
HAL Id: hal-02511819
https://hal.science/hal-02511819v1

Submitted on 19 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing SPARQL Aggregate Queries with Web
Preemption

Arnaud Grall, Thomas Minier, Hala Skaf-Molli, Pascal Molli

To cite this version:
Arnaud Grall, Thomas Minier, Hala Skaf-Molli, Pascal Molli. Processing SPARQL Aggregate Queries
with Web Preemption. 17th Extended Semantic Web Conference (ESWC 2020), Jun 2020, Heraklion,
Greece. �10.1007/978-3-030-49461-2_14�. �hal-02511819�

https://hal.science/hal-02511819v1
https://hal.archives-ouvertes.fr

Processing SPARQL Aggregate Queries with Web
Preemption

Arnaud Grall1,2, Thomas Minier1, Hala Skaf-Molli R[0000−0003−1062−6659]1,
and Pascal Molli[0000−0001−8048−273X]1

1 LS2N – University of Nantes, France
{arnaud.grall,thomas.minier,hala.skaf,pascal.molli}@univ-nantes.fr

2 GFI Informatique - IS/CIE, Nantes, France

Abstract. Executing aggregate queries on the web of data allows to
compute useful statistics ranging from the number of properties per class
in a dataset to the average life of famous scientists per country. However,
processing aggregate queries on public SPARQL endpoints is challeng-
ing, mainly due to quotas enforcement that prevents queries to deliver
complete results. Existing distributed query engines allow to go beyond
quota limitations, but their data transfer and execution times are clearly
prohibitive when processing aggregate queries. Following the web pre-
emption model, we define a new preemptable aggregation operator that
allows to suspend and resume aggregate queries. Web preemption allows
to continue query execution beyond quota limits and server-side aggre-
gation drastically reduces data transfer and execution time of aggregate
queries. Experimental results demonstrate that our approach outper-
forms existing approaches by orders of magnitude in terms of execution
time and the amount of transferred data.

1 Introduction

Context and motivation: Following the Linked Open Data principles (LOD),
data providers published billions of RDF triples [4,15]. Executing SPARQL ag-
gregate queries on the web of data allows to compute useful statistics ranging
from the number of properties per class in a dataset [8] to the average life of
famous scientists per country. However, processing aggregate queries on pub-
lic SPARQL endpoints is challenging, mainly due to quotas enforcement that
prevents queries to deliver complete results as pointed out in [17,8].
Related works: To overcome quotas limitations, Knowledge Graph providers
publish dumps of their data. However, re-ingesting billions of triples on local
resources to compute SPARQL aggregate queries is extremely costly and raises
issues with freshness. Another approach is to build servers that only process
queries that complete in a predefined time, i.e., deliver complete results under
quotas. Then a smart client interacts with the server to process full SPARQL
queries. The Triple Pattern Fragments (TPF) [19] relies on a server that only
processes paginated triple pattern queries. The TPF smart client decomposes

2 A. Grall et al.

SPARQL queries into paginated triple pattern subqueries and recombines re-
sults to deliver final query answers. However, processing aggregate queries with
TPF generates tremendous data transfer and delivers poor performance. Re-
cently, the Web preemption approach [12] relies on a preemptable server that
suspends queries after a quantum of time and resumes them later. The server
supports joins, projections, unions, and some filters operators. However, aggre-
gations are not supported natively by the preemptable server. Consequently, the
server transfers all required mappings to the smart client to finally compute
groups and aggregation functions locally. As the size of mappings is much larger
than the size of the final results, the processing of aggregate queries is inefficient.
This approach allows to avoid quotas, but delivers very poor performance for
aggregate queries, and could not be a sustainable alternative.
Approach and Contributions: In this paper, we propose a novel approach
for efficient processing of aggregate queries in the context of web preemption.
Thanks to the decomposability of aggregate functions, web preemption allows
to compute partial aggregates on the server-side while the smart client combines
incrementally partial aggregates to compute final results. The contributions of
the paper are the following: (i) We introduce the notion of partial aggregations for
web preemption. (ii) We extend the SaGe preemptive server and the SaGe smart
client [12] with new algorithms for the evaluation of SPARQL aggregations. The
new algorithms use partial aggregations and the decomposability property of
aggregation functions. (iii) We compare the performance of our approach with
existing approaches used for processing aggregate queries. Experimental results
demonstrate that the proposed approach outperforms existing approaches used
for processing aggregate queries by orders of magnitude in terms of execution
time and the amount of transferred data.

This paper is organized as follows. Section 2 reviews related works. Section
3 introduces SPARQL aggregation queries and the web preemption model. Sec-
tion 4 presents our approach for processing aggregate queries in a preemptive
SPARQL server. Section 5 presents experimental results. Finally, conclusions
and future work are outlined in Section 6.

2 Related Works

SPARQL endpoints SPARQL endpoints follow the SPARQL protocol 3, which
“describes a means for conveying SPARQL queries and updates to a SPARQL
processing service and returning the results via HTTP to the entity that re-
quested them”. Without quotas, SPARQL endpoints execute queries using a
First-Come First-Served (FCFS) execution policy [7]. Thus, by design, they can
suffer from convoy effect [5]: one long-running query occupies the server re-
sources and prevents other queries from executing, leading to long waiting time
and degraded average completion time for queries.

