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Abstract

This paper deals with an observer-based event-triggered boundary control for a coupled 2×2 linear hyperbolic
system. The approach builds on an output feedback controller depending on estimated states along with
a dynamic triggering condition which establishes the time instants at which the control value needs to be
sampled/updated. This work combines some recent results on boundary stabilization via the backstepping
approach with some event-triggered control strategies for this kind of PDE system. In this paper, it is shown
that under the proposed event-triggered boundary control, there exists a minimal dwell-time (independent on
initial conditions) between two triggering times and furthermore the well-posedness and global exponential
stability are guaranteed. A simulation example is presented to validate the theoretical results with further
discussions on the advantages of the proposed scheme.

Keywords: linear hyperbolic systems, backstepping control design, event-triggered control, output
feedback, observers.

1. Introduction

Event-triggered control is a computer control strategy that has been widely studied in the framework of
networked control systems modeled by ordinary differential equations (ODEs) [29, 15, 25, 22, 14, 26, 23, 3].
The need to use communications, computational and actuating resources efficiently as well as the need of
implementing rigorously digitally continuous time controllers have actually motivated the use of this new
paradigm in sampled-data control. In general, event-triggered control includes two main components: a
feedback control law which stabilizes the system and an event-triggered mechanism which contains a trig-
gering strategy that determines the time instants at which the control needs to be updated. Two general
approaches exist for the design: Emulation from which the controller is a priori predesigned and only the
event-triggered algorithm has to be designed and Co-design, where the design of the control law and the
event-triggering mechanism is performed simultaneously. The evaluation of the behavior of the system
within the event-triggered mechanism has been typically done continuously [29] but more recent contri-
butions handle the monitoring of the triggering condition periodically [3]; giving rise to the framework of
periodic event-triggered control.

Sampled-data and event-triggered strategies for partial differential equations (PDEs) without model
reduction have not achieved a sufficient level of maturity as in the finite-dimensional case. Few approaches
on sampled-data and event-triggered control of parabolic PDEs are considered in [13, 18, 28], [34]. In the
context of abstract formulation of distributed parameter systems, sampled-data control is investigated in
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[24] and [30]. For hyperbolic PDEs, sampled-data are studied in [7] and [17] where the boundary actuation
is carried out under a sample-and-hold fashion whose period can be estimated from a looped-functional
analysis and from the backstepping method together with a representation of the closed-loop solution in
terms of Integral Delay Equations (IDEs), respectively.

Some recent works have introduced event-triggered control strategies for linear hyperbolic PDEs [8, 9,
12, 11], under an emulation approach. In [8] and [9] event-triggered controllers for linear conservation laws
using output feedback are studied by following Lyapunov techniques and taking into account the dissipativity
condition on the boundary for stability. In [11], on the other hand, the approach relies on the backstepping
method for coupled system of balance laws (inspired by [33, 19]) which leads to a full-state feedback control
which is sampled according to a dynamic triggering condition (inspired by the one originally introduced
for finite-dimensional systems in [14] and subsequently extended to hyperbolic PDEs in [9]). Under such
a triggering policy, it has been possible to prove the existence of a minimal dwell-time between triggering
time instants.

There are several motivations of using event-triggered control in the PDE setting. One of them is precisely
because hyperbolic PDEs have been useful for the modeling and control of variety of physical networks:
e.g. hydraulic [2, Chapter 8], communication [10], and road traffic networks [5, 35]. Therefore, either the
boundary or the in-domain control must be implemented in digital platforms while suitably sampling the
control value. Another reason is related to the efficient use of resources and actuation solicitation. For
instance, actuation on hydraulic networks of channel flows may be expensive due to actuators inertia when
regulating the water level and the water flow rate by using gates opening as control actions. Then, with
event-triggered control one may modulate efficiently the gates opening, only when it is truly necessary. The
difference with respect to periodic sampling schemes is evident. With periodic implementation, one may
produce unnecessary updates of the sampled controllers, which will cause over utilization of computational
and communication resources, as well as actuator solicitation. Hence, we believe that event-triggered control
may show benefits with respect to periodic schemes. In overall, event-triggered would represent a more
realistic approach for the actuation on the network.

In this work, and as a part of the perspectives given in [11], we extend the event-triggered approach to
output feedback where the design makes use of observers (still via the backstepping approach, inspired by
[33, 31] and from some recent results which consider reflection terms at the controlled boundary [1, 20]).
More precisely, the main contributions could be summed up thorough the following:

• We consider a 2 × 2 linear hyperbolic system of balance laws with a proximal reflection term at the
controlled boundary. We perform the emulation on the backstepping observer-based control design and
propose a dynamic triggering condition under which it is possible to prove that there exists a minimal
dwell-time between two triggering times (independent of initial conditions), thus preventing the Zeno
phenomenon. We highlight the relevance of the reflection term to the event-triggered mechanism.

• We prove the well-posedness and the global exponential stability of the closed loop system.

These features make this paper substantially different with respect to [11], even though the methods and
reasoning have been needed to be adapted to the current problem. The approach in this paper represents
even a more realistic approach for potential digital realizations.

This paper is organized as follows. In Section 2, we introduce the class of linear hyperbolic system,
some preliminaries on stability and backstepping output boundary control and the related backstepping
transformations. Section 3 provides the observer-based event-triggered control and some properties. In
Section 4 we present the main results. In Section 5, we provide a discussion on the impact of the reflection
term for the design and some issues on the observer-based event-triggered boundary control. Section 6
provides a numerical example to illustrate the main results. Finally, conclusions and perspectives are given
in Section 7.

Notation . R
+ will denote the set of nonnegative real numbers. The usual Euclidean norm in R

n is denoted
by | · | and the associated matrix norm is denoted ‖ · ‖. L2(0, 1) denotes the equivalence class of Lebesgue
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measurable functions f : [0, 1] → R such that ‖f‖ =
(

∫ 1

0
|f(x)|2dx

)1/2

< ∞. For an interval I ⊆ R
+, the

space C0(I;L2(0, 1)) is the space of continuous mappings I ∋ t 7→ u(t, ·) ∈ L2(0, 1).

