Vincent Andrieu 
  
Daniele Astolfi 
  
Pauline Bernard 
  
Mixing sliding mode and linear differentiators for 2 nd and 3 rd order systems

High-gain observers and sliding mode observers are two of the most common techniques to design observers (or differentiators) for lower triangular nonlinear dynamics. While sliding mode observers can handle bounded nonlinearities, high-gain linear techniques can handle global Lipschitz nonlinearities. In this preliminary paper, we present a novel observer design for second and third order systems which benefits from both techniques. More precisely, the proposed observer converges in finite-time and handles nonlinearities satisfying an incremental affine bound.

INTRODUCTION

In this paper our aim is to design a state observer for a system in the form

       ẋ1 = x 2 + φ 1 (x 1 , t) ẋ2 = x 3 + φ 2 (x 1 , x 2 , t)
. . . ẋn = φ n (x 1 , . . . , x n , t)

, y = x 1 (1) 
where φ i : R n → R are continuous functions and y is the measured output. This lower triangular form typically arises when considering (uniformly) observable nonlinear systems (see [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] or more recently [START_REF] Bernard | On the triangular canonical form for uniformly observable controlled systems[END_REF]). Designing an observer for this particular nonlinear dynamical system has been deeply studied in the last three decades. Two main approaches can be distinguished.

The first one assumes global Lipschitz bound conditions on the nonlinearities. More precisely, the functions φ i are supposed to satisfy for j = 2, . . . , n |φ j (y, x 2 , . . . , x j , t) -φ j (y, x2 , . . . , xj , t)|

1 j i=2 |x i -xi | , ∀(y, x, x, t) ∈ R 2n+2 . (2)
In that case, the very popular high-gain approach can be followed, see, e.g., Tornambè (1989), [START_REF] Emelyanov | Observers and output differentiators for nonlinear systems[END_REF]. The observer gain is then composed of a linear correction term which is amplified by a high-gain parameter that is selected large enough compared to the Lipschitz constant. Following this route, the obtained observer is global and its convergence rate is exponential.

The second approach, initiated in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], considers finite time differentiators, see also [START_REF] Shtessel | Use of asymptotic observers havinghigh-gains in the state and parameter estimation[END_REF].

Employing set-valued homogeneous correction terms, in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], a sliding mode observer for (1) is obtained in the particular case in which the functions φ i satisfy φ j (y, x 2 . . . , x j , t) = φ j (y, t) , j = 2, . . . , n -1 |φ n (y, x 2 . . . , x n , t) -φ n (y, x2 . . . , xn , t)| 0 , ∀(y, x, x, t) ∈ R 2n+2 .

(3) The observer gain is then a homogeneous set-valued vector field and allows to obtain convergence in finite time. The only constraint on the function φ n is that of being bounded. On the other hand, the other functions φ j , j < n must be exactly known1 . If they are not known, but satisfy |φ j (y, x 2 , . . . , x j , t) -φ j (y, x2 , . . . , xj , t)| 0 , ∀(x, y, x, t) ∈ C × R × R n × R, j = 2, . . . , n -1, (4) where C is a known compact set in R n , it is possible to follow the design proposed in [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF], consisting of a cascade of second order sliding mode observers, each designed as in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF]. The resulting observer (see also [START_REF] Bejarano | Hierarchical second-order sliding-mode observer for linear time invariant systems with unknown inputs[END_REF]; [START_REF] Fridman | Observation of linear systems with unknown inputs via highorder sliding-modes[END_REF]; Bernard et al. (2017a)) has finite time convergence for state solutions of (1) remaining in the compact set C.

In this paper, a first attempt to unify these three frameworks into a single global design is made. Indeed, we consider the case in which the functions φ j satisfy the following assumption. Assumption 1. For each j in 2, . . . , n, the function φ j satisfies a lower triangular incremental affine bound. More precisely, there exist positive real numbers 0 and 1 such that