To prevent the convoy effect and ensure a fair sharing of resources among end-
users, most SPARQL endpoints configure quotas on their servers. They mainly
3 https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

Processing SPARQL Aggregate Queries with Web Preemption 3

restrict the arrival rate per IP address and limit the execution time of queries.
Restricting the arrival rate allows end-users to retry later, however, limiting
the execution time leads some queries to deliver only partial results. Delivering
partial results is a serious limitation for public SPARQL services [12,2,17].
Centralized query answering. Big data processing approaches are able to
process aggregate queries efficiently on a large volume of data. Data has to be first
ingested in a distributed datastore such as HBase [20], then SPARQL queries can
be translated to Map/reduce jobs or massively parallelized with parallel scans
and joins. Many proposals exist in the semantic web including [14,3]. All these
approaches require to download datasets and ingest data on a local cluster to
process aggregate queries. Consequently, they require a high-cost infrastructure
which can be amortized only if a high number of aggregate queries have to be
executed. Our approach processes aggregate queries on available public servers
without copying the data and delivers exact answers.
Query answering by samples. Approximate query processing is a well-known
approach to speedup aggregate query processing [11]. The approach relies on
sampling, synopses or sketches techniques to approximate results with bounded
errors. The sampling approach proposed in [17] scales with large knowledge
graphs, and overcomes quotas but computes approximate query answers. In this
paper, we aim to compute the exact results of aggregate queries and not approx-
imate answers.
Distributed query processing approaches. Another well-known approach
to overcome quotas is to decompose a query into smaller subqueries that can
be evaluated under quotas and recombine their results [2]. Such decomposition
requires a smart client which allows for performing the decomposition and re-
combine intermediate results. In that sense, the query processing is distributed
between a server and smart client that collaborate to process SPARQL queries.
However, ensuring that subqueries can be completed under quotas remains hard
[2]. Another approach is to build servers with a restricted interface that processes
queries that completes within bounded times, i.e., quotas. A smart client in-
teracts with such a server to process full SPARQL queries. The Triple Pattern
Fragments approach (TPF) [19] decomposes SPARQL queries into a sequence of
paginated triple pattern queries. As paginated triple patterns queries can be ex-
ecuted in bounded times, the server does not need quotas. However, as the TPF
server only processes triple pattern queries, joins and aggregates are evaluated
on the smart client. This requires to transfer all required data from server to
client to perform joins, and then to compute aggregate functions locally, which
leads to poor query execution performance.

Web preemption [12] is another approach to process SPARQL queries on a
public server without quota enforcement. Web preemption allows the web server
to suspend a running SPARQL query after a quantum of time and return a link
to the smart client. Sending this link back to the web server, allows executing
the query for another quantum of time. Compared to First-Come First-Served
(FCFS) scheduling policy, web preemption provides a fair allocation of server
resources across queries, a better average query completion time per query and

4 A. Grall et al.

a better time for first results. However, if Web preemption allows processing
projections and joins on server-side, aggregate operators are still evaluated on a
smart client. So, data transfer may be intensive especially for aggregate queries.

In this paper, we extend the web preemption approach to support partial
aggregates. Partial aggregates are built during the execution of quanta and sent
to the smart client. The smart client recombines partial aggregates to compute
the final results.

3 Preliminaries

SPARQL Aggregation Queries: We follow the semantics of aggregation as
defined in [10]. We recall briefly definitions related to the proposal of the paper.
We follow the notation from [10,13,16] and consider three disjoint sets I (IRIs),
L (literals) and B (blank nodes) and denote the set T of RDF terms I ∪L ∪B.
An RDF triple (s, p, o) ∈ (I ∪ B)× I × T connects subject s through predicate
p to object o. An RDF graph G (called also RDF dataset) is a finite set of RDF
triples. We assume the existence of an infinite set V of variables, disjoint with
previous sets. A mapping µ from V to T is a partial function µ : V → T , the
domain of µ, denoted dom(µ) is the subset of V where µ is defined. Mappings µ1

and µ2 are compatible on the variable ?x, written µ1(?x) ∼ µ2(?x) if µ1(?x)=
µ2(?x) for all ?x ∈ dom(µ1) ∩ dom(µ2).

A SPARQL graph pattern expression P is defined recursively as follows.
1. A tuple from (I ∪ L ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a triple pattern.
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT

P2), and (P1 UNION P2) are graph patterns (a conjunction graph pattern,
an optional graph pattern, and a union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).
The evaluation of a graph pattern P over an RDF graph G denoted by JP KG

produces a multisets of solutions mappings Ω = (SΩ , cardΩ), where SΩ is the
base set of mappings and the multiplicity function cardΩ which assigns a car-
dinality to each element of SΩ . For simplicity, we often write µ ∈ Ω instead of
µ ∈ SΩ . The SPARQL 1.1 language [18] introduces new features for supporting
aggregation queries: i) A collection of aggregate functions for computing values,
like COUNT, SUM, MIN, MAX and AVG; ii) GROUP BY and HAVING. HAVING restricts
the application of aggregate functions to groups of solutions satisfying certain
conditions.

Both groups and aggregate deal with lists of expressions E = [E1, . . . , En],
which evaluate to v-lists: lists of values in T ∪ {error}. More precisely, the
evaluation of a list of expressions according to a mapping µ is defined as:
JEKµ = [JE1Kµ, . . . , JEnKµ]. Inspired by [18,10], we formalize Group and Ag-
gregate.

Processing SPARQL Aggregate Queries with Web Preemption 5

:s1 :p1 :o1 .
:s1 :a :c2, :c3.
:s2 :p1 :o1 .
:s2 :a :c1, :c3.

