenience.

Proof of Lemma 2.11. — By using a (regularized) maximum operation, we can find a
family of smooth psh functions uε (resp. vε, wε) decreasing to u (resp. v, w) and which
coincide with their limit outside a compact set Kε b B which collapses onto a finite set
S b B. By the usual Stokes’ formula, one has∫

∂B
(uεdcvε − vεdcuε) ∧ (ddcwε)

n−1 =
∫

B
(uεddcvε − vεddcuε) ∧ (ddcwε)

n−1

The left-hand side of the formula above is identical to the left-hand side of (2.9). To
prove that the right-hand side above converges to the right-hand side of (2.9), we prove
that the current (uεddcvε − vεddcuε) ∧ (ddcwε)n−1 on B converges to (uddcv− vddcu) ∧
(ddcw)n−1 weakly, globally on B and locally smoothly on B \ S. The local smooth con-
vergence outside S is obvious. As for the global weak convergence, it follows from the
convergence uεddcvε ∧ (ddcwε)n−1 ⇀ uddcv ∧ (ddcw)n−1 (and its symmetrical version
swapping u and v), proved by Demailly, cf e.g. [Dem85, Thm. 2.6 and Rem. 2.10].
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Applying Lemma 2.11 to X = Xt, u = ψt, v = w = Gx (recall that Gx|∂B ≡ 0), we get

∫
B∩Xt

ψt (ddcGx)
n =

∫
B∩Xt

Gx ddcψt ∧ (ddcGx)
n−1︸ ︷︷ ︸

=:It

+
∫

∂B∩Xt

ψt dcGx ∧ (ddcGx)
n−1︸ ︷︷ ︸

=:Jt

By Lemma 2.12, in order to get a lower bound for Jt, it is enough to bound from above
the quantity

∫
∂B∩Xt

(−ψt) dc‖z‖2 ∧ (ddc‖z‖2)n−1. Applying (2.9) to u = −ψt, v = w =

‖z‖2 − 1, we find

∫
∂B∩Xt

(−ψt) dc‖z‖2 ∧ (ddc‖z‖2)n−1 =
∫

B∩Xt

(−ψt) (ddc‖z‖2)n +∫
B∩Xt

(‖z‖2 − 1) ddcψt ∧ (ddc‖z‖2)n−1

6
∫

B∩Xt

(−ψt) (ddc‖z‖2)n

6 Cn
1

[∫
Xt

(−ϕt)ωn
t + Cτ ·V

]
,

where C1 is such that ddc‖z‖2 6 C1ω on B and Cτ is given in (2.5).

We now take care of the most singular term It. Set

γt(x) :=
∫

B
ddcψt ∧ (ddcGx)

n−1 ∧ [Xt]

so that µ := γ−1
t ddcψt ∧ (ddcGx)n−1 ∧ [Xt] is a probability measure on B (depending on

x). We claim that for any x ∈ B there exists a constant ν > 0 independent of t and x
such that 1 6 γt < ν. The uniform upper bound follows from the same computations
in the proof of Proposition 2.3. By (2.7) we can infer that

∫
B

ddcψt ∧ (ddcGx)
n−1 ∧ [Xt] >

∫
B

ddc‖z‖2 ∧ (ddcGx)
n−1 ∧ [Xt]

> ν((ddcGx)
n−1 ∧ [Xt], x)

> ν([Xt], x) = m(Xt, x) > 1

In the second inequality we used the fact that r → 1
r2

∫
Br

ddc‖z‖2 ∧ T is decreasing to
ν(T, x) when r ↓ 0 (see (2.2)). The first equality follows from (2.3) while the second
one comes from Thie’s theorem. Recall that the origin of B is identified with the point x.
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We now use Jensen’s formula and (2.8) to obtain

exp(−αIt(x)) = exp
(∫

z∈B
−αγtGxdµ

)
6

1
γt

∫
z∈B

e−αγtGx ddcψt ∧ (ddcGx)
n−1 ∧ [Xt]

=
1
γt

∫
z∈B

ddcψt ∧ (ddcGx)n−1 ∧ [Xt]

‖Φx(z)‖αγt

6 C0

∫
z∈B

ddcψt ∧ (ddc‖z‖2)n−1 ∧ [Xt]

‖Φx(z)‖αν+2n−2 ,

where we can assume w.l.o.g. that αν < 2. By Fubini’s theorem, we have∫
x∈B1/2

e−αψt ωn ∧ [Xt] 6
∫

x∈B1/2

e−α(It+Jt)ωn ∧ [Xt]

6 K ·
∫

x∈B1/2

e−αIt ωn ∧ [Xt]

6 C0 · K ·
∫

x∈B1/2

(∫
z∈B

ddcψt ∧ (ddc‖z‖2)n−1 ∧ [Xt]

‖Φx(z)‖αν+2n−2

)
ωn ∧ [Xt]

6 C0 · K ·
∫

z∈B

(∫
x∈B1/2

(ddc‖x‖2)n ∧ [Xt]

‖Φx(z)‖αν+2n−2

)
ddcψt ∧ (ddc‖z‖2)n−1 ∧ [Xt],

where K := exp{−α Cn
1

∫
Xt

ψt ωn
t }.

Moreover, using the same computation as in the proof of Lemma 2.13 below, one can
check that if β := 2−αν

2n > 0, there exists a constant Cβ > 0 such that the inequality of
(n, n)-currents below holds on B

(2.10) C−1
β (ddc

x‖Φx(z)‖2β)n 6
1

‖Φx(z)‖αν+2n−2 (ddc‖x‖2)n 6 Cβ (ddc
x‖Φx(z)‖2β)n

Fix z ∈ B and for any x ∈ B let fx(z) := ‖Φx(z)‖. We define an extension of fx to X by

Fx(z) :=

{
χ · fx(z) if x ∈ B

0 else.

Here, χ is a smooth cut-off function such that Supp(χ) ⊂ B and χ ≡ 1 on B1/2. It is
easy to check that Fx is an Aω-psh function on X for some A = Aτ big enough (that a
priori depends on Uτ but can be chosen independently of x ∈ B1/2). Thus∫

x∈B1/2

1
‖Φx(z)‖αν+2n−2 (ddc‖x‖2)n ∧ [Xt] 6 Cβ

∫
x∈B1/2

(ddc
x‖Φx(z)‖2β)n ∧ [Xt]

6 Cβ

∫
x∈X

(Aω + ddc
xFx(z)2β)n ∧ [Xt]

6 Cβ · An ·V := C2.

It then follows that∫
x∈B1/2

e−αψt ωn ∧ [Xt] 6 C0 · C2 · K ·
∫

z∈B
ddcψt ∧ (ddc‖z‖2)n−1 ∧ [Xt] 6 C3 · K,
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where C3 := C0C2CΘCn−1
1 · V. The last inequality follows from the fact that on Bt,

we have ddcψt ∧ (ddc‖z‖2)n−1 6 (θt + ddc ϕt) ∧ (C1ω)n−1, and one can dominate the
integral of the right-hand side on Bt by its integral on Xt and use (2.1). This is the
conclusion.

Lemma 2.12. — With the notations introduced at the beginning of the proof of Theorem 2.9,
there exists a constant C = C(n) > 0 such that for all x ∈ B1/2 ⊂ CN and z ∈ Xt ∩ S2N−1,

(2.11)
1
C

dc‖z‖2 ∧ (ddc‖z‖2)n−1 6 dcGx ∧ (ddcGx)
n−1 6 Cdc‖z‖2 ∧ (ddc‖z‖2)n−1

Proof. — One knows that there exists a neighborhood U of S2N−1 ⊂ CN not containing
x such that ddc‖Φx‖2 defines a Kähler form ωx on U. This follows for instance from the
fact that Φx can be extended as an holomorphic map to an open neighborhood of the
closed ball – and that neighborhood can be chosen to be independent of x ∈ B1/2. On
U, ωx is comparable to the euclidean metric on CN and therefore, ωx and ωeucl induce
uniformly equivalent Riemannian metrics gx and geucl on U ∩ Xt first, and then as well
on the real hypersurface Xt ∩ S2N−1; we denote them by g′x and g′eucl respectively. In
particular their volume forms dVg′x , dVg′eucl

are equivalent too. One has dVg′eucl
= ιvdVgeucl

where v is the restriction to Xt of the unit outward radial vector
n+k

∑
j=1

(
zj

∂

∂zj
+ z̄j

∂

∂z̄j

)
.

Hence, on Xt ∩ S2N−1 one has

dVg′eucl
= ιv(ddc‖z‖2)n = 2

( i
π

)n−1
dc‖z‖2 ∧ (ddc‖z‖2)n−1.

In the same way, dVg′x = ιvx dVgx where vx is the restriction to Xt of the unit outward
vector with respect to ddc‖Φx‖2, hence vx = Φ∗xv. Therefore one has on Xt ∩ S2N−1,

dVg′x = ιvx(ddc‖Φx‖2)n = Φ∗x(ιv(ddc‖z‖2)n) = 2
( i

π

)n−1
dc‖Φx‖2 ∧ (ddc‖Φx‖2)n−1

= 2n+1
( i

π

)n−1
dcGx ∧ (ddcGx)

n−1.

given that Gx = 1
2 log ‖Φx‖2 vanishes on the sphere and that dc log u ∧ (ddc log u)n−1 =

1
un dcu ∧ (ddcu)n−1 for any smooth function u. This shows that the above two volume
forms on Xt ∩S2N−1 are uniformly equivalent on Xt ∩S2N−1 hence it ends the proof.

Lemma 2.13. — Let β > 0 and B ⊂ Cn be the unit ball. Then ‖z‖2β is psh on B and there
exists a constant Cβ > 0 (that depends only on β) such that

C−1
β

‖z‖2(1−β)
· ddc‖z‖2 6 ddc‖z‖2β 6

Cβ

‖z‖2(1−β)
· ddc‖z‖2.

Proof. — Let χ : R+ → R+ be defined as χ(t) := tβ and u := ‖z‖2. One has

ddcχ ◦ u = βuβ−1
(

ddcu− (1− β)u−1du ∧ dcu
)

.
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Note that min{1, β} · ddcu 6 ddcu− (1− β)u−1du ∧ dcu 6 max{1, β} · ddcu. Observe
that he hermitian matrix associated to the (1, 1)-form du ∧ dcu is (z̄izj)i j̄. The latter has
rank one and its non-zero eigenvalue coincides with its trace, i.e. u. Therefore the
eigenvalues of the hermitian matrix A := In− (1− β)u−1(z̄izj)i j̄ are 1 (with multiplicity
n− 1) and β (multiplicity 1). This ends the proof.

3. Normalization in families

Previous section allows us to check hypothesis (H1), as soon as the mean value of
sup-normalized θt-psh functions is uniformly controlled. It is classical that one can
compare the supremum and the mean value of θ-psh functions on a fixed compact
Kähler variety (see [GZ17, Prop. 8.5]). We conjecture that the following results holds

Conjecture 3.1. — In the Setting 2.1, there exists a constant C > 0 such that: the in-
equality

sup
Xt

ϕt − C 6
1
V

∫
Xt

ϕt ωt
n 6 sup

Xt

ϕt

holds for all t ∈ D1/2 and for every function ϕt ∈ PSH(Xt, θt).

In a preprint version of this paper, we claimed a proof of the conjecture above but a
referee, whom we thank, pointed out a gap. In this section, we propose a large class of
families for which the conjecture holds. More precisely, let us consider the following

Assumption 3.2. — In Setting 2.1, we assume additionnally that one of the following condi-
tions is satisfied by the family π : X → D.

1. The map π is projective.
2. The map π is locally trivial.
3. The fibers Xt are smooth for t 6= 0.
4. The fibers Xt have isolated singularities for every t ∈ D.

Recall that π is said to be

– projective if we have a commutative diagram as below

X PN ×D

D

ι

π pr2

– locally trivial if, up to shrinking D, there exists a euclidean open cover (Uα)α of X
and a collection of isomorphisms

Fα : X |Uα

'−→ (Uα ∩ X0)×D
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such that the following diagram is commutative

(3.1)
X |Uα (Uα ∩ X0)×D

D

π

Fα

pr2

For instance, if X is smooth and if the map π is a holomorphic submersion, then
π is automatically locally trivial.

The main result in this section is the following

Proposition 3.3. — In the Setting 2.1 and if Assumption 3.2 is satisfied, then Conjecture 3.1
holds. That is, there exists a constant C > 0 such that: the inequality

sup
Xt

ϕt − C 6
1
V

∫
Xt

ϕt ωt
n 6 sup

Xt

ϕt

holds for all t ∈ D1/2 and for every function ϕt ∈ PSH(Xt, θt).

We will prove Proposition 3.3 in several independent steps.
• In § 3.2, we prove the locally trivial case.
• In § 3.3, we treat the case of isolated singularities.
• In §3.4-3.5-3.6 we introduce the material (Sobolev and Poincaré inequalities, heat

kernels and Green’s functions) that we will use in the final section.
• In § 3.7, we establish at the same time the projective case and the case of a smooth-

ing, thereby completing the proof of Proposition 3.3.
By combining the above result with Theorem 2.9, we get the following

Theorem 3.4. — In Setting 2.1, let us choose a positive number α ∈ (0, α(Θ)), which is
possible thanks to Corollary 2.4. If Assumption 3.2 is satisfied, there exists a constant Cα > 0
such that for all t ∈ D1/2 and for all ϕt ∈ PSH(Xt, θt), we have∫

Xt

e−α(ϕt−supXt
ϕt)ωn

t 6 Cα.