|φ j (y, x 2 , . . . , x j , t) -φ j (y, x2 , . . . , xj , t)| 0 + 1 j i=2 |x i -xi | , ∀(y, x, x, t) ∈ R 2n+2 . (5)
It can be checked that Assumption 1 encompasses nonlinearities satisfying (2), (3) or (4). But none of the existing observers can be applied under Assumption 1. Instead, we follow the interconnection design of second order high-gain observers proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], in which we replace each block with second-order generalized supertwisting algorithms, as proposed in [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF], where both sliding-mode and linear corrections terms are mixed. As explained in [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF], mixing linear and slidingmode correction terms destroys in general the homogeneity of the system and homogeneous Lyapunov functions can no longer be used, although some exception can be found in Bernard et al. (2017a);[START_REF] Cruz-Zavala | Homogeneous high order sliding mode design: a lyapunov approach[END_REF]. Some non-homogeneous Lyapunov functions have nevertheless been designed in [START_REF] Moreno | On strict Lyapunov functions for some non-homogeneous super-twisting algorithms[END_REF]; [START_REF] Castillo | Supertwisting algorithm in presence of time and state dependent perturbations[END_REF] for the second-order generalized super-twisting algorithm. But in this paper, because of the presence of perturbations verifying (5) for each i = 1, . . . , n, we cannot follow the aforementioned approaches and a new global observer is designed for system (1) with functions φ j satisfying Assumption 1, first in the case of dimension n = 2 in Section 2, and then n = 3 in Section 3.

Notations/Definitions:

• for all s in R,

Sign(s) = {-1} s < 0 {[-1, 1]} s = 0 {1} s > 0 . (6) • for (s, a) in R 2 , s a = Sign(s)|s| a .

OBSERVER FOR SECOND ORDER SYSTEMS

Mixed sliding mode observers

In this section, an observer is designed for system (1) for n = 2 when φ 1 and φ 2 satisfy Assumption 1. The system reads as ẋ1 =

x 2 + φ 1 (x 1 , t) ẋ2 = φ 2 (x 1 , x 2 , t) , y = x 1 . (7) 
The observer we consider is in the form ẋ1

= x2 + φ 1 (y, t) + Lk 1 (y -x1 ) ẋ2 ∈ φ 2 (y, x2 , t) + L 2 k 2 (y -x1 ) , (8) 
where k 1 : R → R is a continuous function, k 2 : R ⇒ R is a set valued map which is outer semi-continuous with convex and compact values 2 , and L is a positive parameter to be selected large enough and referred to as high-gain parameter, according to standard nomenclature.

Depending on the mappings (k 1 , k 2 ), this observer may be the usual high-gain observer or the sliding mode observer:

• If we select k 1 (s) := κs , k 2 (s) := κs , ∀s ∈ R , (9) 
where κ is a positive real number, this is the usual highgain observer. Picking L sufficiently large compared to 1 , the system (8) is an observer for system (7) when φ 2 satisfies the Lipschitz bound (2).

• If we consider the sliding mode observer given by [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], we select

k 1 (s) := κs 1 2 , k 2 (s) := Sign(s) , ∀s ∈ R , (10) 
2 We refer to the definition of semi-outer continuity given in [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF].

where κ is a positive real number selected sufficiently large. Picking L sufficiently large compared to 2 , ( 8) is an observer for system (7) when φ 2 satisfies the bounded assumption (3).

Note however that none of these two approaches can be applied when φ 2 satisfies Assumption 1.

Inspired by the observer construction given in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] and [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF], we introduce the novel mixed sliding mode observer by selecting the functions k 1 , k 2 as k 1 (s) := q(κs) k 2 (s) := Sign(s) + q(κs) , q(s)

:= s 1 2 + s . (11)
From there, it yields the following theorem. Theorem 1. Assume System (7) satisfies Assumption 1.

There exists a positive real number κ * such that for all κ > κ * , there exists L, such that for all L > L, the observer (8) ensures finite time and stable estimation of system (7). More precisely, the set {x = x} is globally and asymptotically stable and there exists a time T ≥ 0, depending on the initial condition, such that

x(t) = x(t) ∀ t ≥ T .
Before proving the previous result, we analyse in the following section a disturbed error system, and we give a proposition that is instrumental to the proof of Theorem 1.

Robustness analysis for a disturbed chain of integrator

In this subsection, the following system is considered ė1 = e 2 -k 1 (e 1 + w)

+ v 1 ė2 ∈ -k 2 (e 1 + w) + v 2 , ( 12 
)
where k 1 and k 2 are given in (11) and where v = (v 1 , v 2 ) : R → R 2 , w : R → R are locally integrable time functions. System (12) is obtained by considering the error dynamics e = x-x, with x, x satisfying (7) and (8), respectively, L = 1, φ 2 = 0, and disturbances w, v acting on the measured output y and on the state-dynamics, respectively.