(a) G1

SELECT ? c
(COUNT(? o) AS ? z)

WHERE { ? s : a ? c .
? s ?p ?o . ? s : p1 : o1}

GROUP BY ? c

(b) SPARQL query Q1

SELECT ? c
(COUNT(D i s t i n c t (? o)) AS ? z)

WHERE { ? s : a ? c .
? s ?p ?o . ? s : p1 : o1}

GROUP BY ? c

(c) SPARQL query Q2

Fig. 1: Aggregate queries Q1 and Q2 on RDF graph G1

Definition 1 (Group). A group is a construct G(E,P) with E is a list of
expressions 4, P a graph pattern, G an RDF graph. Let Ω = JP KG, the evaluation
of JG(E,P)KG produces a set of partial functions from keys to solution sequences.

JG(E,P)KG = {JEKµ 7→ {µ′ | µ′ ∈ Ω, JEKµ = JEKµ′} | µ ∈ Ω}

Definition 2 (Aggregate). An aggregate is a construct γ(E,F, P) with E is
a list of expressions, F a set of aggregation functions, P a graph pattern, G
an RDF Graph, and {k1 7→ ω1, . . . , kn 7→ ωn} a multiset of partial functions
produced by JG(E,P)KG. The evaluation of Jγ(E,F, P)KG produces a single value
for each key.

Jγ(E,F, P)KG = {(k, F (Ω))|k 7→ Ω ∈ {k1 7→ ω1, . . . , kn 7→ ωn}}

To illustrate, consider the query Q1 of Figure 1b, which returns the total
number of objects per class for subjects connected to the object o1 through the
predicate p1. Here, PQ1

= {?s :a ?c.?s ?p ?o.?s :p1 :o1} denotes the graph
pattern of Q1, and ?c is the group key. For simplicity, for each key group, we
represent only the value of the variable ?o, as ?o is the only variable used in the
COUNT aggregation. JG(?c, PQ1

)KG1 = {:c3 7→ {:c3, :c1, :c2, :o1, :c3, :o1, },
:c1 7→ {:o1, :c3, :c1}, :c2 7→ {:o1, :c3, :c2}} and the query Q1 is evaluated
as Jγ({?c}, {COUNT(?o)}, PQ1)KG1 = {(:c3, 6), (:c1, 3), (:c2, 3)}.
Web preemption and SPARQL Aggregation queriesWeb preemption [12]
is the capacity of a web server to suspend a running query after a fixed quantum
of time and resume the next waiting query. When suspended, partial results and
the state of the suspended query Si are returned to the smart web client 5. The
client can resume query execution by sending Si back to the web server. Com-
pared to a First-Come First-Served (FCFS) scheduling policy, web preemption
provides a fair allocation of web server resources across queries, a better average
query completion time per query and a better time for first results [1]. To illus-
trate, consider three SPARQL queries Qa, Qb, and Qc submitted concurrently by
three different clients. The execution time of Qa, Qb and Qc are respectively 60s,
5s and 5s. Figure 2a presents a possible execution of these queries with a FCFS
policy. In this case, the throughput of FCFS is 3

70 = 0.042 queries per second,

4 We restrict E to variables, without reducing the expressive power of aggregates [10].
5 Si can be returned to the client or saved server-side and returned by reference.

6 A. Grall et al.

− 0

− 60

− 65

− 70

Qa

Qb

Qc

− 0

− 30
− 33

− 38

− 43
− 46

− 76

Qa

Qb

Qc

Qa

FCFS

Preemption

(a) FCFS vs preemption
(quantum of 30s)

q
Server
?c ?o

Client
Q1

q1
ω1

:c3 :o1
:c3 :c3 Ω = Ω ∪ ω1

q2
ω2

:c3 :c1
:c1 :o1 Ω = Ω ∪ ω2

q3
ω3

:c1 :c3
:c1 :c1 Ω = Ω ∪ ω3

q4
ω4

:c3 :o1
:c3 :c3 Ω = Ω ∪ ω4

q5
ω5

:c3 :c2
:c2 :o1 Ω = Ω ∪ ω5

q6
ω6

:c2 :c3
:c2 :c2 Ω = Ω ∪ ω6

γ({?c}, {COUNT(?o)}, Ω)
{(:c3 7→ 6), (:c1 7→ 3), (:c2 7→ 3)}

ω1

next
ω2

next
ω3

next
ω4

next
ω5

next
ω6: Done

Q′
1

(b) Evaluation of Q1 on G1 with
regular Web preemption [12]

Fig. 2: Evaluation of SPARQL aggregation queries with Web Preemption

the average completion time per query is 60+65+70
3 = 65s and the average time

for first results is also 65s. Figure 2a presents the execution of Qa, Qb, and Qc
using Web preemption, with a time quantum of 30s. Web preemption adds an
overhead for the web server to suspend the running query and resume the next
waiting query, of about in 3s (10% of the quantum) our example. In this case, the
throughput is 3

76 = 0.039 query per second but the average completion time per
query is 76+38+43

3 = 52.3s and the average time for first results is approximately
30+38+43

3 = 37s. If the quantum is set to 60s, then Web preemption is equiva-
lent to FCFS. If the quantum is too low, then the throughput and the average
completion time are deteriorated due to overhead. Consequently, the challenges
with Web preemption are to bound the preemption overhead in time and space
and determine the time quantum to amortize the overhead.

