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FAMILIES OF SINGULAR KAHLER-EINSTEIN METRICS

by

Eleonora Di Nezza, Vincent Guedj & Henri Guenancia

Abstract. — Refining Yau’s and Kolodziej’s techniques, we establish very precise uniform
a priori estimates for degenerate complex Monge-Ampeére equations on compact Kéahler
manifolds, that allow us to control the blow up of the solutions as the cohomology class and
the complex structure both vary.

We apply these estimates to the study of various families of possibly singular Kahler va-
rieties endowed with twisted Kahler-Einstein metrics, by analyzing the behavior of canon-
ical densities, establishing uniform integrability properties, and developing the first steps
of a pluripotential theory in families. This provides interesting information on the moduli
space of stable varieties, extending works by Berman-Guenancia and Song, as well as on
the behavior of singular Ricci flat metrics on (log) Calabi-Yau varieties, generalizing works
by Rong-Ruan-Zhang, Gross-Tosatti-Zhang, Collins-Tosatti and Tosatti-Weinkove-Yang.
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Introduction

Let p : X — Y be a proper, surjective holomorphic map with connected fibers be-
tween Kahler varieties. It is a central question in complex geometry to relate the geom-
etry of X to the one of Y and the fibers X, of p. An important instance of such a situation
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is when one can endow X, with a Kéhler-Einstein metric and study the geometry of X
induced by the properties of the resulting family of metrics. This is the main theme of
this article.

Einstein metrics are a central object of study in differential geometry. A Kéhler-
Einstein metric on a complex manifold is a Kdhler metric whose Ricci tensor is pro-
portional to the metric tensor. This notion still makes sense on midly singular varieties
as was observed in [EGZ09, section 7]. The solution of the (singular) Calabi Conjecture
[Yau78, EGZ09] provides a very powerful existence theorem for Kihler-Einstein met-
rics with negative or zero Ricci curvature. It is important to study the ways in which
these canonical metrics behave when they are moving in families. In this paper we con-
sider the case when both the complex structure and the Kéhler class vary and we try
and understand how the corresponding metrics can degenerate.

Constructing singular Kidhler-Einstein metrics on a midly singular variety V boils
down to solving degenerate complex Monge-Ampere equations of the form

(w+i00¢9)" = fe'?dVy,
where

- m: X — Vis aresolution of singularities, dVx is a volume form on X,

- w = m*wy is the pull-back of a K&hler form on V,

the sign of A € R depends on that of ¢;(V),

f € LP(X) with p > 1 if the singularities of V are mild (klt singularities),

and ¢ is the unknown. The latter should be w-plurisubharmonic (w-psh for short), i.e.

it is locally the sum of a psh and a smooth function, and satisfies w + id9d¢ > 0 in the
weak sense of currents. We let PSH(X, w) denote the set of all such functions.

The uniform estimate. — A crucial step in order to prove the existence of a solution
to the above equation is to establish a uniform a priori estimate. In order to understand
the behavior of the solution ¢ as the cohomology class {wy } and the complex structure
of V vary, we revisit the proof by Yau [Yau78], as well as its recent generalizations
[Ko198, EGZ09], and establish the following (see Theorem 1.1):

Theorem A. — Let X be a compact Kihler manifold of complex dimension n € IN* and let w
be a semi-positive form such that V := [, w" > 0. Let v and p = f v be probability measures,
with 0 < f € LP(v) for some p > 1. Assume the following assumptions are satisfied:

(H1) there exists « > 0 and A, > 0 such that for all ¢ € PSH(X, w),

/ e*lX(l[]*Slle lp)dy g A“;
X

(H2) there exists C > 0 such that ( [ |f|” dv)l/p <C
Let ¢ be the unique w-psh solution ¢ to the complex Monge-Ampere equation

V1 (w +idd9)" = p,
normalized by supy ¢ = 0. Then —M < ¢ < 0 where
M =1+Cna/™ e/ b, |5+ ea”'Clq1)1 /14,7,
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1/p+1/q = 1and by, is a constant such that exp(—1/x) < b"x*" for all x > 0.

Remark 0.1. — Let us observe that the condition (H1) in Theorem A above guarantees
that the measure v does not charge pluripolar sets, since any such set can be included
in the polar locus of a global w-psh function by [GZ05, Thm. 7.2]. The existence (and
uniqueness) of the solution ¢ in Theorem A follows from [BEGZ10, Thm. A].

We also establish slightly more general versions of Theorem A valid for less regular
densities (Theorem 1.5) or big cohomology classes (Theorem 1.9). We then move on to
checking hypotheses (H1) and (H2) in various geometrical contexts.

e Hypothesis (H1). If T : X — D is a projective family whose fibers X; = 77~!(¢) have
degree d with respect to a given projective embedding X C PN x D, and w = wy is the
restriction of the Fubini-Study metric, we observe in Proposition 2.5 that

V= w”:/w”/\X:d
[t = [ ks AL

is independent of ¢ and the following uniform integrability holds.

Proposition B. — For for all p € PSH(X;, wy),

—a(p—supy, ¢) n nog. 1 _ n
./x,e Wi S (m)"edeep =g | (Y Sl;tplP)wt :

The hypothesis (H1) is thus satisfied in this projective setting, with @ = 1/nd, as soon
as we can uniformly control the L!-norm of 1. We take care of this in Section 3. This
non-trivial control requires the varieties X; to be irreducible (see Example 3.5).

Bypassing the projectivity assumption, we show that (H1) is actually satisfied for
many Kdhler families of interest, by generalizing a uniform integrability result of
Skoda-Zeriahi [Sko072, Zer01] (see Theorem 2.9). This is the content of Theorem 3.4.

e Hypothesis (H2). We analyze (H2) in section 4. We show that, up to shrinking the base,
it is always satisfied if the f;’s are canonical densities associated to a proper, holomor-
phic surjective map 7 : X — D from a normal, Q-Gorenstein Kdhler space X" to the
unit disk such that the central fiber has only canonical singularities, cf Lemma 4.4 and
its application to families of Calabi-Yau varieties, Theorem F.

While previous works tend to use sophisticated arguments from Variations of Hodge
Structures (see e.g. the Appendix by Gross in [RZ11a]), we use here direct elementary
computations in adapted coordinates, in the spirit of [EGZ09, section 6].

In the context of families of varieties with negative curvature though, it is essential
to allow worse singularities than the ones described above, cf Setting 4.1 for the precise
context. The trade-off is that the canonical densities do not satisfy condition (H2) any-
more, reflecting the fact that the local potentials of the Kadhler-Einstein metrics at stake
need not be bounded anymore. This legitimizes the introduction of a weaker condition
(H2') (see Theorem 1.5 and Lemma 4.6). This allows us to derive an almost optimal
control of the potentials of Kdhler-Einstein metrics along a stable family, cf Theorem E
below.
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Let us end this paragraph by emphasizing that our approach enables us to work with
singular families (i.e. families where the generic fiber is singular, cf Theorems E and F)
as opposed to all previously known results on that topic, requiring to approximate a
singular variety by smooth ones using either a smoothing or a crepant resolution.

We now describe more precisely four independent geometric settings to which we
apply the uniform estimate provided by Theorem A.

Families of manifolds of general type. — Let X" be an irreducible and reduced com-
plex space endowed with a Kéhler form w and a proper, holomorphic map 7 : & — D.
We assume that for each t € DD, the (schematic) fiber X; is a n-dimensional Kdhler man-
ifold X; of general type, i.e. such that its canonical bundle Ky, is big. In particular, X" is
automatically non-singular and the map 7 is smooth.

We fix © a closed differential (1,1)-form on X which represents c¢1(Ky,p) and set
et - @ X;+

It fo|llows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78,
Yau78], that there exists a unique Kihler-Einstein current on X;. This is a posi-
tive closed current T; in c1(Kx,) which is a smooth Kdhler form in the ample locus
Amp(Ky, ), where it satisfies the Kdhler-Einstein equation

RIC(Tt) = —Tt.

It can be written T; = 6; 4+ dd°¢;, where g is the unique 6;-psh function with minimal
singularities that satisfies the complex Monge-Ampere equation

(6 + dd°p;)" = e  on Amp(Ky,),
where h; is such that Ric(w;) — dd°h; = —6; and th eh’w;1 = vol(Ky,). For x € X, set

(0.1) (P(X) = q’n(x)(x)
and consider
(0.2) Vo = sup{u € PSH(X,0); u < 0}.

We prove that conditions (H1) and (H2) are satisfied in this setting. It then follows
from Theorem A and the plurisubharmonic variation of the T;’s ((CGP17, Thm. A]) that
¢ — Vo is uniformly bounded on compact subsets of X, cf Theorem 5.5 and Remark 5.6:

Theorem C. — Let T : X — D be a smooth Kihler family of manifolds of general type, let
© € c1(Ky,p) be a smooth representative and let ¢ be the Kihler-Einstein potential as in
(0.1). Given any compact subset K € X, there exists a constant My such that the following
inequality

—Mg < ¢ — Vo < Mg
holds on IC, where Ve is defined by (0.2).

The same results can be proved if the family 7 : X — DD is replaced by a smooth
family 7 : (X,B) — D of pairs (X, B;) of log general type, i.e. such that (X;, By) is kit
and Kx, + B; is big for all t € D.
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Stable families. — A stable variety is a projective variety X such that X has semi- log
canonical singularities and the Q-line bundle K is ample. We refer to [Kov13, Kol] for
a detailed account of these varieties and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kadhler-Einstein metric
w, i.e. a smooth Kadhler metric on Xreg such that, if n = dim¢ X,

Ric(w) = —w and ; w" = (K%).
reg

The metric w extends canonically across Xsing to a closed, positive current in the
class ¢1(Kx). It is desirable to understand the singularities of w near Xsing- In [GW16,
Thm. B], it is proved that w has cusp singularities near the double crossings of X. More-
over, it is proved in [Son17] that the potential ¢ of w with respect to a given Kihler form
wx € c1(Kx), i.e. w = wx + dd°g, is locally bounded on the klt locus of X. We make
this assertion more precise by establishing the following (cf. Proposition 5.9).

Proposition D. — For any € > 0, there is a constant C¢ such that
(0.3) Ci1>¢>—(n+1+e¢)log(—logls|) — Ce
where (s = 0) is any reduced divisor containing the non-klt locus of X.

This estimate is almost optimal. Indeed, if X is the Satake-Baily-Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution (X, D)
which is a toroidal compactification of the ball quotient obtained by adding disjoint
abelian varieties. Then, the potential ¢ of the Kihler-Einstein metric on (X, D) with
respect to a smooth form in c; (Ky + D) satisfies

¢ = —(n+1)log(—log|sp|) + O(1)
if (sp = 0) = D.

A slight refinement of Theorem A (cf. Theorem 1.5) allows us to establish a uniform
family version of the estimate (0.3). In order to state it, let X be a normal Kahler space
and let 7t : X — ID be a proper, surjective, holomorphic map such that each fiber X; has
slc singularities and Ky,p is an ample Q-line bundle. If wy € ¢;1(Ky,p) is a relative
Kiahler form and wy, := wy|x,, then the Kidhler-Einstein metric of X; can be written as
wx, + dd°@; where @, is uniquely determined by the equation (5.7) from section 5. The
behavior of ¢; is then described by the following (see Theorem 5.11)

Theorem E. — Let X be a normal Kihler space and let T : X — D be a proper, surjective,
holomorphic map such that

o Each schematic fiber X; has semi- log canonical singularities.

o Ky p is an ample Q-line bundle.
In particular, X; is a stable variety for any t € ID. Assume additionally that the central fiber Xo
is irreducible.

Let wyx, + dd° ¢y be the Kiihler-Einstein metric of Xy and let D = (s = 0) C X be a divisor
which contains NKIt(X, Xo), ¢f (4.4). Fix some smooth hermitian metric | - | on Oy (D). Up
to shrinking 1D, then for any € > 0, there exists C¢ > 0 such that the inequality

Ci =z =>—(n+1+¢)log(—logls|) — Ce
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holds on X; forany t € D.

Let us finally mention the very recent results of Song, Sturm and Wang [SSW20,
Proposition 3.1] where similar bounds are derived in the context of smoothings of sta-
ble varieties over higher dimensional bases, with application towards Weil-Petersson
geometry of the KSBA compactification of canonically polarized manifolds.

Families of Q-Calabi-Yau varieties. — A Q-Calabi-Yau variety is a compact, normal
Kéhler space X with canonical singularities such that the Q- line bundle K is torsion.
Up to taking a finite, quasi-étale cover referred to as the index 1 cover (cf e.g. [KM98,
Def. 5.19]), one can assume that Kx ~z Ox. Given any Kahler class « on X, it follows
from [EGZ09] and [Pdu08] that there exists a unique singular Ricci flat Kédhler metric
wke € &, ie. a closed, positive current wxg € a with globally bounded potentials
inducing a smooth, Ricci-flat Kéhler metric on Xieg.

Now, we can consider families of such varieties and ask how the bound on the po-
tentials vary. This is the content of the following (see Theorem 6.1 and Remark 6.2)

Theorem F. — Let X be a normal, Q-Gorenstein Kihler space and let 7t : X — D be a proper,
surjective, holomorphic map. Let a be a relative Kihler cohomology class on X represented by a
relative Kihler form w. Assume additionaly that

o The relative canonical bundle K y /pp is trivial.
o The central fiber Xo has canonical singularities.
o Assumption 3.2 is satisfied.

Up to shrinking 1D, each fiber X; is a Q-Calabi-Yau variety. Let wxg; = w; + dd®¢; be the
singular Ricci-flat Kithler metric in oy, normalized by | x, Prwi = 0. Then, given any compact
subset K € D, there exists C = C(K) > 0 such that one has

oscx, ¢t < C

forany t € K, where oscx, (¢:) = supy, ¢; — infx, ¢;.

In the case of a projective smoothing (i.e. when & admits a 7r-ample line bundle and
X} is smooth for t # 0), the result above has been obtained previously by Rong-Zhang
[RZ11a] by using Moser iteration process.

Log Calabi-Yau families. — Let X be a compact Kdhler manifold and let B = ) _b;B; be
an effective R-divisor such that the pair (X, B) has kit singularities and ¢; (Kx + B) = 0.

It follows from [Yau78, EGZ09, BEGZ10] that one can find a unique Ricci flat metric
in each Kéhler class a;. A basic problem is to understand the asymptotic behavior of
these metrics as a; approaches the boundary of the Kihler cone. Despite motivations
coming from mirror symmetry, not much is known when the norm of &; converges to
+oo (this case is expected to be the mirror of a large complex structure limit, see [KS01]).
We thus only consider the case when a; — ag € ICx.

The non-collapsing case (vol(ag) > 0) can be easily understood by using Theorem A
(see Theorem 6.5). We describe here a particular instance of the more delicate collapsing
case vol(ap) = 0. Let f : X — Z be a surjective holomorphic map with connected fibers,
where Z is anormal Kdhler space. Let wx (resp. wz) be a Kdhler form on X (resp. Z). Set
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w; := f*wgz + twx. There exists a unique singular Ricci-flat current wy, := w; + dd¢;
in {f*wz + twx} for t > 0, where [, ¢;wk = 0. It satisfies

wy, = Vi Wx,p), where pxp) = (s /\s‘)%e*‘f’B.

Here, s € H°(X,m(Kx + B)) is any non-zero section (for some m > 1) and ¢j is the
unique singular psh weight on Ox(B) solving dd“¢p = [B] and normalized by

/(s/\s‘)%e“”B =1
X

The probability measure f.j(xp) has L'*t-density with respect to w¥ thanks to
[EGZ18, Lem. 2.3]. It follows therefore from [EGZ09] that there exists a unique current
we € {wz} solution of the Monge-Ampere equation

Weo = fulh(x,B)-

In the case where X is smooth, B = 0 and ¢;(X) = 0, the Ricci curvature of we coincides
with the Weil-Petersson form of the fibration f of Calabi-Yau manifolds.

Understanding the asymptotic behavior of the wy,’sast — 0is an important problem
with a long history, we refer the reader to the thorough survey [Tos20] for references.
We prove here the following:

Theorem G. — Let (X,B) be a log smooth kit pair such that ¢1(Kx + B) = 0 and such
that X admits a fibration f : X — Z. With the notations above, the conic Ricci-flat metrics
we, € {f*wz + twx } converge to f*we, as currents on X when t goes to 0.

When B = 0 is empty, it has been shown in [Tos10, GTZ13, TWY18, HT18] that he
metrics wy, converge to f*we in the C*-sense on compact subsets of X \ Sx for some
a« > 0, where Sx = f -1 (Sz) and Sz denotes the smallest proper analytic subset X C Z
such that ¥ contains the singular locus Zsing of Z and the map f is smoothon f~1(Z\ ).

The proof of Theorem G follows the strategy developed by the above papers with
several twists that notably require the extensive use of Theorem A and conical metrics.

Acknowledgements. — We thank S.Boucksom, M.Pdun, ].Song and A.Zeriahi for sev-
eral interesting discussions. We are grateful to the anonymous referees for a remarkably
careful reading, for suggesting many improvements as well as for pointing out a gap
in §3 of an earlier version. The authors are partially supported by the ANR project
GRACK.

