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Abstract
In the paper, the authors consider a ratio of finite many gamma functions and find its
monotonicity properties such as complete monotonicity, the Bernstein function
property, and logarithmically complete monotonicity.

1 Preliminaries
Let f (x) be an infinite differentiable function on an infinite interval (0,∞).

(1) If (–1)kf (k)(x) ≥ 0 for all k ≥ 0 and x ∈ (0,∞), then we call f (x) a completely
monotonic function on (0,∞). See the review papers [22, 31, 36] and [35,
Chapter IV].

(2) If (–1)k[ln f (x)](k) ≥ 0 for all k ≥ 1 and x ∈ (0,∞), or say, if the logarithmic derivative
[ln f (x)]′ = f ′(x)

f (x) is a completely monotonic function on (0,∞), then we call f (x) a
logarithmically completely monotonic function on (0,∞). See the papers [3, 4, 7, 24]
and [33, Chap. 5].

(3) If f ′(x) is a completely monotonic function on (0,∞), then we call f (x) a Bernstein
function on (0,∞). See the paper [28] and the monograph [33].

The classical gamma function Γ (z) can be defined by

Γ (z) =
∫ ∞

0
tz–1e–t dt, �(z) > 0

or by

Γ (z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈C \ {0, –1, –2, . . .}.

See [1, Chap. 6], [15, Chap. 5], the paper [18], and [34, Chap. 3]. In the literature, the
logarithmic derivative

ψ(z) =
[
lnΓ (x)

]′ =
Γ ′(z)
Γ (z)
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and its first derivative ψ ′(z) are respectively called the digamma and trigamma functions.
See the papers [5, 6, 10, 25, 26] and closely related references therein.

2 Motivations
This paper is motivated by a series of papers [2, 11, 12, 16, 19, 21, 27, 29, 32]. For detailed
review and survey, please read the papers [19, 27, 29, 32] and closely related references
therein.

In the paper [2], motivated by [11, 12], the function

x ∈ (0,∞) �→ Γ (nx + 1)
Γ (kx + 1)Γ ((m – k)x + 1)

pkx(1 – p)(m–k)x (2.1)

was considered, where p ∈ (0, 1) and k, m are nonnegative integers with 0 ≤ k ≤ m.
In [16, Theorem 2.1] and [32], the function

x ∈ (0,∞) �→ Γ (1 + x
∑m

i=1 λi)∏m
i=1 Γ (1 + xλi)

m∏
i=1

pxλi
i (2.2)

was independently studied, where m ≥ 2, λi > 0 for 1 ≤ i ≤ m, pi ∈ (0, 1) for 1 ≤ i ≤ m, and∑m
i=1 pi = 1. The q-analogue

x ∈ (0,∞) �→ Γq(1 + x
∑m

i=1 λi)∏m
i=1 Γq(1 + xλi)

m∏
i=1

pxλi
i (2.3)

of the function in (2.2) was investigated in [19], where q ∈ (0, 1), m ≥ 2, λi > 0 for 1 ≤
i ≤ m, pi ∈ (0, 1) for 1 ≤ i ≤ m with

∑m
i=1 pi = 1, and Γq is the q-analogue of the gamma

function Γ .
The functions

x ∈ (0,∞) �→
∏m

i=1 Γ (νix + 1)
∏n

j=1 Γ (τjx + 1)∏m
i=1

∏n
j=1 Γ (λijx + 1)

(2.4)

and

x ∈ (0,∞) �→
∏m

i=1 Γ (1 + νix)
∏n

j=1 Γ (1 + τjx)
[
∏m

i=1
∏n

j=1 Γ (1 + λijx)]ρ
(2.5)

were respectively considered in [17, Theorem 2.1] and [29, Theorem 4.1], where ρ ∈ R

and λij > 0, νi =
∑n

j=1 λij, τj =
∑m

i=1 λij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
In [27], the function

x ∈ (0,∞) �→
∏m

i=1[Γ (1 + νix)]νθ
i
∏n

j=1[Γ (1 + τjx)]τ
θ
j

∏m
i=1

∏n
j=1[Γ (1 + λijx)]ρλθ

ij
(2.6)

was discussed, where ρ, θ ∈ R and λij > 0, νi =
∑n

j=1 λij, τj =
∑m

i=1 λij for 1 ≤ i ≤ m and
1 ≤ j ≤ n.
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In this paper, stimulated by the above six functions (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6),
we consider a new function

Q(x) = Qm,a,p,ρ,	,θ (x) =
[Γ (1 + x

∑m
i=1 ai)](

∑m
i=1 ai)θ

∏m
i=1[Γ (1 + xai)]ρaθ

i

( m∏
i=1

pai
i

)	x

(2.7)

on (0,∞), where m ≥ 2, ρ,	, θ ∈ R, a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, and p =
(p1, p2, . . . , pm) with pi ∈ (0, 1) for 1 ≤ i ≤ m and

∑m
i=1 pi = 1.

