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Abstract— In this paper, we present a lightweight secured AES 

hardware implementation designed to further resist to Side Channel 

Attacks relying on Power Analysis. The proposed architecture is 

based on an 8-bit data-path, and the protection is provided by 

shuffling computations and memory locations. Our shuffling 

module is based on a permutation network controlled by a Random 

Number Generator and leads to the best compromise between 

security, area, and performances compared to state-of-the-art. 

Implementation results on a spartan-6 FPGA show that the proposed 

protection mechanisms impact the area and the timing performance 

of the unprotected design by factors of 1.58 and 0.35 respectively. 

Security evaluation based on simulation results shows that the 

proposed secure architecture resists to a regular CPA by revealing a 

unique key byte when attacking with up to 1 million traces while 

state-of-the-art shuffled designs requires only 50000 traces to 

retrieve the entire secret key. Considering an integrated CPA (also 

called windowing attack), the proposed architecture allows 

increasing up to ×300 the required number of traces (Measurements 

to Disclosure) to retrieve 40% of the key bytes and reveals no more 

than 9 key bytes when attacking with up to 1 million traces.  

Keywords—security, SCA, shuffling, HW design, AES 

I. INTRODUCTION 

In the era of Internet-of-Things (IoT), devices manipulate more 

and more sensitive information. Consequently, they have to 

efficiently protect data through cryptographic primitives. These 

primitives must be carefully designed to consider stringent 

energy and area constraints; and they must also resist to various 

kind of attacks. Side Channel Attacks (SCA) are one of the 

major threats against cypher designs. The goal of SCAs is to 

retrieve data unintentionally leaked by cypher implementations. 

Among SCAs, one can find electromagnetic attacks [11], timing 

attacks [16] or power analysis attacks [15]. Power analysis 

attacks can mainly be divided in two categories: Simple Power 

Analysis (SPA) and Differential Power Analysis (DPA). SPA 

aims at extracting secret information by analyzing few power 

traces usually searching for known patterns which are 

dependent of the target algorithm (i.e. cryptosystem) and its 

implementation. Differential Power Analysis (DPA) attacks was 

first proposed by Kocher et al [4], for both hardware and 

software implementations. It takes advantage of the fact that the 

power consumption of a given cryptographic device depends on 

both the data it processes and the related operation it performs. 

Contrary to SPA, DPA exploits a large number of power traces 

using statistical methods to extract secret information. In 

particular, the Correlation Power Analysis (CPA) [23] uses 

correlation coefficients. 

In this paper, we propose an AES-128 implementation based 

on a small 8-bit architecture for IoT devices and secured against 

power analysis attacks. The design is based on a shuffling 

module controlled by an embedded Random Number Generator 

(RNG). Randomization is applied to computation schedule and 

storage locations, while ensuring the correctness of the 

algorithm. 
This paper is organized as follows: section II reminds the 

main concepts of the AES algorithm and introduces state of the 
art shuffling-based countermeasures against SCA for hardware 
implementations. Section III presents the proposed shuffled-
AES architecture. Section IV details implementation results and 
provides a security evaluation of the proposed approach. Finally, 
section V concludes this paper.    

II. AES ALGORITHM AND RELATED PROTECTION WORKS 

A. Advanced Encryption Standard (AES) 

AES is a block symmetric cryptographic algorithm [1]. The 

plaintext is divided in 128-bits blocks. The internal state is seen 

as a 4x4 bytes matrix. The blocks are cyphered through a fixed 

number of loop iterations named rounds depending on the key 

size. Three standard key sizes are defined: 128, 192 and 256 

bits (KS), which requires 10, 12 or 14 rounds (Nr) respectively. 

To output a 128-bit cyphertext, AES algorithm performs Nr 

rounds based on four operations:  

 - Subbytes: input bytes are substituted through a multiplicative 

inverse in GF(28) using a given polynomial followed by an 

affine transformation. 

 - Shiftrows: a cyclic byte-wise left rotation of each row of the 

state matrix. The ith row is shifted i positions to the left. 

 - Mixcolumns: The columns of the state matrix are  considered 

as a four-term polynomial over GF(28) and are multiplied 

modulo (𝑥4 + 1) with a specific matrix. 