3.1. Irreducibility of the fibers. — The irreducibility of all the fibers is a necessary
assumption for the left-hand-side inequality in Conjecture 3.1 to hold as the following
example shows:

Example 3.5. — Consider X ⊂ P2 ×C where

X := {([x : y : z], t) ; xy− tz2 = 0}.
The variety X is smooth and comes equipped with the proper morphism π : X → C

induced by the second projection P2 ×C → C. Set Xt = {[x : y : z] ∈ P2 : xy = tz2}.
Note that Xt is a smooth conic for t 6= 0 while X0 = {[x : y : z] ∈ P2 : xy = 0} is the
union of two lines. The quasi-psh function ϕ on P2 defined by

ϕ([x : y : z]) =
1
4

(
log(|x|2 + |z|2) + log |y|2

)
− 1

2
log(|x|2 + |y|2 + |z|2) + log 2

2
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clearly induces a ω-psh function Φ on X , where ω = ωFS + ddc|t|2,

Φ([x : y : z], t) = ϕ([x : y : z]).

We set ϕt := Φ|Xt and ωt := ω|Xt . A simple computation shows that supX Φ = 0
and it is attained at points ([x : y : z], t) such that |y|2 = |x|2 + |z|2. We also find that
supXt

ϕt = 0 and the supremum is attained on the set

St :=
{
[x : 1 : z] : |x| = 1

2|t| ·
(√

4|t|2 + 1− 1
)

, z2 = xt−1
}

.

As t → 0, St becomes the circle C := {[0 : 1 : eiθ ]; θ ∈ R} ⊂ X0 . Note also that
X0 = ` ∪ `′, where ` := {[0 : y : z]} and `′ := {[x : 0 : z]} and C ⊂ `. The open annulus
Ut := {[z2 : t : z]; 1 < |z|2 < 2} ⊂ Xt satisfies∫

Ut

ωt > δ

for some δ > 0 independent of t as well as

ϕt|Ut 6
1
2
(log |t|+ 1)

from which it follows that
lim
t→0

∫
Xt

ϕt ωt = −∞.

3.2. The locally trivial case. — In this section, we prove Proposition 3.3 under the
assumption that π is locally trivial; we borrow the notations from Diagram (3.1).

One can reduce the problem to showing that there exists a constant C > 0 depending
only on π such that given any sequence of complex numbers tk → 0 and any functions
ϕk ∈ PSH(Xtk , θtk) such that supXtk

ϕk = 0, one has∫
Xtk

ϕkωn
tk
> −C.

By compactness of π−1(D1/2), one can assume that α ranges among the finite set
{1, . . . , r} and without loss of generality, one can assume that Uα+1 ∩Uα 6= ∅, for any
α ∈ {1, . . . , r− 1}. Up to splitting the sequence (ϕk) into (at most) r subsequences, we
can assume that for every k, ϕk attains its maximum in the same set Uα0 for some fixed
α0 ∈ {1, . . . , r}. By simplicity, we assume that α0 = 1.

Let Gα,k : Uα ∩ X0 → Uα ∩ Xtk be the biholomorphism defined as the inverse of the
restriction of Fα to Uα ∩ Xtk and let us analyze the sequence of functions ψα,k := G∗α,k ϕk.
As F∗α (ω0 + idt ∧ dt̄) is commensurable to ω, there exists C > 0 depending only on π
such that

(3.2) C−1ω0 6 G∗α,kωtk 6 Cω0.

In particular, up to increasing C, one can assume that G∗α,kθtk 6 Cω0. As a result, one
has ψα,k ∈ PSH(Uα ∩ X0, Cω0).

The family (ψ1,k)k is a family of non-positive Cω0-psh functions on the complex space
U1 ∩ X0 attaining the value zero there, so it is relatively compact for the L1

loc topology,
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cf e.g. [GZ17, Proposition 8.5]. In particular, given any compact subset U′1 b U1, the
integral

∫
U′1

ψ1,kωn
0 admits a lower bound depending only on U′1 but not on k.

Next, the family (ψ2,k)k is a family of non-positive Cω0-psh functions on U2 ∩ X0.
Therefore, either it converges locally uniformly to −∞ or it is relatively compact on
each compact subset. From (3.2), it follows that the family of automorphisms Hk :=
(G−1

2,k )|U1∩U2∩Xtk
◦ G1|U1∩U2∩X0 of U1 ∩U2 ∩ X0 satisfies

C−1ω0 6 H∗k ω0 6 Cω0 and ψ2,k = H∗k ψ1,k.

One deduces then easily that for any compact subset U′12 b U1 ∩ U2, the integral∫
U′12

ψ2,kωn
0 admits a lower bound independent of k. In turn, this implies that (ψ2,k)k

is relatively compact for the L1
loc topology on the whole U2 ∩ X0.

By iterating the argument, one finds that for any α, the family (ψα,k)k is relatively
compact for the L1

loc(Uα ∩ X0) topology and using the estimate (3.2) as above, one con-
cludes easily that

∫
Xtk

ϕkωn
tk

admits a uniform lower bound as claimed.
This shows that Proposition 3.3 holds whenever π is locally trivial. An easy conse-

quence is the following

Corollary 3.6. — In Setting 2.1, there exists a discrete set Z ⊂ D such that for every compact
subset K b D \ Z, there exists a constant CK such that∫

Xt

ϕtω
n
t > −CK

for any collection of functions ϕt ∈ PSH(Xt, θt) such that supXt
ϕt = 0.

Moreover, one can take Z = ∅ provided that the family π : X → D admits a simultaneous
resolution of singularities, i.e. a proper, surjective holomorphic map f : Y → X from a Kähler
manifold Y such that for any t ∈ D, the induced morphism f |Yt : Yt → Xt is a resolution of
singularities, where Yt := f−1(Xt).

Proof. — Let f : Y → X be a resolution of singularities of X . One can assume that Y
is a Kähler manifold; let us pick ωY a Kähler form on Y . The induced map ρ := π ◦ f :
Y → D is surjective, hence by generic smoothness, it is smooth over the complement
of a proper analytic subset Z of D. In particular, Z is discrete. Note that over Z, the
fibers of ρ may have several irreducible components.

We denote by ft the restriction f |Yt : Yt → Xt of f to the fiber Yt, where Yt := ρ−1(t).
For any t ∈ D \ Z, the map ft is bimeromorphic, i.e. it is a resolution of singularities
of Xt. Let us choose K b D a compact subset. There exists a constant CK such that
f ∗ω 6 CKωY on ρ−1(K). In particular, for any t ∈ K, one has f ∗t ϕt ∈ PSH(Yt, CKCΘ ωY)
and supYt

f ∗t ϕt = 0. Now, if we additionally assume that K b D \ Z, we can apply the
result above to the smooth family ρ|ρ−1(K) : ρ−1(K)→ K to find another constant C′K > 0
satisfying ∫

Yt

( f ∗t ϕt)ωn
Y > −C′K

for any t ∈ K. As ωn
Y > C−n

K f ∗t ωn
t , we deduce that∫

Xt

ϕt ωn
t > −C′K · Cn

K
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which concludes the first part of the proof. The second statement is an immediate
consequence of the proof of the first one. Indeed, if Yt is smooth (as an analytic space),
then π ◦ f is smooth in a neighborhood of Yt and the argument above can be run over
a neighborhood of t.

3.3. The case of isolated singularities. — In this section, we prove Proposition 3.3 in
the case where all fibers Xt, t ∈ D, have isolated singularities.

Remark 3.7. — We would like to start with two observations.
• This case includes the case where n = dim Xt = 1.
• If one only assumes that X0 has isolated singularities, then it is easy to check that

there exists ε > 0 such that Xt has isolated singularities for any t satisfying |t| < ε.
This is because the locus Z ⊂ X where π is not smooth is an analytic set such that
dim(Z ∩ X0) = 0 and by upper semi-continuity, Z has relative dimension 0 over a
neighborhood of 0 ∈ D.

We now proceed to proving Proposition 3.3 in several steps.

Step 1. Localization of the problem at t = 0.
Let f : Y → X be a resolution of singularities X . The induced family π ◦ f : Y → D

is generically smooth over D so for r > 0 small enough, the restriction of π ◦ f to the
inverse image of Dr has a most one singular fiber, corresponding to t = 0. In particular,
the family Y → Dr is locally trivial away from Y0. Applying the result in the locally
trivial case (cf. § 3.2) to the collection of f ∗θt-psh functions f ∗ϕt, we see that for every
compact subset K b D∗r , there exists a constant CK independent of the chosen family
such that

sup
t∈K

∫
Xt

(−ϕt)ω
n
t 6 CK,

cf also Corollary 3.6. This shows that it is enough to prove that for any sequence tk → 0
and any collection of sup-normalized θtk -psh functions ϕtk , one has

sup
k>1

∫
Xtk

(−ϕtk)ω
n
tk
< +∞.

Step 2. Choice of a good covering.
As the fibers are reduced, it follows from the jacobian criterion for smoothness that the
smooth locus of π coincides with the union of the smooth loci of Xt when t ranges in D.
Recall that Z, the singular locus of π, is an analytic space of relative dimension at most
zero. It has finitely many irreducible components (say when restricted to π−1(D1/2))
and we can assume without loss of generality that this number is equal to the cardi-
nality of Z ∩ X0. Let (Vα)α be a finite collection of (small) open balls in X centered at
the (finitely many) singular points of X0. Up to adding a finite amount of balls to the
collection, one can assume that
(i) The reunion V := ∪αVα is an open neighborhood of X0 ⊂ X .
(ii) Each point of Z ∩ X0 belongs to exactly one element Vα of the covering.
(iii) For all α, there exists ρα ∈ C∞(Vα, R) such that ω|Vα = ddcρα.
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(iv) There exists r > 0 such that for all α, one has

Z ∩ ∂Vα ∩ π−1(Dr) = ∅.

Up to substracting a constant to ρα, one can assume that ρα is non-negative. More-
over, there exists a constant C1 > 0 such that ρα 6 C1 on Vα, for any α. Let (χα)α be
a partition of unity associated to the covering (Vα)α. That means that ∑α χα ≡ 1 and
Supp(χα) ⊂ Vα. Finally, let ρ := ∑ χαρα. If follows from (ii) that one has ω = ddcρ
in some neighborhood W ′α of each point of Z ∩ X0. We pick a relatively compact open
subset Wα b W ′α and set W := ∪Wα. Up to decreasing r a little, one can assume that
Z ∩ ∂W ∩ π−1(Dr) = ∅. In particular, there exists δ > 0 such that for any t ∈ Dr, one
has dω(∂W ∩ Xt, Z) > δ. In summary

(3.3) 0 6 ρ 6 C1, ω = ddcρ on W, dω(∂W ∩ Xt, Z) > δ for all t ∈ Dr.

Step 3. Weak compactness locally outside Z.
Let tk be a sequence of numbers converging to zero, and let ϕtk ∈ PSH(Xtk , θtk) such
that supXtk

ϕtk = 0. We claim that there exists a sequence of points xk ∈ Xtk and a
constant C2 > 0 such that

(i) ϕtk(xk) > −C2.
(ii) dω(xk, Z) > δ/2.

Indeed, let yk ∈ Xtk be such that ϕtk(yk) = 0. If dω(yk, Z) > δ/2, then we are done.
Otherwise, it means that we have yk ∈ W by the third item of (3.3). Now, the function
CΘρ + ϕtk is psh on W so by the maximum principle, there exists xk ∈ ∂W such
that (CΘρ + ϕtk)(xk) > (CΘρ + ϕtk)(yk) > 0. By the first item of (3.3), we deduce
ϕtk(xk) > −C2 where we set C2 := C1CΘ.

Let U := {x ∈ π−1(Dr); d(x, Z) > δ/2}. The map π is smooth on U and one can
cover U by finitely many open subsets (Uj)16j6p isomorphic to (Uj ∩ X0)×Dr over Dr.
Because of (i), we can argue as in the locally trivial case (cf. § 3.2) by exporting the
functions ϕtk |Uj∩Xtk

to the fixed space Uj ∩ X0 and get relative compactness there. In
particular, one can find a constant C3 > 0 independent of k such that

(3.4)
∫

U∩Xtk

(−ϕtk)ω
n
tk
6 C3.

Step 4. The integral bound.
On W, one has ω = ddcρ. This implies that ωn = (ddcρ)n + T for some smooth, closed
(n, n)-form T on π−1(Dr) such that T|W ≡ 0. Let us introduce constants C4, C5 such
that −C4ωn−1 6 (ddcρ)n−1 6 C4ωn−1 and T 6 C5ωn. As the complement of W in
π−1(Dr) is included in U, it follows from (3.4) that

(3.5)
∫

Xtk

(−ϕtk) T 6 C5C3.
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Moreover, one has∫
Xtk

(−ϕtk)(ddcρ)n =
∫

Xtk

−ρddc ϕtk ∧ (ddcρ)n−1

= −
∫

Xtk

ρ(θtk + ddc ϕtk) ∧ (ddcρ)n−1 +
∫

Xtk

ρθtk ∧ (ddcρ)n−1

6 C4C1

∫
Xtk

(θtk + ddc ϕtk) ∧ωn−1 + CΘC4C1 ·V

6 2C1C4CΘ ·V.