1. Chasing the constants

Our goal in this section is to establish the following a priori estimate which is a re-
finement of the main result of Kolodziej [Ko198] (see also [EGZ09, EGZ08, DP10]):
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Theorem 1.1. — Let (X, wx) be a compact Kihler manifold of complex dimension n € IN*
and let w be a semi-positive form which is big, i.e. such that

V = Vol (X) = / w" > 0.
X

Let v and p = fv be probability measures, with 0 < f € LF(v) for some p > 1. Assume the
following two assumptions are satisfied:

(H1) there exists « > 0 and A, > 0 such that for all € PSH(X, w),

/ e Wik V) gy < A,;
X

(H2) there exists C > 0 such that ( [ |f|” dv)l/p < C
Let @ be the unique w-psh solution ¢ to the complex Monge-Ampere equation

Vi w +dde)" =,
normalized by supy ¢ = 0. Then —M < ¢ < 0 where

M =1+C/na/" et/ b, [5+ea'Clq1) 14,7,
1/p+1/q = 1and by is a constant such that exp(—1/x) < blx*" for all x > 0.

Here d = 9+ 0 and d° = 1(d — 9) so that dd° = i90. Recall that a function ¢ : X —
R U {—o0} is w-plurisubharmonic (w-psh for short) if it is locally given as the sum of a
smooth and a psh function, and such that w + dd°p > 0 in the weak sense of currents.
We let PSH(X, w) denote the set of all w-psh functions.

The non-pluripolar Monge-Ampeére measure of arbitrary w-psh functions has been
defined in [BEGZ10]. It follows from assumption (H1) that the measure p does not
charge pluripolar sets, since the latter can be defined by w-psh functions (as follows
easily from [GZ05, Thm. 7.2] since a big class contains a Kadhler current). The existence
of a unique normalized w-psh solution to V! (w + dd°p)" = u follows from [BEGZ10,
Theorem A] (the case of Kdhler forms had been earlier treated in [GZ07, Din09]).

We will use this result to obtain uniform a priori estimates on normalized solutions
¢ to families of complex Monge-Ampére equations

Vi Yws 4 ddo)" = s,

when the hypotheses (H1,H2) are satisfied, i.e. the constants 1/a;, As,, g¢, C¢ in the the-
orem are actually bounded from above by uniform constants 1/«, A, g, C independent
of t. Here g denotes the conjugate exponent of p > 1,1/p +1/q = 1. The assumption
on this exponent is thus that p > 1 stays bounded away from 1.

The reader should keep in mind that assumption (H1) is the strongest of all. In some
applications one can assume f = 1 hence (H2) is trivially satisfied.

We are going to eventually obtain a version of Theorem 1.1 that applies to big co-
homology classes, extending [BEGZ10, Theorem B]. The proof is almost identical but
explaining the statement requires to introduce various notions and technical notations,
so we first treat the case of semi-positive classes and postpone this to section 1.4.
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1.1. Preliminaries on capacities. — Let K C X be a Borel set and consider
Vkw := (sup{¢ |y € PSH(X,w) and ¥ < 0on K})",

where * denotes the upper semi-continuous regularization.
The Alexander-Taylor capacity is the following;:

Tw(K) :=exp <— sup VK,w> .
X

It is shown in [GZ17, Lem. 9.17] that If K is pluripolar then Vk , = +oc0 and T,,(K) = 0.
When K is not pluripolar then

- 0 < Vi € PSH(X, w) and Vi, = 0 on K off a pluripolar set;
- the Monge-Ampeére measure MA (Vg ) is concentrated on E.

We denote here and in the sequel by

MA (i) = %(w + ddeu)"

the normalized Monge-Ampere measure of a w-psh function 1, where V = [, " =
{w}" is the volume of the cohomology class {w}. It is defined for any w-psh function
u, cf. e.g. [GZ07,§ 1.1]. For a Borel set K C X, the Monge-Ampere capacity is

Cap,,(K) := sup {/KMA(u) ; u € PSH(X,w)and 0 < u < 1} .

This capacity also characterizes pluripolar sets, i.e.
Cap; (P) = 0 <= P is pluripolar.
Here Cap,, is the outer capacity associated to Cap, defined for any set E C X as
Cap;,(E) := inf{Cap,,(G) ; G open, E C G}.

Moreover, if K C X is a compact set than Cap;,(K) = Cap_ (K).
The Monge-Ampére and the Alexander-Taylor capacities compare as follows:

Lemma 1.2. —

1
Tw(K) < 11— —F——.
< o Cap,, (K)!/

We refer the reader to [GZ05, Proposition 7.1] for a proof which also provides a re-
verse inequality that is not needed in the sequel.

1.2. Proof of Theorem 1.1. —
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1.2.1. Domination by capacity. — It follows from Holder inequality and (H2) that
p< v,

where g is the conjugate exponent, 1/p +1/g = 1.
Let K C X be a non pluripolar Borel set. Recall that Vi, (x) = 0 for v-almost every
point x € K. The hypothesis (H1) therefore implies that

V(K) < /X e~ Vke dy < Ay T (K)P

Combining previous information we obtain

a/q

1/9 u/
1) < Ao |-

] < D Cap,,(K)?,

where
D = bICA, e/,
with b, a numerical constant such that exp(—1/x) < bx*" for all x > 0.

We now need to relate the Monge-Ampere capacity of the sublevel sets of a w-psh
function to the Monge-Ampeére measure of similar sublevel sets:

Lemma 1.3. — Let ¢ be a bounded w-psh function. Foralls > 0and 0 < § < 1,
" Cap, ({9 < =5 —=d}) < MA(g) ({g < —s})
We refer to [EGZ09, Lemma 2.2] for a proof.

1.2.2. Bounding the solution from below. — Under our assumptions (H1,H2), it follows
from general arguments that there is a unique bounded w-psh solution ¢ of MA(¢) = u
normalized by supy ¢ = 0, cf Remark 0.1. The non-expert reader could even think that
@ is smooth: the point here is to establish a uniform a priori bound from below.

We let f : RT — R denote the function defined by

£(s) = - logCap,, ({9 < ~s})

Observe that f is non decreasing and such that f(+o00) = +o0. It follows from our
previous estimates that foralls > 0and 0 <4 <1,

F(s+6) > 2f(s) +logd — k’i .

Our next lemma guarantees that such a function reaches +cc in finite time:
Lemma 1.4. — f(s) = +oo forall s > 5DY/" + sy, where

so = inf{s > 0|eD"" Cap,, ({9 < —s}) < 1}.
Proof. — We define a sequence (s;) of positive reals by induction as follows,

sic1=5;+06; with & =eD""exp(—£(s))).
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We fix sy large enough (as in the statement of the Lemma) so that 59 < 1. Itis
straightforward to check, by induction, that the sequence (s;) is increasing, while (J;)
is decreasing. Thus 0 < 4; < 1 and

f(sj+1) 2 f(sj) +1, hence f(s;) > j.
We infer 6; < eD/" exp(—j) and

Seo = So + Z(S]'+1 — Sj) < so+ ZeDl/n exp(—j) < so+ 5D/™,
j=0 j=0

O

It remains to obtain a uniform bound on sy. It follows from Chebyshev inequality
and Lemma 1.3 (used with § = 1) that for all s > 0,

1
Cap,, ({9 < —s =1} <5 [ (~g)an,
since MA(¢) = u. Holder inequality and (H2) yield

[con<c(], <—¢>qdv)l/q.

Observe that forall t > 0,
!
1 < % exp(at)
and use (H1) to conclude that

C(gnN'14,

Cap, ({¢ < —s -1} < —— -
Thus
C(q!)l/‘?Ai/q
o
is a convenient choice. This yields the desired a priori estimate and concludes the proof.

so =1+ eDV"

1.3. More general densities. — The setting of Theorem 1.1 is the most commonly used
in geometric applications, as it allows e.g. to construct Kahler-Einstein currents on
varieties with log-terminal singularities (see section 6). For varieties of general type
with semi log-canonical singularities (see section 5.2), one has to deal with slightly more
general densities. The following result is a refinement of [Ko198, Theorem 2.5.2] and
[EGZ09, Theorem A].

Theorem 1.5. — Let (X, wx) be a compact Kihler manifold of complex dimension n € IN*
and let w be a semi-positive form with V := Vol,(X) = [y w" > 0. Let vand y = fv be

probability measures, with 0 < f € L' (v). Assume the following assumptions are satisfied:
(H1) there exists « > 0 and A, > 0 such that for all p € PSH(X, w),

/ e—a(lP*SUPX w)dl/ < Aw
X

(H2') there exists C,e > 0 such that [ |f||log f|"*¢dv < C.
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Let ¢ be the unique w-psh solution ¢ to the complex Monge-Ampere equation
Vi w+dde)t = p,
normalized by supy ¢ = 0. Then —M < ¢ < 0 where M = M(C,¢,n, Ay).

Proof. — The proof follows the same lines as that of Theorem 1.1, so we only emphasize
the main technical differences and focus on the case ¢ = 1. Set, for t > 0,
n+1 ) 1)! )
X0 =+ 1) -1 oge 1),
j=0 ’

Observe that x is a convex function such that x(0) = 0 and x'(t) = (log(t + 1))"*1. Tts
Legendre transform is

x*(s) =sup{s-t—x(t)} =st(s) — x(t(s)),

t>0
where 1 +t(s) = exp(Snl?) satisfies s = x'(t(s)), thus
X'(s) = P(s71) exp(s71) — s,
where P is the following polynomial of degree n,
- (—qyi (D!

P(X) = ) (-1)

i
= j! X
]:

We let the reader check that (H2') is equivalent to ||f||, < C’, where ||f||, denotes
the Luxemburg norm of f,

7l =it {r >0, [ x(lfl/mav <1},

Let K C X be a non pluripolar Borel set. It follows from Holder-Young inequality
[BBE"19, Proposition 2.15] that

p(K) < 2C'||1k]

X

where ||1||,+ = inf{r > 0, v(K)x*(1/r) <1} = rg, with
. 1
x*(1/rx) = WK

We are interested in the behavior of this function as v(K) approaches zero, i.e. for
small values of rg. Observe that x*(s) < exp(2s'%+1) fors > 1/r,, hence
on+2c!
(—logv(K))™*t

v(K) <6, = u(K) <2C'rg <
Recall that (H1) and Lemma 1.2 yield

. ®
v(K) < Aye® exp <_Cap(K)1/”>
w

It follows that for v(K) < &,
u(K) < C"Cap,, (K)'*1/",
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and we can then conclude by reasoning as in Lemma 1.4. This completes the proof
when ¢ = 1. The proof for arbitrary € > 0 is similar, the crucial point being the domina-
tion of y by a multiple of Cap’;™/", with an exponent 1 +¢/n > 1. O

w

1.4. Big cohomology classes. — We now consider a similar situation where the refer-
ence cohomology class « is still big but no longer semi-positive. We assume for con-
venience that the ambient manifold (X, wx) is again compact Kahler, but one could
equally well develop this material when X belongs to the Fujiki class (i.e. when X is
merely bimeromorphic to a Kdhler manifold).

By definition « is big if it contains a Kihler current, i.e. there is a positive current T € a
and ¢ > O such that T > ewy. It follows from [Dem92] that one can further assume that
T has analytic singularities, i.e. it can be locally written T = dd“u, with

C S
u= Elog [Z ]f]|2
=

J
where ¢ > 0, v is smooth and the f;’s are holomorphic functions.

+ 7,

Definition 1.6. — We let Amp(a) denote the ample locus of a, i.e. the Zariski open
subset of all points x € X for which there exists a Kédhler current in & with analytic
singularities which is smooth in a neighborhood of x.

It follows from the work of Boucksom [Bou04] that one can find a single Kéhler
current Ty with analytic singularities in « such that

Amp(a) = X\ Sing Tp.

We fix 0 a smooth closed differential (1, 1)-form representing «. Following Demailly,
one defines the following 0-psh function with minimal singularities:

Vp :=sup{u; u € PSH(X,0) and u < 0}.

Definition 1.7. — A 0-psh function ¢ has minimal singularities if for every other 6-psh
function u, there exists C € R such that u < ¢ + C.

There are plenty of such functions, which play the role here of bounded functions
when « is semi-positive. Demailly’s regularization result [Dem92] insures that & con-
tains many 6-psh functions which are smooth in Amp(«). In particular a -psh function
¢ with minimal singularities is locally bounded in Amp(«). The Monge-Ampeére mea-
sure (0 + dd“¢p)" is thus well defined in Amp(«) in the sense of Bedford and Taylor
[BT82].

Definition 1.8. — It follows from the work of Boucksom [Bou02] that

0+dd¢e)' =V, >0
S @ 0)" = Ve
is independent of ¢, it is the volume of the cohomology class «.

One can therefore develop a pluripotential theory in the Zariski open set Amp(«).
This was done in [BEGZ10], where the following properties have been established:

— the class PSH(X, 0) enjoys several compactness properties;
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— the operator MA(¢) = V, (6 + dd°p)" is a well defined probability measure on
the set of 6-psh functions with minimal singularities;

— the extremal functions Vxp = sup{u; u € PSH(X,0) and u < 0on K} and the
Alexander-Taylor capacity Ty(K) = exp (—supy Vi) enjoy similar properties as
in the semi-positive case;

— in particular it compares similarly to the Monge-Ampeére capacity

Cap,(K) := sup {/KMA(u); uePSH(X,0)and 0 < u — Vp < 1};

— the comparison principle holds so Lemma 1.3 holds here as well.

The same proof as above therefore produces the following uniform a priori estimate,
which is a refinement of [BEGZ10, Thm. 4.1]:

Theorem 1.9. — Let (X, wx) be a compact Kihler manifold of complex dimension n € IN*. Let
« be a big cohomology class of volume Vi, > 0 and fix 6 a smooth closed differential (1,1)-form
representing a.

Let vand y = f v be probability measures, with 0 < f € LP(v) for some p > 1. Assume the
following assumptions are satisfied:

(H1) 3a > 0, A, > 0such that Vip € PSH(X, 0), [y e *W=sPx¥)dy < A,;
(H2) there exists C > 0 such that ( [ |f|? dv)l/p < C.
Let ¢ be the unique 0-psh function with minimal singularities such that
Vo (0 +ddp)" = p,
and supy ¢ = 0. Then —M < ¢ — Vy < 0 where

M=1 —|—C1/"A,}/nq ea/nqbn [5_’_6“—1C(q!)1/qA3‘/‘1} ,
where by, is a uniform constant such that exp(—1/x) < b'x>" for all x > 0.

Remark 1.10. — We also have an analogue of Theorem 1.5 in the big setting.

2. Uniform integrability

We wish to apply the previous uniform estimates when the complex structure of the
underlying manifold is moving. In this section we pay a special attention to assumption
(H1), by generalizing an integrability result of Skoda-Zeriahi [Sko72, Zer01].

2.1. Notations. — In all what follows, given a positive real number r, we denote by
D, := {z € C;|z| < r} the open disk of radius r in the complex plane. If r = 1, we
simply write ID for D;.

Setting 2.1. — Let X be an irreducible and reduced complex Kihler space. We let 7t : X —
D denote a proper, surjective holomorphic map such that each fiber X; = 7 '(t) is a n-
dimensional, reduced, irreducible, compact Kihler space, for any t € D.
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For later purposes, we pick a covering {U, }« of X by open sets admitting an embed-
ding j, : Uy — CN for some N > n + 1. Moreover, we fix a Kihler form w on X'. Up to
refining the covering, the datum of w is equivalent to the datum of Kédhler metrics on
open neighborhoods of ju(U) C CV that agree on each intersection Uy N Uy ®. Equiv-
alently, w is a genuine Kahler metric on Xreg such that (i)« (w|j=s) is the restriction of
a Kahler metric defined on a an open neighborhood of j, (U,) C CV.

Let us point out that this definition of a Kédhler metric on a singular space X is much
more restrictive than merely asking for a Kdhler metric on X.eg (even say, by requiring
that the latter has local potentials near Xing, and that those are bounded). One impor-
tant property that Kdhler metrics satisfy is that their pull back under a modification is
a smooth form (i.e. locally the restriction of a smooth form under a local embedding in
CN); in particular, it is dominated by a Kahler form.

For each t € ID, we set

Wy = w‘ X+
An easy yet important observation is the following.

Lemma 2.2. — In the Setting 2.1 and using the notation above, the quantity |. x, Wi 1s inde-
pendent of t € ID. We will denote it by V in the following.

Proof. — The function D > t +— | x, wi coincides with the push-forward current 77,.«"

of bidimension (1,1). Its distributional differential is zero as d commutes with 7, and
w is closed. [

We fix a smooth, closed differential (1,1)-form ® on X and set 6; = ®‘ x,- Up to
shrinking ID, one will always assume that there exists a constant Cg > 0 such that

(21) — C@w < G < C@LU.
In particular, one has the inclusion PSH(X;,6;) C PSH(X;, Cow;). We assume that
the cohomology classes {6;} € H''(X;,R) are psef, i.e. the sets PSH(X;,6;) are non-

empty for all t. The notions of (quasi)-plurisubharmonic functions, positive currents
and Monge-Ampere measure are well defined on singular spaces [Dem85].