3 Monotonicity properties
In this section, we now start out to find and prove some monotonicity properties for the
function Q(x) = Qm,a,p,ρ,	,θ (x) defined in (2.7). Our main results in this section can be
stated in the following theorem.

Theorem 3.1 Let m ≥ 2, a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, and p = (p1, p2, . . . ,
pm) with

∑m
i=1 pi = 1 and pi ∈ (0, 1) for 1 ≤ i ≤ m. Then

(1) when ρ ≤ 1 and θ ≥ 0, the second logarithmic derivative

[
lnQ(x)

]′′ =

( m∑
i=1

ai

)θ+2

ψ ′
(

1 + x
m∑

i=1

ai

)
– ρ

m∑
i=1

aθ+2
i ψ ′(1 + aix)

is completely monotonic on (0,∞);
(2) when ρ = 1, 	 = 0, and θ = 0, the function

Qm,a,p,1,0,0(x) =
Γ (1 + x

∑m
i=1 ai)∏m

i=1 Γ (1 + xai)

is increasing on (0,∞) and its logarithmic derivative

[
lnQm,a,p,1,0,0(x)

]′ =

( m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
–

m∑
i=1

aiψ(1 + aix)

is a Bernstein function on (0,∞);
(3) when ρ = 1, 	 ≥ 1, and θ = 0, the function Qm,a,p,1,	,0(x) is logarithmically completely

monotonic on (0,∞);
(4) when (ρ,	, θ ) ∈ S and

S = {ρ ≤ 1,	 ≥ 0, θ ≥ 0} \ {ρ = 1,	 = 0, θ = 0} \ {ρ = 1,	 ≥ 1, θ = 0},

the function Qm,a,p,ρ,	,θ (x) has a unique minimum on (0,∞).

Proof Direct calculation gives

lnQ(x) =

( m∑
i=1

ai

)θ

lnΓ

(
1 + x

m∑
i=1

ai

)
– ρ

m∑
i=1

aθ
i lnΓ (1 + aix) + 	x

m∑
i=1

ai ln pi,

[
lnQ(x)

]′ =

( m∑
i=1

ai

)θ+1

ψ

(
1 + x

m∑
i=1

ai

)
– ρ

m∑
i=1

aθ+1
i ψ(1 + aix) + 	

m∑
i=1

ai ln pi,
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and

[
lnQ(x)

]′′ =

( m∑
i=1

ai

)θ+2

ψ ′
(

1 + x
m∑

i=1

ai

)
– ρ

m∑
i=1

aθ+2
i ψ ′(1 + aix).

As in [27, 29, 32], from

ψ ′(z) =
∫ ∞

0

t
1 – e–t e–zt dt, �(z) > 0

in [1, p. 260, 6.4.1], it follows that

ψ ′(1 + τz) =
∫ ∞

0

t
1 – e–t e–(1+τz)t dt =

1
τ

∫ ∞

0
h
(

v
τ

)
e–vz dv,

where τ > 0 and h(t) = t
et–1 is the generating function of the classical Bernoulli numbers,

see [20, 23] and [34, Chap. 1]. Accordingly, we have

[
lnQ(x)

]′′ =
∫ ∞

0

[( m∑
i=1

ai

)θ+1

h
(

v∑m
i=1 ai

)
– ρ

m∑
i=1

aθ+1
i h

(
v
ai

)]
e–vx dv. (3.1)

In [27, Theorem 4.1], it was discovered that

m∑
i=1

να
i

ex/νi – 1
+

n∑
j=1

τα
j

ex/τj – 1
≥ 2

m∑
i=1

n∑
j=1

λα
ij

ex/λij – 1
, (3.2)

where α ≥ 0, x > 0, λij > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, νi =
∑n

j=1 λij, and τj =
∑m

i=1 λij.
As remarked in [27, Remark 4.1], setting n = m and λ1k = λk1 = λk > 0 for 1 ≤ k ≤ m and
letting λij → 0+ for 2 ≤ i, j ≤ m in inequality (3.2) result in