Consider the function V : R 2 → R + defined as

V (e 1 , e 2 ) = |e 2 | 3 + κe1 q -1 (e2) h 1 2 -q -1 (e 2 ) 1 2 + h 2 -q -1 (e 2 ) 2 dh , ( 13 
)
where q -1 (s) is the continuous function satisfying q -1 (q(s)) = s. The function V is well defined and C 1 . Moreover, in the following proposition it is shown that it is an ISS Lyapunov function for system (12). Proposition 1. There exists κ * ≥ 0 such that, for all κ > κ * , there exist positive real numbers v, v, c V , c w , c v1 , c v2 , such that the function V defined in (13) satisfies

v |e 1 | 3 2 + |e 1 | 3 + |e 2 | 3 V (e) v |e 1 | 3 2 + |e 1 | 3 + |e 2 | 3 , (14)
and along the solutions3 of (12)

V (e, v, w) -c V V (e) 2 3 + V (e) + c w |w| + |w| 3 + c v1 |v 1 | 2 + |v 1 | 3 + c v2 V (e) 2 3 |v 2 | . (15)
The proof of this proposition is given in Appendix A and relies on the use of homogeneous in the bi-limit framework introduced in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. We see that the disturbances w, v 1 and v 2 are treated in a different manner in equation ( 15). Indeed, for c v2 |v 2 | < c V the Lyapunov function is decreasing. This highlights the deadzone of the stability margin with respect to the disturbance |v 2 |, coming from the sliding mode part of the observer. This crucial property confers to those observers their wellknown robustness to bounded disturbance on their last line. However, as opposed to standard sliding mode observer design, the Lyapunov inequality (15) also establishes an ISS property with respect to all disturbances. With the help of Proposition 1, we can now give the proof of Theorem 1.

Proof of Theorem 1

Let e 1 := x1 -x 1 and e 2 := x2 -x 2 . Along the solutions of ( 1)-( 8), e is solution of ė1

= e 2 -Lk 1 (e 1 ) ė2 ∈ φ 2 (x 1 , x 2 + e 2 , t) -φ 2 (x 1 , x 2 , t) -L 2 k 2 (e 1
) .

(16) This system can be rewritten

     1 L ė1 = e 2 L -k 1 (e 1 ) 1 L ė2 L ∈ -k 2 (e 1 ) + v 2 L 2 , ( 17 
)
where v 2 = φ 2 (y, x2 , t) -φ 2 (y, x 2 , t) , which is exactly in the form of system (12) in the coordinates (e 1 , e2 L ), with the perturbation multiplied by L -2 and with the time scaled by 1 L . Hence, consider

κ > κ * given in Proposition 1. With Proposition 1, it yields V e 1 , e2 L , v 2 L -c V V e 1 , e 2 L 2 3 + V e 1 , e 2 L + c v2 V e 1 , e 2 L 2 3 |v 2 | L 2 . (18) With Assumption 1, it yields |v 2 | L 2 0 L 2 + 1 L |e 2 | L 0 L 2 + 1 Lv 1 3 V e 1 , e 2 L 1 3 .
Hence, the former inequality becomes

V e 1 , e2 L , v 2 L -c V - c v2 0 L 2 V e 1 , e 2 L 2 3 -c V - c v2 1 Lv 1 3 V e 1 , e 2 L . (19) 
Let L > 0 be such that

c v2 0 L 2 c V 2 and c v2 1 Lv 1 3 c V 2 . It implies, for any L > L, V e 1 , e 2 L , v 2 - c V 2 L V e 1 , e 2 L 2 3 + V e 1 , e 2 L .
(20) Consequently, by standard Lyapunov arguments, see, e.g., [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], the result follows.

OBSERVER FOR THIRD ORDER SYSTEM

Statement of the result

We are now interested in the design of an observer for third order dynamical systems in triangular form. As it has been done in [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] in the semi-global case, namely, when the state of system (1) is supposed to evolve in a known given compact set C, the idea is to employ a cascade of second order observers. However, to obtain a global result, we need to consider interconnections of second order systems as it has been recently introduced in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. In our context, the observer is therefore given as follows.