To address these challenges, in [12], the SPARQL operators are divided into
two categories: mapping-at-a-time operators and full-mappings operators. For
mapping-at-a-time operators, the overhead in time and space for suspending and
resuming a query Q is bounded by O(|Q|× log(|G|)), where |Q| is the number of
operators required to evaluate Q. Graph patterns composed of AND, UNION,
PROJECTION, and most FILTERS can be implemented using mapping-at-a-
time operators. So, this fragment of SPARQL can be efficiently executed by a pre-
emptable Web server. Full-mappings operators, such as OPTIONAL, GROUP
BY, Aggregations, ORDER BY, MINUS and EXISTS require full materializa-
tion of solution mappings to be executed, so they are executed by Smart clients.

Figure 2b illustrates how web preemption processes the query Q1 of Figure
1b over the dataset D1. The smart client sends the BGP of Q1 to the server, i.e.,
the query Q′1: SELECT ?c ?o WHERE { ?s :a ?c ; ?p ?o ; :p1 :o1} . In this example,

Processing SPARQL Aggregate Queries with Web Preemption 7

q
Q1

?c ?o
Awi

γ({?c}, COUNT(?o), ωi)
Client

Merge(Ω,ωi)

q1
ω1

:c3 :o1
:c3 :c3 :c3 7→ 2 :c3 7→ 2

q2
ω2

:c3 :c1
:c1 :o1

:c3 7→ 1
:c1 7→ 1

:c3 7→ 3
:c1 7→ 1

q3
ω3

:c1 :c3
:c1 :c1 :c1 7→ 2

:c3 7→ 3
:c1 7→ 3

q4
ω4

:c3 :o1
:c3 :c3 :c3 7→ 2

:c3 7→ 5
:c1 7→ 3

q5
ω5

:c3 :c2
:c2 :o1

:c3 7→ 1
:c2 7→ 1

:c3 7→ 6
:c1 7→ 3
:c2 7→ 1

q6
ω6

:c2 :c3
:c2 :c2 :c1 7→ 2

:c3 7→ 6
:c1 7→ 3
:c2 7→ 3

Q1

next

next

next

next

next

(a) Q1

q
Q2
?c ?o

Awi
γ(?c, CT(?o), ωi)

Client
Merge(Ω,ωi)

q1
ω1

:c3 :o1
:c3 :c3 :c3 7→ {:o1, :c3} :c3 7→ {:o1, :c3}

q2
ω2

:c3 :c1
:c1 :o1

:c3 7→ {:c1}
:c1 7→ {:o1}

:c3 7→ {:o1, :c3, :c1}
:c1 7→ {:o1}

q3
ω3

:c1 :c3
:c1 :c1 :c1 7→ {:c3, :c1} :c3 7→ {:o1, :c3, :c1}

:c1 7→ {:o1, :c3, :c1}

q4
ω4

:c3 :o1
:c3 :c3 :c3 7→ {:o1, :c3} :c3 7→ {:o1, :c3, :c1}

:c1 7→ {:o1, :c3, :c1}

q5
ω5

:c3 :c2
:c2 :o1

:c3 7→ {:c2}
:c2 7→ {:o1}

:c3 7→ {:o1, :c3, :c1, :c2}
:c1 7→ {:o1, :c3, :c1}
:c2 7→ {:o1}

q6
ω6

:c2 :c3
:c2 :c2 :c1 7→ {:c3, :c2}

:c3 7→ {:o1, :c3, :c1, :c2}
:c1 7→ {:o1, :c3, :c1}
:c2 7→ {:o1, :c3, :c2}

Q2

next

next

next

next

next

(b) Q2

Fig. 3: Evaluation of Q1 and Q2 on G1 with a partial aggregate PQ1
.

Q′1 requires six quanta to complete. At the end of each quantum qi, the client
receives mappings ωi and asks for the next results (next link). When all mappings
are obtained, the smart client computes γ({?c}, {COUNT(?o)},

⋃
i ωi). Finally, to

compute the set of three solutions mappings {{:c3 7→ 6}, {:c1 7→ 3}, {:c2 7→
3}}, the server transferred 6 + 3 + 3 = 12 mappings to the client.

In a more general way, to evaluate Jγ(E,F, P)KG , the smart client first asks a
preemptable web server to evaluate JP KG = Ω, the server transfers incrementally
Ω, and finally the client evaluates γ(E,F,Ω) locally. The main problem with this
evaluation is that the size of Ω, is usually much bigger than the size of γ(E,F,Ω).

Reducing data transfer requires reducing |JP KG | which is impossible with-
out deteriorating answer completeness. Therefore, the only way to reduce data
transfer when processing aggregate queries is to process the aggregation on the
preemptable server. However, the operator used to evaluate SPARQL aggrega-
tion is a full-mapping operator, as it requires to materialize |JP KG |, hence it
cannot be suspended and resumed in constant time.

Problem Statement: Define a preemptable aggregation operator γ such
that the complexity in time and space of suspending and resuming γ is bounded
in constant time 6

4 Computing Partial Aggregations with Web Preemption

Our approach for building a preemptable evaluator for SPARQL aggregations
relies on two key ideas: (i) First, web preemption naturally creates a partition of
mappings over time. Thanks to the decomposability of aggregation functions [21],
we compute partial aggregation on the partition of mappings on the server side
and recombine partial aggregates on the client side. (ii) Second, to control the

6 we only consider aggregate queries with Basic Graph Patterns without OPTIONAL

8 A. Grall et al.

Table 1: Decomposition of SPARQL aggregation functions
SPARQL Aggregations functions

COUNT SUM MIN MAX AVG COUNTD SUMD AVGD
f1 COUNT SUM MIN MAX SaC CT

v � v′ v + v′ min(v, v′) max(v, v′) v ⊕ v′ v ∪ v′
h Id (x, y) 7→ x/y COUNT SUM AVG

size of partial aggregates, we can adjust the size of the quantum for aggregate
queries.