All in all, one finds ∫
Xtk

(−ϕtk)ω
n
tk
6 C6

where C6 = C3C5 + 2C1C4CΘ ·V.

3.4. Sobolev and Poincaré inequalities. — In this section, we work in the Setting 2.1
above and we assume from now on that the relative dimension n = dimC Xt satisfies
n > 1, since the case n = 1 has already been dealt with in § 3.3, cf. Remark 3.7.

For t ∈ D, we set Xt := π−1(t) and denote by Xreg
t the regular locus of Xt. We fix a

Kähler form ω on X and set
ωt := ω|Xt .

Proposition 3.8. — Let K b D. There exists CS = CS(K) such that

∀t ∈ K, ∀ f ∈ C∞
0 (Xreg

t ),
(∫

Xt

| f | 2n
n−1 ωn

t

) n−1
n

6 CS

∫
Xt

(| f |2 + |d f |2ωt
)ωn

t .

Remark 3.9. — The inequality above extends immediately to the functions f ∈
W1,2(Xreg

t ), i.e. such that f , d f ∈ L2(Xreg
t , ωt).

Proof. — Because of the existence of partition of unity, the statement above is local.
That means that it is enough to show the above inequality for any t ∈ K and any
f ∈ C∞

0 (Ui ∩ Xreg
t ) where Ui ⊂ X are open sets such that ∪Ui = X .

We fix such an open set Ui and we drop the index i in what follows. Without loss
of generality, one can assume that there exists an embedding Ui ↪→ CN and that ω|U
and ωCN |U are quasi-isometric. Because Sobolev inequality is essentially insensitive
to quasi-isometry, it is enough to show the inequality replacing ωt by ωCN |Ut where
Ut := U ∩ Xt.

Now, the isometric embeddings (Ureg
t , ωCN |Ut) ↪→ (CN , ωCN ) provide a family of

minimal submanifolds (i.e. with zero mean curvature vector) of the euclidean space by
virtue of Wirtinger inequality. The expected inequality is now a direct application of
Michael-Simon’s Sobolev inequality [MS73, Thm. 2.1].

Proposition 3.10. — Let K b D. There exists CP = CP(K) such that

∀t ∈ K, ∀ f ∈ W1,2
0 (Xreg

t ),
∫

Xt

| f |2ωn
t 6 CP

∫
Xt

|d f |2ωt
ωn

t .



FAMILIES OF SINGULAR KÄHLER-EINSTEIN METRICS 33

In the statement above, the space W1,2
0 (Xreg

t ) is defined as the space of functions f on
Xreg

t such that f , d f ∈ L2(Xreg
t , ωt) and

∫
Xt

f ωn
t = 0.

Proof. — First, we claim that for each t ∈ D, there exists such a Poincaré constant CP,t.
Indeed, thanks to [Bei19, Thm. 0.2], the Laplacian ∆ωt is positive, self-adjoint and its
spectrum is discrete. It remains to show that its kernel is one-dimensional. Now, if
f ∈ W1,2(Xreg

t ) is such that ∆t f = 0, it means that for every u ∈ W1,2(Xreg
t ), we have

〈∇u,∇ f 〉 = 0. In particular, taking u = f shows that f is locally constant on Xreg
t . As

Xt is irreducible, Xreg
t is connected and the result follows.

Given the absolute case explained above, the family version of Poincaré inequality
follows from Proposition 3.8 and the irreducibility of the fibers: we refer the reader
to [RZ11b, Prop. 3.2] for a detailed argument (the projectivity assumption made by
Ruan-Zhang being unnecessary for this part of the argument).

3.5. Heat kernels and Green’s functions. — In this section as well as in the following
section 3.6, we go back to the absolute case and consider an irreducible and reduced
Kähler space (X, ω) of dimension n = dimC X satisfying n > 1.

When X is smooth, it is well-known (cf e.g. [Cha84, § VI]) that there exists a smooth,
positive function H : X× X× (0,+∞), symmetric in its space variable and such that if
∆ := trω ddc, one has

• (−∆y + ∂t)H(x, y, t) = 0.
• For every x ∈ X, one has weak convergence H(x, ·, t)ωn −→

t→0
δx.

In the general case where X may have singularities, one can introduce Xε = X \ Vε

where Vε is a closed ε-neighborhood of Xsing with smooth boundary. Then, there exists
a unique smooth, positive function Hε on Xε × Xε × (0,+∞) such that

• (−∆y + ∂t)Hε(x, y, t) = 0.
• Hε(x, y, t)→ 0 whenever x or y approaches ∂Xε.
• For every x ∈ Xε, one has weak convergence Hε(x, ·, t)ωn −→

t→0
δx.

Moreover, given (x, y, t) ∈ Xε0 × Xε0 × (0,+∞), the function (0, ε0) 3 ε 7→ Hε(x, y, t)
is decreasing. Using [Cha84, VIII.2 Thm. 4] and its proof, we additionally see that the
limit H := limε Hε is everywhere finite and satisfies

• H is positive and smooth on Xreg × Xreg × (0,+∞).
• (−∆y + ∂t)H(x, y, t) = 0.
• For all x, y ∈ Xreg and t, s > 0, one has

(3.6) H(x, y, t + s) =
∫

X
H(x, ·, t)H(·, y, s)ωn.

• For any x ∈ Xreg, one has H(x, ·, t)ωn −→
t→0

δx weakly.

When X ⊂ PN is projective and ω = ωFS|X, Li and Tian have showed in [LT95] that
there is an absolute inequality

(3.7) H(x, y, t) 6 HPn(dPN (x, y), t)
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for any x, y ∈ Xreg and t ∈ (0,+∞), where HPn is the heat kernel of (Pn, ωFS), whose
dependence in the space variables x, y is known to reduce to a single real variable,
namely the distance between those two points.

In particular, H(x, ·, t) is bounded on Xreg for any x ∈ Xreg and t > 0. Since Xsing has
real codimension at least two, it admits cut-off functions whose gradient converges to
zero in L2, and this allows one to perform integration by parts as in the compact case
for bounded functions in W1,2. We refer to [LT95, Lem 3.1] for more details; we will
also rely on the latter result which states that H(x, ·, t) ∈ W1,2 and that is satisfies the
conservation property

∀t > 0,
∫

X
H(x, ·, t)ωn = 1.

Below are a few more properties that will be useful later, which are certainly standard
in the smooth case. For this purpose, one introduces the function

G(x, y, t) := H(x, y, t)− 1
V

where V :=
∫

X ωn. The key information for us will be given by the fourth item, for
which the arguments are borrowed from [CL81], see also [Siu87, App. A].

Lemma 3.11. — Assume either that X is smooth or that X ⊂ PN is projective and ω = ωFS|X.
Let x, y ∈ Xreg. We have

1. G(x, y, t) > − 1
V ,
∫

X G(x, ·, t)ωn = 0 and
∫

X |G(x, ·, t)|ωn 6 2.
2. |G(x, y, t)|2 6 G(x, x, t)G(y, y, t).
3. H(x, x, t)→ +∞ when t→ 0.
4. There exists a constant C0 depending only on the Sobolev and Poincaré constant of

(Xreg, ω) such that
|G(x, y, t)| 6 C0t−n

for any x, y ∈ Xreg and any t > 0.

Proof. — Under the assumptions on X, we know that H(x, ·, t) is bounded on Xreg, in
W1,2 and satisfies the conservation property. We will only rely on these non-quantitative
properties to establish the items below, and not on the more precise inequality (3.7)
which certainly does not hold if X is not projective.

(1) a trivial consequence of the positivity of H and the fact that
∫

X H(x, ·, t)ωn = 1.
(2) is classical when X is smooth, so we assume for the time being that X is projective.

Let Kε be the Neumann heat kernel on Xε, let Vε :=
∫

Xε
ωn and let G̃ε := Kε − 1

Vε
. Then

we have
Kε(x, y, t) = ∑

i>0
e−λi,εtφi,ε(x)φi,ε(y)

where (φi,ε) is an orthonormal basis of L2(Xε) consisting of Neumann eigenfunctions
of −∆ with eigenvalues λi,ε. Note that φ0,ε = 1√

Vε
. By Cauchy-Schwarz, we find that

|G̃ε(x, y, t)|2 6 G̃ε(x, x, t) · G̃ε(y, y, t). Thanks to [LT95, Lemma 3.2], Kε converges to H
locally smoothly on X2

reg × (0,+∞) when ε → 0, hence G̃ε → G in the same way and
we get the second item.
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(3) Since H > Hε, It is enough to show the third claim for Hε. We consider a Sturm-
Liouville decomposition as before

Hε(x, y, t) = ∑
i>0

e−µi,εtψi,ε(x)ψi,ε(y)

but now, (ψi,ε) is an orthonormal basis of L2(Xε) consisting of Dirichlet eigenfunctions
of−∆ with eigenvalues µi,ε, cf [Cha84, VII (31)]. The sought property now follows since
∑ ψi,ε(x)2 is the norm of the unbounded functional L2 ∩ C∞(Xε) 3 f 7→ f (x).

(4) We start from the identity (3.6), which holds for G as well as one checks easily.
Taking y = x and differentiating with respect to s and eventually setting s := t, one
finds

−G′(x, x, 2t) = ‖dG(x, ·, t)‖2
L2 > (CS(CP + 1))−1‖G(x, ·, t)‖2

L
2n

n−1

since integration by parts is legitimate as we explained above and
∫

X G(x, ·, t)ωn = 0.
Moreover, the interpolation inequality gives

G(x, x, 2t) = ‖G(x, ·, t)‖2
L2 6 ‖G(x, ·, t)‖

2
n+1
L1 · ‖G(x, ·, t)‖

2n
n+1

L
2n

n−1

hence

‖G(x, ·, t)‖2

L
2n

n−1
> 2−

2
n G(x, x, 2t)

n+1
n

and

− 1
n

G′(x, x, t)G(x, x, t)−1− 1
n > C−1

for C = n4
1
n · CS(CP + 1). Integrating this inequality w.r.t. t and using the second item,

we get the fourth item – recall that G(x, x, t) > 0 for any x ∈ Xreg given its expansion
as power series, cf (2).

Under the assumptions of Lemma 3.11 above, the integral

G(x, y) :=
∫ +∞

0
G(x, y, t)dt

is convergent whenever x 6= y and defines a function G on Xreg × Xreg such that
G(x, ·) ∈ L1(Xreg). Moreover, since (−∆ + ∂t)G(x, ·, t) = 0, G(x, ·, t) →

t→+∞
0 and

G(x, ·, t)ωn →
t→0

δx − 1
V , we have

ddcG(x, ·) ∧ωn =
ωn

V
− δx,

i.e. for all f ∈ C∞
0 (Xreg), we have

(3.8)
∫

X
∆ f · G(x, ·)ωn =

1
V

∫
X

f ωn − f (x).



36 ELEONORA DI NEZZA, VINCENT GUEDJ & HENRI GUENANCIA

Finally, the first and fourth item of Lemma 3.11 enable us to find a lower bound of the
Green function as follows

G(x, y) =
∫ 1

0
G(x, y, t)dt +

∫ +∞

1
G(x, y, t)dt(3.9)

> − 1
V
− C

n− 1
where C only depends on the Sobolev and Poincaré constants of (Xreg, ω).

3.6. Green’s inequality for general psh functions. — In this section, we assume that
the assumptions of Lemma 3.11 are satisfied.

Let us first generalize Formula (3.8) to some functions f ∈ C∞(Xreg) that are not
necessarily compactly supported. For that purpose, let p : Y → X a log resolution of
singularities, let D be the exceptional divisor of p and let Y◦ := p−1(Xreg) = Y \ D. We
claim that for any f ∈ C∞(Xreg) such that p∗ f extends smoothly across D, the formula

(3.10)
∫

Xreg

∆ f · G(x, ·)ωn =
1
V

∫
Xreg

f ωn − f (x)

holds. First observe that all the terms are well-defined as one sees by pulling back by
p, which is an isomorphism over Xreg. Indeed, recall that x ∈ Xreg and that G(x, ·) is
locally bounded near Xsing so that p∗G(x, ·) is in L1(Y◦, ωY) for any Kähler form ωY on
Y.

Next, we choose a family (χδ)δ of cut-off functions for D. As they are identically 0
on D, they come from X under p and one can see them either as functions on X or Y
interchangeably. It is classical (cf e.g. [CGP13, Sect. 9]) that one can choose χδ such that
both dχδ ∧ dcχδ and ±ddcχδ are dominated by some fixed Poincaré metric ωP (inde-
pendently of δ). In particular, using Cauchy-Schwarz and the dominated convergence
theorem, one finds

(3.11) lim
δ→0

∫
Xreg

G(x, ·)
[

f ddcχδ + d f ∧ dcχδ + dχδ ∧ dc f
]
∧ωn−1 = 0

by the dominated convergence theorem. Formula (3.10) is now a direct application of
(3.8).

The next result is the key for the proof of Proposition 3.3.

Claim 3.12. — Under the assumptions of Lemma 3.11, let ϕ ∈ PSH(X, ω), V =
∫

X ωn

and let x ∈ Xreg. Then, one has

1
V

∫
X

ϕωn − ϕ(x) > nV · inf
Xreg

G(x, ·).