ẋ11 = x12 + φ 1 (y) + L 1 k 1 (x 11 -y) ẋ12 ∈ x23 + φ 2 (y, x12 ) + L 2 1 k 2 (x 11 -y) ẋ22 = x23 + φ 2 (y, x12 ) + L 2 k 1 (x 22 -x12 ) ẋ23 ∈ φ 3 (y, x22 , x23 ) + L 2 2 k 2 (x 22 -x12 ) (21)
where L 1 and L 2 are two positive real numbers that will be selected later on. In particular, we recover the design proposed by [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] when we don't put the term x23 in the dynamics of ẋ12 , and we recover the design in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], when k 1 , k 2 are selected as in ( 9). In our context, observer ( 21) is composed of two blocks of second order observers, with k 1 a non locally Lipschitz function and k 2 a set-valued correction term defined in (11). Before discussing the convergence properties of this observer, it can be checked that this set valued map is outer semi-continuous with convex and compact values, thus ensuring well-posedness and sequential compactness of solutions (Filippov, 1988, p65, p77).

In the following theorem, it is shown that by selecting L 2 and L 1 sufficiently large, this observer ensures finite time convergence of the estimate to the state of the system. Theorem 2. Consider system (1) with n = 3 and suppose Assumption 1 holds. There exist positive real numbers (κ, L 1 , L 2 ), such that the observer (21) ensures finite time estimation of system (1), namely there exists a time T such that

x11 (t) = x 1 (t) , x12 (t) = x22 (t) = x 2 (t) , x23 (t) = x 3 (t) , ∀ t T . (22)
As opposed to existing finite time results, see, e.g., [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF], [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], we obtain a global finite-time observer. Indeed, no restriction is imposed on the set of initial conditions, nor on the set in which the system (1) is evolving, which may be, in this case, unbounded. Note however that the convergence time is not uniform. It is still an open question to achieve uniform finite time convergence since our approach fails to be applied in this context yet. Moreover, as opposed to Theorem 1, for the time being, this result does not show the stability of this observer.

Some auxiliary results

The proof of Theorem 2 is obtained in several steps. In a first step, we study each subsystem separately employing Proposition 1 on each subsystem. In a second step, we introduce a global practical Lyapunov function which shows that a certain set is reached in finite time. Finally, by properly selecting the coefficient L 1 , it is shown that e 1 converges to zero in finite time and afterwards e 2 converges to zero in finite time.

Robustness analysis of each error subsystems: The suggested observer gives two error dynamical (sub)systems which interact with each other. Writing e 1 := (e 11 , e 12 ), with e 11 := x11 -x 1 and e 12 := x12 -x 2 , gives 

ė11 = e 12 + L 1 k 1 (e 11 ) ė12 ∈ v 12 + L 2 1 k 2 (e 11 ) , (23) 
= e 23 + L 2 k 1 (e 22 + w 2 ) + v 21 ė23 ∈ v 22 + L 2 2 k 2 (e 22 + w 2 ) , (24) 
with

w 2 = -e 12 , v 21 = φ 2 (y, x12 ) -φ 2 (y, x 2 ) , v 22 = φ 3 (x 1 , x 2 + e 22 , x 3 + e 23 ) -φ 3 (x) .
Employing (5), it yields

|v 12 | |e 23 | + 0 + 1 |e 12 | , (25a) |v 21 | 0 + 1 |e 12 | , (25b) |v 22 | 0 + 1 |e 22 | + 1 |e 23 | . (25c) We consider two Lyapunov functions V 1 (e 1 ) and V 2 (e 2 ) defined as V 1 (e 1 ) := V e 11 , e 12 L 1 , V 2 (e 2 ) := V e 22 , e 23 L 2 , ( 26 
)
where V is defined in (13). With ( 14), it yields that the functions V 1 and V 2 satisfy

v |e 11 | 3 + |e 11 | 3 2 + |e 12 | 3 L 3 1 V 1 (e 1 ) v |e 11 | 3 + |e 11 | 3 2 + |e 12 | 3 L 3 1 , (27) 
v |e 22 | 3 + |e 22 | 3 2 + |e 23 | 3 L 3 2 V 2 (e 2 ) v |e 22 | 3 + |e 22 | 3 2 + |e 23 | 3 L 3 2 . ( 28 
)
Furthermore, we have the following two propositions. Proposition 2. There exist positive real numbers L 1 , cv12 , such that for all L 1 L 1 , the time derivative of V 1 along the solutions of (23) satisfies

V1 (e 1 , e 2 ) L 1 - c V 2 V 1 (e 1 ) 2 3 + V 1 (e 1 ) + cv12 L 2 L 2 1 V 1 (e 1 ) 2 3 V 2 (e 2 ) 1 3 (29)
Moreover, if there exist a time T 0 0 and > 0 such that