2.2. Uniform integrability index. — Recall from [Dem82, Déf. 3] that if T is a closed,
positive current of bi-dimension (p, p) on a complex space X and if x € X is a closed
point, then the Lelong number of T at x is defined as the limit

1
22 T, x) = li ¢7/ T A (dd°p)?
(22) V(T x) = lim* o ey 1 (dd“p)
where ¥ := Y ;) |gi|? and (g;)c; is a (finite) system of generators of the maximal ideal
myy C Ox . Itis proved in loc. cit. that the limit above is a decreasing limit, indepen-
dent of the choice of the generators. Moreover, one has the formula

2.3) (T, x) = /{ , TA (@ log )

cf [Dem82, bottom of p. 45]. Finally, if ¢ is a 6-psh function on X for some smooth,
closed (1,1)-form 6, then the Lelong number of ¢ at a given point x € X is defined to
be the quantity v(6 + dd°g, x).
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Proposition 2.3. — In the Setting 2.1, let ¢; € PSH(X}, 6;) be a collection of 04-psh functions
on X;. Then

sup sup V(g x) < +oo.
tEEl/z xeX;

Proof. — Let U, € U, be a relatively compact open subset such that the U, are still
a covering of X. Up to adding more elements to the initial covering, one can always
assume that one can find such a refinement. One picks cut-off functions ), such that
Xe = 1 on U}, and Supp(x.) C U,. Now, let x € X; there exists « = a(x) such that
x € Ul. Recall that we have an embedding j, : U, — CN; we set x’ := j,(x) and
Gy : CN 3 z — log(XN |z; — x/|?). One can easily check that there exists a constant

A > 0, independent of the point x now ranging in the compact set 7~!(ID; ), such
that the function

H, := Xoc'jZGx’

defines an Aw-psh function on the whole X'. By the formula (2.3), one has
Vigun) = [+ ddp) A @G 15"
X
< / (0 + dd ;) A (dd°Hy)"
u&ﬂxt
< / (0 + dd ;) A (Acwy + dd°Hy)" !
u,nx;

< / (Cow; + dd*pr) A (Aw; + dd°Hy )"
X
= CpA" 1. V.

The conclusion follows. O

It follows from Skoda’s integrability theorem [Sko72] that the Lelong number v(¢;, x)
controls the local integrability index a (¢, x) of a 6;-psh function ¢,

a(¢r,x) :=sup {c>0;e " e L? (Xe,x)},

loc
via
1 < (g, x) < n
V(g x) S PS ygy

Proposition 2.3 thus yields:

Corollary 2.4. — In the Setting 2.1, the following quantity
(@) = inf{oc(got,x); t € Dy, x € X;, @; € PSH(X,, et)}

is positive.
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2.3. Skoda’s integrability theorem in families: the projective case. — Zeriahi [Zer01]
has established a uniform version of Skoda’s integrability theorem. We now further
generalize Zeriahi’s result by establishing its family version.

We first provide a very explicit result in the projective case which does not rely on
Corollary 2.4 unlike its general Kidhler analogue that will be given later, cf. Theorem 2.9.
This should also help the reader in following the somehow tricky computations in the
general Kahler case.

Proposition 2.5. — Let V. C PN be a projective variety of complex dimension n and degree d.
Let w = wgs|y and ¢ € PSH(V,w) be such that sup,, ¢ = 0. Then

*%4’ n < n.d. _i n
/Ve " < (4n)" - d exp{ o V(pw}.

To our knowledge, the inequality given in Proposition 2.5 above is new.

Remark 2.6. — When 7 : X — D is a projective family whose fibers have degree d
with respect to a given projective embedding, the above result gives the integrability of

e~ u® on V1= 7-1(t). In particular, one gets a(wgs) > 5.

Proof. — Embedding P! in IP? if necessary, we assume without loss of generality that
N > 2. We first claim that it is enough to prove the Proposition when ¢ is smooth.
Indeed, thanks to [CGZ13, Cor. C], there exists a sequence of smooth functions ¢, €
PSH(V, wgs) decreasing pointwise to ¢. Let €, := sup, ¢,; by Hartog’s theorem, we
have ¢, — 0. If the Proposition holds for smooth functions, we will have

1 en-(d—1) 1
“nd Pyl < nd 4 n d —7/ n
/Ve w" <e (4n) exp{ — V(pnw}

Using Fatou Lemma and the monotone convergence theorem, we deduce the expected
inequality for ¢. From now on, one assumes that ¢ is smooth.

The projective logarithmic kernel on PN x PV is defined by the following formula
[|x Ayl

Glxy) = lo <> vy ePN
Goy)i=Tog ) =Y

writing x, y in homogeneous coordinates. By [AAZ20, Lem. 4.1], for any fixed y, x —
G(x,y) is a non positive wrs-psh function in PV such that (wps + dd5G(-,y))N = 6,. We
set ¢ = G|y and g, = g(-, ). By definition, g, has Lelong number one at y. Therefore, it
follows from [Dem85, Cor. 4.8] that wg := (w +dd“g(-,y))" = d;. From Stokes formula
(cf Lemma 2.11 below) it follows that

n o __ n—1
ply) = /ngy—/qu(erdd“gy)Awgy
= /Vgow/\cugy_l+/ng(cu+ddcfp)/\w;y_l—/nga)/\wgy_l

n—1 n—1
/Vq)w/\wgy +/ngwq,Awgy ,

WV
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using that g, < 0. One obtains similarly
/ pw AW > / qocuz/\w”_2+/ gy A wy A w2
v 8y AT 8y vy ¢ 8y
2 n—2 n—1
= /V(pw /\wgy +/ngw(,,/\wgy ,
where the second inequality follows from

n—2 __ n—1 c n—2 n—1
/ngwAw(,,/\wgy —/ngw(p/\wgy +/Vdgy/\dgy/\w¢/\wgy 2/ngw(p/\wgy .

Iterating the process n times we end up with

n -1
go(y)}/v(pw +n/vgywq)/\w§y .

Hence

1 1
TP < S — nyT
/Ve w exp{ - Vq)w}

tim [ ew {3 [ sl nag, (0 )

The (n,n)-form % - wy A wgy_l induces a probability measure on V given that

/qu;/\wgy_l :/ﬂaN‘UfPAwgy_]A[V] = {wrs}" - {V} = d.

From Jensen’s inequality, one can then derive

1 — n— n
Py [, €50 @) A wlx) + ddig (o)) Awly)"

Lemma 2.8 (i) yields
o) A (w(x) + ddSg ()" < e 2NN 0, () A lx) .

Lemma 2.8 (ii) below (for 6 = 1/2n) now yields

I < ! / / (2N o (x) A w ()" A wl(y)”
d yev JxeV
1 o(1—1 n -
L (L e e
n 1 C n n—
< (4n) /xev (d /yev(cu—i—dd X108 >wq,(x) Aw(x)"!

= (4n)" /xevw(,,(x) Aw(x)" 1 = (4n)" - d.

where

Remark 2.7. — The same arguments as above show that for any v € (0,2)

L4 n < . _l n
/Ve iYw" < C, dexp{ i Vgow },
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where C, > 0 depends on n and y. We have fixed v = 1 in the above proposition to
simplify the statement.

Lemma 2.8. — With the notations of the proof of Proposition 2.5 above, we fix a point y € V
and set § := gy. Moreover, let 6 € (0,1) be a given number. Then, the following set of
inequalities hold as currents on V.

(i) wg < e HBw

(ii) 3e721-908w  w+ddxs0g
Here, x is the function defined on R by the expression xs(t) := %.
It is understood here that we take derivatives w.r.t. x and the estimates are uniform
both in x and y.

Proof. — We proceed in three steps.

Step 1. Reduction to a computation on CN.

First of all we observe that the function g as well as the (1,1)-currents w and w, are
the restriction to V of a function or (1,1)-currents on PN. As positivity is preserved by
restriction to a subvariety, it is enough to prove the inequalities of currents above on
the whole PN where they make sense as well.

Now, recall that PU(N, C) acts transitively on PN by transformations preserving wgs
and an isometry u sends G, to G,(,). Therefore it suffices to prove all the inequalities
above on PPV, for the special pointy = [1 : 0 : --- : 0]. We work in the affine chart
(Uy,z) where Uy := {x € PN : x1 # 0} and z := (2;)}, z; = xj/x1. In these coordinates
wrslu, = %ddc log(1 + ||z||?). Note that Uj is dense in PN and both wgs, wg are smooth
on the complement PN \ Uj; thus it is sufficient to prove the inequalities on U; ~ CN.

We actually claim that is is sufficient to prove the inequalities on U; \ {y}, where all
the currents involved are smooth differential forms. This is because neither of the pos-
itive currents e 2Cwgg and wgs + dd°x; o G on PN puts any mass on {y}. This follows
from the integrability of e2G for the first one (recall that N > 2) and the boundedness
of x5 o G for the second one.

As observed in [AAZ20, Lem. 4.1], for (x,y :=[1:0---:0]) € U; x U; we have

1
G(x,y) = N(z,0) — log(1-+ |2l
where z = z(x) and N(z,0) := 1log||z|*. Thus in U; we have e 72 =1+ ﬁ and
w(x) + A5Gy (x) = ddN(z,0) = %dd; log ||z]2.
Let us define 8 := dd®||z||?> = i i, dzx A dZ; and let ay := Y | Zdzy.

Step 2. Proof of Item (i).
Standard computations give
(1 + 11z1%)9 — Zj2

s = T e ™ NS

1 20785 — 27
2 T
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or equivalently

1 1 . 1
WS = ( 5B — LS} /\Ec1> and wg = < B i /\oq)
1+ 2|l (T+1z[) [B4] Iz H

The matrix A(z) := (z;Zj);j is semipositive with rank at most one and trace ||z||%. There-
fore, if A,y € R (they can depend on z), the matrix AId + y A is hermitian with eigen-
values A (with multiplicity N — 1) and A + ||z||? - # (with multiplicity one). In particular,
it is semipositive if and only if A > max(0, —||z||* - u).

The computations above show that the eigenvalues of the (1,1)-form A + piag A &3
with respect to B are A and A + ||z||? - 4. Now, if C is some non-negative constant, the
(1,1)-form Ce~2wps — wg can be rewritten as follows

1
N EBIEENS

The latter form is semipositive if and only if C > 1. This proves (i).

C—DllzlP @+ lIzl*) - B+ [(L+ [IzlI*) = Cllzlf*] - iz Aa] -

Step 3. Proof of Item (ii).
Observe that x; is convex increasing with 0 < x5 < 1/2 for t < 0. Standard computa-
tions give dd“x;0 G = x50 Gdd‘G + xj o G dG A d°G. Next, we have

1 B 1+2|z|?
2[|z][>(1 + [1z]12) 12121+ [1z]1%)

with the notation introduced in Step 1. Similarly, one finds

ad‘'G =

Sl A\ &q

1
dGNdG = iy A\ {g.
4|z][*(1 + [12[12)>

To lighten notation, we will from now on write x’ (resp. x”) to denote x§ o G (resp.
X3 o G). One has

1

wes + ddx;0G = ————
o ’ 2(1+ 1z11%)

1./ / 2

X \g X —xA+20?)

+ + 161 N\ @
( Hz||2>ﬁ 1z)1*(1 + [1z])

As aresult, the two eigenvalues A, yu of wrs + dd°x s o G with respect to wrs are given by

X
A=1+4
EE
and
a2z /
#= 1+ (*\rzu” e+ ER ) = OO S

Using the definition of x and the fact that e 26 =1+ ﬁ, one easily sees that A >

%6*2(1*5)G and pu > ge*m*&)G. The conclusion follows. O
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2.4. Skoda’s integrability theorem in families: the general case. — In this section,
we bypass the projectivity assumption and establish a quite general family version of
Skoda’s integrability theorem, valid for families of compact Kédhler varieties:

Theorem 2.9. — In Setting 2.1, let us choose a positive number o € (0,a(®)), which is
possible thanks to Corollary 2.4. Then, there exist constant A, C > 0 such that forallt € Dy,
and for all ¢; € PSH(X, 0;) with supy, ¢r =0,

(2.4) / e “Pwi < Cexp {—A,x/ (ptw,?} .
Xf Xt

Proof. — The proof follows the same strategy as in [Zer01], as presented in [GZ17,
Thm. 2.50]. There exists a finite number of trivializing charts {U} of X such that
n1(Dy/;) C U;U;. The statement will then follow if we prove the bound for the
integral on the left-hand side replacing X; by X; N U,. Moreover, w.l.o.g we can assume
that we have an immersion j; : U; < B, where B is the unit ball in CV. Up to shrinking
Uz, one can also assume that there exists a smooth function p on B such that supz p =
—2 and O|y, = dd°jip. We define p; := (jip)|u,nx,; this is a potential of 6;|,nx,. Note
that ¢; := ¢ + p; is a non-positive psh function in U, N X; such that

(2.5) ot —2=29 = ¢ —Co

for some constant C; > 0 depending only on U-. It is also clear that proving (2.4) is
equivalent to showing that

26) [ oot < oo -due [yt
U.NX; U.NX;

for some constants C, A, that do not depend on t.

Claim 2.10. — It is sufficient to prove (2.6) for smooth, non-positive psh functions i on
U; N X; such that
(27) dd*pe > (jrdd”|2[*)]x.

Proof of Claim 2.10. — Indeed, as

/ el < o / e a(rtizlel?) n

UrNX; UrNX;

we can replace y; by the function 1; + j||z||?, bounded above by —1. Next, thanks to a
result of Fornaess-Narasimhan [FN80, Thm. 5.5], one can write ¢; as a decreasing limit
of non-positive, smooth psh functions on U; N X; (up to shrinking U; possibly). The
combination of the monotone convergence theorem and the integrability of e~*?* on X;
provided by Corollary 2.4 settles the claim. O

From now on, we assume that ; is smooth, and we work exclusively on U that we
view inside the unit ball B of CN. By abuse of notation, we will denote by B N X; the
set U; N X;. In the same vein, we will identify the coordinate functions z = (z1,...,2zN)
on B C CV with their pull-back by j; on Us.
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Let us pick some number ¢ € Dy, and some point x € B N X;. We denote by ®, the
automorphism of the unit ball B that sends x to the origin and consider

Gx(2) = log [|Px(2) |

the pluricomplex Green function of the unit ball B. Recall that G, is the unique
plurisubharmonic function in B such that (dd°G,)N = 4, in the weak sense of currents,
Gy < 0 and G, is identically zero on dB. Standard computations yield

Co

(2.8) dd°Gy < — 2
T [[@x(2)]2

dd®||z||? on B.

for some dimensional constant Cy = Co(N) > 0.

Since [X;|p] is a positive (N — n, N — n)-current on B and the singular set of the re-
striction of the Green function Gy|x, is compact (it is indeed equal to {x}), the mixed
Monge-Ampere measure (dd°Gy)" A [X;] is well defined [GZ17, Prop. 3.15] and it has a
Dirac mass with coefficient > 1 at the point x. Since 1y < 0 we then have

Pilx) > [ plddGo AX] = [ pilddGy"
B BNX;
Now, we have the following result, which is Stokes” formula in a context of isolated
singularities.

Lemma 2.11. — Let X C Ben(0,2) be a a proper, n-dimensional complex subspace of the ball
of radius 2 in CN, center at the origin. Let u, v, w be psh functions on Ben (0,2) with isolated
singularities, i.e. they are smooth outside a discrete set of points in Ben (0,2) which we assume
does not meet 0Ben (0,1). Finally, let B := Ben (0,1) N X. Then, we have

2.9) / (udo — vd°u) A (dd°w)" = / (uddo — vddu) A (ddw)"!
JB B

We include a proof for the reader’s convenience.

Proof of Lemma 2.11. — By using a (regularized) maximum operation, we can find a
family of smooth psh functions u, (resp. v, w,) decreasing to u (resp. v, w) and which
coincide with their limit outside a compact set K. € B which collapses onto a finite set
S & B. By the usual Stokes’ formula, one has

/ (ugdcvg - vgdcug) /\ (ddca)g)n_l - /‘ (ugddcvg - vgddcug) /\ (ddcwg)n_l
JoB B

The left-hand side of the formula above is identical to the left-hand side of (2.9). To
prove that the right-hand side above converges to the right-hand side of (2.9), we prove
that the current (u.dd‘ve — veddu;) A (dd°w,)" ! on B converges to (udd‘v — vddu) A
(dd“w)"~! weakly, globally on B and locally smoothly on B \ S. The local smooth con-
vergence outside S is obvious. As for the global weak convergence, it follows from the
convergence u.dd°v; A (dd°w.)"~! — udd®v A (dd°w)"~! (and its symmetrical version
swapping u and v), proved by Demailly, cf e.g. [Dem85, Thm. 2.6 and Rem. 2.10]. [
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Applying Lemma 2.11 to X = X, u = ¢4, v = w = G, (recall that G.|yp = 0), we get

/ i (dd°Gy)" = / Gy ddCipy A (dd°Gy)" 1 + Y dGy A (ddSGy)"!
BNX, BNX; IBNX,

=:I; =i
By Lemma 2.12, in order to get a lower bound for J;, it is enough to bound from above

the quantity [y5-\ (—:) d°||z||? A (dd€||z||*)" 1. Applying 29) tou = —¢p, v = w =

|z|I*> — 1, we find

Lo oz A Gz = [ () (a2
/ (Ilz[[> = 1) dd“p; A (dd®||z]|*)""
BNX;
c 2\n
[ (0 @zl

ci| [ (oetrcov],

N

N

where C; is such that dd°||z||? < Cjw on B and C; is given in (2.5).