Proof. — Replacing ϕ by max(ϕ,−j) and letting j → +∞, one sees that it is enough
to prove the claim for bounded functions ϕ. Next, thanks to Demailly’s regularization
theorem, one can write p∗ϕ as a pointwise decreasing limit of smooth function ψε sat-
isfying p∗ω + εωY + ddcψε > 0 for some fixed Kähler metric ωY on Y. Using (3.10) and
setting Gx := G(x, ·), one finds

1
V

∫
X

ϕωn − ϕ(x) = lim
ε→0

∫
Y◦

np∗Gxddcψε ∧ p∗ωn−1.
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Moreover, as Gx have zero mean value, one has∫
Y◦

p∗Gxddcψε ∧ p∗ωn−1 =
∫

Y◦
(p∗Gx − inf

Xreg
Gx)ddcψε ∧ p∗ωn−1

=
∫

Y◦
(p∗Gx − inf

Xreg
Gx)(p∗ω + εωY + ddcψε) ∧ p∗ωn−1

−
∫

Y◦
p∗Gx ∧ (p∗ω + εωY) ∧ p∗ωn−1

+ inf
Xreg

Gx ·
(

V + ε
∫

Y
ωY ∧ p∗ωn−1

)
> inf

Xreg
Gx ·V + ε ·

(
inf
Xreg

Gx ·
∫

Y
ωY ∧ p∗ωn−1 −

∫
Y◦

p∗GxωY ∧ p∗ωn−1
)

Taking the limit as ε→ 0, we get the expected result.

3.7. Proof of Proposition 3.3. — We can now finish the proof of Proposition 3.3. We
are left to treating the cases where π is projective or Xt is smooth for t 6= 0. Moreover,
we can assume that n = dim Xt > 2 since otherwise, Xt would have at most isolated
singularities and we could then appeal to § 3.3, cf. Remark 3.7.

Moreover, the content of Proposition 3.3 is insensitive to replacing ω by another Käh-
ler metric on X . In the case where π is projective, i.e. if we have X ⊂ PN ×D such that
π commutes with the second projection, then we will assume that ω = ωFS|X .

Finally, in the case where Xt is smooth for t 6= 0, it is sufficient to prove Proposi-
tion 3.3 for t 6= 0 since it is already well-known that the L1-sup comparison holds on
the fixed irreducible complex space X0.

We know from § 3.4 that the Kähler manifolds (Xreg
t , ωt) admit uniform Poincaré

and Sobolev constants. As the volume V of (Xt, ωt) is constant, it follows from (3.9)
that there exists CG > 0 independent of t such that

∀x, y ∈ Xreg
t , Gt(x, y) > −CG,

where Gt(·, ·) is the Green function of (Xt, ωt). As ϕt is sup-normalized and upper
semi-continuous, there exists xt ∈ Xreg

t such that ϕt(xt) > −1. Applying Claim 3.12 to
ϕ := ϕt and x := xt, we find

1
V

∫
Xt

(−ϕt)ωn
t 6 nVCG + 1.

The Proposition is proved.

4. Densities along a log canonical map

We now pay attention to hypotheses (H2) and (H2’). We focus in this section on the
integrability properties of some canonical densities.
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4.1. Semi-stable model. —

Setting 4.1. — Let π : X → D be a proper, holomorphic surjective map from a Kähler spaceX
with connected fibers to the unit disk of relative dimension n. We make the following assumption

(4.1) For each t ∈ D, the pair (X , Xt) has log canonical singularities

where Xt = π−1(t) is the schematic fiber at t ∈ D, cf [KM98, Def. 7.1].

About the singularities. In Setting 4.1, the following properties hold
1. Every fiber is reduced, KX/D is Q-Cartier and X has log canonical singularities.
2. The space X has canonical singularities if and only if the general fiber Xt has

canonical singularities, cf [KM98, Lem. 7.2].
3. The condition (4.1) is preserved by finite base change from a smooth curve, cf

[KM98, Lem. 7.6].
4. If (X , X0) has lc singularities, then (X , Xt) has lc singularities for |t| � 1, see

[Kol13, Cor. 4.10 (2)] and [Kol18, Thm. 2.3].
5. By loc. cit., the condition (4.1) is equivalent to asking X to be normal, Q-

Gorenstein, and that each fiber Xt has semi- log canonical singularities.

By [KKMSD73], one can find a semi-stable model of π(1). More precisely, up to
shrinking D, there exists a finite cover ϕ : t 7→ tk of the disk for some integer k > 1 and
a proper, surjective birational morphism f : X ′ → X ×ϕ D

(4.2)
X ′ X ×ϕ D X

D D

π′

f g

pr2 π

ϕ

such that X ′ is smooth, f is isomorphic over the smooth locus of π and such that
around any point x′ ∈ X′0, there exists an integer p 6 n + 1 and a system of coordinates
(z0, . . . , zn) centered at x′ and such that π′(z0, . . . , zn) = z0 · · · zp.

Additional assumption. Up to shrinking D, one will assume that π′ is smooth away
from 0 so that for any t 6= 0, the induced morphism (g ◦ f )|X′t : X′t → Xt is a resolution
of singularities. Note that X′t need not be connected.

Let m > 1 be an integer such that mKX/D is a Cartier divisor. We can cover
X with open sets Ui such that Ui ∩ X reg admits a nowhere vanishing section
ΩUi ∈ H0(Ui ∩ X reg, mKX/D). For any t ∈ D, the restriction ΩUi |Xreg

t
defines a

nowhere vanishing section ΩUi |Xreg
t
∈ H0(Ui ∩ Xreg

t , mKXt). In particular, mKXt is a
Cartier divisor for all t. We want to understand the behavior of the volume forms
(ΩUi ∧ ΩUi)|

1
m
Xreg

t
when t → 0. In order to do so, it is enough to work on X ×ϕ D

(1)The reference [KKMSD73] deals with the case of a proper morphism between algebraic varieties but
the construction extends to the analytic case mutatis mutandis, as stated in e.g. [KM98, Thm. 7.17]
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directly as explained below.

Reduction step. The finite map g induces an isomorphism of Q-line bundles
KX×ϕD/D ' g∗KX/D. In particular, one can replace X by X ×ϕ D in the follow-
ing, or equivalently assume that ϕ = IdD; i.e k = 1. By what was said above, the "new"
family still satisfies the condition (4.1).

4.2. Analytic expression of the densities in a semi-stable model. — Let us start with
some notation. Once and for all, we fix an open set U := Ui0 for some i0. We set Ω :=
ΩU and Ωt := Ω|Xreg

t
. One can cover f−1(U) by a finite number of open subsets Vj ⊂ X ′

isomorphic to the unit polydisk of Cn+1 and endowed with a system of coordinates as
above. We let V := Vj0 be one of them. The goal is to understand f ∗Ω when restricted to
V, using our preferred set of coordinates. Finally, we set Ut := U ∩Xt and Vt := V ∩X′t.

Next, we write

(4.3) KX ′ + Y0 = f ∗(KX + X0) + ∑
i

aiEi

where the Ei’s are f -exceptional divisors with ai > −1 for all i and Y0 is the strict
transform of X0. Note that some of the divisors Ei’s may be irreducible components
of X′0. The others surject onto D thanks to the additional assumption made in the
previous section. The divisor E := ∑i Ei is the exceptional locus of f and E + Y0 has
simple normal crossing support. Under our assumptions, the analytic set

(4.4) Nklt(X , X0) := f
( ⋃

ai=−1

Ei
)

contains the non-klt locus of every fiber Xt, t ∈ D. This is an easy consequence of the
adjunction formula, at least when the Xt’s are normal.

We now let x′ ∈ Y0 and we assume that the coordinates mentioned above are chosen
such that Y0 = (z0 · · · zr = 0) locally for 0 6 r 6 p being the number of irreducible
components of Y0 minus one on that chosen open set.

On Vt, t 6= 0, the functions (z1, . . . , zn) induce a system of coordinates and the form
f ∗Ω on V can be seen as a collection of m-th powers of holomorphic n-forms

f ∗Ωt = gt(z1, . . . , zn)(dz1 ∧ · · · ∧ dzn)
⊗m

for some holomorphic function gt on Vt \ E, with poles of order at most (−mai)+ along
Ei ∩ Xt. The form Ω ∧ π∗

( dt
t

)⊗m is trivialisation of m(KX + X0) over Ureg. The pull-
back f ∗(Ω ∧ π∗

( dt
t

)⊗m
) is a well-defined m-th power of a (n + 1)-form on f−1(Ureg)

with logarithmic poles along Y0 that extends meromorphically to f−1(U) with poles of
order at most (−mai)+ along Ei. As

f ∗π∗
(dt

t

)
= (π′)∗

(dt
t

)
=

p

∑
i=0

dzi

zi
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on V, the form f ∗(Ω ∧ π∗
( dt

t

)⊗m
) is equal on that set to

(−1)mn(z1 · · · zr)
mgπ′(z)(z1, . . . , zn)

(dz0

z0
∧ dz1

z1
∧ · · · ∧ dzr

zr
∧ dzr+1 ∧ · · · ∧ dzn

)⊗m

so that the function (V \ E ∪ Y0) 3 z 7→ (−1)nm(z1 · · · zr)mgπ′(z)(z1, . . . , zn) extends to
a meromorphic function h on V, holomorphic along Y0 and with poles of order at most
(−mai)+ along Ei and satisfying

(4.5) f ∗Ωt = (−1)mn h(z)
(z1 · · · zr)m (dz1 ∧ · · · ∧ dzn)

⊗m

on Vt, for t 6= 0. When t = 0, one can also obtain a formula as above for f ∗Ω0 but it
requires to first choose a component Y(k)

0 of Y0. Let 0 6 i 6 r such that Y(k)
0 ∩V0 = (zi =

0). On that set (say after removing E), one has

(4.6) f ∗Ω0 = (−1)i+mn h(z)
(z1 · · · ẑi · · · zr)m

(
dz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn

)⊗m
.

Note that if X0 (or equivalenty, Y0) is irreducible, then r = 0 in the formula above.

Claim 4.2. — If X0 has canonical singularities, then r = 0 and the meromorphic func-
tion V 3 z 7→ h(z) is holomorphic on V.

Proof. — As X0 is normal, it is irreducible, hence Y0 is smooth and irreducible. In par-
ticular, the map f |Y0 : Y0 → X0 induces a resolution of singularities.

As X0 has canonical singularities, the pull-back f ∗Ω0 of the form Ω0 on Xreg
0 ∩U ex-

tends holomorphically across Y0 ∩ E. Given (4.6), it means that h|V ∩Y0 extends holo-
morphically along each Ei ∩Y0. As h is holomorphic on V and does not vanish outside
V0, its divisor is an n-dimensional variety supported on V ∩ E, therefore div(h) = ∑ biEi
for some integers bi. As E + Y0 is snc, the decomposition div(h|Y0) = ∑ bi(Ei ∩ Y0) is
the decomposition into irreducible components. As h|Y0 is holomorphic along the non-
empty set Y0 ∩ Ei, we have necessarily bi > 0 for any i. The claim is proved.

4.3. Integrability properties of the canonical densities. —

Definition 4.3. — In Setting 4.1, let ω be a Kähler form on X . We define the function γ
on U ∩ Xreg by

(Ω ∧Ω)
1
m = e−γωn.

We want to analyze the integrability properties of e−γ. Arguing as in the proof of
[RZ11a, Thm. B.1(i)] (see also [EGZ09, Lem. 6.4]), it is easy to infer from the normality
of X that given any small open set U′ ⊂ U, there exist bounded holomorphic functions
( f1, · · · , f`) on U′ such that V( f1, . . . , f`) ⊂ U′sing and

(4.7) γ|U′reg
=

1
m

log ∑
i
| fi|2.
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Let us pick a section sE ∈ H0(X ′,OX ′(E)) cutting out the exceptional divisor E and let
us choose | · | a smooth hermitian metric on OX ′(E). Given (4.7), there exists a constant
A > 0 such that

(4.8) f ∗γ > A log |sE|2.

We have the following

Lemma 4.4. — Assume that X0 has canonical singularities and set ωt := ω|Xt . Then up to
shrinking D, there exists p > 1 and a constant C > 0 such that for any t ∈ D, one has∫

Ut

e−pγωn
t 6 C.

Proof. — We set p := 1 + δ for some δ > 0 small enough to be chose later. Given (4.8),
we have∫

Ut

e−pγωn
t =

∫
f−1(Ut)

e−δ f ∗γ f ∗(Ωt ∧Ωt)
1
m 6

∫
f−1(Ut)

|sE|−2δA f ∗(Ωt ∧Ωt)
1
m .

Now, one can cover f−1(Ut) by finitely many open sets Vt = V ∩ X′t as above. On V,
the system of coordinates (z0, . . . , zn) induces a system of coordinates (z1, . . . , zn) such
that we have

|sE|−2δA f ∗(Ωt ∧Ωt)
1
m 6 C

p

∏
i=1
|zi|−2δAidz1 ∧ dz̄1 ∧ · · · ∧ idzn ∧ dz̄n

for some uniform constant C thanks to (4.5) and Claim 4.2. Recall that V = ∏n
i=0{|zi| <

1} ⊂ Cn+1 and

Vt = V ∩ {z0 · · · zp = t} ↪→ {(z1, . . . , zn) ∈ Cn; t 6 |zi| < 1} ⊂ Dn.

where the injective map is given by prz1,...,zn
|Vt , i.e. the restriction to Vt of the projection

map onto the last n coordinates in Cn+1. For δ small enough, the function D 3 z 7→
|z|−δA is integrable with respect to the area measure; this concludes the proof.