In the following, we present the decomposability property of aggregation
functions and how we use this property in the context of web preemption.

4.1 Decomposable aggregation functions

Traditionally, the decomposability property of aggregation functions [21] ensures
the correctness of the distributed computation of aggregation functions [9]. We
adapt this property for SPARQL aggregate queries in Definition 3.

Definition 3 (Decomposable aggregation function). An aggregation func-
tion f is decomposable if for some grouping expressions E and all non-empty
multisets of solution mappings Ω1 and Ω2, there exists a (merge) operator �, a
function h and an aggregation function f1 such that:

γ(E, {f}, Ω1]Ω2) = {k 7→ h(v1 � v2) | k 7→ v1 ∈ γ(E, {f1}, Ω1),

k 7→ v2 ∈ γ(E, {f1}, Ω2)}

In the above,] denotes the multi-set union as defined in [10], abusing nota-
tion using Ω1]Ω2 instead of P . Table 1 gives the decomposition of all SPARQL
aggregations functions, where Id denotes the identity function and ⊕ is the
point-wise sum of pairs, i.e., (x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2).

To illustrate, consider the function f = COUNT(?c) and an aggregation query
γ(V, {f}, Ω1] Ω2), such as γ(V, {f}, Ω1) = {{?c 7→ 2}} and γ(V, {f}, Ω2) =
{{?c 7→ 5}}. The intermediate aggregation results for the COUNT aggregation can
be merged using an arithmetic addition operation, i.e., {{?c 7→ 2�5 = 2+5 = 7}}.

Decomposing SUM, COUNT, MIN and MAX is relatively simple, as we need only
to merge partial aggregation results to produce the final query results. How-
ever, decomposing AVG and aggregations with the DISTINCT modifier are more
complex. We introduce two auxiliary aggregations functions, called SaC (SUM-
and-COUNT) and CT (Collect), respectively. The first one collects informa-
tion required to compute an average and the second one collects a set of dis-
tinct values. They are defined as follows: SaC(X) = 〈SUM(X), COUNT(X)〉 and
CT(X) is the base set of X as defined in section 3. For instance, the aggrega-
tion function of the query Q = γ(V, COUNTD(?o), Ω1] Ω2) is decomposed as
Q′ = COUNT(γ(V, CT(?o), Ω1) ∪ γ(V, CT(?o), Ω2)).

Processing SPARQL Aggregate Queries with Web Preemption 9

4.2 Partial aggregation with web preemption

Using a preemptive web server, the evaluation of a graph pattern P over G nat-
urally creates a partition of mappings over time ω1, ..., ωn, where ωi is produced
during the quantum qi. Intuitively, a partial aggregations Ai, formalized in Def-
inition 4, is obtained by applying some aggregation functions on a partition of
mappings ωi.

Definition 4 (Partial aggregation). Let E be a list of expressions, F a set
of aggregation functions, and ωi ⊆ JP KG such that JP KG =

⋃i=n
i=1 ωi where n is

the number of quanta required to complete the evaluation of P over G. A partial
aggregation Ai is defined as Ai = γ(E,F, ωi).

As a partial aggregation operates on ωi, partial aggregation can be imple-
mented server-side as a mapping-at-a-time operator. Suspending the evaluation
of aggregate queries using partial aggregates does not require to materialize in-
termediate results on the server. Finally, to process the SPARQL aggregation
query, the smart client computes Jγ(E,F, P)KG = h(A1 �A2 � · · · �An).

Figure 3a illustrates how a smart client computes Q1 over D1 using partial
aggregates. We suppose that Q1 is executed over six quanta q1, . . . , q6. At each
quantum qi, two new mappings are produced in ωi and the partial aggregate A

i
=

γ({?c}, {COUNT(?o)}, ωi) is sent to the client. The client merges all Ai thanks
to the � operator and then produces the final results by applying g. Figure 3b
describes the execution of Q2 with partial aggregates under the same conditions.
As we can see, the DISTINCT modifier requires to transfer more data, however,
a reduction in data transfer is still observable compared with transferring all ωi
for q1, q2, q3, q4, q5, q6.

The duration of the quantum seriously impacts query processing using partial
aggregations. Suppose in Figure 3a, instead of six quanta of two mappings, the
server requires twelve quanta with one mapping each, therefore, partial aggre-
gates are useless. If the server requires two quanta with six mappings each, then
only two partial aggregates A1 = {(:c3, 3), (: c1, 3)} and A2 = {(:c3, 3), (c2, 3)}
are sent to the client and data transfer is reduced. If the quantum is infinite,
then the whole aggregation is produced on the server-side, the data transfer is
optimal. Globally, for an aggregate query, the larger the quantum is, the smaller
the data transfer and execution time are.