V 2 (e 2 (t)) < L 6 1 c 3 V 8c 3 v12 L 3 2 -, ∀ t T 0 (30)
then, there exists

T 1 > T 0 such that V 1 (e 1 (t)) = 0 , ∀ t T 1 . (31) 
Proposition 3. There exist positive real numbers L 2 , cv22 , such that, for all L 2 L 2 , the time derivative of V 2 along the solutions of (24) satisfies

V2 (e 1 , e 2 ) L 2 - c V 2 V 2 (e 2 ) 2 3 + V 2 (e 2 ) + cw L 3 1 V 1 (e 1 ) + V 1 (e 1 ) 1 3 + cv21 L 2 2 + cv22 1 L 2 2 V 1 (e 1 ) 1 3 V 2 (e 2 ) 2 3 + cv21 L 3 1 L 2 2 V 1 (e 1 ) + V 1 (e 1 ) 2 3 
(32)

Moreover, if there exist a time T 1 0 such that (31) holds, then there exists a time T 2 > T 1 such that

V 2 (e 2 (t)) = 0 , ∀ t T 2 . ( 33 
)
Equation ( 29) can be written in the form of a ISS Lyapunov inequality. Note, however, that more information is given here. Indeed, it is due to its particular form that the second statement related to finite time convergence is obtained. In Proposition 3, the second statement exhibits the fact that when V 1 = 0, the constant term in the time derivative disappears since it comes from the incremental bound on the non linearity. Hence, again, V 2 converges in finite time to zero.

Proof of Proposition 2:

(1) Study of V1 : Following the same steps of the proof of Theorem 1, it can be checked that System ( 23) is exactly in the form of system (12) in the coordinates (e 11 , e12 L1 ), with the perturbation v 12 multiplied by L -2 1 and with the time scaled by 1 L1 . Hence, from (15), the time derivative of V 1 along the solutions of (23) satisfies, for all L 1 > 0, V1 (e 1 , e 2 )

L 1 ≤ -c V V 1 (e 1 ) 2 3 + V 1 (e 1 ) +c v2 V 1 (e 1 ) 2 3 |v 12 | L 2 1
which gives ( 29) with (25a), ( 27), (28), L 1 sufficiently large, and cv12

cv 2 v 1 3
.

(2) Finite time convergence for small V 2 : Assume there exists T 0 such that inequality (30) is satisfied. This implies with (29) that the time derivative of V 1 along the solutions of the system verifies :

V1 (e 1 , e 2 ) L 1 -˜ V 1 (e 1 ) 2 3 + V 1 (e 1 ) , (34) 
where ˜ > 0. From this Lyapunov inequality, it yields finite time convergence of V 1 to zero (see [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF]). In other words, there exists T 1 such that (31) holds. 2

Proof of Proposition 3:

(1) As before, we follow the preliminary step of the proof of Theorem 1, transforming System (24) in the form of ( 12) in the coordinates (e 21 , e22 L2 ), with the perturbations v 21 and v 22 multiplied by L -1 2 and L -2 2 , respectively, and with the time scaled by 1 L2 . Hence, the time derivative of V 2 along the solutions of ( 24) satisfies, for all L 2 > 0,

V2 (e 1 , e 2 ) L 2 -c V V 2 (e 2 ) 2 3 + V 2 (e 2 ) + c w |w 2 | + |w 2 | 3 + c v2 V 2 (e 2 ) 2 3 |v 22 | L 2 2 + c v1 |v 21 | L 2 2 + |v 21 | L 2 3 , (35) 
which gives with (25a) and L 2 sufficiently large that for all

L 2 > L 2 , V2 (e 1 , e 2 ) L 2 - c V 2 V 2 (e 2 ) 2 3 + V 2 (e 2 ) + c w |e 12 | + |e 12 | 3 + c v2 V 2 (e 2 ) 2 3 1 |e 11 | L 2 2 + c v1 0 + 1 |e 12 | L 2 2 + 0 + 1 |e 12 | L 2 3 . (36)
Also, in inequality (36), we have, using (a + b) n na n + nb n ,

c v1 0 + 1 |e 12 | L 2 2 + 0 + 1 |e 12 | L 2 3 3c v1 2 0 L 2 2 + 3 0 L 3 2 + 3c v1 2 1 |e 12 | 2 L 2 2 + 3 1 |e 12 | 3 L 3 2 3c v1 2 0 L 2 2 + 3 0 L 3 2 + 3c v1 L 3 1 2 1 L 2 2 |e 12 | 2 L 2 1 + 3 1 L 3 2 |e 12 | 3 L 3 1 .
With ( 27), there exist cv21 , cw > 0 such that