For the next lemma, we come back to the general case. We start by choosing a com-
ponent Y(k0)

0 of Y0, and we denote by X(k0)
0 the irreducible component of X0 birational

to Y(k0)
0 via f . Next, we consider the reduced divisor F on X ′ whose support consists

of the union of the other components Y(k)
0 , k 6= k0, along with the divisors Ei whose

discrepancy ai is equal to −1, cf (4.3).
Let hF be a smooth hermitian metric on OX ′(F) and let sF ∈ H0(X ′,OX ′(F)) such

that div(sF) = F. We let

(4.9) ψF := − log(− log |sF|2hF
).

Similarly, let Fklt := E− F ∩ E, and let ψklt := log |sFklt |2.

Claim 4.5. — There exists δ > 0 small enough such that for any ε > 0, there exists a
constant Cε such that for any t ∈ D,∫

f−1(Ut)
e(1+ε)ψF−δψklt f ∗(Ωt ∧Ωt)

1
m 6 Cε.
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Proof. — The statement is local on X ′, so it is enough to control the integrals over Vt.
Up to relabelling, one can assume that Y(k0)

0 ∩ V = (z0 = 0), F ∩ V = (z1 · · · zs = 0)
so that for s + 1 6 i 6 p, f ∗Ωt has a pole of order at most m − 1 along (zi = 0).
We implicitly assumed that V meets Y(k0)

0 ; it actually does not matter much for the
computation which is insensitive to whether that condition is fulfilled or not. Using
(4.5), our integral is bounded by the following one∫

Vt

s

∏
i=1

1
|zi|2(− log |zi|)1+ε

·
p

∏
i=s+1

1
|zi|2(δ−ai)

· dλCn

where −1 < ai < 0 and V = ∏n
i=0{|zi| < 1} ⊂ Cn+1 and Vt = V ∩ {z0 · · · zp = t}. By

Fubini theorem, one can reduce the integral to Vp
t := Vt ∩Cp+1 (i.e. fixing zp+1, . . . , zn).

There is no harm in assuming that δ < mini
1+ai

2 so that the integral is bounded by∫
Vp

t

s

∏
i=1

1
|zi|2(− log |zi|2)1+ε

·
p

∏
i=s+1

1
|zi|2(1−δ/2)

· dλCp

Using polar coordinates, one can assume that t is real (in (0, 1)) and the integral be-
comes over Wt := {(ri)16i6p ∈ [0, 1/2]p; r1 . . . rp > t}∫

Wt

s

∏
i=1

1
ri(− log ri)1+ε

·
p

∏
i=s+1

1
r1−δ

i

· dλRp

As Wt ⊂ ∏
p
i=1{t 6 ri 6 1/2} and the functions r 7→ 1

r(− log r)1+ε and r 7→ 1
r1−δ are

integrable on [0, 1/2], the conclusion follows from Fubini’s theorem.

The result above allows us to generalize Lemma 4.4 when no assumption on the
central fiber is made. To do so, we first need some notation. The function ψF is well
defined on X ′ but it does not necessarily come from X . Given that Nklt(X , X0) is an
analytic set in X and up to shrinking D a little, one can construct a function ρ such that
• ρ 6 −1 on X .
• ρ is quasi-psh and has analytic singularities along Nklt(X , X0); in particular, it is

identically −∞ on that set.
We set

ψ := − log(−ρ) on X .
Up to scaling ρ, one can assume that

(4.10) f ∗ψ 6 ψF.

Next, we introduce for ε > 0 the function γε := γ − (n + 1 + 2ε)ψ defined on U. In
other words, one has

(4.11) e(n+1+2ε)ψ(Ω ∧Ω)
1
m = e−γε ωn.

Lemma 4.6. — With the notation above, there exists a constant C̃ε such that∫
Ut

|γε|n+εe−γε ωn
t 6 C̃ε

for any t ∈ D.
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Proof. — In order to compute the integral, we pull it back by f and work on Vt. We
have successively

| f ∗γε| . − log |sE|+ log(− log |sF|)
. − log |sF| − log |sFklt |.

The first inequality is a combination of (4.8) and (4.10). To obtain the second inequality,
we use the fact that E = F ∪ Fklt to split the term log |sE| while log(− log |sF|) can be
absorbed by the more singular − log |sF|. The integral to bound becomes∫

Vt

[
(− log |sF|)n+ε + (− log |sFklt |)

n+ε
]

e(n+1+2ε)ψF f ∗(Ωt ∧Ωt)
1
m

which itself is controled by∫
Vt

e(1+ε)ψF f ∗(Ωt ∧Ωt)
1
m +

∫
Vt

e2ψF−δψklt f ∗(Ωt ∧Ωt)
1
m

for any given δ > 0. The lemma now follows from Claim 4.5.

5. Negative curvature

In this section we apply our previous results to the study of families of varieties with
"negative canonical bundle": we consider families of manifolds of general type, as well
as families of "stable varieties".

5.1. Families of manifolds of general type. —

Setting 5.1. — Let X be an irreducible and reduced complex space endowed with a Kähler
form ω and a proper, holomorphic map π : X → D. We assume that for each t ∈ D, the
(schematic) fiber Xt is a n-dimensional Kähler manifold Xt of general type, i.e. such that its
canonical bundle KXt is big. In particular, X is automatically non-singular and the map π is
smooth. One can view the fibers Xt as deformations of X0.

We fix Θ a closed differential (1, 1)-form on X which represents c1(KX/D) ∈ H1,1
∂∂̄
(X )

and set θt = Θ|Xt . Shrinking D if necessary and rescaling, we can assume without loss
of generality that

−ω 6 Θ 6 ω.

Lemma 5.2. — In the Setting 5.1, the quantity vol(KXt) is independent of t ∈ D.

Proof. — We work in two steps. First, we assume that the family π : X → D is pro-
jective, i.e. there exists a positive line bundle L over X . In that case, we know that the
invariance of plurigenera holds [Siu98, Pău07] in that the function t 7→ h0(Xt, mKXt) is
constant on D, without even assuming that Xt is of general type for all t. In particular,
it would even be enough to assume that only X0 is of general type from which it results
that Xt is of general type for all t and that the volume vol(KXt) is independent of t.

Coming back to the general case, we know that KX/D is big. Thanks to Demailly’s
regularization theorem, there exists a Kähler current T ∈ c1(KX/D) with analytic sin-
gularities along V(I) for some ideal sheaf I ⊂ OX . Let f : X ′ → X be a log resolution
of (X , I). By Hironaka’s theorem, we know that one can construct such a morphism
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f by a sequence of blow-ups along smooth centers only. We write f ∗T = T′ + [F] for
some smooth semipositive form T′ on X ′ and some effective divisor F. Remark that
this sequence may be infinite; however, the centers project onto a locally finite family of
subsets of X . Up to co-restricting f to π−1(K) for some compact subset K b D, one can
assume that f is a finite composition of blow-ups and that T′ > δπ∗ω for some δ > 0
small enough.

Let E be the exceptional divisor of f , with irreducible components E = ∑N
k=1 Ek. A

classical argument (cf e.g. [DP04, Lem. 3.5]) allows one to find smooth (1, 1)-forms
θEk ∈ c1(Ek) with support in an arbitrarily small neighborhood of Ek along with posi-
tive numbers (ak) such that the sum θ = ∑k akθk defines a (1, 1)-form on X ′ which is
negative definite along the fibers of f . It follows that for ε > 0 small enough, the smooth
form π∗ω − εθE is Kähler. In particular, T′ − δεθ is a Kähler form whose cohomology
class belongs to NSR(X ′). This implies that the Kähler cone of X ′ meets NSZ(X ′), i.e.
π ◦ f is projective.

Let X′t := f−1(Xt) and let K◦ ⊂ K be the set of regular value of π ◦ f . For any
t ∈ K◦, the map f |X′t : X′t → Xt is birational hence vol(KX′t) = vol(KXt). By the first
step, the volume vol(KX′t) is independent of t ∈ K◦, hence the same holds for vol(KXt).
The set K \ K◦ is finite and without loss of generality, one can assume that it consists
of the single element {0}. The fiber X′0 can be decomposed as X′0 = Y0 + ∑ Ei where
f |Y0 : Y0 → X0 is birational and Ei is contracted by f |X′0 . Let Y′0 → Y0 be a resolution of
singularities. By [Tak07, Thm. 1.2], we have vol(KY′0

) 6 vol(KX′t) for t 6= 0. As X0 and
Y′0 are smooth and birational, we have vol(KX0) = vol(KY′0

) 6 vol(KXt). Finally, as the
function t 7→ vol(KXt) is upper semi-continous, we have vol(KX0) = vol(KXt) for any
t ∈ K. The lemma is proved.

Remark 5.3. — In the last step of the proof of Lemma 5.2, we could also use the exis-
tence of relative minimal models, provided D is replaced by a quasi-projective smooth
curve C. The general fiber of the projective morphism X ′ → C is a projective vari-
ety of general type, hence it admits a good minimal model over C by [BCHM10]. By
[Fuj16, Thm. 3.3] and [Tak19, Cor. 1.2], it follows thatX ′ → C admits a birational model
φ : X ′ 99K X ′′ over C such that: φ−1 does not contract any divisor, every fiber X′′t of
X ′′ → C has canonical singularities and satisfies that KX ′′t is semiample and big. For
any t ∈ C, one has vol(KX′′t ) = (Kn

X′′t
). By flatness, this quantity does not depend on

t. Finally, we claim that X′′0 is birational to X0. This is a combination of the following
two facts. First, the variety X′′0 has canonical singularities and KX′′0

is big hence it is of
general type and, in particular, it is not uniruled. Next, X′′0 is birational to a component
of X′0 and all of them but the strict transform of X0 by f are covered by rational curves
as f is a composition of blow-ups of smooth centers from a smooth manifold.

The positive (n, n)-forms (ωn
t )t∈D induce a smooth hermitian metric on −KX/D.

Since [Θ] = c1(KX/D) ∈ H1,1
∂∂̄
(X ); there exists a smooth function h̃ on X such that

−ddc
X log ωn

t = −Θ + ddc
X h̃
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We will denote by h̃t := h̃|Xt the restriction to the fiber Xt. The function h̃ becomes
unique (and remains smooth) after one imposes the following normalization∫

Xt

h̃tω
n
t = 0.

We define a function h on X by imposing that ht := h|Xt satisfies

ht = h̃t − log
( 1

Vt

∫
Xt

eh̃t ωn
t

)
.

In particular, one has

(5.1)
∫

Xt

eht ωn
t = Vt := vol(KXt).

As h̃ is smooth on X , one has the following obvious consequence.

Lemma 5.4. — Given any compact subset K b D, one has

sup
t∈K
‖ht‖L∞(Xt) < +∞.

It follows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78,
Yau78], that there exists a unique Kähler-Einstein current on Xt. This is a positive
closed current Tt in c1(KXt) which, by [EGZ09, BCHM10], is a smooth Kähler form in
the ample locus Amp(KXt), where it satisfies the Kähler-Einstein equation

Ric(Tt) = −Tt.

It can be written Tt = θt + ddc ϕt, where ϕt is the unique θt-psh function with minimal
singularities that satisfies the complex Monge-Ampère equation

(θt + ddc ϕt)
n = eϕt+ht ωn

t on Amp(KXt).

The minimal singularity assertion is equivalent to the following uniform bound: for all
x ∈ Xt,

−Mt 6 (ϕt(x)− sup
Xt

ϕt)−Vθt(x) 6 0,

where
Vθt(x) = sup{ut(x); ut ∈ PSH(Xt, θt) and ut 6 0}.

We can choose Mt independent of t by using Theorem 1.9:

Theorem 5.5. — In Setting 5.1, let K b D be a compact subset. There exists a constant MK
such that for all x ∈ π−1(K), one has

−MK 6 ϕt(x)−Vθt(x) 6 MK

where t = π(x).

Proof. — From Lemma 5.2, it follows that the volume Vt of KXt is independent of t. We
denote it by V.
Set µt = eht ωn

t /V and recall that this is a probability measure, by our choice of normal-
ization. We first observe that

(5.2) 0 6 sup
Xt

ϕt 6 − inf
π−1(K)

h 6 CK.
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Let us first prove the left-hand side inequality. As the measures

1
V
(θt + ddc ϕt)

n = eϕt µt

have mass one, one has

1 6
∫

Xt

esupXt
ϕt dµt = esupXt

ϕt

and therefore, supXt
ϕt > 0.

To prove the inequality in the middle in (5.2), we observe that, since θt 6 ωt, ϕt is a
subsolution of the equation

(ωt + ddc ϕt)
n > (θt + ddc ϕt)

n = eϕt+ht ωn
t ,

while the constant function ut(x) = − infπ−1(K) h is a supersolution of the same equa-
tion,

(ωt + ddcut)
n = ωn

t 6 eut+ht ωn
t .

It follows from the comparison principle [GZ17, Prop. 10.6] that ϕt 6 − infπ−1(K) h. The
rightmost inequality in (5.2) follows from Lemma 5.4 above.