We now take care of the most singular term I;. Set
yi(x) == / <y A (dd°Gy)" 1 A [X4]
B

so that p := ; 'ddyp; A (dd°G,)"~1 A [Xy] is a probability measure on B (depending on
x). We claim that for any x € B there exists a constant v > 0 independent of f and x
such that 1 < ¢ < v. The uniform upper bound follows from the same computations
in the proof of Proposition 2.3. By (2.7) we can infer that

/ ddey; A (dd°Gy)" P A [X] = / ddC||z]2 A (dd°G2)" 1 A [X4]
B B

> v((dchx)”*1 A [Xi], x)
> v([X¢],x) =m(Xp,x) > 1

In the second inequality we used the fact that r — r% fIBr dd°||z||> A T is decreasing to

v(T,x) when r | 0 (see (2.2)). The first equality follows from (2.3) while the second
one comes from Thie’s theorem. Recall that the origin of B is identified with the point x.
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We now use Jensen'’s formula and (2.8) to obtain

exp(—al(x)) = exp (/ZG]B —oc'thxdy>

< L[ e gy A (ddeGy) 1 A[X]
Yt JzeB
1 dd; A (dd°Gy)" 1 A [X4]
Yt JzeB [ Px(z)[|*7
< Co/ ddye A (dd€||z]*)" 1 A [X]
z€B | @ (z) |22 '

where we can assume w.l.o.g. that av < 2. By Fubini’s theorem, we have

/ e W™ A [X4] / et Ut o A [Xy)
XEIBl/z XE]Bl/Z

N

N

K- e ™ A [X4]
X€]B1/2

dd gy A (dde[z]|*)" 1 A [Xd]
Co- K- / "A[X
0 Jx€By )y ( zeB ||q>x(z)||av+2nfz w [ t}

c 2\n
coke [ (L, St ity n Ry A i,

By || @x(z)[ 122

N

N

where K := exp{—a C{ [ $rw;'}.
Moreover, using the same computation as in the proof of Lemma 2.13 below, one can
2—av

check that if B := 5 > 0, there exists a constant Cﬁ > 0 such that the inequality of
(n,n)-currents below holds on B

1
-1 c 2B\n

Fixz € B and for any x € B let fy(z) := || Px(z)]||. We define an extension of fy to X by
Fu(z) = {X'Mz) ifx € B

0 else.

(dde[|x|[?)" < Cp (dd5]| P (2) )"

Here, x is a smooth cut-off function such that Supp(x) C Band xy = 1 on By ;. Itis
easy to check that Fy is an Aw-psh function on X" for some A = A big enough (that a
priori depends on U; but can be chosen independently of x € B;,;). Thus

1
dd°||x|))" A [X] < C AdC ||, (2)|128)" A [X
/xe]Bl/z ||<I>x(z)||“v+7—”—2( (1) A [Xe] B xE]Bl/z( 1@ () [|77)" A [X]

Cp [ (Aw +ddSE(zP)" A [X)
xekX
< CIB'AH~VZ:C2.

N

It then follows that

/ e " A X)) < Co - Cz'K'/ ddypy A (dd||z[*)" A [Xi] < G- K,
XE]Bl/z zeB
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where C3 = CgCgCgC{”l - V. The last inequality follows from the fact that on By,
we have dd°y; A (dd°||z||?>)" ! < (6; + dd°¢;) A (Ciw)" "1, and one can dominate the
integral of the right-hand side on B; by its integral on X; and use (2.1). This is the
conclusion. O

Lemma 2.12. — With the notations introduced at the beginning of the proof of Theorem 2.9,
there exists a constant C = C(n) > 0 such that for all x € By, C CNand z € X; NS*N-1,

1
@11) Gz A (@d]|z]]*)" < d°Ga A (dd°G)" T < Caf[2]|* A (dd?|2]%)"

Proof. — One knows that there exists a neighborhood U of S*N~!  C¥ not containing
x such that dd°||®, ||?> defines a Kahler form w, on U. This follows for instance from the
fact that @, can be extended as an holomorphic map to an open neighborhood of the
closed ball — and that neighborhood can be chosen to be independent of x € B;/;. On
U, wy is comparable to the euclidean metric on CN and therefore, wy and Wey induce
uniformly equivalent Riemannian metrics gx and ey on U N X; first, and then as well
on the real hypersurface X; N S*N~1; we denote them by g’ and g/ , respectively. In
particular their volume forms dVg,,dVy/  are equivalent too. One has dVy = 1,dVy,

geucl
where v is the restriction to X; of the unit outward radial vector

nif( (za —I—Z‘a>
= ]aZ]' ]82]-

SZNfl

Hence, on X; N one has

i\n—1 .
AV, = o(dd 2|2y =2(Z) " d 2|2 A (dd2]2)" .
In the same way, dVg; = 1,,dV,, where v, is the restriction to X; of the unit outward
vector with respect to dd°||®. ||, hence v, = ®%v. Therefore one has on X; N S*N-1,

i i1 _
AV, = 1o, (A @x )" = @3 (1o (dd2[2)") = 2(=) " a2 A (dd s |2)"

/ -1
= 2 L)dG A (ddoGy

given that Gy = 1 log ||®||? vanishes on the sphere and that d° logu A (dd logu)"~! =
%dcu A (dd°u)"=1 for any smooth function u. This shows that the above two volume
forms on X; N S*N~1 are uniformly equivalent on X; NS?N~! hence it ends the proof. [

Lemma 2.13. — Let B > 0 and B C C" be the unit ball. Then ||z||* is psh on B and there
exists a constant Cg > 0 (that depends only on B) such that
-1

b dd||2]|? < dd®|z]|% <

I . c 2
EEES I

_—F

Iz[]20=P)

Proof. — Let x : Rt — R be defined as x(t) := t# and u := ||z||%. One has
ddx o u = pub1 (ddcu — (1= B)utdu A dfu) .
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Note that min{1, 8} - dd°u < dd‘u — (1 — B)u~'du A d°u < max{1,B} - dd°u. Observe
that he hermitian matrix associated to the (1,1)-form du A dcu is (Zizj);;. The latter has
rank one and its non-zero eigenvalue coincides with its trace, i.e. u. Therefore the
eigenvalues of the hermitian matrix A :=I,, — (1 — B)u ! (Zizj);; are 1 (with multiplicity
n — 1) and B (multiplicity 1). This ends the proof. O

3. Normalization in families

Previous section allows us to check hypothesis (H1), as soon as the mean value of
sup-normalized 6;-psh functions is uniformly controlled. It is classical that one can
compare the supremum and the mean value of §-psh functions on a fixed compact
Kéhler variety (see [GZ17, Prop. 8.5]). We conjecture that the following results holds

Conjecture 3.1. — In the Setting 2.1, there exists a constant C > 0 such that: the in-
equality

1
su t—C<*/ twi < sup ¢y
ti ¢ V Jx, ¢ XtP 4
holds for all t € Dy, and for every function ¢; € PSH(Xj, 6;).

In a preprint version of this paper, we claimed a proof of the conjecture above but a
referee, whom we thank, pointed out a gap. In this section, we propose a large class of
families for which the conjecture holds. More precisely, let us consider the following

Assumption 3.2. — In Setting 2.1, we assume additionnally that one of the following condi-
tions is satisfied by the family T : X — D.

1. The map 7t is projective.

2. The map 7t is locally trivial.

3. The fibers X; are smooth for t # 0.

4. The fibers X; have isolated singularities for every t € D.

Recall that 7t is said to be

— projective if we have a commutative diagram as below

X ———— S PVNxD

— locally trivial if, up to shrinking ID, there exists a euclidean open cover (Uy,), of X
and a collection of isomorphisms

Fo: Xy, — (UyNXp) x D
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such that the following diagram is commutative

Xlu, Fe (Uy N Xp) x D

3.1) R -

D

For instance, if A’ is smooth and if the map 7 is a holomorphic submersion, then
7t is automatically locally trivial.

The main result in this section is the following

Proposition 3.3. — In the Setting 2.1 and if Assumption 3.2 is satisfied, then Conjecture 3.1
holds. That is, there exists a constant C > 0 such that: the inequality

sup @ C<1/gow”<supq0
t—Cs o tWE S t
X V Xf X

holds for all t € Dy /5 and for every function ¢; € PSH(X, 6;).

We will prove Proposition 3.3 in several independent steps.

e In §3.2, we prove the locally trivial case.

e In § 3.3, we treat the case of isolated singularities.

e In §3.4-3.5-3.6 we introduce the material (Sobolev and Poincaré inequalities, heat
kernels and Green’s functions) that we will use in the final section.

e In § 3.7, we establish at the same time the projective case and the case of a smooth-
ing, thereby completing the proof of Proposition 3.3.

By combining the above result with Theorem 2.9, we get the following

Theorem 3.4. — In Setting 2.1, let us choose a positive number o € (0,a(®)), which is
possible thanks to Corollary 2.4. If Assumption 3.2 is satisfied, there exists a constant C, > 0
such that for all t € Dy /5 and for all ¢; € PSH(X, 0;), we have

/X e—“(‘Pt_suPXt ?’t)w? < G,
t

3.1. Irreducibility of the fibers. — The irreducibility of all the fibers is a necessary
assumption for the left-hand-side inequality in Conjecture 3.1 to hold as the following
example shows:

Example 3.5. — Consider X C IP? x C where

X :={([x:y:2],t); xy—tz* = 0}.
The variety &X' is smooth and comes equipped with the proper morphism 7 : X — C
induced by the second projection P2 x C — C. Set X; = {[x : y : z] € P? : xy = tz?}.
Note that X; is a smooth conic for t # 0 while Xo = {[x : y : z] € P? : xy = 0} is the
union of two lines. The quasi-psh function ¢ on IP? defined by

1 1 log?2
o(lx:y:2]) = 7 (log(|x + [z) +log |y[*) — 5 log(Ix[? + [y + |2[2) + =5=
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clearly induces a w-psh function ® on X, where w = wgs + dd°|t|?,

P([x:y:zl,t) =¢([x:y:z]).
We set ¢ := P|x, and w; := w|x,. A simple computation shows that sup, ® = 0
and it is attained at points ([x : y : z],t) such that |y|> = |x|> + |z|>. We also find that
supy, ¢+ =0 and the supremum is attained on the set

1
St = {[x:l:z] s x| :m- <\/4|t]2+1—1),22:xt1}.

Ast — 0, S; becomes the circle C := {[0 : 1 : ¢];6 € R} C Xp. Note also that
Xo=+¢U/l,where(:={[0:y:z]}and ¢' := {[x:0:z]} and C C ¢. The open annulus
Uy = {[z%: t:z];1 < |z|? < 2} C X; satisfies
Wt > 0
Uy
for some § > 0 independent of t as well as

1
¢ilu, < 5 (log [t] +1)

from which it follows that

lim Prwp = —00.
t—0 J X,
3.2. The locally trivial case. — In this section, we prove Proposition 3.3 under the

assumption that 7t is locally trivial; we borrow the notations from Diagram (3.1).

One can reduce the problem to showing that there exists a constant C > 0 depending
only on 7t such that given any sequence of complex numbers t; — 0 and any functions
¢x € PSH(X4,, 6y, ) such that supy, ¢k = 0, one has

/ (pkw?k > —C.
X,

By compactness of n1(D, /s2), one can assume that « ranges among the finite set
{1,...,r} and without loss of generality, one can assume that U, 11 N U, # @, for any
a € {1,...,r — 1}. Up to splitting the sequence (¢y) into (at most) r subsequences, we
can assume that for every k, ¢ attains its maximum in the same set U,, for some fixed
ag € {1,...,r}. By simplicity, we assume that oy = 1.

Let Gy : Uy N Xo — Uy N Xy, be the biholomorphism defined as the inverse of the
restriction of F, to U, N X;, and let us analyze the sequence of functions ¥, \ := G;,k(Pk'
As F; (wp + idt A dt) is commensurable to w, there exists C > 0 depending only on 7t
such that

(3.2) C'wo < G ywy, < Cu.

In particular, up to increasing C, one can assume that G; 6y, < Cwy. As a result, one
has 1, € PSH(U, N Xy, Cwy).
The family (i x )k is a family of non-positive Cwp-psh functions on the complex space

Uy N X attaining the value zero there, so it is relatively compact for the L _topology,
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cf e.g. [GZ17, Proposition 8.5]. In particular, given any compact subset U; € Uj, the
integral || u 1 pwf admits a lower bound depending only on U] but not on k.

Next, the family (¢, x)x is a family of non-positive Cwp-psh functions on U, N Xp.
Therefore, either it converges locally uniformly to —co or it is relatively compact on
each compact subset. From (3.2), it follows that the family of automorphisms Hy :=
(GZ_,ID ‘U1ﬂuzﬁth oG ‘ulmuzmxo of Uy NU, N X satisfies

C_l(UQ < H,fwo < Cwp and ¢2,k = H];kwl,k-

One deduces then easily that for any compact subset Uj, € U; N Uy, the integral
| u, o kw( admits a lower bound independent of k. In turn, this implies that (1)«

is relatively compact for the L] _topology on the whole U, N Xo.

By iterating the argument, one finds that for any «, the family (¢, )k is relatively
compact for the L{. (U, N Xo) topology and using the estimate (3.2) as above, one con-
cludes easily that | X, ¢rwy, admits a uniform lower bound as claimed.

This shows that Proposition 3.3 holds whenever 7 is locally trivial. An easy conse-
quence is the following

Corollary 3.6. — In Setting 2.1, there exists a discrete set Z C 1D such that for every compact
subset K € ID \ Z, there exists a constant Cg such that

tw”>—CK
/Xt(P t 2

for any collection of functions ¢; € PSH(X, 0;) such that supy, ¢t = 0.

Moreover, one can take Z = © provided that the family 7 : X — 1D admits a simultaneous
resolution of singularities, i.e. a proper, surjective holomorphic map f : Y — X from a Kihler
manifold Y such that for any t € D, the induced morphism f|y, : Yy — X is a resolution of
singularities, where Y; := f~1(X;).

Proof. — Let f : Y — X be a resolution of singularities of X. One can assume that )
is a Kdhler manifold; let us pick wy a Kdhler form on ). The induced map p := 7o f :
Y — D is surjective, hence by generic smoothness, it is smooth over the complement
of a proper analytic subset Z of ID. In particular, Z is discrete. Note that over Z, the
fibers of p may have several irreducible components.

We denote by f; the restriction f|y, : Y; — X; of f to the fiber Y;, where Y; := p~1(#).
For any t € D\ Z, the map f; is bimeromorphic, i.e. it is a resolution of singularities
of X;. Let us choose K @ ID a compact subset. There exists a constant Cx such that
f*w < Cxwy on p~1(K). In particular, for any ¢ € K, one has f; ¢; € PSH(Y;, CkCe wy)
and supy, f;'¢: = 0. Now, if we additionally assume that K € D \ Z, we can apply the
result above to the smooth family p|,1 (k) : p~1(K) — K to find another constant Cj; > 0
satisfying

| (Fronw > —ck

forany t € K. As w} > C;" ffw}, we deduce that

| et = —Cic-c
t
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which concludes the first part of the proof. The second statement is an immediate
consequence of the proof of the first one. Indeed, if Y; is smooth (as an analytic space),
then 7t o f is smooth in a neighborhood of Y; and the argument above can be run over
a neighborhood of t. O

3.3. The case of isolated singularities. — In this section, we prove Proposition 3.3 in
the case where all fibers X;, t € ID, have isolated singularities.

Remark 3.7. — We would like to start with two observations.

e This case includes the case where n = dim X; = 1.

e If one only assumes that X has isolated singularities, then it is easy to check that
there exists ¢ > 0 such that X; has isolated singularities for any t satisfying || < e.
This is because the locus Z C X where 7t is not smooth is an analytic set such that
dim(Z N Xp) = 0 and by upper semi-continuity, Z has relative dimension 0 over a
neighborhood of 0 € D.

We now proceed to proving Proposition 3.3 in several steps.

Step 1. Localization of the problem at t = 0.
Let f : Y — X be a resolution of singularities . The induced family o f : V — D
is generically smooth over D so for r > 0 small enough, the restriction of 7 o f to the
inverse image of ID, has a most one singular fiber, corresponding to t = 0. In particular,
the family )V — ID, is locally trivial away from Yy. Applying the result in the locally
trivial case (cf. § 3.2) to the collection of f*6;-psh functions f*¢;, we see that for every
compact subset K @ IDj, there exists a constant Cx independent of the chosen family
such that

sup [ (—¢r)wi < Ck,

tek 7 X
cf also Corollary 3.6. This shows that it is enough to prove that for any sequence t; — 0
and any collection of sup-normalized 6y, -psh functions ¢;,, one has

sup [ (—¢p)wp, < oo

k=1 Y Xy
Step 2. Choice of a good covering.
As the fibers are reduced, it follows from the jacobian criterion for smoothness that the
smooth locus of 7t coincides with the union of the smooth loci of X; when ¢ ranges in D.
Recall that Z, the singular locus of 7, is an analytic space of relative dimension at most
zero. It has finitely many irreducible components (say when restricted to 777 (IDy /2))
and we can assume without loss of generality that this number is equal to the cardi-
nality of Z N Xp. Let (Vi ). be a finite collection of (small) open balls in X" centered at
the (finitely many) singular points of Xy. Up to adding a finite amount of balls to the
collection, one can assume that

(i) The reunion V := U, V, is an open neighborhood of Xy C X.
(ii) Each point of Z N X belongs to exactly one element V, of the covering.
(iii) For all «, there exists p, € C®(V,, R) such that w|y, = dd°p,.
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(iv) There exists r > 0 such that for all &, one has
ZNnaV, N (D) = @.

Up to substracting a constant to p,, one can assume that p, is non-negative. More-
over, there exists a constant C; > 0 such that p, < C; on V,, for any a. Let (x.)a be
a partition of unity associated to the covering (Vy),. That means that ), x, = 1 and
Supp(x«) C Vi. Finally, let p := Y xapa. If follows from (ii) that one has w = ddp
in some neighborhood W, of each point of Z N X,. We pick a relatively compact open
subset W, € W, and set W := UW,. Up to decreasing r a little, one can assume that
ZNoWnN n_l(ﬁr) = @. In particular, there exists § > 0 such that for any t € D,, one
has d,(OW N X, Z) > 4. In summary

(3.3) 0<p<C, w=ddponW, d,(OWNX;,Z)>6 forallteD,.

Step 3. Weak compactness locally outside Z.