2. Preliminaries and problem description

Let us consider the following 2× 2 linear hyperbolic system,

ut(t, x) + λ1ux(t, x) = c1(x)v(t, x) (1)

vt(t, x) − λ2vx(t, x) = c2(x)u(t, x) (2)

u(t, 0) = qv(t, 0) (3)

v(t, 1) = ρu(t, 1) + U(t), (4)

where u, v : R+× [0, 1] → R are the system states with x ∈ [0, 1], t ≥ 0, U(t) is the control input and λ1 > 0,
λ2 > 0, c1(x), c2(x) ∈ C0((0, 1),R). We consider q 6= 0 the distal reflection and ρ the proximal reflection
terms. We assume that |ρq| < 1

2 . The initial conditions (u
0, v0)T = (u(0, x), v(0, x))T are assumed to belong

to L2((0, 1),R2).
In [33] and [20] an observer is proposed by using a collocated output, i.e. having u(t, 1) available as a

measurement output. The observer represents a copy of the system (1)-(4) with output injections terms. It
is stated as follows:

ût(t, x) + λ1ûx(t, x) = c1(x)v̂(t, x) + p1(x)(u(t, 1) − û(t, 1)) (5)

v̂t(t, x)− λ2v̂x(t, x) = c2(x)û(t, x) + p2(x)(u(t, 1)− û(t, 1)) (6)

û(t, 0) = qv̂(t, 0) (7)

v̂(t, 1) = ρu(t, 1) + U(t), (8)

where û, v̂ : R+ × [0, 1] → R are the states of the observer. Furthermore, the output injections terms of the
observer (5)-(8) are as follows:

p1(x) = −λ1P
uu(x, 1) (9)

p2(x) = −λ1P
vu(x, 1), (10)

where Puu and P vu are obtained from the solutions of the following linear hyperbolic kernel equations:

λ1P
uu
x (x, ξ) + λ1P

uu
ξ (x, ξ) = −c1(x)P

vu(x, ξ) (11)

λ1P
uv
x (x, ξ)− λ2P

uv
ξ (x, ξ) = −c1(x)P

vv(x, ξ) (12)

λ2P
vu
x (x, ξ)− λ1P

vu
ξ (x, ξ) = c2(x)P

uu(x, ξ) (13)

λ2P
vv
x (x, ξ) + λ2P

vv
ξ (x, ξ) = c2(x)P

uv(x, ξ), (14)

evolving in T̃ = {(x, ξ) : 0 ≤ x ≤ ξ ≤ 1} and with boundary conditions:

Puu(0, ξ) = qP vu(0, ξ) (15)

Puv(x, x) = c1(x)
λ1+λ2

(16)

P vu(x, x) = − c2(x)
λ1+λ2

(17)

P vv(0, ξ) = 1
qP

uv(0, ξ). (18)
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2.1. Observer-based design and emulation of the backstepping

We aim at stabilizing the closed-loop system on events while sampling the continuous-time controller
U(t) in (4) at certain sequence of time instants (tk)k∈N, that will be characterized later on. The control
value is held constant between two successive time instants and it is updated when some triggering condition
is verified. To that end, we need to suitably modify the controlled boundary conditions (4) (and in (8),
accordingly). More precisely, the boundaries (4) and (8) become, respectively:

v(t, 1) = ρu(t, 1) + Ud(t) (19)

and
v̂(t, 1) = ρu(t, 1) + Ud(t). (20)

where Ud(t) = U(t) + d(t), for all t ∈ [tk, tk+1), k ≥ 0 and d(t) will be seen as a deviation that will be
rigorously characterized later on.

We perform the observer design by setting ũ := u− û and ṽ := v− v̂ the states of the error system, that
satisfy the following linear hyperbolic PDE system:

ũt(t, x) + λ1ũx(t, x) = c1(x)ṽ(t, x) − p1(x)ũ(t, 1) (21)

ṽt(t, x) − λ2ṽx(t, x) = c2(x)ũ(t, x)− p2(x)ũ(t, 1) (22)

ũ(t, 0) = qṽ(t, 0) (23)

ṽ(t, 1) = 0. (24)

Then, we consider the following backstepping transformations ([33]):

ũ(t, x) = α̃(t, x)−

∫ 1

x

Puu(x, ξ)α̃(t, ξ)dξ −

∫ 1

x

Puv(x, ξ)β̃(t, ξ)dξ

ṽ(t, x) = β̃(t, x)−

∫ 1

x

P vu(x, ξ)α̃(t, ξ)dξ −

∫ 1

x

P vv(x, ξ)β̃(t, ξ)dξ

(25)

α̂(t, x) = û(t, x)−

∫ x

0

Kuu(x, ξ)û(t, ξ)dξ −

∫ x

0

Kuv(x, ξ)v̂(t, ξ)dξ

β̂(t, x) = v̂(t, x)−

∫ x

0

Kvu(x, ξ)û(t, ξ)dξ −

∫ x

0

Kvv(x, ξ)v̂(t, ξ)dξ,

(26)

with kernels P =
(

Puu(x,ξ) Puv(x,ξ)
Pvu(x,ξ) Pvv(x,ξ)

)

satisfying (11)-(18) and Kernels K =
(

Kuu(x,ξ) Kuv(x,ξ)
Kvu(x,ξ) Kvv(x,ξ)

)

satisfying

the following linear hyperbolic kernel equations:

λ1K
uu
x (x, ξ) + λ1K

uu
ξ (x, ξ) = −c2(x)K

uv(x, ξ) (27)

λ1K
uv
x (x, ξ) − λ2K

uv
ξ (x, ξ) = −c1(x)K

uu(x, ξ) (28)

λ2K
vu
x (x, ξ) − λ1K

vu
ξ (x, ξ) = c2(x)K

vv(x, ξ) (29)

λ2K
vv
x (x, ξ) + λ2K

vv
ξ (x, ξ) = c1(x)K

vu(x, ξ) (30)

evolving in a triangular domain given by T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}, with boundary conditions:

Kuu(x, 0) = λ2

qλ1
Kuv(x, 0) (31)

Kuv(x, x) = c1(x)
λ1+λ2

(32)

Kvu(x, x) = − c2(x)
λ1+λ2

(33)

Kvv(x, 0) = qλ1

λ2
Kvu(x, 0), (34)
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With transformations (25)-(26), one maps the error system (21)-(24) and the observer system (5)-(8)
with boundary input (20), into the following two target systems:

α̃t(t, x) + λ1α̃x(t, x) = 0 (35)

β̃t(t, x) − λ2β̃x(t, x) = 0 (36)

α̃(t, 0) = qβ̃(t, 0) (37)

β̃(t, 1) = 0, (38)

α̂t(t, x) + λ1α̂x(t, x) = P̄1(x)α̃(t, 1) (39)

β̂t(t, x) − λ2β̂x(t, x) = P̄2(x)α̃(t, 1) (40)

α̂(t, 0) = qβ̂(t, 0) (41)

β̂(t, 1) = ρα̃(t, 1) + ρα̂(t, 1) + d(t), (42)

with

P̄1(x) =

(

p1(x)−

∫ x

0

Kuu(x, ξ)p1(ξ)dξ −

∫ x

0

Kuv(x, ξ)p2(ξ)dξ

)

(43)

P̄2(x) =

(

p2(x)−

∫ x

0

Kvu(x, ξ)p1(ξ)dξ −

∫ x

0

Kvv(x, ξ)p2(ξ)dξ

)

, (44)

where α̂, β̂, α̃, β̃ : R
+ × [0, 1] → R. Moreover, it is worth recalling that the the Volterra backstepping

transformation (26) is invertible whose inverse is given as follows [31]:

û(t, x) = α̂(t, x) +

∫ x

0

Lαα(x, ξ)α̂(t, ξ)dξ +

∫ x

0

Lαβ(x, ξ)β̂(t, ξ)dξ

v̂(t, x) = β̂(t, x) +

∫ x

0

Lβα(x, ξ)α̂(t, ξ)dξ +

∫ x

0

Lββ(x, ξ)β̂(t, ξ)dξ,

(45)

where L =
(

Lαα(x,ξ) Lαβ(x,ξ)

Lβα(x,ξ) Lββ(x,ξ)

)

satisfies a PDE system analogous to (27)-(34) (for kernel K), that is

λ1L
αα
x (x, ξ) + λ1L

αα
ξ (x, ξ) = c1(x)L

βα(x, ξ) (46)

λ1L
αβ
x (x, ξ)− λ2L

αβ
ξ (x, ξ) = c1(x)L

ββ(x, ξ) (47)

λ2L
βα
x (x, ξ)− λ1L

βα
ξ (x, ξ) = −c2(x)L

αα(x, ξ) (48)

λ2L
ββ
x (x, ξ) + λ2L

ββ
ξ (x, ξ) = −c2(x)L

αβ(x, ξ), (49)

with boundary conditions

Lαα(x, 0) = λ2

qλ1
Lαβ(x, 0) (50)

Lαβ(x, x) = c1(x)
λ1+λ2

(51)

Lβα(x, x) = − c2(x)
λ1+λ2

(52)

Lββ(x, 0) = qλ1

λ2
Lβα(x, 0). (53)

In this regard, the control U(t) (that it is going to be sampled on events) is given as follows:

U(t) =

∫ 1

0

Nα(ξ)α̂(t, ξ)dξ +

∫ 1

0

Nβ(ξ)β̂(t, ξ)dξ (54)
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and its emulated version is given as follows:

Ud(t) =

∫ 1

0

Nα(ξ)α̂(tk, ξ)dξ +

∫ 1

0

Nβ(ξ)β̂(tk, ξ)dξ, ∀t ∈ [tk, tk+1) (55)

where
Nα(ξ) := Lβα(1, ξ)− ρLαα(1, ξ) (56)

Nβ(ξ) := Lββ(1, ξ)− ρLαβ(1, ξ). (57)

Note that Ud(t) = U(t) + d(t) where d is given by:

d(t) =

∫ 1

0

(

Nα(ξ)α̂(tk, ξ) +Nβ(ξ)β̂(tk, ξ)
)

dξ −

∫ 1

0

(

Nα(ξ)α̂(t, ξ) +Nβ(ξ)β̂(t, ξ)
)

dξ. (58)

Here, d (which will be fully characterized along with (tk)k∈N in the next section) can be viewed as a actuation
deviation between the continuous controller and the event-triggered one.

Hence, with Ud given by (55) and p1, p2 defined in (9)-(10), one can realize the backstepping transfor-
mations.

2.2. Well-posedness issues

Proposition 1. For given (u(tk, ·), v(tk, ·))T ∈ L2((0, 1);R2) and (û(tk, ·), v̂(tk, ·))T ∈ L2((0, 1);R2), there
exist unique solutions (u, v)T ∈ C0([tk, tk+1];L

2((0, 1);R2)) and (û, v̂)T ∈ C0([tk, tk+1];L
2((0, 1);R2)) to the

systems (1)-(3),(19) and (5)-(7),(20), respectively, between two time instants tk and tk+1.

Proof. Let us consider first the target system (35)-(38) which is well-known to be well-posed, for a given
initial data, and whose unique solution (α̃, β̃)T ∈ C0([tk, tk+1];L

2((0, 1);R2)) can be given explicitly by the
method of characteristics [6].
Therefore, using the observer backstepping transformation (25), it follows that for a given (ũ(tk, ·), ṽ(tk, ·))

T ∈
L2((0, 1);R2), there exists a unique solution (ũ, ṽ)T ∈ C0([tk, tk+1];L

2((0, 1);R2)) to the system (21)-(24).
In addition, note that the system (1)-(3), (19) is affected by piecewise-constant boundary inputs on intervals
of time. Then, by the results in [7, Appendix] together with the notion of solution adopted in [27], there
exists a unique (weak) solution (u, v)T ∈ C0([tk, tk+1];L

2((0, 1);R2)) to the system (1)-(3), (19) between two
time instants tk and tk+1. Then, as û = u− ũ and v̂ = v− ṽ, it follows straightforwardly that there exists a
unique solution (û, v̂)T ∈ C0([tk, tk+1];L

2((0, 1);R2)) to the observer system (5)-(7), (20) between two time
instants tk and tk+1. It concludes the proof. �

3. Observer-based event-triggered boundary control

Let us define the observer-based event-triggered boundary controller considered in this paper. It encloses
an event-trigger mechanism containing a suitable triggering condition (which determines the time instant at
which the controller needs to be sampled/updated) and the backstepping output feedback controller (55). In
particular, the proposed event-triggering condition is based on the evolution of the square of the actuation
deviation (58) and the evolution of a dynamic variable which depends on information of the states of the
(α̂, α̃)-systems.

Definition 1 (Definition of observer-based event-triggered boundary controller). Let σ ∈ (0, 1), θ > 0,
η > 0, µ > 0, κ0, κ1, κ2, κ3 > 0, m0 ∈ R

−
0 , B,C > 0. Let L be the kernel solution to the system (46)-(53).

The observer-based event-triggered boundary control is defined by considering the following components:
I) (The event-trigger mechanism) The times of the events tk ≥ 0 with t0 = 0 form a finite or countable set
of times which is determined by the following rules for some k ≥ 0:

a) if {t ∈ R
+|t > tk ∧ θCBe

µ
λ2 d2(t) ≥ −m(t)} = ∅ then the set of the times of the events is {t0, ..., tk}.
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b) if {t ∈ R
+|t > tk ∧ θCBe

µ
λ2 d2(t) ≥ −m(t)} 6= ∅, then the next event time is given by:

tk+1 = inf{t ∈ R
+|t > tk ∧ θCBe

µ
λ2 d2(t) ≥ −m(t)}. (59)

where the actuation deviation d(t) is given by

d(t) =

∫ 1

0

(

Nα(ξ)α̂(tk, ξ) +Nβ(ξ)β̂(tk, ξ)
)

dξ −

∫ 1

0

(

Nα(ξ)α̂(t, ξ) +Nβ(ξ)β̂(t, ξ)
)

dξ, (60)

for all t ∈ [tk, tk+1) and m satisfies the ordinary differential equation,

ṁ(t) = −ηm(t)+
(

2CBe
µ
λ2 d2(t)−κ0‖(α̂(t, ·), β̂(t, ·))‖

2
L2((0,1);R2) −κ1α̂

2(t, 1)−κ2β̂
2(t, 0)−κ3α̃

2(t, 1)
)

(61)

for a given η ≥ µ(1− σ) and m(0) = m0.