3c v1 L 3 1 2 1 L 2 2 |e 12 | 2 L 2 1 + 3 1 L 3 2 |e 12 | 3 L 3 1 cv21 L 3 1 L 2 2 V 1 (e 1 ) + V 1 (e 1 ) 2 3 , c w |e 12 | + |e 12 | 3 cw L 3 1 V 1 (e 1 ) + V 1 (e 1 ) 1 3 
. (37)

Consequently, the first point is satisfied. (2) For the second point, note that if V 1 (e 1 ) = 0 then w 2 = 0 and v 21 = 0. Hence, the time derivative of V 2 along the solutions of (24) satisfies V2 (e 1 , e 2 )

L 2 - c V 2 V 2 (e 2 ) 2 3 + V 2 (e 2 ) . (38) 
With [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], this allows to conclude that V 2 converges in finite time to zero. 2

A global and practical Lyapunov function

Let W : R 4 → R + be the C 1 function defined as

W (e 1 , e 2 ) = V 2 (e 2 ) L 2 + L 3 1 V 1 (e 1 ) . ( 39 
)
We have then the following result. Proposition 4. For all L 2 ≥ L 2 , with L 2 given by Proposition 3, there exist positive real numbers L1 , ν and µ such that, for all L 1 > L1 , the time derivative of W , along the solution of the system (23), ( 24), satisfies Ẇ (e 1 , e 2 ) -νW (e 1 , e 2 ) + L 3 1 µ .

(40)

Proof: Let L 1 and L 2 be given by Proposition 2 and 3, respectively. For all L 1 > L 1 and L 2 > L 2 , we have by the propositions 2 and 3

Ẇ (e 1 , e 2 ) = L 4 1 V1 (e 1 , e 2 ) L 1 + V2 (e 1 , e 2 ) L 2 -L 4 1 c V 2 V 1 (e 1 ) 2 3 + V 1 (e 1 ) - c V 2 V 2 (e 2 ) 2 3 + V 2 (e 2 ) + 5 i=1 Υ i ,
where

Υ 1 = L 4 1 cv12 L 2 L 2 1 V 1 (e 1 ) 2 3 V 2 (e 2 ) 1 3 , Υ 2 = cw L 3 1 V 1 (e 1 ) + V 1 (e 1 ) 1 3 
,

Υ 3 = cv21 L 2 2 , Υ 4 = cv22 1 L 2 2 V 1 (e 1 ) 1 3 V 2 (e 2 ) 2 3 , Υ 5 = cv21 L 3 1 L 2 V 1 (e 1 ) + V 1 (e 1 ) 2 3 
.

Note that with Young inequality we have for some positive real numbers cv12 , cw , cv22 , independent of L 1 and L 2 , the following inequalities:

Υ 1 c V 8 V 2 (e 2 ) + cv12 V 1 (e 1 )L 3 2 2 L 3 1 , Υ 2 cw L 3 1 V 1 (e 1 ) + L 3 1 c2 w 4 V 1 (e 1 ) 2 3 + L 3 1 , cw L 3 1 V 1 (e 1 ) + V 1 (e 1 ) 2 3 + L 3 1 , Υ 4 c V 8 V 2 (e 2 ) + cv22 V 1 (e 1 ) 1 L 6 2 .
Hence, it yields Ẇ (e 1 , e 2 )

-L 4 1 c V 2 -cv12 L 3 2 2 L 3 1 -cw L 3 1 + cv22 1 L 6 2 -cv21 L 3 1 L 2 × V 1 (e 1 ) 2 3 + V 1 (e 1 ) - c V 4 V 2 (e 2 ) 2 3 + V 2 (e 2 ) + L 3 1 + cv21 L 2 2 . (41) 
Note that there exists L1 > L 1 > 0 such that

L 4 1 c V 2 -cv12 L 3 2 2 L 3 1 -cw L 3 1 + cv22 1 L 6 2 -cv21 L 3 1 L 2 > L 4 1 c V 4 , (42) 
for all L 1 > L1 . With the previous expression, we obtain, for