Let t; be a sequence of numbers converging to zero, and let ¢; € PSH(X;,, 6y, ) such

that supy, ¢y, = 0. We claim that there exists a sequence of points x; € X, and a
k

constant C, > 0 such that

(1) @r(xx) > —Ca.

(if) dw(xg, Z) = 6/2.
Indeed, let yx € X; be such that ¢ (vx) = 0. If d,(yx, Z) > /2, then we are done.
Otherwise, it means that we have y;, € W by the third item of (3.3). Now, the function
Cop + ¢, is psh on W so by the maximum principle, there exists xy € 9W such
that (Cop + @1.) (%) = (Cop + ¢1.)(yk) = 0. By the first item of (3.3), we deduce
@1, (xx) = —C, where we set C; := C;Ce.

Let U := {x € 7 Y(D,);d(x,Z) > 6/2}. The map 7 is smooth on U and one can
cover U by finitely many open subsets (U;)1<j<, isomorphic to (U; N Xg) x ID, over D,.
Because of (i), we can argue as in the locally trivial case (cf. § 3.2) by exporting the
functions ¢tk|Ujﬂth to the fixed space U; N Xy and get relative compactness there. In
particular, one can find a constant C3 > 0 independent of k such that

3.4 / — o)W < Cs.
(3.4) Uﬂer( ¢r)wp < Cs

Step 4. The integral bound.

On W, one has w = ddp. This implies that w” = (dd°p)" + T for some smooth, closed
(n,n)-form T on 7~1(ID,) such that T|;y = 0. Let us introduce constants C4, C5 such
that —Cyw" ! < (dd%)" ! < Cuw" tand T < Csw". As the complement of W in
7~1(ID,) is included in U, it follows from (3.4) that

(3.5) | (ConT<CsCs

f
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Moreover, one has

[, (—ou)dap) = [ —pdd<y A (dap)" !

tx Xty

=~ [ p(Oy + dd“gy) A ()" + [ oy, A (ddp)™!
Xt X
< CiCy / (8, + dd°pr) Aw"™ ' + CoCiCy - V

th

< 2C1CCo - V.
All in all, one finds
/ (—pr)wi, < Co
X

k

where Cg = C3C5 +2C1C4Cp - V.

3.4. Sobolev and Poincaré inequalities. — In this section, we work in the Setting 2.1
above and we assume from now on that the relative dimension n = dim¢ X; satisfies
n > 1, since the case n = 1 has already been dealt with in § 3.3, cf. Remark 3.7.

For t € D, we set X; := 7t !(t) and denote by X;® the regular locus of X;. We fix a
Kéhler form w on X and set

Wt = (,(J‘Xt.

Proposition 3.8. — Let K € D. There exists Cs = Cs(K) such that

-1

e ecr, ([ Aer) " <o [ 1R+ e

Remark 3.9. — The inequality above extends immediately to the functions f €
Wl’z(Xieg), i.e. such that f,df € LZ(Xfeg wr).

Proof. — Because of the existence of partition of unity, the statement above is local.
That means that it is enough to show the above inequality for any t € K and any
f € CP(U; N X;°®) where U; C X are open sets such that UU; = X.

We fix such an open set U; and we drop the index i in what follows. Without loss
of generality, one can assume that there exists an embedding U; < CN and that w|y
and wen |y are quasi-isometric. Because Sobolev inequality is essentially insensitive
to quasi-isometry, it is enough to show the inequality replacing w; by wen|y, where
Ut =Uun Xt.

Now, the isometric embeddings (U;%, wen|y,) < (CN,wen) provide a family of
minimal submanifolds (i.e. with zero mean curvature vector) of the euclidean space by
virtue of Wirtinger inequality. The expected inequality is now a direct application of
Michael-Simon’s Sobolev inequality [MS73, Thm. 2.1]. O

Proposition 3.10. — Let K € D. There exists Cp = Cp(K) such that

vte K Yf e WRAX®), [ IfPwr <Cp [ 1af, wf.
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In the statement above, the space W&’z (X;°®) is defined as the space of functions f on

X;® such that f,df € L?(X;®,w;) and Jx, fwit =0.

Proof. — First, we claim that for each t € D, there exists such a Poincaré constant Cp ;.
Indeed, thanks to [Beil9, Thm. 0.2], the Laplacian A, is positive, self-adjoint and its
spectrum is discrete. It remains to show that its kernel is one-dimensional. Now, if
f € W2(X;®) is such that A;f = 0, it means that for every u € W?(X;*®), we have
(Vu,Vf) = 0. In particular, taking u = f shows that f is locally constant on X;®. As
X; is irreducible, Xng is connected and the result follows.

Given the absolute case explained above, the family version of Poincaré inequality
follows from Proposition 3.8 and the irreducibility of the fibers: we refer the reader
to [RZ11b, Prop. 3.2] for a detailed argument (the projectivity assumption made by
Ruan-Zhang being unnecessary for this part of the argument). O

3.5. Heat kernels and Green’s functions. — In this section as well as in the following
section 3.6, we go back to the absolute case and consider an irreducible and reduced
Kahler space (X, w) of dimension n = dim¢ X satisfying n > 1.

When X is smooth, it is well-known (cf e.g. [Cha84, § VI]) that there exists a smooth,
positive function H : X x X x (0, +00), symmetric in its space variable and such that if
A = tr,, dd°, one has

o (—Ay+0¢)H(x,y,t) =0.

e For every x € X, one has weak convergence H(x, -, t)w" —O> Or.
t—

In the general case where X may have singularities, one can introduce X, = X \ V;
where V, is a closed e-neighborhood of Xing with smooth boundary. Then, there exists
a unique smooth, positive function H, on X, x X, x (0, +0c0) such that

o (—A, +09:)He(x,y,t) =0.

e H.(x,y,t) — 0 whenever x or y approaches 0X,.

e For every x € X,, one has weak convergence H,(x, -, t)w" ;; Or.

Moreover, given (x,y,t) € X, X X, X (0, +00), the function (0,&0) > € — He(x,y,t)
is decreasing. Using [Cha84, VIII.2 Thm. 4] and its proof, we additionally see that the
limit H := lim, H, is everywhere finite and satisfies

e H is positive and smooth on Xeg X Xpeg X (0, 4-00).
o (—Ay+01)H(x,y,t) =0.
e Forall x,y € Xyeg and t,s > 0, one has

(3.6) H(x,y,t+s) :/XH(x,-,t)H(-,y,s)w”.

e For any x € Xeg, one has H(x, -, t)w" t—0> Oy weakly.
—

When X C PN is projective and w = wgs|x, Li and Tian have showed in [LT95] that
there is an absolute inequality

(3.7) H(x,y,t) < Hpr (dpn (x, ), t)
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for any x,y € Xreg and t € (0, +00), where Hpx is the heat kernel of (IP", ws), whose
dependence in the space variables x,y is known to reduce to a single real variable,
namely the distance between those two points.

In particular, H(x, -, t) is bounded on Xreg for any x € Xieg and t > 0. Since Xing has
real codimension at least two, it admits cut-off functions whose gradient converges to
zero in L?, and this allows one to perform integration by parts as in the compact case
for bounded functions in W'2. We refer to [LT95, Lem 3.1] for more details; we will
also rely on the latter result which states that H(x, -, t) € W12 and that is satisfies the
conservation property

Vt>0/ Hw" = 1.

Below are a few more properties that will be useful later, which are certainly standard
in the smooth case. For this purpose, one introduces the function

1
G(x,y,t) == H(x,y,t) — v

where V = f yx w". The key information for us will be given by the fourth item, for
which the arguments are borrowed from [CL81], see also [Siu87, App. A].

Lemma 3.11. — Assume either that X is smooth or that X C PN is projective and w = wys|x.
Let x,y € Xreg We have
1. G(x,y,t) V’fX X, -, Hw" =0and [, |G(x, -, t)|w" < 2.

2. |G(x,y, )!2 G(x,x,)G(y, y, t).
3. H(x,x,t) — 400 when t — 0.
4. There exists a constant Cqy depending only on the Sobolev and Poincaré constant of
(Xreg, w) such that
Glxy,1)| < Cot™

forany x,y € Xieg and any t > 0.

Proof. — Under the assumptions on X, we know that H(x, -, t) is bounded on X, in
W12 and satisfies the conservation property. We will only rely on these non-quantitative
properties to establish the items below, and not on the more precise inequality (3.7)
which certainly does not hold if X is not projective.

(1) a trivial consequence of the positivity of H and the fact that [, H(x, -, t)w" = 1.

(2) is classical when X is smooth, so we assume for the time being that X is projective.
Let K, be the Neumann heat kernel on X, let V; := f X. w" and let ée = K¢ — % Then
we have

(x,y,1) Ze /\“t‘Pze )Pie(y)

i=0
where (¢; ) is an orthonormal basis of L?(X.) consisting of Neumann eigenfunctions
of —A with eige:nvalues A o Note that ¢p, = \/1—‘75 By Cauchy-Schwarz, we find that
|Ge(x,y,1)]* < Ge(x,x,t) - Ge(y,y,t). Thanks to [LT95, Lemma 3.2], K, converges to H
locally smoothly on X7, x (0, +00) when ¢ — 0, hence G; — G in the same way and
we get the second item.
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(3) Since H > H,, It is enough to show the third claim for H,. We consider a Sturm-
Liouville decomposition as before

e(x,y,t) Ze V’flng x)ie(y)

i=0

but now, (; ) is an orthonormal basis of L?(X,) consisting of Dirichlet eigenfunctions
of —A with eigenvalues y; ., cf [Cha84, VII (31)]. The sought property now follows since
Y 1; ¢ (x)? is the norm of the unbounded functional L2 N C®(X,) > f +— f(x).

(4) We start from the identity (3.6), which holds for G as well as one checks easily.
Taking y = x and differentiating with respect to s and eventually setting s := t, one
finds

~G'(x,x,2t) = ||dG(x, -, 1) 7> > (Cs(Cp + 1))_1HG(9€,vf)\linzfn1

since integration by parts is legitimate as we explained above and [, G(x, -, t)w" = 0.
Moreover, the interpolation inequality gives

G(x,x,2t) = || G(x, - )|} < IG(x, - )II”*1 1G(x, )II”*1

hence
1G(x, - DI 2 >277G(x,x,20)"%
and
1
—EG’(x,x,t)G(x,x,t)_l_% >C!
for C = néu - Cs(Cp + 1). Integrating this inequality w.r.t. t and using the second item,

we get the fourth item — recall that G(x, x,t) > 0 for any x € Xreg given its expansion
as power series, cf (2). O

Under the assumptions of Lemma 3.11 above, the integral

—+o0
G(x,y) ::/ G(x,y, t)dt
0
is convergent whenever x # y and defines a function G on Xyeg X Xreg such that
G(x,-) € L'(Xreg). Moreover, since (—A + 9;)G(x,-,t) = 0, G(x,,t) 7 0 and
— 100

G(x, -, t)w" —>O Oy — %, we have
t—

n
ddG(x, ) A" = - =,

ie. forall f € C§(Xreg), we have

(3.8) /AfG V/fw— %),
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Finally, the first and fourth item of Lemma 3.11 enable us to find a lower bound of the
Green function as follows

1 +oo
(3.9) Glxy) = [ Gluyndt+ [ Glxy,ndt
1 ¢
~ VvV on-1

where C only depends on the Sobolev and Poincaré constants of (Xreg, w).

3.6. Green’s inequality for general psh functions. — In this section, we assume that
the assumptions of Lemma 3.11 are satisfied.

Let us first generalize Formula (3.8) to some functions f € C%(Xeg) that are not
necessarily compactly supported. For that purpose, let p : Y — X a log resolution of
singularities, let D be the exceptional divisor of p and let Y° := p~1(Xyeg) = Y\ D. We
claim that for any f € C*(Xyeg) such that p*f extends smoothly across D, the formula

(3.10) /X Af - G(x v/ fw"

reg
holds. First observe that all the terms are well—defmed as one sees by pulling back by
p, which is an isomorphism over Xie;. Indeed, recall that x € Xy and that G(x, -) is
locally bounded near Xjing so that p*G(x, -) is in LY(Y°, wy) for any Kahler form wy on
Y.

Next, we choose a family (;)s of cut-off functions for D. As they are identically 0
on D, they come from X under p and one can see them either as functions on X or Y
interchangeably. It is classical (cf e.g. [CGP13, Sect. 9]) that one can choose x; such that
both dx; N d°xs and +dd°xs are dominated by some fixed Poincaré metric wp (inde-
pendently of ). In particular, using Cauchy-Schwarz and the dominated convergence
theorem, one finds

(3.11) hm/ | fedxs +df ndoxs +dxs AdF| At =0
reg

by the dominated convergence theorem. Formula (3.10) is now a direct application of
(3.8).
The next result is the key for the proof of Proposition 3.3.

Claim 3.12. — Under the assumptions of Lemma 3.11, let ¢ € PSH(X,w), V = fX w"
and let x € Xieg. Then, one has

V/q) >nV -inf G(x, ).

reg

Proof. — Replacing ¢ by max(¢, —j) and letting j — o0, one sees that it is enough
to prove the claim for bounded functions ¢. Next, thanks to Demailly’s regularization
theorem, one can write p*¢ as a pointwise decreasing limit of smooth function 1, sat-
isfying p*w + ewy + ddype > 0 for some fixed Kdhler metric wy on Y. Using (3.10) and
setting G, := G(x, -), one finds

V/(p _hm andde,Ugpr
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Moreover, as G, have zero mean value, one has
/ p* Gyddpe A p* ™t :/ (p*Gy — inf Gy)ddpe A p* w1
Yo Ye Xreg
= /Yo(p*Gx - }i{nf Gy)(p*w + ewy + ddpe) A p*w™ !
reg

- / P Gy A (p*w + ewy) A prw™ !
YO

+ inf Gy - (V—l—s/ywy A p*w”_l)

chg

>inf Gy-V+e- ()i(nf Gy - /wa A p*w”fl — /Y p*Gywy A p*w”fl)
reg °©

reg

Taking the limit as ¢ — 0, we get the expected result. O

3.7. Proof of Proposition 3.3. — We can now finish the proof of Proposition 3.3. We
are left to treating the cases where 7t is projective or X; is smooth for ¢t # 0. Moreover,
we can assume that n# = dim X; > 2 since otherwise, X; would have at most isolated
singularities and we could then appeal to § 3.3, cf. Remark 3.7.

Moreover, the content of Proposition 3.3 is insensitive to replacing w by another Kih-
ler metric on X. In the case where 7 is projective, i.e. if we have X C PN x D such that
7t commutes with the second projection, then we will assume that w = wgs| x.

Finally, in the case where X; is smooth for ¢ # 0, it is sufficient to prove Proposi-
tion 3.3 for t # 0 since it is already well-known that the L!-sup comparison holds on
the fixed irreducible complex space Xp.

We know from § 3.4 that the Kahler manifolds (X;®,w;) admit uniform Poincaré
and Sobolev constants. As the volume V of (X}, wy) is constant, it follows from (3.9)
that there exists C; > 0 independent of ¢ such that

Vx;]/ € X;eg/ Gt(x,]/) 2 _CG/

where G;(+,-) is the Green function of (X;, w;). As ¢; is sup-normalized and upper
semi-continuous, there exists x; € X;°® such that ¢;(x;) > —1. Applying Claim 3.12 to
¢ := ¢ and x := x;, we find

1

— —@p) w! <nVCe + 1.
V Xf( qot) t G

The Proposition is proved.

4. Densities along a log canonical map

We now pay attention to hypotheses (H2) and (H2"). We focus in this section on the
integrability properties of some canonical densities.
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4.1. Semi-stable model. —

Setting4.1. — Let 7t : X — ID be a proper, holomorphic surjective map from a Kihler space X
with connected fibers to the unit disk of relative dimension n. We make the following assumption

4.1) For each t € D, the pair (X, X;) has log canonical singularities
where X; = 7t~ 1(t) is the schematic fiber at t € D, cf [KM98, Def. 7.1].

About the singularities. In Setting 4.1, the following properties hold

1. Every fiber is reduced, Ky ,p is Q-Cartier and X" has log canonical singularities.

2. The space X has canonical singularities if and only if the general fiber X; has
canonical singularities, cf [KM98, Lem. 7.2].

3. The condition (4.1) is preserved by finite base change from a smooth curve, cf
[KM98, Lem. 7.6].

4. If (X, Xyp) has lc singularities, then (X, X;) has lc singularities for |t| < 1, see
[Kol13, Cor. 4.10 (2)] and [Kol18, Thm. 2.3].

5. By loc. cit., the condition (4.1) is equivalent to asking X" to be normal, Q-
Gorenstein, and that each fiber X; has semi- log canonical singularities.

By [KKMSD?73], one can find a semi-stable model of 7r(!). More precisely, up to
shrinking ID, there exists a finite cover ¢ : t — #* of the disk for some integer k > 1 and
a proper, surjective birational morphism f : X' — &' x, D

’*>X>< D, x

(4.2) \ lprz l

D—* 5D

such that X’ is smooth, f is isomorphic over the smooth locus of 7 and such that
around any point x” € X{, there exists an integer p < n + 1 and a system of coordinates
(zo, .. .,2zn) centered at x’ and such that 77'(zo, ...,z,) = zo- - - Zp.

Additional assumption. Up to shrinking ID, one will assume that 7’ is smooth away
from 0 so that for any ¢ # 0, the induced morphism (g o f)|x/ : X; — X; is a resolution
of singularities. Note that X] need not be connected.