We can thus rewrite the complex Monge-Ampère equation as

1
V
(θt + ddcψt)

n = eψt+supXt
ϕt µt = ftµt,

where ψt = ϕt − supXt
ϕt and ft = exp(ψt + supXt

ϕt). Combining the inequalities
ψt 6 0 and (5.2), it follows that the densities ft are uniformly bounded.

Recall that π is smooth so, in particular, it is locally trivial. Therefore, Theorem 3.4
applies and we can now appeal to Theorem 1.9 with p = +∞ and 0 < α < α(Θ,X ) and
obtain

−MK 6 ψt −Vθt 6 0.
Note that one used here that the volumes Vt stay away from zero. The conclusion
follows since ψt − ϕt is uniformly bounded by (5.2).

Remark 5.6. — Set
VΘ(x) = Vθπ(x)

(x).

and
φ(x) := ϕπ(x)(x).

It is tempting to compare φ to

V̂Θ = sup{u ∈ PSH(X , Θ); u 6 0}.

Clearly V̂Θ 6 VΘ hence V̂Θ −MK 6 φ. It follows from [CGP17, Thm. A] that φ is Θ-psh
on X , thus φ− supπ−1(K) φ 6 V̂Θ and

−MK 6 φ− V̂Θ 6 MK.

Remark 5.7. — The same results can be proved if the family π : X → D is replaced
by a smooth family π : (X , B) → D of pairs (Xt, Bt) of log general type, i.e. such that
(Xt, Bt) is klt and KXt + Bt is big for all t ∈ D.
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5.2. Stable varieties. — A stable variety is a projective variety X such that
1. X has semi- log canonical singularities.
2. The Q-line bundle KX is ample.

We refer to [KSB88, Ale96, Kar00, Kov13, Kol] for a detailed account of these varieties
and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kähler-Einstein met-
ric ω. There are several equivalent definitions for such an object, but the simplest is
probably the following:

Definition 5.8. — A Kähler-Einstein metric ω on a stable variety is a smooth Kähler
metric on Xreg such that

Ric(ω) = −ω and
∫

Xreg

ωn = (Kn
X)

if n = dimC X.

It is proved in loc. cit. that ω extends canonically across Xsing to a closed, positive
current in the class c1(KX). It is desirable to understand the singularities of ω near Xsing.
In [GW16, Thm. B], it is proved that ω has cusp singularities near the double crossings
of X. Moreover, it is proved in [Son17] that the potential ϕ of ω with respect to a given
Kähler form ωX ∈ c1(KX), i.e. ω = ωX + ddc ϕ, is locally bounded on the klt locus of X.
More precisely, given any divisor D = (s = 0) ∼Q KX containing the non-klt locus of
X and given any ε > 0, there exists a constant Cε > 0 such that

(5.3) ϕ > ε log |s|2 − Cε,

where | · | is some smooth hermitian metric on OX(D). We wish to refine that estimate
and obtain a version for families of canonically polarized manifolds degenerating to a
stable variety.

Proposition 5.9. — Let X be a stable variety of dimension n and let ωX ∈ c1(KX) be a Kähler
metric. Next, let ω = ωX + ddc ϕ be the Kähler-Einstein metric of X. Let D = (s = 0)
be a divisor containing the non-klt locus of X and let | · | be some smooth hermitian metric on
OX(D). For any ε > 0, there is a constant Cε such that

(5.4) ϕ > −(n + 1 + ε) log(− log |s|)− Cε.

Remark 5.10. — The estimate (5.4) is an important refinement of (5.3), as it insures that
ϕ belongs to the finite energy class E1(X, ωX), cf [GZ07] or [BEGZ10, Sect. 2] for the
definitions and main properties of these classes.

This estimate is almost optimal. Indeed, if X is the Satake-Baily-Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution (X, D)
which is a toroidal compactification of the ball quotient obtained by adding disjoint
abelian varieties. The, the potential ϕ of the Kähler-Einstein metric on (X, D) with re-
spect to a smooth form in c1(KX + D) satisfies

ϕ = −(n + 1) log(− log |sD|) + O(1)

if (sD = 0) = D.
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Proof. — Let f : Y → X be a resolution of singularities of X such that f induces an
isomorphism over Xreg. The complex Monge-Ampère equation satisfied by ϕ pulls
back to Y and reads

(5.5) ( f ∗ωX + ddc f ∗ϕ)n = e f ∗ϕdµY

where dµY := ∏r
i=1 |ti|2ai ωn

Y is a positive measure with possibly infinite mass. Here,
ωY is a Kähler form on Y, and (ti = 0) are divisors sitting over Xsing (they need not be
exceptional though, as X may have singularities in codimension one). Finally, one has
ai > −1 for all i, and any divisor (ti = 0) such that ai = −1 sits above the non-klt locus
of X.

Now, let F be an effective divisor on X and let σX ∈ H0(X,OX(F)) be a section
cutting out F. Let h be a smooth hermitian metric on OX(F); there exists a constant CF

such that Θh(F) 6 CFωX. One can scale h such that |σX|2h < e−2(n+2)CF on X. Finally, let
σY := f ∗σX and and let ψ := − log(− log |σY|2). We have

ddcψ =
〈DσY, DσY〉

|σY|2(− log |σY|2)
− 1

(− log |σY|2)
· f ∗Θh(F).

By our choice of scaling, the function Aψ is f ∗ωX-psh for any 0 6 A 6 2(n + 2). More-
over, it belongs to the class E(Y, f ∗ωX) thanks to e.g. [Gue14, Prop. 2.3] and [DDNL18,
Thm. 1.1(ii)].

We apply this construction to F some (very ample, say) divisor containing the non-
klt locus of X. This yields a section σY of f ∗F that vanishes at order at least one along
the (ti = 0) for which ai = −1. As a result, the measure

e(n+1+2ε)ψdµY . ∏
ai=−1

1
|ti|2(− log |ti|2)n+1+2ε ∏

ai>−1
|ti|2ai ·ωn

Y

has a density gε with respect to ωn
Y that satisfies∫

Y
gε| log gε|n+εωn

Y < +∞

for any ε > 0. By Theorem 1.5, this implies that the unique solution uε ∈ E(Y, 1
2 f ∗ωX)

of the Monge-Ampère equation

(
1
2

f ∗ωX + ddcuε)
n = euε+(n+1+2ε)ψdµY

is bounded, i.e. there exists a constant Cε > 0 such that

(5.6) ‖uε‖L∞(Y) 6 Cε.

Now, the function vε := uε + (n + 1 + 2ε)ψ ∈ E(Y, f ∗ωX) satisfies the inequality

( f ∗ωX + ddcvε)
n > (

1
2

f ∗ωX + ddcuε)
n

= evε dµY,

i.e. vε is a subsolution of (5.5). By the comparison principle, we obtain that f ∗ϕ > vε

and it follows from (5.6) that

f ∗ϕ > (n + 1 + 2ε)ψ− Cε,
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from which the conclusion follows.

5.3. Stable families. — Now one can establish a family version of the previous esti-
mate, i.e. Proposition 5.9. In Setting 4.1, let us assume additionally that KX/D is am-
ple. We let h be a smooth hermitian metric on KX/D whose curvature is a Kähler form
ωX := Θh(KX/D); we set ωXt := ωX |Xt . If Ω is a local trivialization of mKX/D, then the
quantity

µX/D,h :=
in2

(Ω ∧Ω)1/m

|Ω|2/m
h

is independent of Ω or m (yet it depends on h) and for any t ∈ D, it restricts to Xreg
t as

a positive measure
µXt,h := µX/D|Xreg

t

which we extend by zero across Xsing
t . For each t ∈ D, there exists a unique Kähler-

Einstein metric ωKE,t ∈ c1(KXt) which solves the Monge-Ampère equation

(5.7) (ωXt + ddc ϕt)
n = eϕt µXt,h

on Xt. This is due to [Aub78, Yau78] when Xt is smooth and to [BG14] in general.

Theorem 5.11. — In Setting 4.1, assume that
• The relative canonical bundle KX/D is ample.
• The central fiber X0 is irreducible.

Let ωXt + ddc ϕt be the Kähler-Einstein metric of Xt, solution of (5.7) and let D = (s = 0) ⊂ X
be a divisor which contains Nklt(X , X0), cf (4.4). Fix | · | a some smooth hermitian metric on
OX (D). Up to shrinking D, then for any ε > 0, there exists Cε > 0 such that the inequality

(5.8) ϕt > −(n + 1 + ε) log(− log |s|)− Cε

holds on Xt for any t ∈ D.

This estimate improves an interesting control obtained previously by J.Song (see
[Son17, Lem. 4.2]).

Proof. — Let f : X ′ → X be a semi-stable model as in (4.2). The first observation
is that the behavior of f ∗(Ωt ∧ Ωt)1/m and f ∗µXt,h on Xt is the same, uniformly in t,
because there exists a constant C > 0 such that for any trivializing open set, one has
C > |Ω|2h > C−1, where Ω ranges among the finitely many trivializations of mKX/D.
This follows from the fact h is a smooth hermitian metric on mKX/D.

We set ψ := f ∗(− log(− log |s|2)); it is a quasi-psh function on X ′ satisfying

ψ 6 ψF + O(1)

where ψF is defined in (4.9).
By scaling the metric | · | on OX (D), one can assume that Aψ is f ∗ωX-psh for any

0 6 A 6 2(n + 2). For any t ∈ D∗, the function ψt := ψ|X′t belongs to E(X′t, f ∗ωXt) by
the same argument as in the proof of Proposition 5.9.

Let uε,t ∈ E(X′t,
1
2 f ∗ωXt) be the unique solution of the Monge-Ampère equation

(5.9) (
1
2

f ∗ωXt + ddcuε,t)
n = euε,t+(n+1+2ε)ψt f ∗µXt,h.
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One can write e(n+1+2ε)ψt f ∗µXt,h = eρt f ∗ωn
Xt

where ρt is the restriction to X′t of the
difference of quasi-psh functions on X ′ with uniformly bounded L1 norm on X′t. Set
V :=

∫
Xt

ωn
Xt

. Integrating both sides of (5.9) and using Jensen inequality we have

V
2n =

∫
X′t

euε,t+(n+1+2ε)ψt f ∗µXt,h

= V
∫

X′t
euε,t+ρt

f ∗ωn
Xt

V

> V · e
1
V

∫
X′t
(uε,t+ρt) f ∗ωn

Xt

Since
∫

X′t
|ρt| f ∗ωn

Xt
is uniformly bounded, we get that

∫
X′t

uε,t f ∗ωn
Xt

6 C for some C > 0

independent of ε, t. Since uε,t is f ∗( 1
2 ωXt)-psh, it is the pull-back of a 1

2 ωXt -psh function
on Xt to which one can apply Proposition 3.3 since π is projective. To summarize, we
get an upper bound

(5.10) uε,t 6 C.

Next, we wish to apply Theorem 1.5; in order to do so, one has to check that hy-
potheses (H1) and (H2’) are satisfied in our situation. For (H1), it is a consequence of
Theorem 3.4 – recall that up to shrinking D, all fibers Xt are irreducible since so is X0.
As for (H2’), it follows from Lemma 4.6 that we pull back via f to the smooth Kähler
manifold X′t. All in all, we can find Cε > 0 independent of t ∈ D such that

(5.11) ‖uε,t‖L∞(X′t) 6 Cε.

Now, the function vε,t := uε,t + (n + 1 + 2ε)ψt ∈ E(X′t, f ∗ωXt) satisfies the inequality

( f ∗ωXt + ddcvε,t)
n > (

1
2

f ∗ωXt + ddcuε,t)
n

= evε,t f ∗µXt,h,

i.e. vε,t is a subsolution of (5.7). By the comparison principle, we obtain that f ∗ϕt > vε,t
and it follows from (5.11) that

f ∗ϕt > (n + 1 + 2ε)ψt − Cε,

from which the conclusion follows.

6. Log Calabi-Yau families

6.1. Families of Calabi-Yau varieties. — In Setting 4.1, let us assume additionally that
KX/D is relatively trivial and that X0 has canonical singularities. For t small enough, Xt
has canonical singularities as well and KXt is linearly trivial.

Let α be a relative Kähler cohomology class on X represented by a relative Kähler
form ω. We set αt := α|Xt , ωXt := ω|Xt and V :=

∫
Xt

ωn
t ; it does not depend on t, cf

Lemma 2.2. Let Ω be a trivialization of KX/D, so that the quantity

µX/D := in2
Ω ∧Ω
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restricts to Xreg
t as a positive measure

µXt := µX/D|Xreg
t

which we extend by zero across Xsing
t . We set ct := log

∫
Xt

dµXt . For each t ∈ D,
there exists a unique Kähler-Einstein metric ωKE,t = ωt + ddc ϕt ∈ αt which solves the
Monge-Ampère equation

(6.1)
1
V
(ωt + ddc ϕt)

n = e−ct µXt

on Xt and that we normalize by supXt
ϕt = 0. This is due to [Yau78] when Xt is smooth

and to [EGZ09] in general.

Theorem 6.1. — In Setting 4.1, assume that
• The relative canonical bundle KX/D is trivial.
• The central fiber X0 has canonical singularities.
• Assumption 3.2 is satisfied.

Let ωt + ddc ϕt be the Kähler-Einstein metric of Xt, solution of (6.1). Up to shrinking D, there
exists C > 0 such that one has

(6.2) oscXt ϕt 6 C

for any t ∈ D, where oscXt(ϕt) = supXt
ϕt − infXt ϕt.