II) (the control action) The output boundary feedback law,

Ud(t) =

∫ 1

0

Nα(ξ)α̂(tk, ξ)dξ +

∫ 1

0

Nβ(ξ)β̂(tk, ξ)dξ. (62)

for all t ∈ [tk, tk+1).

In this setting, the event triggering condition guarantees that, for all t ≥ 0, θCBe
µ
λ2 d2(t) < −m(t) which

in turn guarantees m(t) < 0 (a less conservative condition) as stated in the following lemma. In addition,

m(t) can be seen as a weighted averaged value of 2CBe
µ
λ2 d2 − κ0‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2) − κ1α̂

2(t, 1)−

κ2β̂
2(t, 0)− κ3α̃

2(t, 1).

Lemma 1. Under the definition of the observer-based event-triggered boundary control (59)-(62), it holds

that θCBe
µ
λ2 d2(t) +m(t) < 0 and m(t) < 0.

Proof. From the definition of the observer-based event-triggered boundary control (59)-(62), events are

triggered to guarantee θCBe
µ
λ2 d2(t) + m(t) < 0, for all t ≥ 0. This inequality in combination with (61)

yields:

ṁ(t) < −ηm−
2

θ
m− κ0‖(α̂(t, ·), β̂(t, ·))‖

2
L2((0,1);R2) − κ1α̂

2(t, 1)− κ2β̂
2(t, 0)− κ3α̃

2(t, 1),

for which the Comparison principle can be used to guarantee m(t) < 0, for all t ≥ 0 and provided that
m0 ∈ R

−
0 . �

Lemma 2. For d given by (60) it holds that

(ḋ(t))2 ≤ ε0‖(α̂(t, ·), β̂(t, ·))‖
2
L2((0,1);R2) + ε1α̂

2(t, 1) + ε2β̂
2(t, 0) + ε3α̃

2(t, 1) + ε4d
2(t). (63)

for ε0, ε1, ε2, ε3 and ε4 ≥ 0 and for all t ∈ (tk, tk+1).

Proof. From (60), taking its time derivative and using (39)-(40) we get:

ḋ(t) = λ1

∫ 1

0

Nα(ξ)α̂ξ(t, ξ)dξ − λ2

∫ 1

0

Nβ(ξ)β̂ξ(t, ξ)dξ −

∫ 1

0

Nα(ξ)P̄1(ξ)α̃(t, 1)dξ −

∫ 1

0

Nβ(ξ)P̄2(ξ)α̃(t, 1)dξ

where P̄1 and P̄2 are given by (43)-(44). Integrating by parts, one gets

ḋ(t) = λ1α̂(t, 1)N
α(1)− λ1α̂(t, 0)N

α(0)− λ1

∫ 1

0

Nα
ξ (ξ)α̂(t, ξ)dξ

−λ2β̂(t, 1)N
β(1) + λ2β̂(t, 0)N

β(0) + λ2

∫ 1

0

N
β
ξ (ξ)β̂(t, ξ)dξ

−α̃(t, 1)

(
∫ 1

0

Nα(ξ)P̄1(ξ)dξ +

∫ 1

0

Nβ(ξ)P̄2(ξ)dξ

)

. (64)
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Recalling from (41) that α̂(t, 0) = qβ̂(t, 0), we have

ḋ(t) = λ1α̂(t, 1)N
α(1)− λ2β̂(t, 1)N

β(1)− β̂(t, 0)(λ1qN
α(0)− λ2N

β(0))

−λ1

∫ 1

0

Nα
ξ (ξ)α̂(t, ξ)dξ + λ2

∫ 1

0

N
β
ξ (ξ)β̂(t, ξ)dξ (65)

−α̃(t, 1)

(
∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ

)

. (66)

Now, taking the square of ḋ and using repeatedly the Young’s inequality, yield:

(ḋ(t))2 ≤ 2λ22
(

Nβ(1)
)2
β̂2(t, 1) + 4λ21 (N

α(1))
2
α̂2(t, 1) + 16

(

λ1qN
α(0)− λ2N

β(0)
)2
β̂2(t, 0)

+8λ21

(
∫ 1

0

Nα
ξ (ξ)α̂(t, ξ)dξ

)2

+ 8λ22

(
∫ 1

0

N
β
ξ (ξ)β̂(t, ξ)dξ

)2

+16α̃2(t, 1)

(
∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ

)2

.

By the Cauchy Schwarz inequality, one gets

(ḋ(t))2 ≤ 2λ22
(

Nβ(1)
)2
β̂2(t, 1) + 4λ21 (N

α(1))
2
α̂2(t, 1) + 16

(

λ1qN
α(0)− λ2N

β(0)
)2
β̂2(t, 0)

+8λ21

∫ 1

0

(

Nα
ξ (1, ξ)

)2
dξ

∫ 1

0

α̂2(t, ξ)dξ + 8λ22

∫ 1

0

(

N
β
ξ (1, ξ)

)2

dξ

∫ 1

0

β̂2(t, ξ)dξ

+16α̃2(t, 1)

(
∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ

)2

,

(ḋ(t))2 ≤ 2λ22
(

Nβ(1)
)2
β̂2(t, 1) + 4λ21 (N

α(1))2 α̂2(t, 1) + 16
(

λ1qN
α(0)− λ2N

β(0)
)2
β̂2(t, 0)

+8max{λ21Ñ
α
ξ , λ

2
2
˜
N

β
ξ }

(
∫ 1

0

(

α̂2(t, ξ) + β̂2(t, ξ)
)

dξ

)

+16α̃2(t, 1)

(
∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ

)2

.

with Ñα
ξ :=

∫ 1

0 (N
α
ξ (ξ))

2dξ and
˜
N

β
ξ :=

∫ 1

0 (N
β
ξ (ξ))

2dξ which are well-defined due to the regularity of

Kernel L in T [33]. Recall that β̂2(t, 1) = (ρα̃(t, 1) + ρα̂(t, 1) + d(t))
2
(from (42)). Hence, we finally

set ε0 := 8max{λ21Ñ
α
ξ , λ

2
2
˜
N

β
ξ }, ε1 := 4λ21 (N

α(1))
2
+ 8ρ2λ22

(

Nβ(1)
)2
, ε2 := 16

(

λ1qN
α(0)− λ2N

β(0)
)2
,

ε3 := 16
(

∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ
)2

+ 8ρ2λ22
(

Nβ(1)
)2

and ε4 := 4λ22
(

Nβ(1)
)2
. This concludes

the proof. �

4. Main results

In this section we present our main results: the existence of a minimal dwell-time, the well-posedness
and exponential stability of the closed-loop system. Let us first prove that under the observer-based event
triggered control (59)-(62), there exists a minimal dwell-time. It follows essentially the same reasoning of
[11]. As in that work, the use of a dynamic triggering condition is instrumental.