However, if we consider several aggregates queries running concurrently (as
presented in Figure 2a), the quantum also determines the average completion
time per query, the throughput and time for first results. The time for the first re-
sult is not significant for aggregate queries. A large quantum reduces overheads
and consequently, improves throughput. However, a large quantum degrades
the average completion time per query, i.e., the responsiveness of the server as
demonstrated in experiments of [12]. Consequently, setting the quantum mainly
determines a trade-off between efficiency of the partial aggregates that can be
measured in data transfer and the responsiveness of the server that can be mea-
sured in average completion time per query. The administrator of a public server
is responsible for setting the value of the quantum according to the workload and

10 A. Grall et al.

Algorithm 1: A Server-Side Preemptable SPARQL Aggregation Iterator
Require: Ip: predecessor in the pipeline of iterators, K: grouping variables, A:

set of aggregations functions.
Data: G: multisets of solutions mappings

1 Function Open():
2 G← ∅
3 Function Save():
4 return G

5 Function GetNext():
6 if Ip.HasNext() then
7 µ← Ip.GetNext()
8 non interruptible
9 Ω ← γ(K,A, {µ})

10 if G = ∅ then
11 G← Ω
12 else
13 G←Merge(K,A,G,Ω)

14 return nil

15 Function Merge(K,A,X,Y):
16 Z ← ∅
17 for µ ∈ X do
18 if ∃µ′ ∈ Y, JKKµ = JKKµ′ then
19 for k 7→ v ∈ µ′ do
20 if type(k,A) ∈ {COUNT, SUM} then
21 µ[k]← µ[k] + v

22 else if type(k,A) = SaC then
23 µ[k]← µ[k]⊕ v
24 else if type(k,A) = MIN then
25 µ[k]← min(µ[k], v)

26 else if type(k,A) = MAX then
27 µ[k]← max(µ[k], v)

28 else
29 µ[k]← µ[k] ∪ v

30 else if ∃µ′ ∈ Y, µ′ /∈ X,K ∈ dom(µ′)
then

31 Z ← Z ∪ {µ′}
32 Z ← Z ∪ {µ}
33 return Z

dataset size. This is not a new constraint imposed by web preemption, DBpedia
and Wikidata administrators already set their quotas to 60s for the same reason.
We offer them the opportunity to replace a quota that stops query execution by
a quantum that suspends query execution.

4.3 Implementing decomposable aggregation functions

For evaluating SPARQL aggregation queries on the preemptive server SaGe [12],
we introduce the preemptable SPARQL aggregation iterator. The new iterator
incrementally computes partial aggregation during a time quantum and then
returns the results to the smart client, as shown in Algorithm 1. It can also be
suspended and resumed in constant time.

When query processing starts, the server calls the Open()method to initialize
a multiset of solution mappings G. At each call to GetNext(), the iterator pulls a
set of solutions µ from its predecessor (Line 7). Then, it computes the aggregation
functions on µ and merges the intermediate results with the content of G (Lines
8-13), using the � operator. These operations are non-interruptibles, because
if they were interrupted by preemption, the iterator could end up in a non-
consistent state that cannot be saved or resumed. The function Merge(K,A,X,Y)

Processing SPARQL Aggregate Queries with Web Preemption 11

Algorithm 2: Client-side merging of partial aggregates
Require: Qγ : SPARQL aggregation query, S: url of a SaGe server.

1 Function EvalQuery(Qγ , S):
2 K ← Grouping variables of Qγ
3 A← Aggregation functions of Qγ
4 Q′

γ ← DecomposeQuery(Qγ)
5 Ω ← ∅
6 Ω′, next← Evaluate Q′

γ at S
7 while next 6= nil do
8 Ω ←Merge(K,A,Ω,Ω′)
9 Ω′, next← Evaluate next at S

10 return ProduceResults(Ω,K,A)

11 Function ProduceResults(Ω,K,A):
12 Ωr ← ∅
13 for µ ∈ Ω do
14 for k 7→ v ∈ µ, k /∈ K do
15 if type(k,A) = AVG then
16 (s, c)← v
17 µ[k] = s/c

18 else if type(k,A) = COUNTD then
19 µ[k] = |v|
20 else if type(k,A) = SUMD then
21 µ[k] = SUM(v)

22 else if type(k,A) = AVGD then
23 µ[k] = AV G(v)

24 Ωr ← Ωr ∪ {µ}
25 return Ωr

(Lines 15-33) merges the content of two solution mappingsX,Y . For each µ ∈ X,
it finds a µ′ ∈ Y that has the same group key as µ (Line 18). If so, the algorithm
iterates over all aggregations results in µ (Lines 19-32) to merge them with their
equivalent in µ′, using the diffrent merge operators shown in Table 1. If the
aggregation is a COUNT or SUM (Lines 20-21), then the aggregation results are
merged using an addition. If the aggregation is a SaC aggregation (Lines 22-23),
then the two results are merged using the pointwise sum of pairs, as defined in
Section 4.2. If it is a MIN (Lines 24-25) or MAX aggregation (Lines 26-27), then
the results are merged by keeping the minimum or maximum of the two values,
respectively. Finally, in the case of a CT aggregation (Lines 28-29), the two sets
of values are merged using the set union operator. When preemption occurs, the
server waits for its non-interruptible section to complete and then suspends query
execution. The section can block the program for at most the computation of γ on
a single set of mappings, which can be done in constant time. Then, the iterator
calls the Save() method and sends all partial SPARQL aggregation results to
the client. When the iterator is resumed, it starts back query processing where
it was left, but with an empty set G, i.e., the preemptable SPARQL aggregation
iterator is fully stateless and resuming it is done in constant time.