A particular case of this result has been obtained previously by Rong-Zhang (see
[RZ11a, Lemma 3.1]) by using Moser iteration process.

Remark 6.2. — One can replace the first two assumptions in Theorem 6.1 above by the
following weaker ones: X is normal, Q-Gorenstein, KX/D is trivial and X0 has canonical
singularities. Indeed, it follows from the inversion of adjunction [Kol18, Thm. 2.3] that
(X, Xt) is lc for t close enough to 0. Moreover, an easy computation relying on the
adjunction formula shows that Xt has canonical singularities for t close to 0.

Proof of Theorem 6.1. — A first observation is that the quantities ct remain bounded
when t varies thanks to Lemma 4.2. The result now follows from Theorem 1.1. In-
deed, (H1) is satisfied thanks to Theorem 3.4 while (H2) holds thanks to Lemma 4.4
that we pull back to X′t via f , with the notation of the Lemma.

6.2. The log Calabi-Yau setting. — In the sequel we use the following setting.

Setting 6.3. — Let X be an n-dimensional compact Kähler space and let B = ∑ biBi be an
effective R-divisor such that the pair (X, B) has klt singularities. We assume furthermore that
the log Kodaira dimension of the pair (X, B) vanishes, i.e.

κ(KX + B) = 0.

In what follows, we denote by E the (unique) effective R-divisor in c1(KX + B).
Thanks to log abundance in numerical dimension zero (see [CGP19, Cor. 1.18]), a par-
ticular instance of such pairs is provided by klt pairs (X, B) with rational boundary
such that the Chern class c1(KX + B) ∈ H2(X, Q) vanishes.
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Definition 6.4. — In Setting 6.3, given a cohomology class α ∈ H1,1(X, R) that is nef
and big, it follows from [BEGZ10] that there exists a unique singular Ricci flat current
T ∈ α, i.e. a closed, positive current of bidegree (1, 1) representing α, with the following
properties:
(i) T has minimal singularities in α;
(ii) T is a Kähler form on the analytic open set Ωα := (Xreg \ Supp(B + E))∩Amp(α);
(iii) Ric(T) = [B]− [E] on Xreg.

The current T can be found by solving the Monge-Ampère equation

(6.3) vol(α)−1(θ + ddc ϕ)n = µ(X,B)

where θ ∈ α is a smooth representative, ϕ ∈ PSH(X, θ) is the unknown function and

µ(X,B) = (s ∧ s̄)
1
m e−φB .

Here, s ∈ H0(X, m(KX + B)) is any non-zero section (for some m > 1) and φB is the
unique singular psh weight on OX(B) solving ddcφB = [B] and normalized by∫

X
(s ∧ s̄)

1
m e−φB = 1.

We let KX denote the Kähler cone, i.e. the set of cohomology classes α ∈ H1,1(X, R)
which can be represented by a Kähler form. We fix (αt)0<t61 ⊂ KX a path of Kähler
classes and assume that αt → ∂KX as t→ 0.

When X is smooth and B = 0, the existence of a unique Ricci flat Kähler metric ωt in
αt for each 0 < t 6 1 dates back to the celebrated work of Yau [Yau78]. A basic problem
is to understand the asymptotic behavior of the ωt’s, as t→ 0. This problem has a long
history, we refer the reader to [GTZ13] for references.

Despite motivations coming from mirror symmetry, not much is known when the
norm of αt converges to +∞ (this case is expected to be the mirror of a large complex
structure limit, see [KS01] or the recent survey [Tos20]). We thus only consider the case
when αt → α0 ∈ ∂KX. There are two rather different settings, depending on whether
α0 is big (vol(α0) > 0), or merely nef with vol(α0) = 0.

6.3. The non-collapsing case. — We first consider the case when the volumes of the
αt’s are non-collapsing, i.e. vol(α0) > 0. Then, we have the following result, generaliz-
ing theorems of Tosatti [Tos09] and Collins-Tosatti [CT15].

Theorem 6.5. — Let (X, B) be a pair as in Setting 6.3 and let (αt)0<t61 ⊂ KX be a smooth
path of Kähler classes such that αt → α0 ∈ ∂KX as t→ 0, with vol(α0) > 0.
Then, the singular Ricci-flat currents Tt ∈ αt converge to T0 as t→ 0 weakly on X, and locally
smoothly on Ωα.

Proof. — One can work in a desingularization p : Y → X of X. The path αt induces
a path βt = p∗αt of semi-positive and big classes. The currents Tt can be decomposed
as Tt = θt + ddc ϕt where θt ∈ βt is a smooth representative and ϕt are normalized by
supXt

ϕt = 0 and solve the complex Monge-Ampère equation

1
Vt

(θt + ddc ϕt)
n = µY = f dVY,
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where the volumes Vt = αn
t are bounded away from zero and infinity, C−1 6 Vt 6 C,

and µY = f dVY is a fixed volume form, with f ∈ Lp(Y) for some p > 1 (because (X, B)
has klt singularities, see [EGZ09, Lem. 6.4]).

The hypothesis of Theorem 1.1 (H2) is thus trivially satisfied, while (H1) follows
if we initially bound from above αt 6 γX by a fixed Kähler class. The most delicate
C0-estimate follows thus here from Theorem 1.9. When X is smooth, the C0-estimate in
[Tos09] is obtained by using a Moser iteration argument as in Yau’s celebrated paper
[Yau78], but this argument can no longer be applied in the present more singular set-
ting.
The rest of the proof is then roughly the same as in the case of smooth manifolds. It con-
sists in adapting Yau’s Laplacian estimate by using Tsuji’s trick (first used in [Tsu88]),
the remaining higher order estimates being local ones.

6.4. The collapsing case. — We now consider the case when the volumes of the αt’s
are collapsing, i.e. vol(α0) = 0. This case is more involved and only special cases are
fully understood.

Suppose there is a surjective, holomorphic map with connected fibers f : X → Z,
where Z is a compact, normal Kähler space of positive dimension m. We denote by
k := n − m = dim X − dim Z the relative dimension of the fiber space f . We let SZ
denote the smallest proper analytic subset Σ ⊂ Z such that
• Σ contains the singular locus Zsing of Z,
• The map f is smooth on f−1(Z \ Σ),
• For any z ∈ Z \ Σ, Supp(B) intersects Xz transversally,

and we set SX = f−1(SZ). Finally, we set Z◦ := Z \ SZ and X◦ := X \ SX = f−1(Z◦).
By the last item, each component of B|X◦ dominates Z◦.

A general fiber Xz satisfies κ(KXz + Bz) > 0, but the inequality may be strict. If
c1(KX + B) = 0, then log abundance implies that KXz + Bz ∼Q OXz for z general. More-
over, Iitaka’s conjecture predicts that κ(KXz + Bz) vanishes as soon as κ(Z) > 0, which
in turn should be equivalent to Z not being uniruled.

Fix ωZ a Kähler form on Z. For simplicity, we assume that
∫

Z ωm
Z = 1. The form f ∗ωZ

is a semi-positive form such that f ∗ωp
Z = 0 for any p > m. We also choose a Kähler

form ωX on X. The quantity
∫

Xz
ωk

X = f∗ωk
X is constant in z ∈ Z; up to renormalizing

ωX, we may assume that the constant is 1.
We assume that our path (αt)t>0 in H1,1(X, R) is given by α0 = { f ∗ωZ} and αt =

α0 + t{ωX}. As a result, one has

(6.4) Vt := vol(αt) =

(
n
k

)
tk
∫

X
f ∗ωm

Z ∧ωk
X + o(tk) =

(
n
k

)
tk + o(tk).

We set ωt := f ∗ωZ + tωX and let ωϕt := ωt + ddc ϕt denote the singular Ricci-flat current
in αt, normalized by

∫
X ϕtω

n
X = 0. It satisfies

ωn
ϕt
= Vt · µ(X,B),

cf Eq. (6.3). The probability measure f∗µ(X,B) has L1+ε-density with respect to ωm
Z thanks

to [EGZ18, Lem. 2.3]. Therefore, there exists a unique positive current ω∞ ∈ {ωZ}with
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bounded potentials, solution of the Monge-Ampère equation

ωm
∞ = f∗µ(X,B),

cf [EGZ09]. In the case where X is smooth, B = 0 and c1(X) = 0, the Ricci curvature of
f∗µX (or, equivalently, ω∞) coincides with the Weil-Petersson form of the fibration f of
Calabi-Yau manifolds. We propose the following problem.

Problem 1. — Let f : X → Z be a surjective holomorphic map with connected fibers between
compact, normal Kähler spaces. Assume that there exists an effective divisor B on X such that
(X, B) is klt and κ(KX + B) = 0. Let ωX (resp. ωZ) be a Kähler form on X (resp. Z) and let
ωϕt be the unique singular Ricci-flat current in { f ∗ωZ + tωX} for t > 0.
Then, the currents ωϕt converge weakly to f ∗ω∞ when t → 0, where ω∞ ∈ {ωZ} solves
ωdim Z

∞ = f∗µ(X,B).

The Problem above is motivated by a string of papers (cf below) where the expected
result is proved along with some additional information on the convergence.

Theorem 6.6. — [Tos10, GTZ13, TWY18, HT18] Assume that X is smooth, B = 0 and
c1(KX) = 0. Then, the metrics ωϕt converge to f ∗ω∞ in the Cα

loc-sense on X \ SX, for some
α > 0.

In this section, we aim at providing a positive answer to Problem 1 whenever X is
smooth, B has simple normal crossings support and c1(KX + B) = 0. We will follow the
strategy of Tosatti [Tos10] rather closely. However, some adjustments need to be made,
requiring the use of conical metrics and the results of the present paper.

Theorem 6.7. — In the Setting of Problem 1, assume furthermore that X is smooth, B has snc
support and c1(KX + B) = 0. Then, ωϕt → f ∗ω∞ as currents on X, when t goes to 0.

Proof. — We will proceed in several steps, similarly to [Tos10]. In order to simplify
some computations to follow, one will assume that SZ is contained in a divisor DZ,
cut out by a section σZ ∈ H0(Z,OZ(DZ)). If Z is projective, this is not a restriction.
The general case requires to follow Tosatti’s computations more closely but does not
present significant additional difficulties.

Step 1. Choice of some suitable conical metrics
We list in the Proposition below the properties of the conical metric that will be impor-
tant for the following. It is mostly a recollection of well-known results, cf e.g. [GP16].
By abuse of notation, we will not distinguish between B and Supp(B).

Proposition 6.8. — There exists a Kähler current ωB ∈ {ωX} on X such that
1. ωB is a smooth Kähler form on X \ B and has conical singularities along B.
2. There exists a constant C > 0 and a quasi-psh function Ψ ∈ C∞(X \ B) ∩ L∞(X) such

that the following inequalities of tensors hold in the sense of Griffiths on X \ B

−(CωB + ddcΨ)⊗ IdTX 6 ΘωB(TX) 6 CωB ⊗ IdTX .

3. Let h := ωn
B/ωn

X. There exists p > 1 such that for any K b Z◦, one has

sup
z∈K
‖h|Xz‖Lp(ωk

Xz )
< +∞.
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Sketch of proof of Proposition 6.8. — To construct such a metric ωB, one first chooses
smooth metrics hi on Bi, sections si ∈ H0(X,OX(Bi)) cutting out Bi, and one sets
ωB := ωX + ddc ∑i |si|2(1−bi). Up to scaling down the metrics hi, one can easily achieve
the first condition. The third condition also follows easily.

The left-hand side inequality of 2 ("lower bound" on the holomorphic bisectional
curvature) follows from [GP16, (4.3)] with ε = 0. As for the right-hand side inequality
(upper bound on the holomorphic bisectional curvature), a proof has been given in
[JMR16, App. A] in the case where B is smooth but a very simple argument has been
found by Sturm, cf [Rub14, Lem. 3.14].

Step 2. Estimates
We list in the Proposition below various estimates on ωϕt that will be useful for the last
step. First, we define for z ∈ Z◦ the quantity ϕt(z) :=

∫
Xz

ϕtω
k
Xz

. In the following, we
will not distinguish between ϕt and f ∗ϕt.

Proposition 6.9. — There exist a constant C > 0 as well as a positive function g ∈ C∞(X◦),
both independent of t, such that

1. ‖ϕt‖L∞(X) 6 C.
2. ωϕt > C−1 f ∗ωZ.
3. |ϕt − ϕt| 6 g · t.
4. g−1t ·ωB 6 ωϕt 6 g ·ωB.
5. g−1t ·ωBz 6 ωϕt |Xz 6 gt ·ωBz for all z ∈ Z◦.

Proof of Proposition 6.9. — In this proof, C will denote a constant that may change from
line to line but is independent of t. In the same way, g will be a smooth, positive
function on X◦ that should be thought as blowing up to +∞ near SX; it can be assumed
to come from Z◦ via f .

1. This is a consequence of [EGZ08, Thm. A] or [DP10, p. 401].

2. Let us consider the holomorphic map f : (X \ B, ωϕt) → (Z, ωZ). Given that
Ric(ωϕt) = 0 and that ωZ is a smooth Kähler metric on the compact space Z, Chern-Lu’s
formula [Che68, Lu68] provides a constant C > 0 such that the non-negative function
u = trωϕt

f ∗ωZ satisfies

∆ωϕt
log u > −C(1 + u)

on X \ B. Now,

∆ωϕt
(−ϕt) = trωϕt

(−ωϕt + f ∗ωZ + tωX) > u− n

so that setting A = C + 1, one finds

∆ωϕt
(log u− Aϕt) > u− C.