It is worth mentioning that guaranteeing the existence of a minimal dwell-time avoids the so-called Zeno
phenomenon that means infinite triggering times in a finite-time interval. It represents infeasible practical
implementations into digital platforms because it would be required to sample infinitely fast.
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Theorem 1. Under the the observer-based event-triggered boundary control (59)-(62) in Definition 1, with
positive scalars, σ ∈ (0, 1), θ, µ, B, C, κ0, κ1, κ2 and κ3, and ε0, ε1, ε3 and ε4 (from Lemma 2) satisfying
the following conditions,

θCBe
µ
λ2 ε0 ≤ (1− σ)κ0, θCBe

µ
λ2 ε1 ≤ (1− σ)κ1,

θCBe
µ
λ2 ε2 ≤ (1− σ)κ2, θCBe

µ
λ2 ε3 ≤ (1− σ)κ3.

(67)

there exists a minimal dwell-time τ > 0 between two triggering times, i.e. there exists a constant τ > 0
(independent of the initial conditions) such that tk+1 − tk ≥ τ , for all k ≥ 0.

Proof. From Definition 1, if the set {t ∈ R
+|t > tk ∧ θCBe

µ
λ2 d2(t) ≥ −m(t)} 6= ∅, then events are triggered

to guarantee, for all t ≥ 0,

θCBe
µ
λ2 d2(t) < −σm(t)− (1− σ)m(t), (68)

with σ ∈ (0, 1). To derive a lower bound on inter-sampling times we first consider the following function
which involves the functions in (68):

ψ(t) :=
θCBe

µ
λ2 d2(t) + (1− σ)m(t)

−σm(t)
.

A lower bound for the inter-execution times is given by the time it takes for the function ψ to go from ψ(tk)
to ψ(tk+1) = 1, where ψ(tk) < 0 which holds since m(tk) < 0 due to Lemma 1 and d(tk) = 0. Note that the
function d is is continuous on [tk, tk+1]. Indeed, by the definition of the inner product, d can be expressed

as d(t) =
〈

(

Nα(·)
Nβ(·)

)

,

(

α̂(tk, ·)

β̂(tk, ·)

)

〉

L2((0,1);R2)
−
〈

(

Nα(·)
Nβ(·)

)

,

(

α̂(t, ·)

β̂(t, ·)

)

〉

L2((0,1);R2)
for all t ∈ [tk, tk+1]. By

Proposition 1, we have that û and v̂ are continuous with respect to time, thus due to the bounded invertibility
of the backstepping transformation (26), it holds that α̂(t, ·) and β̂(t, ·) are continuous with respect to time
as well on [tk, tk+1]. Since the inner product preserves the continuity, it follows that d is in C0([tk, tk+1],R).
Using this fact together with m ∈ C0(R+,R−

0 ), one has that ψ is a continuous function on [tk, tk+1]. Hence,

by the intermediate value theorem, there exists t
′

k > tk such that for all t ∈ [t
′

k, tk+1], ψ(t) ∈ [0, 1]. Focusing

on [t
′

k, tk+1], the time derivative of ψ is given as follows:

ψ̇ =
2θCBe

µ
λ2 dḋ+ (1 − σ)ṁ

−σm
−

(−σṁ)

−σm
ψ,

Using the Young’s inequality for the term 2dḋ ≤ d2 + (ḋ)2, and from (61) we have that

ψ̇ ≤
θCBe

µ
λ2 d2

−σm
+
θCBe

µ
λ2 (ḋ)2

−σm

+
(1− σ)

(

−ηm+ 2CBe
µ
λ2 d2 − κ0‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2) − κ1α̂

2(t, 1)− κ2β̂(t, 0)− κ3α̃
2(t, 1)

)

−σm

−

(

−ηm+ 2CBe
µ
λ2 d2 − κ0‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2) − κ1α̂

2(t, 1)− κ2β̂(t, 0)− κ3α̃
2(t, 1)

)

m
ψ. (69)
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Using (63) and reorganizing terms, we obtain

ψ̇ ≤

(

1 + ε4 +
2(1−σ)

θ

)

θCBe
µ
λ2 d2

−σm
+

(

θCBe
µ
λ2 ε0 − (1 − σ)κ0

)

‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2)

−σm
(70)

+

(

θCBe
µ
λ2 ε1 − (1− σ)κ1

)

α̂2(t, 1)

−σm
+

(

θCBe
µ
λ2 ε2 − (1− σ)κ2

)

β̂2(t, 0)

−σm

+

(

θCBe
µ
λ2 ε3 − (1− σ)κ3

)

α̃2(t, 1)

−σm
+

(1− σ)η

σ
+ ηψ +

(σ2CBe
µ
λ2 d2)

−σm
ψ

+
κ0‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2)

m
ψ +

κ1α̂
2(t, 1)

m
ψ +

κ2β̂
2(t, 0)

m
ψ +

κ3α̃
2(t, 1)

m
ψ.

(71)

Note that the last four terms are negative. In addition, in light of conditions in (67) and re-organizing terms,
we obtain:

ψ̇ ≤
(1 + ε4 +

2(1−σ)
θ )(θCBe

µ
λ2 d2 + (1 − σ)m− (1− σ)m)

−σm

+
(1− σ)η

σ
+ ηψ +

2σ

θ

(θCBe
µ
λ2 d2 + (1− σ)m− (1− σ)m)

−σm
ψ.

(72)

Finally, we get

ψ̇ ≤ (1 + ε4 +
2(1−σ)

θ )ψ + (1 + ε4 +
2(1−σ)

θ ) (1−σ)
σ + (1−σ)

σ η + ηψ + 2σ
θ ψ

2 + 2(1−σ)
θ ψ,

which is a differential inequality having the form

ψ̇ ≤ a0 + a1ψ + a2ψ
2,

with

a0 := (1 + ε4 +
2(1−σ)

θ ) (1−σ)
σ + (1−σ)

σ η

a1 := (1 + ε4 +
2(1−σ)

θ ) + η + 2(1−σ)
θ

a2 := 2σ
θ

where clearly a0, a1 and a2 turn out to be positive scalars. Hence, by the Comparison principle, it follows
that the time needed by ψ to go from ψ(t

′

k) = 0 to ψ(tk+1) = 1 is at least

τ =

∫ 1

0

1

a0 + a1s+ a2s2
ds. (73)

Thus, tk+1− t
′

k ≥ τ . Since tk+1− tk ≥ tk+1− t
′

k, we conclude that tk+1− tk ≥ τ . Hence τ is a lower bound of

the inter-execution times or the minimal dwell-time. If the set {t ∈ R
+|t > tk∧θCBe

µ
λ2 d2(t) ≥ −m(t)} = ∅,

then by Definition 1, one would not need to trigger anymore and thus the Zeno phenomenon is immediately
excluded. �

Remark 1. It is worth stressing that if a periodic sampling scheme - where the the control value is updated
periodically on a sample-and-hold manner - is intended to be applied to stabilize the system (1)-(3), (19)
instead of an event-triggered scheme as presented in this paper; one suitable period could be the minimal
dwell-time τ obtained from Theorem 1. However, one might expect very small and conservative values of
τ since we have used conservative upper estimates. This issue, however, supports the main motivation
highlighted throughout the paper: stabilize on events only when is needed. In Section 6 we will provide a
periodic implementation with τ as a period to illustrate this issue.
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Since there is a minimal dwell-time (which is uniform and does not depend on initial condition of the
system), no Zeno solution can appear; consequently, adopting the notion of weak solution given in [27],
the following result on the existence and uniqueness of solutions of the system (1)-(3),(19) and its observer
(5)-(7), (20) holds for all t ∈ R

+.