(
∑m

k=1 λk)α

ex/
∑m

k=1 λk – 1
≥

m∑
k=1

λα
k

ex/λk – 1
(3.3)

for x > 0, λk > 0, and α ≥ 0. Inequality (3.3) can be equivalently formulated as

( m∑
k=1

λk

)α+1

h
(

x∑m
k=1 λk

)
≥

m∑
k=1

λα+1
k h

(
x
λk

)
(3.4)

for x > 0, λk > 0, and α ≥ 0.
Combining inequality (3.4) with equation (3.1) yields that, when ρ ≤ 1 and θ ≥ 0, the

second derivative [lnQ(x)]′′ is completely monotonic on (0,∞).
The complete monotonicity of [lnQ(x)]′′ implies that the first derivative [lnQ(x)]′ is

strictly increasing on (0,∞). Therefore, by virtue of the limit

lim
x→∞

[
ln x – ψ(x)

]
= 0
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in [8, Theorem 1] and [9, Sect. 1.4], we have

lim
x→0+

[
lnQ(x)

]′ = lim
x→0+

[( m∑
i=1

ai

)θ+1

ψ

(
1 + x

m∑
i=1

ai

)
– ρ

m∑
i=1

aθ+1
i ψ(1 + aix)

]

+ 	

m∑
i=1

ai ln pi

= ψ(1)

[( m∑
i=1

ai

)θ+1

– ρ

m∑
i=1

aθ+1
i

]
+ 	

m∑
i=1

ai ln pi

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= 0, θ = 0,ρ = 1,	 = 0;

< 0, θ = 0,ρ = 1,	 > 0;

< 0, θ = 0,ρ < 1,	 ≥ 0;

< 0, θ > 0,ρ ≤ 1,	 ≥ 0;

where ψ(1) = –0.577 . . . , and

lim
x→∞

[
lnQ(x)

]′ = lim
x→∞

[( m∑
i=1

ai

)θ+1

ψ

(
1 + x

m∑
i=1

ai

)
– ρ

m∑
i=1

aθ+1
i ψ(1 + aix)

]

+ 	

m∑
i=1

ai ln pi

= lim
x→∞

{( m∑
i=1

ai

)θ+1[
ψ

(
1 + x

m∑
i=1

ai

)
– ln

(
1 + x

m∑
i=1

ai

)]

– ρ

m∑
i=1

aθ+1
i

[
ψ(1 + aix) – ln(1 + aix)

]}
+ 	

m∑
i=1

ai ln pi

+ lim
x→∞

[( m∑
i=1

ai

)θ+1

ln

(
1 + x

m∑
i=1

ai

)
– ρ

m∑
i=1

aθ+1
i ln(1 + aix)

]

= 	

m∑
i=1

ai ln pi + lim
x→∞ ln

(1 + x
∑m

i=1 ai)(
∑m

i=1 ai)θ+1

∏m
i=1(1 + aix)ρaθ+1

i

= ln lim
x→∞

( 1
x +

∑m
i=1 ai)(

∑m
i=1 ai)θ+1

∏m
i=1( 1

x + ai)ρaθ+1
i

+ ln lim
x→∞ x(

∑m
i=1 ai)θ+1–ρ

∑m
i=1 aθ+1

i + 	

m∑
i=1

ai ln pi

= 	

m∑
i=1

ai ln pi + ln
(
∑m

i=1 ai)(
∑m

i=1 ai)θ+1

(
∏m

i=1 aaθ+1
i

i )ρ

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ρ = (
∑m

i=1 ai)θ+1
∑m

i=1 aθ+1
i

;

–∞, ρ > (
∑m

i=1 ai)θ+1
∑m

i=1 aθ+1
i

;

∞, ρ < (
∑m

i=1 ai)θ+1
∑m

i=1 aθ+1
i

.
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Let ξ = (ξ1, ξ2, . . . , ξm) such that
∑m

i=1 ξi = 1 and ξi ∈ (0, 1) for 1 ≤ i ≤ m and m ≥ 2. Then
the first derivative of the function f (x) =

∑m
i=1 ξ x

i is f ′(x) =
∑m

i=1 ξ x
i ln ξi < 0, which implies

that the function f (x) is strictly decreasing on (–∞,∞). Since f (1) = 1, it follows that f (x) �
1 if and only if x � 1. This means that

m∑
i=1

ξ x
i � 1, x � 1.

Replacing ξi = ai∑m
i=1 ai

and x = θ + 1 in the above inequality yields

m∑
i=1

(
ai∑m
i=1 ai

)θ+1

� 1, θ � 0.