Let m > 1 be an integer such that mKy,p is a Cartier divisor. We can cover
X with open sets U; such that U; N X™® admits a nowhere vanishing section
Qu, € H°(U; N X™8,mKy,p). For any t € DD, the restriction Qui‘X;Eg defines a
nowhere vanishing section Qy[yes € HO(U; N X;°8, mKx,). In particular, mKy, is a
Cartier divisor for all . We want to understand the behavior of the volume forms
(Qu, AQu)|™ XS when t — 0. In order to do so, it is enough to work on X" x, ID

(DThe reference [KKMSD73] deals with the case of a proper morphism between algebraic varieties but
the construction extends to the analytic case mutatis mutandis, as stated in e.g. [KM98, Thm. 7.17]
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directly as explained below.

Reduction step. The finite map ¢ induces an isomorphism of Q-line bundles
Kxx,p/p =~ §"Ky/p. In particular, one can replace X by X x, D in the follow-
ing, or equivalently assume that ¢ = Idp; i.e k = 1. By what was said above, the "new"
family still satisfies the condition (4.1).

4.2. Analytic expression of the densities in a semi-stable model. — Let us start with
some notation. Once and for all, we fix an open set U := U, for some iy. We set () :=
Qu and Q; := Q) x&- One can cover f~(U) by a finite number of open subsets V; C X’

isomorphic to the unit polydisk of C"*! and endowed with a system of coordinates as

above. Welet V := V; be one of them. The goal is to understand f*() when restricted to

V, using our preferred set of coordinates. Finally, we set U; := U N X; and V; := V N X].
Next, we write

(4.3) Ky + Yo = f*(Ky + Xo) ZLIE

where the E;’s are f-exceptional divisors with a; > —1 for all i and Yj is the strict
transform of Xj. Note that some of the divisors E;'s may be irreducible components
of X{,. The others surject onto ID thanks to the additional assumption made in the
previous section. The divisor E := Y, E; is the exceptional locus of f and E + Yj has
simple normal crossing support. Under our assumptions, the analytic set

(4.4) NKlt(X, Xp) : U E))

contains the non-klt locus of every fiber X;, t € ID. This is an easy consequence of the
adjunction formula, at least when the X;’s are normal.

We now let x” € Y and we assume that the coordinates mentioned above are chosen
such that Yo = (zo---z, = 0) locally for 0 < r < p being the number of irreducible
components of Yy minus one on that chosen open set.

On V;, t # 0, the functions (z1, . ..,z,) induce a system of coordinates and the form
f*Q on V can be seen as a collection of m-th powers of holomorphic n-forms

O = gi(z1,. .., zn)(dzy A - Adzy) o™
for some holomorphic function g; on V; \ E, with poles of order at most (—ma;); along
E; N X;. The form Q A 7t (%)@n is trivialisation of m(Ky + Xo) over U™8. The pull-
back f*(Q A 7" (% £)*™) is a well-defined m-th power of a (1 + 1)-form on f~!(U™8)

with logarithmic poles along Yy that extends meromorphically to f~1(U) with poles of
order at most (—ma;) along E;. As

re®) - () -£ 2

i=0
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on V, the form f*(Q A r* (4) “™) is equal on that set to

dzg dz; dz, ®m
(_1)7?111(21 cee Zr)mgr[/(z) (Zl, e ,Zn) (Z VAN Z VANIEAN Z VAN er+1 VANCEIEIVAN d2n>

so that the function (V\ EUYy) 3 z = (=1)""(z1--2,)"gw(z)(21,--.,2n) extends to
a meromorphic function / on V, holomorphic along Yy and with poles of order at most
(—ma;)4 along E; and satisfying

h(z)

45 Qp = (=1)"™ dzy A -+ ANdzy)o™

( ) f t ( ) (Zl...zr)m( 1 I’l)

on Vi, for t # 0. When t = 0, one can also obtain a formula as above for f*()g but it

requires to first choose a component Yék) of Yy. Let 0 < i < r such that Yék) NVo = (z; =
0). On that set (say after removing E), one has

h(z)

@6)  fO= ()

— ®m
m(dzo/\---/\dzi/\---/\dzn> .
Note that if Xy (or equivalenty, Y) is irreducible, then r = 0 in the formula above.

Claim 4.2. — If X, has canonical singularities, then » = 0 and the meromorphic func-
tion V 3 z — h(z) is holomorphic on V.

Proof. — As X is normal, it is irreducible, hence Y is smooth and irreducible. In par-
ticular, the map f|y, : Yo — Xo induces a resolution of singularities.

As Xj has canonical singularities, the pull-back f*()g of the form 0y on Xgeg N U ex-
tends holomorphically across Yy N E. Given (4.6), it means that 7|V N Y, extends holo-
morphically along each E; N Yy. As h is holomorphic on V and does not vanish outside
Vo, its divisor is an n-dimensional variety supported on V N E, therefore div(h) = Y b;E;
for some integers b;. As E + Y is snc, the decomposition div(h|y,) = Y b;i(E; N Yp) is
the decomposition into irreducible components. As h|y, is holomorphic along the non-
empty set Yo N E;, we have necessarily b; > 0 for any i. The claim is proved. O

4.3. Integrability properties of the canonical densities. —

Definition 4.3. — In Setting 4.1, let w be a Kdhler form on X'. We define the function -y
onUN Xreg by

(QAQ)" = e Tw".

We want to analyze the integrability properties of e~7. Arguing as in the proof of
[RZ11a, Thm. B.1(i)] (see also [EGZ09, Lem. 6.4]), it is easy to infer from the normality
of X that given any small open set U’ C U, there exist bounded holomorphic functions
(fi,-++,f¢r) onU suchthat V(fy,..., fr) C UL, and

sing

reg

1
(47) VI, = - log ) Ifil*
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Let us pick a section sg € HY(X’, O4/(E)) cutting out the exceptional divisor E and let
us choose | - | a smooth hermitian metric on O y/(E). Given (4.7), there exists a constant
A > 0 such that

(4.8) fry > Alog|st|*
We have the following
Lemma 4.4. — Assume that Xo has canonical singularities and set wy := w|x,. Then up to

shrinking D, there exists p > 1 and a constant C > 0 such that for any t € D, one has
/ e Pwi < C.
Uy

Proof. — We set p := 14 6 for some § > 0 small enough to be chose later. Given (4.8),
we have

—PY 0 — AT (e WNe) %g/ “BAE (O A Oy )
Joe et = [ @A [ e (00 D)

Now, one can cover f~1(U;) by finitely many open sets V; = V N X] as above. On V,
the system of coordinates (zo, ..., z,) induces a system of coordinates (z1,...,z,) such
that we have
. _ P
Ise| 24 FH (O A Q) m < CT Tzl 2 4idzy Adzi A - Aidzy Adz,
i=1

for some uniform constant C thanks to (4.5) and Claim 4.2. Recall that V = [T/ ({|zi| <
1} c C**!and

Vi=Vn{zy---zp =t} = {(21,...,20) €Ct < |zi] <1} C D"
where the injective map is given by pr, _ [v, ie. the restriction to V; of the projection

map onto the last n coordinates in C"*1. For é small enough, the function D > z
|z| ~%4 is integrable with respect to the area measure; this concludes the proof. O

For the next lemma, we come back to the general case. We start by choosing a com-

ponent Yéko) of Yy, and we denote by X(()ko) the irreducible component of Xy birational

to YékO) via f. Next, we consider the reduced divisor F on X’ whose support consists

(k

of the union of the other components Y, ), k # ko, along with the divisors E; whose

discrepancy g; is equal to —1, cf (4.3).
Let iir be a smooth hermitian metric on Oy (F) and let sp € H°(X’, O/ (F)) such
that div(sp) = F. We let

(4.9) yr := —log(— log |sr[f,)-
Similarly, let Fg :== E — FN E, and let ¢y := log |sg,, 2.

Claim 4.5. — There exists 6 > 0 small enough such that for any € > 0, there exists a
constant C, such that for any t € D,

/ e(l+s)l/)pfé’lllkuf*(0t /\ﬁt)% < C..
fHUy)
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Proof. — The statement is local on &”, so it is enough to control the integrals over V;.

Up to relabelling, one can assume that YékO) NV =(z0=0),FNV = (z1---2, = 0)
so that for s+1 < i < p, f*() has a pole of order at most m — 1 along (z; = 0).

We implicitly assumed that V' meets Yéko) ; it actually does not matter much for the

computation which is insensitive to whether that condition is fulfilled or not. Using
(4.5), our integral is bounded by the following one

P 1
’ 7‘dACn
/sz i =il (= 10g|2|)”8 JS__L PEGE)

where =1 < a; < 0and V =]\ o{|zi| <1} c C"and V;, = VN {z---z, = t}. By
Fubini theorem, one can reduce the integral to Vp =V, NnCrt! (i.e. fixing Zpils e, Zn).

There is no harm in assuming that § < min; IJE”I' so that the integral is bounded by

1 P 1
. —  dAe
/Vp | e og e 1L g

Using polar coordinates, one can assume that ¢ is real (in (0,1)) and the integral be-
comes over Wi := {(ri)1<i<p € [0,1/2]7;r1...1, > t}

s 1 |
. -dA
/Wt [l ri(—logr)ite 11 o R

i=1 i=s+1 "¢

1

As W; C Hle{t < r; < 1/2} and the functions r +— f(*lolw and r > - are

integrable on [0,1/2], the conclusion follows from Fubini’s theorem. O
The result above allows us to generalize Lemma 4.4 when no assumption on the
central fiber is made. To do so, we first need some notation. The function ¥r is well

defined on &’ but it does not necessarily come from X. Given that Nklt(X, Xp) is an
analytic set in & and up to shrinking ID a little, one can construct a function p such that

ep<—-lond.
e p is quasi-psh and has analytic singularities along Nklt(X', Xp); in particular, it is
identically —oo on that set.
We set
P = —log(—p) onAX.

Up to scaling p, one can assume that
(4.10) f Y <yr
Next, we introduce for ¢ > 0 the function 7, := 7y — (n + 1 + 2¢)y defined on U. In
other words, one has
(4.11) I (A Q) = e T,

Lemma 4.6. — With the notation above, there exists a constant Eg such that

[
t

forany t € D.
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Proof. — In order to compute the integral, we pull it back by f and work on V;. We
have successively

|f*vel S —logsg| + log(—log [sF|)
S —log[sf| — log [sF|-

The first inequality is a combination of (4.8) and (4.10). To obtain the second inequality,
we use the fact that E = F U Fg; to split the term log |sg| while log(— log |s¢|) can be
absorbed by the more singular — log |sr|. The integral to bound becomes

[, [(=Tog lsel) + (= log s, |)"*<] e+ 1420 (00 A T)

t

Nl

which itself is controled by
/ IHEE £ (0, A TO) 0 + / AVE= b £+ (O A T )
Vi Vi

for any given § > 0. The lemma now follows from Claim 4.5. O

5. Negative curvature

In this section we apply our previous results to the study of families of varieties with
"negative canonical bundle": we consider families of manifolds of general type, as well
as families of "stable varieties".

5.1. Families of manifolds of general type. —

Setting 5.1. — Let X be an irreducible and reduced complex space endowed with a Kihler
form w and a proper, holomorphic map @ : X — ID. We assume that for each t € D, the
(schematic) fiber X; is a n-dimensional Kihler manifold X; of general type, i.e. such that its
canonical bundle Ky, is big. In particular, X is automatically non-singular and the map 7 is
smooth. One can view the fibers X; as deformations of Xo.

We fix © a closed differential (1, 1)-form on X which represents c¢1(Ky,p) € H;(i—,l (X)
and set 6; = ©|x,. Shrinking ID if necessary and rescaling, we can assume without loss
of generality that

—w <O w.

Lemma 5.2. — In the Setting 5.1, the quantity vol(Kx, ) is independent of t € D.

Proof. — We work in two steps. First, we assume that the family 77 : X — D is pro-
jective, i.e. there exists a positive line bundle L over X'. In that case, we know that the
invariance of plurigenera holds [Siu98, Pau07] in that the function t — hO(Xt, mKy, ) is
constant on ID, without even assuming that X; is of general type for all t. In particular,
it would even be enough to assume that only Xj is of general type from which it results
that X; is of general type for all f and that the volume vol(Kx, ) is independent of .
Coming back to the general case, we know that Ky ,p is big. Thanks to Demailly’s
regularization theorem, there exists a Kahler current T € ¢1(Ky,p) with analytic sin-
gularities along V(Z) for some ideal sheaf Z C Oy. Let f : X’ — X be a log resolution
of (X,Z). By Hironaka’s theorem, we know that one can construct such a morphism
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f by a sequence of blow-ups along smooth centers only. We write f*T = T’ + [F] for
some smooth semipositive form T" on X’ and some effective divisor F. Remark that
this sequence may be infinite; however, the centers project onto a locally finite family of
subsets of X. Up to co-restricting f to 7~ !(K) for some compact subset K € ID, one can
assume that f is a finite composition of blow-ups and that T" > d7t*w for some 6 > 0
small enough.

Let E be the exceptional divisor of f, with irreducible components E = Y& ; E. A
classical argument (cf e.g. [DP04, Lem. 3.5]) allows one to find smooth (1,1)-forms
0, € c1(Ex) with support in an arbitrarily small neighborhood of E; along with posi-
tive numbers (a;) such that the sum 6 = Y, a6y defines a (1,1)-form on X’ which is
negative definite along the fibers of f. It follows that for ¢ > 0 small enough, the smooth
form 7t*w — €0 is Kéhler. In particular, T’ — é¢6 is a Kdhler form whose cohomology
class belongs to NSg (X”). This implies that the K&hler cone of X’ meets NSz ("), i.e.
7T o f is projective.

Let X := f1(X;) and let K° C K be the set of regular value of 7t o f. For any
t € K°, the map fl|x, : X; — X; is birational hence vol(Kx/) = vol(Kx,). By the first
step, the volume vol(Ky,) is independent of t € K°, hence the same holds for vol(Kx, ).
The set K\ K° is finite and without loss of generality, one can assume that it consists
of the single element {0}. The fiber X{, can be decomposed as X, = Yy + ¥ E; where
flyy : Yo — Xo is birational and E; is contracted by f|x;. Let Y — Y be a resolution of
singularities. By [Tak07, Thm. 1.2], we have vol(Ky,) < vol(Kx;) for t # 0. As X and
Y are smooth and birational, we have vol(Kx,) = vol(Ky;) < vol(Kx,). Finally, as the

function t — vol(Ky,) is upper semi-continous, we have vol(Kx,) = vol(Kx,) for any
t € K. The lemma is proved. O

Remark 5.3. — In the last step of the proof of Lemma 5.2, we could also use the exis-
tence of relative minimal models, provided DD is replaced by a quasi-projective smooth
curve C. The general fiber of the projective morphism X’ — C is a projective vari-
ety of general type, hence it admits a good minimal model over C by [BCHM10]. By
[Fuj16, Thm. 3.3] and [Tak19, Cor. 1.2], it follows that X’ — C admits a birational model
¢ : X' --» X" over C such that: ¢! does not contract any divisor, every fiber X’ of
X" — C has canonical singularities and satisfies that Ky, is semiample and big. For

any t € C, one has vol(Kyr) = (K%,). By flatness, this quantity does not depend on
t

t. Finally, we claim that X{j is birational to Xy. This is a combination of the following

two facts. First, the variety X; has canonical singularities and Kz is big hence it is of

general type and, in particular, it is not uniruled. Next, X/ is birational to a component
of X{, and all of them but the strict transform of X by f are covered by rational curves
as f is a composition of blow-ups of smooth centers from a smooth manifold.

The positive (n,n)-forms (w}');ep induce a smooth hermitian metric on —Ky,p.
Since [@] = ¢1(Ky,p) € H;él (X); there exists a smooth function / on X such that

—dd, logw]' = —© + ddSh
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We will denote by Et = E|Xt the restriction to the fiber X;. The function i becomes
unique (and remains smooth) after one imposes the following normalization

wa =0.
Xi
We define a function & on X by imposing that ; := h|, satisfies

- 1 -
=T —1o —/eh*w”.
! ! g <Vt Xt ! )
In particular, one has

(5.1) /X 1wl = Vi == vol(Ky, ).
t

As 1 is smooth on X, one has the following obvious consequence.
Lemma 5.4. — Given any compact subset K € D, one has

sup ||| = (x,) < +oo.
teK

It follows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78,
Yau78], that there exists a unique Ké&hler-Einstein current on X;. This is a positive
closed current T; in c1(Kyx,) which, by [EGZ09, BCHM10], is a smooth Kahler form in
the ample locus Amp(Ky, ), where it satisfies the Kdhler-Einstein equation

RIC(Tt) = —Tt.

It can be written T; = 6; + dd ¢, where ¢ is the unique 6;-psh function with minimal
singularities that satisfies the complex Monge-Ampere equation
(6 + dd°@;)" = e?Thw!  on Amp(Ky,).
The minimal singularity assertion is equivalent to the following uniform bound: for all
X € Xt,
—M; < (@1(x) —sup ¢1) — Vo, (x) <0,
X
where
Vo, (x) = sup{us(x); uy € PSH(Xy, 60;) and u; < 0}.
We can choose M; independent of ¢ by using Theorem 1.9:
Theorem 5.5. — In Setting 5.1, let K € ID be a compact subset. There exists a constant My
such that for all x € = 1(K), one has
—Mi < ¢1(x) = Vo, (x) < M
where t = 1(x).
Proof. — From Lemma 5.2, it follows that the volume V; of Kx, is independent of . We
denote it by V.