Corollary 1. For every initial conditions (u0, v0)T ∈ L2((0, 1);R2) and (û0, v̂0)T ∈ L2((0, 1);R2), there
exist unique solutions (u, v)T ∈ C0(R+;L2((0, 1);R2)) and (û, v̂)T ∈ C0(R+;L2((0, 1);R2)) to the systems
(1)-(3), (19) and (5)-(7), (20), respectively.

Proof. The solutions are constructed iteratively between successive triggering times by virtue of Proposition
1 and Theorem 1.

�

Let us state the main result of the paper.

Theorem 2. Let |ρq| < 1
2 , σ ∈ (0, 1), µ ∈

(

0, 2λ1λ2

λ1+λ2
ln
(

1
2|ρq|

))

, η ≥ µ(1 − σ), A = ρ2e
µ
λ1

+ µ
λ2 + e

µ
λ1 ,

B = q2e
µ
λ1 + 1

4 ,

C =
σµ

r2
∫ 1

0

(

P̄ 2
1 (x)

A
λ1
e
− µ

λ1
x
+ P̄ 2

2 (x)
B
λ2
e

µ
λ2

x
)

dx,
(74)

where P̄1, P̄2 are given by (43)-(43) and r2 > 0 sufficiently large such that C < 1. If κ0, κ1, κ2 and κ3 (from
Definition 1) are set such that:

0 ≤ κ0 ≤ σµC

(

max
{ρ2e

µ
λ1

+ µ
λ2 + e

µ
λ1

λ1
,
q2e

µ
λ1 + 1

4

λ2
e

µ
λ2

}

)−1
(

1− 1

(1−4ρ2q2e
µ
λ1

+
µ
λ2 )r2

)

0 ≤ κ1 ≤ (1− 4ρ2q2e
µ
λ1

+ µ
λ2 )

0 ≤ κ2 ≤ (1− 4ρ2q2e
µ
λ1

+ µ
λ2 )

0 ≤ κ3 ≤ (4(1− C)ρ2q2e
µ
λ1

+ µ
λ2 + (1− C)ρ2e

µ
λ2 ).

(75)

and θ > 0 is such that conditions (67) hold, then the closed-loop system (1)-(3), (19) with observer-based
event-triggered control (59)-(62) has a unique solution and is globally exponentially stable.

Proof. By Corollary 1, the existence and uniqueness of a solution to the system (1)-(3), (19), (59)-(62) hold.
Let us show that the system is globally exponentially stable in the L2-norm sense.

Consider the following Lyapunov function candidate for the target systems (35)-(38) and (39)-(42) along

with (61), defined for all (α̃(t, ·), β̃(t, ·)) ∈ L2((0, 1);R2), (α̂(t, ·), β̂(t, ·)) ∈ L2((0, 1);R2) and m ∈ R
− by

W (α̃, β̃, α̂, β̂,m) = V1(α̃, β̃) + CV2(α̂, β̂)−m (76)

where

V1(α̃, β̃) =

∫ 1

0

(

A

λ1
α̃2(x)e−

µ
λ1

x +
B

λ2
β̃2(x)e

µ
λ2

x

)

dx (77)

V2(α̂, β̂) =

∫ 1

0

(

A

λ1
α̂2(x)e−

µ
λ1

x +
B

λ2
β̂2(x)e

µ
λ2

x

)

dx. (78)

with positive parameters A, B, µ and C. Taking the time derivative of (76) along the solutions, it yields,

Ẇ = −α̃2(t, 1)Ae−
µ
λ1 + β̃2(t, 0)(q2A−B)− α̂2(t, 1)CAe−

µ
λ1 + β̂2(t, 0)C(q2A−B) (79)

+ (ρα̃(t, 1) + ρα̂(t, 1) + d(t))
2
CBe

µ
λ2

−µ

∫ 1

0

(

A
λ1
α̃2(x)e−

µ
λ1

x + B
λ2
β̃2(x)e

µ
λ2

x
)

dx− µC

∫ 1

0

(

A
λ1
α̂2(x)e−

µ
λ1

x + B
λ2
β̂2(x)e

µ
λ2

x
)

dx

+2C
∣

∣

∣
α̃(t, 1)

∫ 1

0

(

P̄1(x)
A
λ1
α̂2(x)e

− µ
λ1

x
+ P̄2(x)

B
λ2
β̂2(x)e

µ
λ2

x
)

dx
∣

∣

∣
− ṁ, (80)
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where P̄1(x) and P̄2(x) are given by (43)-(44). The following estimate holds:

Ẇ ≤ −α̃2(t, 1)
(

Ae
− µ

λ1 − 4ρ2CBe
µ
λ2

)

− α̂2(t, 1)C
(

Ae
− µ

λ1 − 4ρ2Be
µ
λ2

)

(81)

+β̃2(t, 0)(q2A−B) + β̂2(t, 0)C(q2A−B) + 2CBe
µ
λ2 d2

−µ

∫ 1

0

(

A
λ1
α̃2(x)e

− µ
λ1

x
+ B

λ2
β̃2(x)e

µ
λ2

x
)

dx− µC

∫ 1

0

(

A
λ1
α̂2(x)e

− µ
λ1

x
+ B

λ2
β̂2(x)e

µ
λ2

x
)

dx

+2C
∣

∣

∣
α̃(t, 1)

∫ 1

0

(

P̄1(x)
A
λ1
α̂2(x)e−

µ
λ1

x + P̄2(x)
B
λ2
β̂2(x)e

µ
λ2

x
)

dx
∣

∣

∣
− ṁ. (82)

Moreover, using (61), one gets,

Ẇ ≤ −µV1 − µCV2 − α̃2(t, 1)
(

Ae
− µ

λ1 − 4ρ2CBe
µ
λ2 − κ3

)

− α̂2(t, 1)C
(

Ae
− µ

λ1 − 4ρ2Be
µ
λ2 − κ1

)

+β̃2(t, 0)(q2A−B) + β̂2(t, 0)C(q2A−B + κ2) + 2CBe
µ
λ2 d2 (83)

+ηm− 2CBe
µ
λ2 d2 + κ0‖(α̂(t, ·), β̂(t, ·))‖

2
L2((0,1);R2)

+2C
∣

∣

∣
α̃(t, 1)

∫ 1

0

(

P̄1(x)
A
λ1
α̂2(x)e

− µ
λ1

x
+ P̄2(x)

B
λ2
β̂2(x)e

µ
λ2 x
)

dx
∣

∣

∣
. (84)