Let τ be a section of OX(dBe) cutting out B and let hB be a smooth hermitian metric on
that line bundle. We set χ := log |τ|2hB

. As ωϕt is a Kähler current and χ is quasi-psh,
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there exists a constant Ct > 0 such that ddcχ > −Ctωϕt . Therefore, for any δ ∈ (0, C−1
t ),

one has an inequality
∆ωϕt

(log u− Aϕt + δχ) > u− C.

As ωϕt is a conical metric for t > 0, the function u is bounded above on X \ B and
therefore, Ht,δ := log u− Aϕt + δχ attains its maximum at a point xt,δ ∈ X \ B such that
u(xt,δ) 6 C. As a result, the estimate obtained in 1. allows one to show that for any
x ∈ X \ B, one has

log u(x) = Ht,δ(x) + Aϕt(x)− δχ(x)

6 Ht,δ(xt,δ) + C− δχ(x)
6 C− δχ.

As this holds for any δ > 0 small enough, we can pass to the limit and conclude that
u 6 eC on X \ B, hence everywhere.

3. The equation solved by ϕt can be rewritten as

(6.5) ( f ∗ωZ + tωX + ddc ϕt)
n = tkeFt ωn

B

where Ft is uniformly bounded independently of t. Next, one has on Xz (z ∈ Z◦)

(6.6)
(ωϕt |Xz)

k

ωk
Xz

=
ωk

ϕt
∧ f ∗ωm

Z

ωk
X ∧ f ∗ωm

Z
6 Cg ·

ωn
ϕt

ωn
X

thanks to 2. Observing that ωϕt |Xz = (ωϕt − ddc ϕt)|Xz , one sees from Eq. (6.5) that
(ϕt − ϕt)|Xz satisfies

(ωXz + ddc(
1
t
(ϕt − ϕt)|Xz))

k 6 gh|Xz ·ωk
Xz

where h = ωn
B/ωn

X. Thanks to the third item of Proposition 6.8, Theorem 3.4 and
Theorem 1.1, we can derive 3. Actually, we used a version of Theorem 3.4 for higher-
dimensional bases, but only for smooth morphisms, in which case the proofs in the
one-dimensional case go through without any change.

4.a We first prove the right-hand side inequality. Let us start by writing ωB = ωX +
ddcψB where ψB ∈ L∞(X) ∩ C∞(X \ B). From the second item of Proposition 6.8 and
Siu’s Laplacian inequality (cf [GP16, (2.2)]), one concludes that

∆ωϕt
(log trωB ωϕt + Ψ) > −C(1 + trωϕt

ωB).

Next, one has

(6.7) ∆ωϕt
(−ϕt + tψB) = trωϕt

(−ωϕt + f ∗ωZ + tωB) > t trωϕt
ωB − n

so that

(6.8) ∆ωϕt
(log trωB ωϕt + Ψ− A

t
ϕt + AψB) > trωϕt

ωB −
C
t

.
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We want to bound from below the term ddc ϕt. In order to achieve this, one writes

ddc ϕt = ddc f∗(ϕtω
k
X) = f∗(ddc ϕt ∧ωk

X)(6.9)

> − f∗( f ∗ωZ ∧ωk
X + tωk+1

X )

> −ωZ − t f∗ωk+1
X > −g ·ωZ

given that f∗ωk
X = 1. In particular, one has

(6.10) ∆ωϕt
ϕt > −g

thanks to 2. Combining that estimate with (6.8), one finds

(6.11) ∆ωϕt
(log trωB ωϕt + Ψ− A

t
(ϕt − ϕt) + AψB) > trωϕt

ωB −
g
t

.

We now set F := Ψ − A
t (ϕt − ϕt) + AψB; it is a bounded function on X, smooth on

X◦ \ B such that

(6.12) |F| 6 g

thanks to 3. Next, we set ρ := χ + f ∗ log |σZ|2hDZ
where χ is defined in the proof of 2 and

hDZ is a smooth hermitian metric on the divisor DZ (containing SZ). As ρ is quasi-psh
on X, there exists Ct > 0 such that

(6.13) ddcρ > −Ctωϕt .

In particular, one has

(6.14) ∆ωϕt
(log trωB ωϕt + F + δρ) > trωϕt

ωB −
g
t

.

as soon as δ ∈ (0, C−1
t ). We choose such a δ for the following. As the quan-

tity log trωB ωϕt + F is globally bounded on X and smooth on X◦ \ B, the function
log trωB ωϕt + F + δρ attains it maximum at a point yt,δ ∈ X◦ \ B such that

trωϕt
ωB(yt,δ) 6

g
t

thanks to the maximum principle. Combining this with 2, one finds

(6.15) trωϕt
( f ∗ωZ + tωB)(yt,δ) 6 g

Using the standard inequality

trω′ ω 6
ωn

ω′n
(trω ω′)n−1

valid for any two positive (1, 1)-forms, one gets from (6.15)

tr f ∗ωZ+tωB(ωϕt)(yt,δ) 6 g

since ωn
ϕt
' tkωn

B is uniformly comparable to ( f ∗ωZ + tωB)
n by Claim 6.10 below. As

ωB dominates f ∗ωZ + tωB, we infer from the inequality above the following

(6.16) trωB ωϕt(yt,δ) 6 g.
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Given the definition of yt,δ, the boundedness of F and that δ > 0 is arbitrary, we find as
in the proof of 2. above that (6.16) actually implies

trωB ωϕt 6 g on X◦ \ B

hence on the whole X◦.

To conclude the proof of the RHS inequality in 4., it remains to prove the following

Claim 6.10. — We have

(6.17) g−1tk ·ωn
B 6 ( f ∗ωZ + tωB)

n 6 gtk ·ωn
B

Proof of Claim 6.10. — The statement is local, so one can assume that f : Cn → Cm

is given by the projection onto the last m factors and that B = ∑r
i=1 bi(zi = 0) for

some r 6 k. As the inequality is invariant under quasi-isometry, one can choose ωZ =
∑n

j=k+1 idzj ∧ dz̄j to be the euclidean metric on Cm while

ωB =
r

∑
j=1

idzj ∧ dz̄j

|zj|2bj
+

n

∑
j=r+1

idzj ∧ dz̄j

is the standard cone metric. Setting K := ∏r
j=1 |zj|−2bj and ωCn := ∑n

j=1 idzj ∧ dz̄j, one
finds

ωn
B = K ·ωn

Cn and ( f ∗ωZ + tωB)
n = tk(1 + t)mK ·ωn

Cn

which gives the expected result.

4.b We now move on to the LHS inequality in 4. Let us set v := trωϕt
(tωB). Remem-

ber from Proposition 6.8 2. that ωB has holomorphic bisectional curvature bounded
from above on X \ B. By Chern-Lu’s inequality, we get on X \ B

∆ωϕt
log v > −Ct−1v.

Combining that inequality with (6.7)-(6.10) and (6.13), one finds, for A = C + 1

∆ωϕt
(log v− A

t
(ϕt − ϕt) + AψB + δρ) >

1
t
(v− g).

Applying the maximum principle and arguing as before, we eventually find v 6 g on
X◦ \ B, hence on X◦.

5. The LHS inequality is a direct consequence of 4, by restriction. As for the RHS, it
follows easily from the LHS since

trωBz
ωϕt |Xz 6

(ωϕt |Xz)
k

ωk
Bz

· (trωϕt |Xz
ωBz)

k−1

6 gtk−(k−1)

thanks to (6.6). This ends the proof of Proposition 6.9.
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Step 3. Convergence
Thanks to Proposition 6.9 1., the family (ϕt)0<t61 is relatively compact for the L1-
topology. All we have to do is showing that all its clusters values coincide. Let ϕ∞
be such a cluster value; it is an f ∗ωZ-psh function but f has connected fibers so that ϕ∞
is necessarily constant on the fibers. Equivalently, one has ϕ∞ = f ∗ϕ∞ for the (unique)
ωZ-psh function ϕ∞ satisfying ϕ∞(z) :=

∫
Xz

ϕ∞ωk
X for z ∈ Z◦. We want to show that

the following equality of measures

(6.18) (ωZ + ddc ϕ∞)
m = f∗µ(X,B)

holds on Z. Given that Eq. 6.18 has a unique normalized bounded solution, this will
prove the Theorem. As ϕ∞ is globally bounded on X thanks to Proposition 6.9 1. and
f∗µ(X,B) does not charge any pluripolar set, it is actually enough to show that the equal-
ity of measures (6.18) holds on Z◦. In order to prove (6.18) on Z◦, given that f∗ωk

X = 1,
it is enough to prove instead that for any function u ∈ C∞

0 (Z◦), one has

(6.19)
∫

X
f ∗u · ( f ∗ωZ + ddc ϕ∞)

m ∧ωk
X =

∫
X

f ∗u · dµ(X,B).

We start from the identity

(6.20) ωn
ϕt
= ( f ∗ωZ + tωX + ddc ϕt)

n = Vt · µ(X,B)

where Vt = (n
k)t

k + o(tk) when t→ 0, cf (6.4). Set ψt := ϕt − ϕt and decompose ωϕt as

ωϕt = f ∗(ωZ + ddc ϕt) + (tωX + ddcψt).

By expanding, one obtains

ωn
ϕt
=

m

∑
i=0

(
n
i

)
f ∗(ωZ + ddc ϕt)

i ∧ (tωX + ddcψt)
n−i︸ ︷︷ ︸

=:αi

.

• Case i = m.
We expand again

αm =
k−1

∑
j=0

(
k
j

)
tj f ∗(ωZ + ddc ϕt)

m ∧ω
j
X ∧ (ddcψt)

k−j︸ ︷︷ ︸
=:β j

+tk f ∗(ωZ + ddc ϕt)
m ∧ωk

X.

Performing an integration by parts, one gets∫
X

f ∗u · β j =
∫

X
ψt · f ∗

(
ddcu ∧ (ωZ + ddc ϕt)

m
)

︸ ︷︷ ︸
=0

∧ω
j
X ∧ (ddcψt)

k−j−1 = 0

for degree reasons.
By dominated convergence theorem, we have that ϕt → ϕ∞ in the L1

loc(Z◦) topology.
Moreover, as B intersects the fibers of f tranversally over Z◦, an easy argument relying
on partition of unity shows that f∗(ωB ∧ωk

X) is a smooth (1, 1)-form on Z◦. Combining
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this with Proposition 6.9 4., we find ddc ϕt = f∗(ddc ϕt ∧ ωk
X) 6 f∗(gωB ∧ ωk

X) 6 ( f∗g) ·
ωZ. Together with (6.9), this implies

(6.21) ± ddc ϕt 6 ( f∗g) ·ωZ.

By standard result, this shows that ϕt → ϕ∞ in C1,α
loc(Z◦) for any α < 1. In particular,

the quasi-psh functions ϕt converge uniformly on Supp(u). By Bedford-Taylor theory,
one deduces that∫

X
f ∗u · f ∗(ωZ + ddc ϕt)

m ∧ωk
X →

∫
X

f ∗u · f ∗(ωZ + ddc ϕ∞)
m ∧ωk

X.

In the end, one has showed that

(6.22)
(n

m)

Vt

∫
X

f ∗u · αm →
∫

X
f ∗u · f ∗(ωZ + ddc ϕ∞)

m ∧ωk
X.

since Vt ∼ (n
m)t

k.

• Case i < m.
We expand

αi =
n−i−1

∑
j=0

(
n− i

j

)
tj f ∗(ωZ + ddc ϕt)

i ∧ω
j
X ∧ (ddcψt)

n−i−j︸ ︷︷ ︸
=:γij

+tn−i f ∗(ωZ + ddc ϕt)
i ∧ωn−i

X .

From (6.21), we find

(6.23)
tn−i

Vt

∫
X

f ∗u · f ∗(ωZ + ddc ϕt)
i ∧ωn−i

X = O(tm−i) = o(1).

For the remaining terms, an integration by parts yields∫
X

f ∗u · γij =
∫

X
ψt · f ∗

(
ddcu ∧ (ωZ + ddc ϕt)

i) ∧ω
j
X ∧ (ddcψt)

n−i−j−1

From Proposition 6.9 3., one has |ψt| 6 gt. Moreover, among the (n− i− j− 1) eigen-
values of ddcψt involved in the integral, at least (n− i− j− 1)− (m− (i + 1)) = k− j
must come from the fiber. Given Proposition 6.9 4-5., the integrand is a O(t1+k−j). As a
result,

tj

Vt

∫
X

f ∗u · γij = O(t).

Combining that result with (6.23), we see that for any i > m, one has

(6.24) lim
t→0

1
Vt

∫
X

f ∗u · αi = 0.
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Putting together (6.20), (6.22) and (6.24), we obtain∫
X

f ∗u · dµ(X,B) =
1
Vt

∫
X

f ∗u ·ωn
ϕt

= lim
t→0

m

∑
i=0

(
n
i

)
1
Vt

∫
X

f ∗u · αi

= lim
t→0

(n
m)

Vt

∫
X

f ∗u · αm

=
∫

X
f ∗u · f ∗(ωZ + ddc ϕ∞)

m ∧ωk
X.

In summary, (6.19) is proved, which concludes the proof of the Theorem.
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