We also extend the SaGe smart web client to support the evaluation of
SPARQL aggregation using partial aggregates, as shown in Algorithm 2. To
execute a SPARQL aggregation query Qγ , the client first decomposes Qγ into Q′γ
to replace the AVG aggregation function and the DISTINCT modifier as described
in Section 4.2. Then, the client submits Q′γ to the SaGe server S, and follows
the next links sent by S to fetch and merge all query results, following the Web
preemption model (Lines 6-9). The client transforms the set of partial SPARQL

12 A. Grall et al.

aggregation results returned by the server to produce the final aggregation results
(Lines 11-25): for each set of solutions mappings µ ∈ Ω, the client applies the
reducing function on all aggregation results. For an AVG aggregation, it computes
the average value from the two values stored in the pair computed by the SaC
aggregation (Lines 15-17). For a COUNTD (Lines 18-19) aggregation, it counts the
size of the set produced by the CT aggregation. For SUMD (Lines 20-21) and AVGD
(Lines 22-23) aggregations, the client simply applies the SUM and AVG aggregation
function, respectively, on the set of values. Finally, for all other aggregations, like
SUM or COUNT, the client does not perform any reduction, as the values produced
by the merge operator already are final results.

Table 2: Statistics of RDF datasets used in the experimental study
RDF Dataset # Triples # Subjects # Predicates # Objects # Classes

BSBM-10 4 987 614 40 1 920 11
BSBM-100 40 177 4 174 40 11 012 22
BSBM-1k 371 911 36433 40 86202 103

DBpedia 3.5.1 153M 6 085 631 35 631 35 201 955 243

5 Experimental Study

We want to empirically answer the following questions: (i) What is the data
transfer reduction obtained with partial aggregations? (ii) What is the speed up
obtained with partial aggregations? (iii) What is the impact of time quantum
on data transfer and execution time?

We implemented the partial aggregator approach as an extension of the SaGe
query engine 7. The SaGe server has been extended with the new operator
described in Algorithm 1. The Java SaGe client is implemented using Apache
Jena and has been extended with Algorithm 2. All extensions and experimental
results are available at https://github.com/folkvir/sage-sparql-void.
Dataset and Queries: We build a workload (SP) of 18 SPARQL aggregation
queries extracted from SPORTAL queries [8] (queries without ASK and FIL-
TER). Most of the extracted queries have the DISTINCT modifier. SPORTAL
queries are challenging as they aim to build VoID description of RDF datasets
8. In [8], the authors report that most queries cannot complete over DBpedia
due to quota limitations. To study the impact of DISTINCT on performances
of aggregate queries processing, we defined a new workload, denoted SP-ND,
by removing the DISTINCT modifier from the queries of SP. We run the SP
and SP-ND workloads on synthetic and real-world datasets: Berlin SPARQL
Benchmark (BSBM) with different sizes, and a fragment of DBpedia v3.5.1,
respectively. The statistics of datasets are detailed in Table 2.
7 https://sage.univ-nantes.fr
8 https://www.w3.org/TR/void/

https://github.com/folkvir/sage-sparql-void
https://sage.univ-nantes.fr
https://www.w3.org/TR/void/

Processing SPARQL Aggregate Queries with Web Preemption 13

Fig. 4: Data Transfer and execution time for BSBM-10, BSBM-100 and BSBM-
1k, when running the SP (left) and SP-ND (right) workloads

Approaches: We compare the following approaches:
– SaGe: We run the SaGe query engine [12] with a time quantum of 150ms

and a maximum page size of results of 5000 mappings. The data are stored in a
PostgreSQL server, with indexes on (SPO), (POS) and (OSP).

– SaGe-agg: is our extension of SaGe with partial aggregations. It runs
with the same configuration as the regular SaGe.

– TPF : We run the TPF server [19] (with noWeb cache) and the Communica
client, using the standard page size of 100 triples. Data are stored in HDT format.

– Virtuoso: We run the Virtuoso SPARQL endpoint [6] (v7.2.4) without
quotas in order to deliver complete results and optimal data transfer. We also
configured Virtuoso with a single thread to fairly compare with other engines.

Servers configurations: We run experimentations on Google Cloud Platform,
on a n1-standard-2 :2 vCPU, 7,5 Go memory with a SSD local disk.

Evaluation Metrics: Presented results correspond to the average obtained of
three successive executions of the queries workloads. (i) Data transfer : is the
number of bytes transferred to the client when evaluating a query. (ii) Execution
time: is the time between the start of the query and the production of the final
results by the client.

Experimental results

Data transfer and execution time over BSBM Figure 4 presents data
transfer and execution time for BSBM-10, BSBM-100 and BSBM-1k. The plots

14 A. Grall et al.

Fig. 5: Time quantum impacts executing SP (left) and SP-ND (right) over
BSBM1k

on the left detail the results for the SP workload and on the right, the results
for the SP-ND workload. Virtuoso with no quota is presented as the optimal in
terms of data transfer and execution time. As expected, TPF delivers the worst
performance because TPF does not support projections and joins on server-side.
Consequently, the data transfer is huge even for small datasets. SaGe delivers
better performance than TPF mainly because it supports projection and joins on
the server side. SaGe-agg significantly improves data transfer but not execution
time. Indeed, partial aggregations allow to reduce data transfer but do not allow
to speed up the scanning of data on disk. When comparing the 2 workloads, we
can see that processing queries without DISTINCT (on the right) is much more
efficient in data transfer than with DISTINCT (on the left). For DISTINCT queries,
partial aggregations can only remove duplicates observed during a time quantum
only and not those observed during the execution of the query.