Let us remark that for (78), there exists r1 > 0 (depending on µ) such that:

1
r1
‖(α̂(t, ·), β̂(t, ·))‖2L2((0,1);R2) ≤ V2(α̂(t, ·), β̂(t, ·)) ≤ r1‖(α̂(t, ·), β̂(t, ·))‖

2
L2((0,1);R2) (85)

In addition, by using the Young’s inequality on the last term of (83), for any δ > 0, we have

Ẇ ≤ −µV1 + (κ0r1 − µC)V2 − α̃2(t, 1)
(

Ae
− µ

λ1 − 4ρ2CBe
µ
λ2 − κ3

)

− α̂2(t, 1)C
(

Ae
− µ

λ1 − 4ρ2Be
µ
λ2 − κ1

)

+β̃2(t, 0)(q2A−B) + β̂2(t, 0)C(q2A−B + κ2) + ηm

+
C

δ
V2 + Cδα̃2(t, 1)

∫ 1

0

(

P̄ 2
1 (x)

A

λ1
e
− µ

λ1
x
+ P̄ 2

2 (x)
B

λ2
e

µ
λ2

x

)

dx. (86)

Following the same arguments of [2, Theorem 2.4], since |ρq| < 1
2 , then select µ ∈ (0, µmax), with µmax =

2λ1λ2

λ1+λ2
ln
(

1
2|ρq|

)

, such that the following inequality holds:

ρ2q2e
µ
λ1

+ µ
λ2 < 1

4 . (87)

We choose δ = (1−4ρ2q2e
µ
λ1

+
µ
λ2 )r2

σµ and C such that

C =
σµ

r2
∫ 1

0

(

P̄ 2
1 (x)

A
λ1
e
− µ

λ1
x
+ P̄ 2

2 (x)
B
λ2
e

µ
λ2

x
)

dx
,

where r2 is selected sufficiently large such that C < 1 and 1
(

1−4ρ2q2e
µ
λ1

+
µ
λ2

)

r2

< 1. Hence, using (76), we

get

Ẇ ≤ −µ(1− σ)W − σµV1 +

(

κ0r1 − σµC

(

1− 1

(1−4ρ2q2e
µ
λ1

+
µ
λ2 )r2

))

V2 + (−µ(1− σ) + η)m

−α̃2(t, 1)
(

Ae
− µ

λ1 − 4ρ2CBe
µ
λ2 − κ3 − (1− 4ρ2q2e

µ
λ1

+ µ
λ2 )
)

− α̂2(t, 1)C
(

Ae
− µ

λ1 − 4ρ2Be
µ
λ2 − κ1

)

+β̃2(t, 0)(q2A−B) + β̂2(t, 0)C(q2A−B + κ2),
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with σ ∈ (0, 1). In addition, we have that A := ρ2e
µ
λ1

+ µ
λ2 +e

µ
λ1 and B := q2e

µ
λ1 + 1

4 . Therefore, the following
estimate holds:

Ẇ ≤ −µ(1− σ)W − σµV1 +

(

κ0r1 − σµC

(

1−
1

(1− 4ρ2q2e
µ
λ1

+ µ
λ2 )r2

))

V2 + (−µ(1− σ) + η)m

−α̃2(t, 1)
(

(1− C)ρ2e
µ
λ2 + (1− C)4ρ2q2e

µ
λ1

+ µ
λ2 − κ3

)

− α̂2(t, 1)C
(

1− 4ρ2q2e
µ
λ1

+ µ
λ2 − κ1

)

+β̃2(t, 0)

(

ρ2q2e
µ
λ1

+ µ
λ2 −

1

4

)

+ β̂2(t, 0)C

(

ρ2q2e
µ
λ1

+ µ
λ2 −

1

4
+ κ2

)

,

where r1 in (85) can be selected as r1 := max
{

ρ2e
µ
λ1

+
µ
λ2 +e

µ
λ1

λ1
,
q2e

µ
λ1 + 1

4

λ2
e

µ
λ2

}

. Then, by virtue of (87)

and in light of conditions in (75), we obtain:

Ẇ ≤ −µ(1− σ)W + (−µ(1− σ) + η)m.

By Lemma 1 we guarantee that m < 0 and since η ≥ µ(1− σ), thus we finally obtain

Ẇ ≤ −µ(1− σ)W.

Hence, from standard arguments and the bounded invertibility of the related transformations we conclude
that the system (1)-(3), (19) is globally exponentially stable in L2-norm.

�

Remark 2 (Choice of the parameters). We remark that parameters κ0, κ1, κ2 and κ3 are characterized by
(75) and therefore they can be easily selected. In addition, η in (61) is characterized in terms of the decay
rate parameter µ and in turn by the characteristic speeds and the reflection terms at boundaries. It is worth
mentioning that η may adjust the sampling speed of the event-triggered mechanism. The larger η, the faster
is the sampling speed. On the other hand, we consider θ as a free parameter that can be suitably tuned such
that one meets conditions for guaranteeing minimal dwell-time.

5. Discussion on the proximal reflection term and some issues of the observer-based event-

triggered boundary control

In this work we have only considered the emulation of the backstepping control (54) which is devoted to
cancel the effect of potentially destabilizing in-domain coupling terms. Of course, we may have considered
the emulation of a controller which may contain also the output enabling a complete (or partial) cancellation
of the proximal reflection term as e.g. in [1, Section D] (which deals with a continuous-time controller which
also cancels out the proximal reflection term and therefore the finite-time convergence property is achieved).
Nevertheless, if we consider sampling the the output (multiplied by the reflection coefficient), we may require
a quite different analysis to derive a suitable triggering condition, to perform a Lyapunov-based analysis
and to study the well-posedness of the solution. We can use the framework introduced in [8] where event-
triggered sampling the static output feedback has been considered. The main issue, however, is that the
methodology to find an explicit minimal-dwell time as presented in Section 4 may not be applicable as this
methodology relies on the analysis of growth-in-time of the actuation deviation (for which we would need
to obtain pointwise estimates). Therefore, and to the best of our knowledge, finding a minimal dwell-time
when event-triggered sampling the output is still an open question and it is out of the scope of the paper.

In addition, it is worth mentioning that a complete cancellation of the proximal reflection term is not
desired due to some delay-robustness issues as rigorously studied in e.g. [1]. This fact turns out to be
useful in our design since we preserve the complete reflection term and, as aforementioned, we perform the
emulation only on the control devoted to compensate the in-domain coupling terms. However, it is also
worth pointing out a limitation in our design since we have considered that reflection terms satisfy |ρq| < 1

2
(open-loop gain). This assumption has been instrumental throughout the analysis but it may constitute
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Figure 1: Numerical solution of the second component v of the closed-loop system (1)-(3), (19) with a controller which is sampled
periodically (periodic sample-and-hold) (closed-loop solution depicted on the left) and under the observer-based event-triggered
control (59)-(62) (closed-loop solution depicted on the right).

an actual limitation for possible implementations in some real systems. Therefore, relaxing this condition
together with an analysis of delay-robustness issues should be carefully studied. Perhaps a frequency domain
framework to design observer-based event-triggered control strategies may be more suitable. This topic is
then left for a future work.