Set ji; = e/w}'/V and recall that this is a probability measure, by our choice of normal-
ization. We first observe that

(5.2) 0<supg; < — inf h < Ck.
X; =1 (K)
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Let us first prove the left-hand side inequality. As the measures
1

V(Qt +dd )" = ey

have mass one, one has

1 < / esupXt q)td‘ut — esupXt Pt
X

and therefore, supy, ¢t = 0.
To prove the inequality in the middle in (5.2), we observe that, since 6; < wy, ¢; is a
subsolution of the equation

(wi + ddS@;)" > (0; + dd° ;)" = e? ey,

while the constant function u¢(x) = —inf 1k h is a supersolution of the same equa-
tion,

(w4 dd°uy)" = w!' < el
It follows from the comparison principle [GZ17, Prop. 10.6] that ¢; < — inf, 1k h. The
rightmost inequality in (5.2) follows from Lemma 5.4 above.

We can thus rewrite the complex Monge-Ampére equation as

1 —
V(Ot +ddyP)" = PSP, Ut = fip,

where ¢y = ¢; —supy, ¢+ and f; = exp(yr + supy, ¢:). Combining the inequalities
Py < 0 and (5.2), it follows that the densities f; are uniformly bounded.

Recall that 7 is smooth so, in particular, it is locally trivial. Therefore, Theorem 3.4
applies and we can now appeal to Theorem 1.9 with p = +c0and 0 < a« < #(©, X') and
obtain

—Mk <P —Vp, <
Note that one used here that the volumes V; stay away from zero. The conclusion
follows since ¥y — @; is uniformly bounded by (5.2). O

Remark 5.6. — Set
and

It is tempting to compare ¢ to
Vo = sup{u € PSH(X,®); u < 0}.
Clearly Vo < Vi hence Vg — Mg < ¢. It follows from [CGP17, Thm. A] that ¢ is ©-psh
on X, thus ¢ — sup 1(x) ¢ < Vo and
—Mg < ¢ — Vo < M.

Remark 5.7. — The same results can be proved if the family 7 : X — D is replaced
by a smooth family 7r : (X,B) — DD of pairs (X}, B;) of log general type, i.e. such that
(Xt, By) is kIt and Kx, + B; is big for all t € D.
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5.2. Stable varieties. — A stable variety is a projective variety X such that

1. X has semi- log canonical singularities.
2. The Q-line bundle Kx is ample.

We refer to [KSB88, Ale96, Kar00, Kov13, Kol] for a detailed account of these varieties
and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kdhler-Einstein met-
ric w. There are several equivalent definitions for such an object, but the simplest is
probably the following:

Definition 5.8. — A Kahler-Einstein metric w on a stable variety is a smooth Kéahler
metric on Xeg such that

Ric(w) = —w and w" = (K¥%)
Xreg

if n = dime X.

It is proved in loc. cit. that w extends canonically across Xsing to a closed, positive
current in the class c1 (Kx). It is desirable to understand the singularities of w near Xsing-
In [GW16, Thm. B], it is proved that w has cusp singularities near the double crossings
of X. Moreover, it is proved in [Son17] that the potential ¢ of w with respect to a given
Kihler form wx € ¢1(Kx), i.e. w = wx + dd°g, is locally bounded on the kit locus of X.
More precisely, given any divisor D = (s = 0) ~q Kx containing the non-klt locus of
X and given any ¢ > 0, there exists a constant C; > 0 such that

(5.3) ¢ > elog|s|* — C,

where | - | is some smooth hermitian metric on Ox (D). We wish to refine that estimate
and obtain a version for families of canonically polarized manifolds degenerating to a
stable variety.

Proposition 5.9. — Let X be a stable variety of dimension n and let wx € c1(Kx) be a Kihler
metric. Next, let w = wx + dd®¢ be the Kihler-Einstein metric of X. Let D = (s = 0)
be a divisor containing the non-kit locus of X and let | - | be some smooth hermitian metric on
Ox(D). For any € > 0, there is a constant C, such that

(5.4) ¢ > —(n+1+¢)log(—logls|) — Ce.

Remark 5.10. — The estimate (5.4) is an important refinement of (5.3), as it insures that
@ belongs to the finite energy class & 1(X, wy), cf [GZ07] or [BEGZ10, Sect. 2] for the
definitions and main properties of these classes.

This estimate is almost optimal. Indeed, if X is the Satake-Baily-Borel compactifica-
tion of a ball quotient, it is a normal stable variety and it admits a resolution (X, D)
which is a toroidal compactification of the ball quotient obtained by adding disjoint
abelian varieties. The, the potential ¢ of the Kéhler-Einstein metric on (X, D) with re-
spect to a smooth form in ¢; (Kyx + D) satisfies

¢ =—(n+1)log(—log|sp|) +O(1)
if (sp = 0) = D.
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Proof. — Let f : Y — X be a resolution of singularities of X such that f induces an
isomorphism over Xy;. The complex Monge-Ampere equation satisfied by ¢ pulls
back to Y and reads

(5.5) (ffwx +dd f*o)" = ef duy

where duy = TT}_; |t:[*w} is a positive measure with possibly infinite mass. Here,
wy is a Kdhler form on Y, and (t; = 0) are divisors sitting over Xing (they need not be
exceptional though, as X may have singularities in codimension one). Finally, one has
a; > —1 for all i, and any divisor (f; = 0) such that a; = —1 sits above the non-klt locus
of X.

Now, let F be an effective divisor on X and let ox € H°(X,Ox(F)) be a section
cutting out F. Let & be a smooth hermitian metric on Ox(F); there exists a constant Cr
such that @;,(F) < Crwy. One can scale & such that |ox|? < e 2("*2)CF on X. Finally, let
oy := f*ox and and let ¢ := — log(— log |oy|?). We have

(Doy, Doy) 1 )
oy [2(—log |oy[?) — (—logloy[?) f7On(F).

By our choice of scaling, the function Ay is f*wx-psh for any 0 < A < 2(n + 2). More-
over, it belongs to the class £(Y, f*wx) thanks to e.g. [Guel4, Prop. 2.3] and [DDNL18,
Thm. 1.1(ii)].

We apply this construction to F some (very ample, say) divisor containing the non-
kit locus of X. This yields a section oy of f*F that vanishes at order at least one along
the (t; = 0) for which 4; = —1. As a result, the measure

1

+142 H [ 20 ol
M dpy |2 (= log [t;[?)r+1+2e =
a;>—1

ddy =

has a density g. with respect to wY that satisfies

/Yg€| log g¢[""fwl < +oeo

for any e > 0. By Theorem 1.5, this implies that the unique solution u, € £(Y, 3 f*wx)
of the Monge-Ampere equation

(%f*wx + ddcue)” _ eu€+(n+l+2£)zpdyy
is bounded, i.e. there exists a constant C, > 0 such that
(5.6) [[te [ (v) < Ce.
Now, the function v, := u, + (n + 1+ 2¢)yp € E(Y, f*wx) satisfies the inequality

(ffwx +ddve)" > (%f*wx + ddu,)"
= e%duy,

i.e. v, is a subsolution of (5.5). By the comparison principle, we obtain that f*¢ > v,
and it follows from (5.6) that

ffozm+1+2p-C,
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from which the conclusion follows. O

5.3. Stable families. — Now one can establish a family version of the previous esti-
mate, i.e. Proposition 5.9. In Setting 4.1, let us assume additionally that Ky ,p is am-
ple. We let i be a smooth hermitian metric on Ky ,p whose curvature is a Kidhler form
wy = 0,(Ky,p); weset wy, := wy|x,. If Qis alocal trivialization of mKy ,p, then the
quantity
i”(QAQ)Ym

|Q | %/ m

is independent of Q) or m (yet it depends on /) and for any ¢t € D, it restricts to X;® as
a positive measure

Hx/Dn =

Mx,h = P /plxmes

which we extend by zero across Xfmg. For each t € D, there exists a unique Kéahler-
Einstein metric wgg; € ¢1(Kx,) which solves the Monge-Ampeére equation

(5.7) (wx, +dd @¢)" = e®ux, n
on X;. This is due to [Aub78, Yau78] when X; is smooth and to [BG14] in general.

Theorem 5.11. — In Setting 4.1, assume that

o The relative canonical bundle K y ;p is ample.

o The central fiber X is irreducible.
Let wx, + dd° ¢y be the Kiihler-Einstein metric of Xy, solution of (5.7)andlet D = (s =0) C X
be a divisor which contains NkIt(X, Xo), cf (4.4). Fix | - | a some smooth hermitian metric on
Ox (D). Up to shrinking D, then for any € > 0, there exists C¢ > 0 such that the inequality

(5.8) ot > —(n+1+¢)log(—log|s|) — Ce
holds on X; for any t € D.

This estimate improves an interesting control obtained previously by J.Song (see
[Son17, Lem. 4.2]).

Proof. — Let f : X’ — X be a semi-stable model as in (4.2). The first observation
is that the behavior of f*(Q A Q)™ and f*ux, ), on X; is the same, uniformly in ¢,
because there exists a constant C > 0 such that for any trivializing open set, one has
C > \Q],zl > C~ !, where Q ranges among the finitely many trivializations of mKy /p.
This follows from the fact & is a smooth hermitian metric on mKy /p.

We set ¢ := f*(—log(—log|s|?)); it is a quasi-psh function on X’ satisfying

$ <ypr+0(1)

where ¢r is defined in (4.9).

By scaling the metric | - | on Oy (D), one can assume that Ay is f*wx-psh for any
0 < A <2(n+2). Forany t € ID* the function ¢; := ¢|x, belongs to £ (X}, f*wx,) by
the same argument as in the proof of Proposition 5.9.

Let ue; € (X}, 3f*wx,) be the unique solution of the Monge-Ampére equation

1
(5.9) (Ef*th + ddcue,t)n _ eug't+(n+l+2£)¢tf*ﬂxt,h-
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One can write e"t1#28)% fry = eft f *w where p; is the restriction to Xj of the
difference of quasi-psh functions on X’ with uniformly bounded L! norm on X]. Set
V= [ x, Wk, Integrating both sides of (5.9) and using Jensen inequality we have

14 it (n+1426) o
on :/x; e U2 fpy

* n
— V ellg,t+pr f th
X! Vv

S v b Slntedf el

Since |- X! |ot| f*wY, is uniformly bounded, we get that [ x; Uetf*w, < C for some C > 0

independent of ¢, t. Since ug is f* (%th)—psh, it is the pull-back of a %th -psh function
on X; to which one can apply Proposition 3.3 since 7 is projective. To summarize, we
get an upper bound

(5.10) ey < C.

Next, we wish to apply Theorem 1.5; in order to do so, one has to check that hy-
potheses (H1) and (H2’) are satisfied in our situation. For (H1), it is a consequence of
Theorem 3.4 — recall that up to shrinking D, all fibers X; are irreducible since so is Xj.
As for (H2'), it follows from Lemma 4.6 that we pull back via f to the smooth Kéhler
manifold Xj. All in all, we can find C; > 0 independent of ¢ € D such that

(5.11) e e[ 12 (x7) < Ce.

Now, the function v, := e + (n+ 1+ 2¢)y; € E(X|, f*wyx,) satisfies the inequality

1
(ffwx, +ddve)" > (Ef*th +ddug;)"

= eUs,tf*th,h,
i.e. v is a subsolution of (5.7). By the comparison principle, we obtain that f*¢; > v.;
and it follows from (5.11) that
froe > (n+142¢)p —C,

from which the conclusion follows. O

6. Log Calabi-Yau families

6.1. Families of Calabi-Yau varieties. — In Setting 4.1, let us assume additionally that
Ky /p is relatively trivial and that X, has canonical singularities. For ¢ small enough, X;
has canonical singularities as well and K, is linearly trivial.

Let « be a relative Kidhler cohomology class on X’ represented by a relative Kéhler
form w. We set a; := alx,, wx, := w|x, and V := th wy'; it does not depend on , cf
Lemma 2.2. Let () be a trivialization of Ky, so that the quantity

Hx/D ‘= inZQ/\ﬁ
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restricts to X;°® as a positive measure
Ux; ‘= VX/ID|Xf9g

which we extend by zero across Xfing. We set ¢; := log th dux,. For eacht € DD,
there exists a unique Kdhler-Einstein metric wgg; = w; + dd°¢; € a; which solves the
Monge-Ampere equation

1 —C
(6.1) V(wt +dd°g;)" = e “ux,

on X; and that we normalize by supy, ¢; = 0. This is due to [Yau78] when X; is smooth
and to [EGZ09] in general.

Theorem 6.1. — In Setting 4.1, assume that

o The relative canonical bundle K y ;pp is trivial.
o The central fiber Xy has canonical singularities.
o Assumption 3.2 is satisfied.

Let wy + dd°¢; be the Kihler-Einstein metric of Xy, solution of (6.1). Up to shrinking 1D, there
exists C > 0 such that one has

(6.2) oscx, ¢ < C
forany t € D, where oscx, (¢:) = supy, ¢+ — infx, ¢r.

A particular case of this result has been obtained previously by Rong-Zhang (see
[RZ11a, Lemma 3.1]) by using Moser iteration process.

Remark 6.2. — One can replace the first two assumptions in Theorem 6.1 above by the
following weaker ones: X" is normal, Q-Gorenstein, Ky ,/p is trivial and X has canonical
singularities. Indeed, it follows from the inversion of adjunction [Kol18, Thm. 2.3] that
(X, X;) is lc for t close enough to 0. Moreover, an easy computation relying on the
adjunction formula shows that X; has canonical singularities for ¢ close to 0.

Proof of Theorem 6.1. — A first observation is that the quantities ¢; remain bounded
when t varies thanks to Lemma 4.2. The result now follows from Theorem 1.1. In-
deed, (H1) is satisfied thanks to Theorem 3.4 while (H2) holds thanks to Lemma 4.4
that we pull back to X} via f, with the notation of the Lemma. O

6.2. The log Calabi-Yau setting. — In the sequel we use the following setting.

Setting 6.3. — Let X be an n-dimensional compact Kihler space and let B = Y b;B; be an
effective R-divisor such that the pair (X, B) has kit singularities. We assume furthermore that
the log Kodaira dimension of the pair (X, B) vanishes, i.e.

K(KX + B) =0.

In what follows, we denote by E the (unique) effective R-divisor in ¢;(Kx + B).
Thanks to log abundance in numerical dimension zero (see [CGP19, Cor. 1.18]), a par-
ticular instance of such pairs is provided by kit pairs (X, B) with rational boundary
such that the Chern class c1(Kx + B) € H?(X, Q) vanishes.
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Definition 6.4. — In Setting 6.3, given a cohomology class « € H}(X,R) that is nef
and big, it follows from [BEGZ10] that there exists a unique singular Ricci flat current
T € a,i.e. aclosed, positive current of bidegree (1,1) representing «, with the following
properties:

(i) T has minimal singularities in «;

(ii) T is a Kahler form on the analytic open set () := (Xreg \ Supp(B + E)) N Amp(a);
(iif) Ric(T) = [B] — [E] on Xreg.

The current T can be found by solving the Monge-Ampere equation
(6.3) Vol(oc)’l(G +dd )" = H(x,B)

where 0 € « is a smooth representative, ¢ € PSH(X, 6) is the unknown function and

1
H(x,B) = (s N§)me ¥5,

Here, s € H(X,m(Kx + B)) is any non-zero section (for some m > 1) and ¢p is the
unique singular psh weight on Ox(B) solving dd“¢p = [B] and normalized by

/ (s/\§)%e_¢3 =1
X

We let Cx denote the Kéhler cone, i.e. the set of cohomology classes « € H LI(X,R)
which can be represented by a Kédhler form. We fix (a¢)o<t<1 C Kx a path of Kidhler
classes and assume that a; — dCx ast — 0.

When X is smooth and B = 0, the existence of a unique Ricci flat Kdhler metric w; in
a; for each 0 < t < 1 dates back to the celebrated work of Yau [Yau78]. A basic problem
is to understand the asymptotic behavior of the w;’s, as t — 0. This problem has a long
history, we refer the reader to [GTZ13] for references.

Despite motivations coming from mirror symmetry, not much is known when the
norm of a; converges to +oo (this case is expected to be the mirror of a large complex
structure limit, see [KS01] or the recent survey [Tos20]). We thus only consider the case
when a; — a9 € dKx. There are two rather different settings, depending on whether
g is big (vol(ag) > 0), or merely nef with vol(a) = 0.

6.3. The non-collapsing case. — We first consider the case when the volumes of the
a's are non-collapsing, i.e. vol(ag) > 0. Then, we have the following result, generaliz-
ing theorems of Tosatti [Tos09] and Collins-Tosatti [CT15].

Theorem 6.5. — Let (X, B) be a pair as in Setting 6.3 and let ()o<t<1 C Kx be a smooth
path of Kihler classes such that oy — xg € 0K x as t — 0, with vol(ag) > 0.

Then, the singular Ricci-flat currents Ty € w; converge to Ty as t — 0 weakly on X, and locally
smoothly on ().

Proof. — One can work in a desingularization p : Y — X of X. The path «; induces
a path B; = p*a; of semi-positive and big classes. The currents T; can be decomposed
as Ty = 0; + dd“¢; where 0; € B; is a smooth representative and ¢; are normalized by
supy, ¢+ = 0 and solve the complex Monge-Ampere equation

1

Vt (Gt + ddCQOt)n = ‘uy = dey,
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where the volumes V; = a} are bounded away from zero and infinity, C 1<V <,
and py = f dVy is a fixed volume form, with f € L”(Y) for some p > 1 (because (X, B)
has kit singularities, see [EGZ09, Lem. 6.4]).

The hypothesis of Theorem 1.1 (H2) is thus trivially satisfied, while (H1) follows
if we initially bound from above a; < x by a fixed Kdhler class. The most delicate
CY-estimate follows thus here from Theorem 1.9. When X is smooth, the C%-estimate in
[Tos09] is obtained by using a Moser iteration argument as in Yau'’s celebrated paper
[Yau78], but this argument can no longer be applied in the present more singular set-
ting.