 - Addroundkey: the state bytes are XORed with the round key.  

It is worth noting that there is no data dependency between the 

state bytes during addroundkey, shiftrows and subbytes 

operations; however, in the mixcolumns, a complete column of 

the state matrix (i.e. 4 bytes) is needed to compute one output 

byte. Finally, the round keys can be updated in parallel of each 

computation round from the initial key. These characteristics 

are used to design optimized HW implementations as proposed 

for example in [5]. 

B. AES protection against power analysis attacks 

To resist to SCAs, secured AES designs have been proposed in 

the literature for both hardware and (most of it) software 

implementations.  

In order to protect cryptosystem implementations against 

these attacks, main countermeasures can be classified in two 

groups: hiding and masking [25]. For that purpose, different 



approaches have been proposed in the literature including 

techniques leading to uniform power consumption [13], 

moving the leakage points in time or space [12], adding delay 

[19] or dummy operations [20], building non-deterministic 

processor [7], providing code polymorphism [8], shuffling the 

execution order of operations [3] and dynamic reconfiguration 

[21]. It is worth noting that hiding and masking techniques can 

be combined as proposed in [17] and [18]. 

Shuffling is a lightweight countermeasure which randomly 

permutes sensitive computations and storage of a cryptosystem. 

Shuffling approaches have been well studied in the literature for 

software implementations. In particular, an important evaluation 

of shuffling efficiency and cost has been provided in [2]. 

However, for hardware implementations, very few works 

describing and evaluating complete shuffled-based 

architectures have been proposed. In [6], the authors propose a 

lightweight 8-bit shuffled AES implemented on a SPARTAN-

6 FPGA. In order to shuffle independent operations, 

permutations are generated following the approach proposed in 

[2]. First, two initial permutations are stored in a 64 x 4-bit 

memory. Then, a 4-bit register is used as a temporary storage 

during a swapping process which is driven from a random 

value. In order to evaluate the proposed implementation in 

terms of security, a CPA is performed on both the unprotected 

and the protected designs. The authors conclude that the 

shuffling approach leads to factor of 250 in terms of number of 

power traces required to recover the entire secret key compared 

to the unprotected design. In [9], the authors propose an 8-bit 

AES architecture implemented on a Virtex-5 which shuffles 

two rounds. In order to shuffle independent operations, the 

authors propose an algorithm for permutation generation 

among a set of operations. However, the algorithm 

implementation and its impact on the performances are not 

presented. Regarding security, the authors use Test Vector 

Leakage Assessment (TVLA) [22] and conclude that the 

proposed approach allows reducing leakage compared to one 

round shuffling. 
While the existing approaches [6][9] relies on limited 

number of processing order sequences. In our work the idea is 
to shuffle both the computation orders and storage locations by 
using randomized sequences of bytes to process. Contrary to [6] 
and [9], a sequence is generated in one clock cycle by a 
dedicated permutation network. This approach limits the impact 
on the latency of secured architectures.  

III. PROPOSED ARCHITECTURE 

In this work, we propose a lightweight hardware design of a 

shuffled AES-128. Our architecture is based on an 8-bit data-

path (DP), a shuffling module (SM) and associated controller 

as described in Fig. 1. A Random Number Generator (RNG) is 

also used to drive the SM.  

  

Fig. 1. Proposed shuffled AES Architecture 

As mentioned in the previous section, each byte of the 4x4 state 

matrix can be processed independently from the other one 

except during the mixcolumns operation. Hence, 16! processing 

orders can be considered for cyphering. The SM must thus be 

able to generate a large number of permutations: the larger the 

number of permutations, the better the countermeasure against 

SCA since it decreases the signal-to-noise existing in side-

channel measurements [2]. A network is used to permute a set 

of 16 constant values ranging from 0 to 15. The random order 

generated by this network is stored in a memory next used by 

the controller to drive the data-path. As shown in section IV, 

different permutation networks such as Benes network [10] or 

Omega network [24] can be used. Control bits of the network 

are generated by a RNG. Because the order of computations 

cannot be predicted and since in the mixcolumns each output 

byte of a column depends on an entire input column, the 

temporary results must be accumulated into different storage 

elements (see MEMi in Fig. 2). Instead of registers classically 

used in AES implementations like [5], these memories are 

designed (and controlled) in order to provide correct output for 

our shuffled AES. In other words, they are designed to support 

and ensure data dependency during randomized out-of-order 

AES computations. Moreover, our architecture also shuffles the 

addressing of the memories. To handle this randomness, we use 

look-up tables in order to ensure the correct translation between 

the address of a byte and its “shuffled address” (in the table). 