6. Numerical simulations

We consider the system (1)-(4) with parameters and initial conditions borrowed from [7], i.e. λ1 = 1,
λ2 = 2, c1(x) = 2, c2(x) = 2 (for all x ∈ [0, 1]) and q = 1

2 . The initial conditions are u0(x) = qv0(x)
with v0(x) = 10(1− x) and û0(x) = 1.5u0(x), v̂0(x) = 1.5v0(x) for all x ∈ [0, 1]. We consider the proximal
reflection term as ρ = 0.9 such that |ρq| < 1

2 .
Having the system with constant parameters, we exploit the results of [32] to obtain closed-form analytical

solutions for kernels K ((27)-(34)) and P ((11)-(18)). Moreover, for the computation of L ((46)-(53)), we
use explicit closed-form solutions recently obtained in [4, Appendix], and that are going to be useful for the
computation of the different parameters involved in the observer-based event-triggered boundary control
(59)-(62).

We start with by selecting µ = 0.070 < µmax = 2λ1λ2

λ1+λ2
ln
(

1
2|ρq|

)

= 0.14, A = ρ2e
µ
λ1

+ µ
λ2 + e

µ
λ1 = 1.972

and B = q2e
µ
λ1 + 1

4 = 0.518 such that condition (87) holds. Then, we set σ = 0.5 and we select η =

50 ≥ µ(1 − σ). In addition, from Lemma 2, we compute ε0 := 8max{λ21Ñ
α
ξ , λ

2
2
˜
N

β
ξ } = 17.04 where Ñα

ξ

and
˜
N

β
ξ can be computed explicitly by making use of the explicit solutions of L obtained in [4, Appendix].

Moreover, ε1 := 4λ21 (N
α(1))

2
+ 8ρ2λ22

(

Nβ(1)
)2

= 79.68, ε2 := 16
(

λ1qN
α(0)− λ2N

β(0)
)2

= 0, ε3 :=

16
(

∫ 1

0

(

Nα(ξ)P̄1(ξ) +Nβ(ξ)P̄2(ξ)
)

dξ
)2

+8ρ2λ22
(

Nβ(1)
)2

= 105.07 where P̄1, P̄2 are given by (43)-(43) and

ε4 := 2λ22
(

Nβ(1)
)2

= 32.8.
Now, C = 3.93×10−4 is computed according to (4) where r2 = 210 is selected e.g. as r2 > max{ε0, ε1, ε2, ε3}.

κ0 = 2.09× 10−4, κ1 = κ2 = 3.0× 10−4, κ3 = 0.0052 such that one meets the conditions (75) in Theorem 2.
Finally, θ is a free parameter that is suitably tuned to guarantee conditions (67) in Theorem 1. As a

matter of fact it suffices to select θ = (1−σ)
CBeµ/λ2 min{κ0

ε0
, κ1

ε1
, κ2

ε2
, κ3

ε3
}. It gives θ = 0.0089. With all above

parameters, we obtain a0 = 195.91, a1 = 307.95 and a3 = 112.04. Therefore, we finally obtain the minimal
dwell-time τ = 0.003s by virtue of (73).
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Figure 2: Time-evolution of the control: time-continuous U (red line), sample-and-hold control with period τ = 0.003s (black
line) and the observer-based event-triggered control Ud (59)-(62) (blue line with red circle marker).

In addition, according to Remark 1, we implement a periodic scheme using as a period the obtained
minimal dwell-time τ . Figure 1 shows the second component of solution v(t, x) when stabilizing with periodic
sample-and-hold controller (left) and the observer-based event-triggered controller (right). Note that in both
cases convergence to the origin is achieved but as expected, under the periodic scheme the solution is closer as
if one was using continuous-time control. The periodic scheme is of course very conservative whereas in the
event-triggered case, one is able to stabilize on events (with maybe a price to pay w.r.t to the performance
which seems to be deteriorated) when ensuring the theoretical guarantees. As motivated throughout the
paper, with this approach we can reduce significantly the number of execution times while updating the
control value only when needed.

Figure 2 shows the time-evolution of control functions in continuous case (red line), periodic sample-
and-hold (black line) and event-triggered case (blue line with red circle marker).

Finally, we run simulations for 100 different initial conditions given by u0(x) = qv0(x) with v0(x) =
4 sin( 4π

a
√
b
x), and û0(x) = 1.5u0(x) and v̂0(x) = 1.5v0(x); a = 1, ..., 10 and b = 1, .., 10 on a frame of 10s with

a time step discretization of numerical solutions given by 0.0005. We have computed the inter-execution
times between two triggering times. We compared two cases : when the proximal reflection term is ρ = 0.1
and when ρ = 0.9 rendering τ = 1.32 × 10−4s and τ = 0.003s, respectively. Figure 3 shows the density of
the inter-execution times where clearly it can be observed that for larger ρ the slower is the sampling and
control updating which in turn implies smaller inter-executions times. It is important to emphasizes that
in both cases, from such computations the minimal inter-executions times are 0.109s and 0.28s, which are
larger than dwell-times τ = 1.32× 10−4s and τ = 0.003s, respectively.

7. Conclusion

As a part of the perspectives in [11], in this work we proposed an observer-based event-triggered boundary
control to stabilize a 2×2 coupled linear hyperbolic system subject to reflection terms at the boundaries. It is
also proved that no Zeno phenomenon is present and then the well-posedness and global exponential stability
of the hyperbolic system are guaranteed. The observer-based event-triggered controller builds on a dynamic
triggering condition and the output-feedback which has been designed by the backstepping approach.

In future works, we may consider sampling the output measurements u(t, 1) on events as well. It may
suggest that another event-triggered strategy shall be considered to be combined with the one for actuation.
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Figure 3: Density of the inter-execution times (logarithmic scale) computed for 100 different intial conditions on a frame of
10s. With a proximal reflection term given by ρ = 0.1, one has fast sampling with smaller inter-executions times (red bars)
and with ρ = 0.9, one has slower sampling with larger inter-execution times (blue bars).

We expect also to address periodic event-triggered strategies inspired by some recent result from finite-
dimensional systems. For that, we may use our dwell-time as a period or we can combine our approach
with [7] to come up with a maybe less conservative period. In either cases, the period would be utilized to
monitor periodically the triggering condition. This would represent even a more realistic approach toward
digital realizations while consuming less computation resources.

Finally, results in this paper may be extended to m + n hyperbolic equations and coupled PDE-ODEs
(inspired by e.g. [16]). It would be interesting to address the result on the existence of a minimal dwell-time
provided in Theorem 1 for the general case where conditions may be given in terms of matrix inequalities.
Applications to hydraulic networks and to traffic congestion control (inspired e.g. by [21] [35]) using ramp
metering strategies are expected.
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