Impact of time quantum Figure 5 reports the results of running SaGe,
SaGe-agg and Virtuoso with a quantum of 150ms, 1,5s and 15s on BSBM-1k.
The plots on the left detail the results for the SP workload and on the right the
SP-ND workload. As we can see, increasing the quantum significantly improves
execution times of SaGe-agg but not of SaGe. Indeed, SaGe transfers the
same amount of mappings to the client even with a large quantum. Increasing
the quantum reduces data transfer for the SP workload. Indeed, a large quantum
allows deduplicating more elements.

Data transfer and execution time over DBPedia Figure 6 reports the re-
sults of running SaGe-agg with the SP-ND workload on a fragment of DBPedia
with a quantum of 30s compared with Virtuoso. As expected, Virtuoso delivers
better performance in data transfer and execution times. Concerning execution

Processing SPARQL Aggregate Queries with Web Preemption 15

Fig. 6: Execution time and data transferred for SP-ND over DBpedia

time, the difference of performance between Virtuoso and SaGe-agg is mainly
due to the lack of query optimisation in the SaGe-agg implementation: no pro-
jection push-down, no merge-joins. Concerning data transfer, Virtuoso computes
full aggregation on the server, while SaGe-agg performs only partial aggrega-
tion. However, Virtuoso cannot ensure termination of queries under quotas. Five
queries are interrupted after 60s. SaGe-agg replaces a quota that stops query
execution by a quantum that suspends query execution. Consequently, SaGe-
agg ensures termination of all queries.

6 Conclusion and Future Works

In this paper, we demonstrated how the partitioning of mappings produced by
Web preemption can be used to extend a preemptable SPARQL server with
a preemptable aggregation operator. As a large part of aggregations are now
executed on the server-side, it drastically reduces data transfer and improves
execution time of SPARQL aggregation queries compared to SaGe and TPF.
However, in the current implementation, the execution time still exhibits low
performance which limit the application to very large knowledge graphs such as
Wikidata or DBpedia. Fortunately, there are many ways to improve execution
times. First, the current implementation of SaGe has no query optimizer on the
server-side. Just applying state of art optimisation techniques, including filter
and projection push-down, aggregate push down or merge-joins should greatly
improve execution times. Second, web preemption currently does not support
intra-query parallelization techniques. Defining how to suspend and resume par-
allel scans is clearly in our research agenda.

Acknowledgments This work is partially supported by the ANR DeKaloG (De-
centralized Knowledge Graphs) project, program CE23. A. Grall is funded by the
GFI Informatique company. T. Minier is partially funded through the FaBuLA
project, part of the AtlanSTIC 2020 program.

16 A. Grall et al.

References

1. Anderson, T., Dahlin, M.: Operating Systems: Principles and Practice. Recursive
books, 2nd edn. (2014)

2. Aranda, C.B., Polleres, A., Umbrich, J.: Strategies for executing federated queries
in SPARQL1.1. In: The Semantic Web - ISWC 2014 - 13th International Semantic
Web Conference. vol. 8797, pp. 390–405. Springer (2014)

3. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats - an extensible framework
for high-performance dataset analytics. In: EKAW 2012. pp. 353–362 (2012)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

5. Blasgen, M.W., Gray, J., Mitoma, M.F., Price, T.G.: The convoy phenomenon.
Operating Systems Review 13(2), 20–25 (1979)

6. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Networked
Knowledge - Networked Media - Integrating Knowledge Management, New Me-
dia Technologies and Semantic Systems, pp. 7–24. Springer (2009)

7. Fife, D.W.: R68-47 computer scheduling methods and their countermeasures. IEEE
Trans. Computers 17(11), 1098–1099 (1968)

8. Hasnain, A., Mehmood, Q., e Zainab ang Aidan Hogan, S.S.: SPORTAL: profiling
the content of public SPARQL endpoints. Int. J. Semantic Web Inf. Syst. 12(3),
134–163 (2016)

9. Jesus, P., Baquero, C., Almeida, P.S.: A survey of distributed data aggregation
algorithms. CoRR abs/1110.0725 (2011), http://arxiv.org/abs/1110.0725

10. Kaminski, M., Kostylev, E.V., Grau, B.C.: Query nesting, assignment, and aggre-
gation in SPARQL 1.1. ACM Trans. Database Syst. 42(3), 1–46 (Aug 2017)

11. Li, K., Li, G.: Approximate query processing: what is new and where to go? Data
Science and Engineering 3(4), 379–397 (2018)

12. Minier, T., Skaf-Molli, H., Molli, P.: Sage: Web preemption for public SPARQL
query services. In: The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019. pp. 1268–1278 (2019)

13. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Transations on Database Systems 34(3), 16:1–16:45 (2009)

14. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on spark. VLDB Endowment 9(10), 804–815 (2016)

15. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: 13th International Semantic Web Con-
ference (ISWC). vol. 8796, pp. 245–260 (2014)

16. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Database Theory - ICDT 2010. pp. 4–33 (2010)

17. Soulet, A., Suchanek, F.M.: Anytime large-scale analytics of Linked Open Data.
In: 18th International Semantic Web Conference, ISWC (2019)

18. Steve, H., Andy, S.: SPARQL 1.1 query language. In: RecommendationW3C (2013)
19. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D.,

Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-cost knowledge
graph interface for the web. J. Web Sem. 37-38, 184–206 (2016)

20. Vora, M.N.: Hadoop-HBase for large-scale data. In: International Conference on
Computer Science and Network Technology. vol. 1, pp. 601–605. IEEE (2011)

21. Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th Inter-
national Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

http://arxiv.org/abs/1110.0725

	Processing SPARQL Aggregate Queries with Web Preemption