 
Fig. 2. Architecture AES Datapath 

During the Key Scheduling (KS) the round key is updated (see 

Fig. 2) and the key bytes are provided to the addroundkey. The 

subbytes (SB) operation is performed through tables stored in 

memory elements. The addressing of this memory is performed 

thanks to the results of the previous addroundkey.  

Because of data dependency, the latency of the mixcolumns is 

increased compared to a non-shuffled implementation [5]. The 

initial addroundkey (on the first round), the subbytes and the 

multiplication of the mixcolumns are computed and stored in 16 

clock cycles. After these 16 clock cycles, the mixcolumns has 

received all the required data, then it can be completed. The 

addroundkey is then computed. In the last round, 16 additional 

clock cycles are required. The computation of each round 

requires 32 clock cycles, so finally the latency of the full 

encryption is 340 cycles. 

IV. EXPERIMENTAL RESULTS 

A. Implementation results 

The shuffled designs we propose have been implemented 
targeting a Spartan 6 FPGA, under Xilinx ISE 14.7. In order to 
fairly analyze the overheads due to the proposed protection 
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mechanisms, the reference design presented in [5] has been re-
implemented with our experimental setup. Results of the 
original design and our own implementation of [5] can be found 
in Table I. Area has been kept unchanged and the clock 
frequency has been increased thanks to the more recent version 
of the target FPGA and its associated software tool set we used. 

Two versions of the shuffling module have been 
implemented. The first one uses a Benes Network (BN) and the 
second one uses an Omega Network (ON), later referred as BN-
based Cypher (BNC) and ON-based Cypher (ONC) 
respectively. BN allows the permutation of a set N inputs into 
any output order leading to N! possible permutations [11]. BN 
was designed with a set of switches, each one composed of two 
multiplexers controlled by a single bit. To perform N! 

permutations, 
𝑁

2
∗ [2 ∗ log2( 𝑁) − 1] switches are necessary. 

Hence, to shuffle 16 constants values and support 16! 
permutations, 56 switches were needed. ON has also been 
considered to shuffle the computation orders of the bytes and 
memory locations. This alternative to BN brings lower area 
overhead, since only 32 switches are needed. However, the 
number of different permutation generated is 232. 

Shift-Register based on Look-up table (SRL) of the target 
FPGA is intensively used to implement efficiently the 
memories of the data-path (see MEM in Fig. 2) and the shuffling 
module of architectures on a Spartan 6 FPGA. This design 
option offers the best compromise between complexity (i.e., 
number of slices) and performances (i.e., clock freq.) with 
respect to our shuffled computation. 

A third shuffled architecture, later referred as Custom BN-
based Cypher (CuBNC), which benefits from the parallelism of 
the AES algorithm to optimize the performances, has also been 
designed. In this implementation, shuffling limits to the 
processing order of the columns and to the processing order of 
the bytes in a column. This optimization decreases the 
complexity of the data-path and the shuffling module and also 
reduces the latency overhead. In return, the number of 
permutations is limited and the permutations are less 
diversified. The permutations are generated using a two 4x4 BN 
each composed of 6 switches and providing 4! permutations 
each, for a total of (4!)² different permutations. SRL are once 
again used to implement the memory blocks. 

Results from Table I show that regarding area, the proposed 
shuffling mechanisms lead to factor overheads 1.58, 1.47 and 
1.35 for BNC, ONC and CuBNC respectively, compared to the 
unprotected optimized design. Timing performances are also 
impacted as explained at the end of the section III. This latency 
overhead is reduced to 244 cycles with CuBNC since parts of 
computation are partially ordered in this architecture. Due to a 
more complex controller for shuffled architectures, the 
maximal reachable frequency is reduced. This leads to 
throughputs between 35.58 Mbps to 54.22 Mbps for the 
protected designs while our unprotected implementation of [5] 
reaches 100Mbps. 