The rest of the proof is then roughly the same as in the case of smooth manifolds. It con-
sists in adapting Yau’s Laplacian estimate by using Tsuji’s trick (first used in [Tsu88]),

the remaining higher order estimates being local ones. O
6.4. The collapsing case. — We now consider the case when the volumes of the a;’s
are collapsing, i.e. vol(xp) = 0. This case is more involved and only special cases are
fully understood.

Suppose there is a surjective, holomorphic map with connected fibers f : X — Z,
where Z is a compact, normal Kéhler space of positive dimension m. We denote by
k:=n—m = dimX — dim Z the relative dimension of the fiber space f. We let Sz
denote the smallest proper analytic subset ¥ C Z such that

e X contains the singular locus Zjng of Z,
e The map f is smooth on f~1(Z\ &),
e Forany z € Z\ X, Supp(B) intersects X, transversally,

and we set Sy = f1(Sz). Finally, we set Z° := Z\ Sz and X° := X\ Sx = f1(Z°).
By the last item, each component of B|x- dominates Z°.

A general fiber X, satisfies ©(Kx, + B;) > 0, but the inequality may be strict. If
c1(Kx + B) = 0, then log abundance implies that Kx, + B, ~g Ox, for z general. More-
over, litaka’s conjecture predicts that «(Kx, + B;) vanishes as soon as x(Z) > 0, which
in turn should be equivalent to Z not being uniruled.

Fix wz a Kadhler form on Z. For simplicity, we assume that f , w7 = 1. The form f*wz

is a semi-positive form such that f*w!, = 0 for any p > m. We also choose a Kahler
form wy on X. The quantity [ X. wk = f.wk is constant in z € Z; up to renormalizing
wyx, we may assume that the constant is 1.

We assume that our path (a;);>0 in H¥}(X,R) is given by ap = {f*wz} and a; =
ap + tH{wx}. As a result, one has

n

(6.4) Vi :=vol(a;) = (Z)tk/xf*w%1 A wh +o(th) = <k> t* 4 o(t5).

Weset w; := f*wz +twx and let wg, := w; + dd°¢; denote the singular Ricci-flat current
in a;, normalized by [, ¢iw% = 0. It satisfies

we, = Vi p(xp)s

cf Eq. (6.3). The probability measure f,j x g) has L*t-density with respect to w¥ thanks
to [EGZ18, Lem. 2.3]. Therefore, there exists a unique positive current we € {wz} with
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bounded potentials, solution of the Monge-Ampere equation

wgno = f*V(X,B)I
cf [EGZ09]. In the case where X is smooth, B = 0 and ¢1(X) = 0, the Ricci curvature of
f+«ux (or, equivalently, ws) coincides with the Weil-Petersson form of the fibration f of
Calabi-Yau manifolds. We propose the following problem.

Problem 1. — Let f : X — Z be a surjective holomorphic map with connected fibers between
compact, normal Kihler spaces. Assume that there exists an effective divisor B on X such that
(X, B) is kit and k(Kx + B) = 0. Let wx (resp. wyz) be a Kihler form on X (resp. Z) and let
wg, be the unique singular Ricci-flat current in {f*wz + twy} for t > 0.

Then, the currents wy, converge weakly to f*we when t — 0, where we € {wz} solves

wimZ — £ p)-

The Problem above is motivated by a string of papers (cf below) where the expected
result is proved along with some additional information on the convergence.

Theorem 6.6. — [Tos10, GTZ13, TWY18, HT18] Assume that X is smooth, B = 0 and
c1(Kx) = 0. Then, the metrics wg, converge to f*we, in the Cft -sense on X \ S, for some
a > 0.

In this section, we aim at providing a positive answer to Problem 1 whenever X is
smooth, B has simple normal crossings support and ¢1 (Kx + B) = 0. We will follow the
strategy of Tosatti [Tos10] rather closely. However, some adjustments need to be made,
requiring the use of conical metrics and the results of the present paper.

Theorem 6.7. — In the Setting of Problem 1, assume furthermore that X is smooth, B has snc
support and ¢1(Kx + B) = 0. Then, wy, — f*we as currents on X, when t goes to 0.

Proof. — We will proceed in several steps, similarly to [Tos10]. In order to simplify
some computations to follow, one will assume that Sz is contained in a divisor Dz,
cut out by a section 0 € HY(Z,Oz(Dyz)). If Z is projective, this is not a restriction.
The general case requires to follow Tosatti’s computations more closely but does not
present significant additional difficulties.

Step 1. Choice of some suitable conical metrics

We list in the Proposition below the properties of the conical metric that will be impor-
tant for the following. It is mostly a recollection of well-known results, cf e.g. [GP16].
By abuse of notation, we will not distinguish between B and Supp(B).

Proposition 6.8. — There exists a Kihler current wg € {wx} on X such that

1. wg is a smooth Kihler form on X \ B and has conical singularities along B.
2. There exists a constant C > 0 and a quasi-psh function ¥ € C*(X \ B) N L®(X) such
that the following inequalities of tensors hold in the sense of Griffiths on X \ B

—(CwB + ddc"P) ® IdTX < ®w3(TX) < Cwp® IdTX-
3. Let h := wy/w. There exists p > 1 such that for any K € Z°, one has

sup [hlx. st ) < +oo.
zeK z
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Sketch of proof of Proposition 6.8. — To construct such a metric wp, one first chooses
smooth metrics #; on B;, sections s; € H°(X,Ox(B;)) cutting out B;, and one sets
wp := wx +dd® ¥; |s;]*1b). Up to scaling down the metrics /;, one can easily achieve
the first condition. The third condition also follows easily.

The left-hand side inequality of 2 ("lower bound" on the holomorphic bisectional
curvature) follows from [GP16, (4.3)] with e = 0. As for the right-hand side inequality
(upper bound on the holomorphic bisectional curvature), a proof has been given in
[JMR16, App. A] in the case where B is smooth but a very simple argument has been
found by Sturm, cf [Rub14, Lem. 3.14]. O

Step 2. Estimates
We list in the Proposition below various estimates on wy, that will be useful for the last

step. First, we define for z € Z° the quantity ¢:(z) = [y ¢’ . In the following, we
will not distinguish between ¢ and f*¢;.

Proposition 6.9. — There exist a constant C > 0 as well as a positive function g € C*(X°),
both independent of t, such that

L @t e(x)y < C.

2. We, = C_lf*a)z.

3. \q)t—ﬁ] <g-t

4. ¢t wp <wy < g wsp.

5. ¢t wp, <wy,|x, < gt-wp, forallz € Z°.

Proof of Proposition 6.9. — In this proof, C will denote a constant that may change from
line to line but is independent of ¢t. In the same way, ¢ will be a smooth, positive
function on X° that should be thought as blowing up to +oo near Sx; it can be assumed
to come from Z° via f.

1. This is a consequence of [EGZ08, Thm. A] or [DP10, p. 401].

2. Let us consider the holomorphic map f : (X \ B,wy,) — (Z,wz). Given that
Ric(wy,) = 0and that wyz is a smooth Kahler metric on the compact space Z, Chern-Lu’s
formula [Che68, Lu68] provides a constant C > 0 such that the non-negative function
u = trg,, f*wyz satisfies

Ay, logu > —C(1+u)
on X \ B. Now,
Aw(Pt(_qot) = trW(pt(_wqat +f*wZ + th) 2 u-—n
so that setting A = C + 1, one finds
Ay, (logu — Agt) > u—C.

Let T be a section of Ox([B]) cutting out B and let lip be a smooth hermitian metric on
that line bundle. We set x := log \T!%B. As wy, is a Kéhler current and y is quasi-psh,
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there exists a constant C; > 0 such that dd°x > —C;w,,. Therefore, for any 6 € (0,C;” 1),
one has an inequality

Aw%(logu —Api+x) > u—_C.
As wy, is a conical metric for t+ > 0, the function u is bounded above on X \ B and
therefore, H; 5 := logu — Ag; + dx attains its maximum at a point x; ; € X \ B such that

u(x;5) < C. As a result, the estimate obtained in 1. allows one to show that for any
x € X\ B, one has

logu(x) = His(x) + Agi(x) — ox(x)
< His(xt5) +C—0x(x)
< C—dy.

As this holds for any 6 > 0 small enough, we can pass to the limit and conclude that
u<eConX \ B, hence everywhere.

3. The equation solved by ¢; can be rewritten as

(6.5) (ffwz + twx +dd¢y)" = tkeFfwg
where F; is uniformly bounded independently of t. Next, one has on X; (z € Z°)
k k * oM n
w Wy, N fTw w
(6.6) ( ‘“,'fz) =& / Z<cg 2
WX, wy A frwy wx

thanks to 2. Observing that wy,|x, = (wy, — dd°p;)|x., one sees from Eq. (6.5) that
(@1 — 1) |x. satisfies

1
(wx. +dd (5 (e — @r)lx.)" < ghlx. - wh,

where h = wj/wY%. Thanks to the third item of Proposition 6.8, Theorem 3.4 and
Theorem 1.1, we can derive 3. Actually, we used a version of Theorem 3.4 for higher-
dimensional bases, but only for smooth morphisms, in which case the proofs in the
one-dimensional case go through without any change.

4.a We first prove the right-hand side inequality. Let us start by writing wp = wx +
ddyp where g € L*(X) NC®(X \ B). From the second item of Proposition 6.8 and
Siu’s Laplacian inequality (cf [GP16, (2.2)]), one concludes that

Ay, (logtry, wey, +¥) = —C(1 + try, ws).
Next, one has
(6.7) Ny, (=@t + tpp) = try, (—we, + ffwz + twp) > ttr,, wp —n

so that

A C
(6.8) Ay, (logtre, we, +Y¥ — TP + Ayp) > try, wp — I
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We want to bound from below the term dd° [ In order to achieve this, one writes
(6.9) dd g = dd° f, (@) = fo(ddpp A )
> —fu(ffwz AWy + k)
> —wz — th > —g-wy
given that f.«w¥ = 1. In particular, one has
(6.10) Awy, Pt 2 —8
thanks to 2. Combining that estimate with (6.8), one finds

A
(6.11) Dy, (logtre, we, +Y¥ — T((Pt — ¢t) + Ayp) > tro,, wp —

~[og

We now set F := ¥ — é(qot — ﬂ) + Atp; it is a bounded function on X, smooth on
X° \ B such that

(6.12) |FI<g

thanks to 3. Next, we set p := x + f* log |0z ];leZ where y is defined in the proof of 2 and
hp, is a smooth hermitian metric on the divisor Dz (containing Sz). As p is quasi-psh
on X, there exists C; > 0 such that

(6.13) ddp > —Ciwy,.

In particular, one has

(6.14) Ay, (logtre, we, + F +0p) > try,, wp — %

as soon as & € (0,C;!). We choose such a ¢ for the following. As the quan-
tity log tr,,, wy, + F is globally bounded on X and smooth on X°\ B, the function
log tre, wg, + F + dp attains it maximum at a point ;5 € X° \ B such that

tro,, WB(Yis) < %

thanks to the maximum principle. Combining this with 2, one finds

(6.15) trow,, (f*wz +twp)(yis) < g
Using the standard inequality

n

try w < — (try )" !

o
valid for any two positive (1,1)-forms, one gets from (6.15)
trf*wZ+taJB (w(Pt) (yt,é) < g

since w}, ~ t*w} is uniformly comparable to (f*wz + twp)" by Claim 6.10 below. As

wp dominates f*wyz + twp, we infer from the inequality above the following

(6.16) trowg We, (Yis) < &
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Given the definition of y; 5, the boundedness of F and that > 0 is arbitrary, we find as
in the proof of 2. above that (6.16) actually implies

tro, wy, <g onX°\B

hence on the whole X°.

To conclude the proof of the RHS inequality in 4., it remains to prove the following

Claim 6.10. — We have
(6.17) g U Wl < (frwz + twp)" < gt* - Wi

Proof of Claim 6.10. — The statement is local, so one can assume that f : C" — C"
is given by the projection onto the last m factors and that B = Y} ; b;(z; = 0) for
some r < k. As the inequality is invariant under quasi-isometry, one can choose wz =
Y k41 1dzj A dzj to be the euclidean metric on C" while

" idz; AdZ; n
CL)BIZ#—I— Z le]/\dZ_]

2b;
=I5l j=r+1
is the standard cone metric. Setting K := [Tj_4 |zj| =% and wen = Y idzj A dz;j, one
finds
wh =K-wg: and  (ffwz + twp)" = (14 1)K - wik,
which gives the expected result. O

4.b We now move on to the LHS inequality in 4. Let us set v := tr,, (twg). Remem-
ber from Proposition 6.8 2. that wp has holomorphic bisectional curvature bounded
from above on X \ B. By Chern-Lu’s inequality, we get on X \ B

A%r logv > —Ct 1.

Combining that inequality with (6.7)-(6.10) and (6.13), one finds, for A = C +1

A 1
Buy, (100 — (@1 — @) + A +0p) > £ (v = g)-
Applying the maximum principle and arguing as before, we eventually find v < g on

X°\ B, hence on X°.

5. The LHS inequality is a direct consequence of 4, by restriction. As for the RHS, it
follows easily from the LHS since

(wg,|x.)" -
trsz wqat‘xz g # ' (trCUlPt‘Xz wBZ) !
z

< gt (D)

thanks to (6.6). This ends the proof of Proposition 6.9. O
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Step 3. Convergence

Thanks to Proposition 6.9 1., the family (¢;)o<i<1 is relatively compact for the L!-
topology. All we have to do is showing that all its clusters values coincide. Let ¢
be such a cluster value; it is an f*wz-psh function but f has connected fibers so that o,
is necessarily constant on the fibers. Equivalently, one has ¢, = f* ¢ for the (unique)

wz-psh function ¢, satisfying ¢u(z) := [ X. P’ for z € Z°. We want to show that
the following equality of measures
(6.18) (wz +dd peo)™ = futi(x,p)

holds on Z. Given that Eq. 6.18 has a unique normalized bounded solution, this will
prove the Theorem. As ¢ is globally bounded on X thanks to Proposition 6.9 1. and
f+M(x,p) does not charge any pluripolar set, it is actually enough to show that the equal-

ity of measures (6.18) holds on Z°. In order to prove (6.18) on Z°, given that f.wk = 1,
it is enough to prove instead that for any function u € C§°(Z°), one has

(6.19) /fu (f*wz +dd°pe)™ A wh /fu dp(x,B)-

We start from the identity
(6.20) wWe, = (ffwz +twx +dd e)" = Vi - p(x )
where V; = (})t* + o(t*) when t — 0, cf (6.4). Set ¢; := ¢; — ¢+ and decompose wy, as
wy, = fH(wz +dd°gr) + (twx + ddYy).

By expanding, one obtains

"o/ )
wgt = Z <1> f(wz + ddcﬂ)l A (twx 4 dd )"

i=0

=

e Casei = m.
We expand again

k-1 ' . .
Ny = Z <I;> Hf (wz + ddcﬂ)m A aJ]X A (ddcl,bt)k_] +tkf*(wz + ddcﬁ)’” A w’;‘(.
=0
j 7
Performing an integration by parts, one gets
/ Fru-p; = / g f* (48 A (w7 + ddog)™ ) Awk A (ddop) T =0

=0

for degree reasons.

By dominated convergence theorem, we have that ¢ — ¢o in the L} .(Z°) topology.
Moreover, as B intersects the fibers of f tranversally over Z°, an easy argument relying
on partition of unity shows that f, (wg A w¥) is a smooth (1, 1)-form on Z°. Combining
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this with Proposition 6.9 4., we find dd°¢; = f.(dd“p; A W) < fulgwp A k) < (fug) -
wyz. Together with (6.9), this implies

(6.21) +dd g < (fug) - w

By standard result, this shows that Pt = Poo in Clloﬁ‘

the quasi-psh functions ¢; converge uniformly on Supp(u). By Bedford-Taylor theory,
one deduces that

/Xf*u fH(wz + dd i)™ Al — /Xf*u - fH(wz + dd° poo)™ A wh.

(Z°) for any a < 1. In particular,

In the end, one has showed that

(6.22) (;t)/xf*u-(xm —>/Xf*u-f*(wz—|-ddcg07w)m/\w’§(.

since V; ~ (!)t.

e Casei < m.
We expand

Z ( . >tff (wz +dd gi) Al A (ddpe)" T 44" (wz + dd gr) A wl

=i
From (6.21), we find
6.23) tv: /Xf*u Frwz +ddg) AWl = O(" 1) = o(1).

For the remaining terms, an integration by parts yields

/ fru-yij= / ¥t - f(ddu N (wz +dd ;) ) A wé( A (ddCpy)" 71

From Proposition 6.9 3., one has || < gt. Moreover, among the (n —i — j — 1) eigen-
values of dd“y; involved in the integral, atleast (n —i —j—1) — (m— (i+1)) =k — j
must come from the fiber. Given Proposition 6.9 4-5., the integrand is a O(t'**7/). As a
result,

t .
Vt/Xf u-; = O(t).

Combining that result with (6.23), we see that for any i > m, one has

(6.24) lim — /f u-a; =0.

t—0 V4
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Putting together (6.20), (6.22) and (6.24), we obtain

* 1 *
/Xf ”'dV(X,B):Vt/Xf U - w,
. own/n\ 1 N
~tm 2 ()57 Lo e
zlim(’”)/f*u-ocm
X

— /Xf*u - (wyz —|—ddcgoioo)m /\w’;‘(.

In summary, (6.19) is proved, which concludes the proof of the Theorem. ]
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