This can be further rewritten as

m∑
i=1

aθ+1
i �

( m∑
i=1

ai

)θ+1

, θ � 0, ai > 0, m ≥ 2. (3.5)

Considering inequality (3.5) reveals that
(1) when θ = 0, we have

lim
x→∞

[
lnQ(x)

]′ = 	

m∑
i=1

ai ln pi +

⎧⎪⎪⎨
⎪⎪⎩

ln
(
∑m

i=1 ai)
∑m

i=1 ai
∏m

i=1 aai
i

+ 0, ρ = 1;

ln
(
∑m

i=1 ai)
∑m

i=1 ai

(
∏m

i=1 aai
i )ρ

+ ∞, ρ < 1.

(2) when θ > 0 and ρ ≤ 1, we have

lim
x→∞

[
lnQ(x)

]′ = 	

m∑
i=1

ai ln pi + ln
(
∑m

i=1 ai)(
∑m

i=1 ai)θ+1

(
∏m

i=1 aaθ+1
i

i )ρ
+ ∞ = ∞.

Hence, when θ = 0 and ρ < 1 or when θ > 0 and ρ ≤ 1, we obtain

lim
x→∞

[
lnQm,a,p,ρ,	,θ (x)

]′ = ∞;

when θ = 0 and ρ = 1, we have

lim
x→∞

[
lnQ(x)

]′ = 	

m∑
i=1

ai ln pi + ln
(
∑m

i=1 ai)
∑m

i=1 ai∏m
i=1 aai

i

= (	 – 1)
m∑

i=1

ai ln pi +

( m∑
i=1

pi
ai

pi

)
ln

( m∑
i=1

pi
ai

pi

)
–

m∑
i=1

pi
ai

pi
ln

ai

pi
.

Let f be a convex function on an interval I ⊆ R, let m ≥ 2 and xi ∈ I for 1 ≤ i ≤ m, and
let qi > 0 for 1 ≤ i ≤ m. Then

f

(
1∑m

i=1 qi

m∑
i=1

qixi

)
≤ 1∑m

i=1 qi

m∑
i=1

qif (xi). (3.6)
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This inequality is called Jensen’s discrete inequality for convex functions in the literature
[13, Sect. 1.4] and [14, Chapter I]. Applying (3.6) to f (x) = x ln x which is convex on (0,∞),
xi = ai

pi
, and qi = pi leads to

( m∑
i=1

pi
ai

pi

)
ln

( m∑
i=1

pi
ai

pi

)
≤

m∑
i=1

pi
ai

pi
ln

ai

pi
.

Accordingly,

lim
x→∞

[
lnQ(x)

]′ ≤ (	 – 1)
m∑

i=1

ai ln pi ≤ 0, 	 ≥ 1.

Consequently, when θ = 0, ρ = 1, and 	 ≥ 1, the function Qm,a,p,ρ,	,θ (x) is logarithmically
completely monotonic on (0,∞).

The limit

lim
x→0+

[
lnQm,a,p,1,0,0(x)

]′ = 0

obtained above implies that [lnQm,a,p,1,0,0(x)]′ ≥ 0, Qm,a,p,1,0,0(x) is increasing, and then
[lnQm,a,p,1,0,0(x)]′ is a Bernstein function on (0,∞).

When (ρ,	, θ ) ∈ S, the limits

lim
x→0+

[
lnQm,a,p,ρ,	,θ (x)

]′ < 0

and

lim
x→∞

[
lnQm,a,p,ρ,	,θ (x)

]′ = ∞

derived above mean that the first derivative [lnQm,a,p,ρ,	,θ (x)]′ has a unique zero on (0,∞),
that is, the functions lnQm,a,p,ρ,	,θ (x) and Qm,a,p,ρ,	,θ (x) have a unique minimum on (0,∞).
The proof of Theorem 3.1 is complete. �

4 An open problem
Let m, n ≥ 2, ρ,	, θ ∈ R, let λ = (λij)m×n with λij > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, let
νi =

∑n
j=1 λij and τj =

∑m
i=1 λij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and let p = (pij)m×n with∑m

i=1
∑n

j=1 pij = 1 and pij ∈ (0, 1) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Define

Qm,n;λ;p;ρ;	;θ (x) =
∏m

i=1[Γ (1 + νix)]νθ
i
∏n

j=1[Γ (1 + τjx)]τ
θ
j

∏m
i=1

∏n
j=1[Γ (1 + λijx)]ρλθ

ij

( m∏
i=1

pλij
ij

)	x

(4.1)

on the infinite interval (0,∞).
Can one find monotonicity properties for the function Qm,n;λ;p;ρ;	;θ (x) defined in equa-

tion (4.1)?

Remark 4.1 This paper is a slightly revised version of the electronic preprint [30].
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