Compared to the shuffled designs of the literature, BNC, 
ONC and CuBNC offer good area-performance tradeoffs. 
Indeed, objective of the work proposed in [6] was to minimize 
the total area. This strategy led to a very low throughput of 7.82 
Mbps which is a limitation for computational intensive 
applications. In contrast, the work presented in [9] leads to an 
important impact on the area, from 3.2 up to 4.65 in terms of 
slices depending on the version of [9] (2.3 up to 4.3 for slice 
LUT, and 3.9 up to 6.75 in terms of slice register). 

 

 

TABLE I. AREA/PERFOMANCE RESULT AND COMPARAISON 

 

B. Security evaluation 

1) Experimental setup 
In order to evaluate the proposed architecture, execution traces 
of full AES-128 encryption are extracted from functional post-
synthesis simulations. A set of random values are used as inputs 
of the design for both the plaintext and the permutation control 
signals. Following the simulation, resulting ‘vcd’ files are 
extracted. Then, for each signal transition, the hamming 
weights of all signals are summed to generated activity traces. 
Finally, these traces are used for security evaluation through 
both regular and integrated CPA. For both attacks, the S-Box 
output of the first round is targeted considering the Hamming 
weight power model as distinguisher. 

2) Regular CPA 

In a first step, we performed a regular CPA on the three 

protected implementations BNC, ONC, CuBNC. Our reference 

design for the security evaluation is obtained by using an 

unprotected BNC wherein the shuffling module is disabled. 

Fig. 3 shows the number of key bytes revealed for each set of 

traces. With the non-secure reference design, the key is fully 

recovered with around 1000 traces. With CuBNC, 16 key bytes 

are recovered with less than 100000 traces. This result shows 

that the low permutation diversity of CuBNC allows to 

optimize both area overhead and performances but does not 

provide a satisfying level of security against CPA. In contrast, 

BNC and ONC provide a good resistance to a regular CPA. 

Indeed, a unique key byte is retrieved when performing a 

regular CPA considering up to 1 million traces while in [6], the 

key is recovered with 50 000 traces only. 

3) Integrated CPA Attack 

When shuffling is used, the leakage signals are randomly spread 

along the traces which is not taken into account by a regular 

CPA. For this purpose, an integrated CPA, as described in [14], 

was implemented. It consists in performing a CPA on an 

integrated version of the traces. The correlation is then 

computed between the prediction and the integrated traces. For 

this advanced attack, only BNC and ONC have been considered 

since CuBNC implementation is defeated by the regular CPA.  
Results presented in Fig. 4 show that no more than 9 key bytes 
are revealed when attacking with up to 1 million traces. Thus, 
the entire key was not fully recovered. However, we can 
consider the implementation as defeated by recovering 40% of 
the secret key bytes (i.e. 7 bytes) since the remaining bytes can 
be recovered using a brute force attack. In this context, with the 
reference design only 100 traces are required to retrieve 40% of 
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the key bytes while 30000 and 15000 traces are necessary when 
considering BNC and ONC respectively (see Fig.4). 
Consequently, the proposed approach provides a security 
improvement up to a factor ×300 compared to an unprotected 
solution. 

 
Fig. 3. CPA Attack 

 
Fig. 4. Integrated CPA Attack 

V. CONCLUSION 

In this paper, a hardware implementation of an optimized 
SCA-protected hardware architecture for an 8-bit AES-128 has 
been presented. For this purpose, the design is based on an 
original hardware-shuffling module based on a permutation 
network controlled by an embedded Random Number Generator 
(RNG). Results show that the proposed approach resists to a 
regular CPA and provides a security improvement by a factor 
300 considering an integrated CPA. Future works will target the 
extension of the proposed architecture to 16- and 32-bit AES 
implementations on ASIC and FPGA. Security evaluations 
based on measured power traces will be performed on FPGA. 
Coupling our approach with masking techniques will be also 
studied. 
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