L 1 > L1 , Ẇ (e 1 , e 2 ) - c V 4 L 4 1 V 1 (e 1 ) 2 3 + V 1 (e 1 ) + V 2 (e 2 ) 2 3 + V 2 (e 2 ) + L 3 1 + cv21 L 2 2 (43) - c V 4 L 3 1 V 1 (e 1 ) + V 2 (e 2 ) L 2 + L 3 1 + cv21 L 2 2 (44) = - c V 4 W (e 1 , e 2 ) + L 3 1 1 + cv21 L 2 2 L 3 1 , (45) 
thus concluding the proof with µ = 1 + cv 21

L 2 2 L3 1 .
The particular feature of the bound ( 5) is that, for small values of the error, it is bounded by a constant, but for large values, it is Lipschitz. Homogeneity in the bilimit is a property that has been introduced in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. It characterizes functions which have two (homogeneous) distinct behaviors at infinity and around the origin. Typically, the set-valued mappings k 1 and k 2 given in (11) have two different behaviors. Around the origin, (k 1 , k 2 ) are (almost) equal to

k 1,0 (s) = κs 1 2 , k 2,0 (s) = Sign(s) and at infinity (k 1 , k 2 ) are (almost) equal to k 1,∞ (s) = κs , k 2,∞ (s) = κs. k 0 = (k 1,0 , k 2,0 ) and k ∞ = (k 1,∞ , k 2,∞
) are homogeneous approximating vector fields corresponding to the sliding mode observer and the high-gain observer respectively, and k = (k 1 , k 2 ) is a homogeneous in the bi-limit vector field.

More precisely, we say that φ : R n → R is bi-homogeneous (or homogeneous in the bi-limit) with weights r 0 ∈ N n and r ∞ ∈ N n , degrees d 0 and d ∞ , and approximating functions φ 0 and φ ∞ if

• φ 0 and φ ∞ are homogeneous with weights r 0 and r ∞ , and degrees d 0 and d ∞ respectively. • for every compact set C which doesn't contain the origin, every > 0, there exists λ 0 > 0 and λ ∞ > 0 such that for all x ∈ C,

φ(λ r0 • x) λ d0 -φ 0 (x) ≤ ε ∀λ ∈ (0, λ 0 ] φ(λ r∞ • x) λ d∞ -φ ∞ (x) ≤ ε ∀λ ∈ [λ ∞ , +∞)
where we denote λ r • x = (λ r1 x 1 , . . . , λ rn x n ). To simplify we say that φ is bi-homogeneous with triples (r 0 , d 0 , φ 0 ) and (r ∞ , d ∞ , φ ∞ ).

As for a vector field f =

f i ∂ ∂xi , it is bi-homogeneous with triples (r 0 , d 0 , f 0 ) and (r ∞ , d ∞ , f ∞ ) if each f i is bi- homogeneous with triples (r 0 , d 0 +r 0,i , f 0,i ) and (r ∞ , d ∞ + r ∞,i , f ∞,i ).
Homogeneity in the bi-limit has been studied in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] only when there are functions with homogeneous degree larger than 0. So the case of Sign (set-valued) function has not been considered. However, by extending these tools, it is possible to include this case.

A.2 Finite time stability for the error system

In this section we consider the set valued vector field

F (e) = e 2 -k 1 (e 1 ) -k 2 (e 1 ) (A.1)
where k 1 and k 2 are given in (11). We show in the following proposition that when κ is selected sufficiently large, the function V defined in ( 13) is a Lyapunov function for this vector field (see also [START_REF] Cruz-Zavala | Homogeneous high order sliding mode design: a lyapunov approach[END_REF] for the homogeneous case). Proposition 5. There exists a positive real number κ * such that, for all κ > κ * , there exists a positive real number c V,0 such that the function V given in (13) satisfies

max ∂V ∂e (e)F (e) ≤ -c V,0 V (e) + V (e) 2 3
, ∀e ∈ R 2 .

(A.2)

Proof: The proof is inspired from Theorem 3.1 in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. Note that ∂V ∂e (e)F (e) ⊂ {T 1 (κe 1 , e 2 ) + κT 2 (κe 1 , e 2 )} , (A.3) where T 1 (ν, e 2 ) = -(Sign(q(ν)) + q(ν))

× 3 e 2 2 + ν q -1 (e2)

q -1 (e 2 )

1 2 + q -1 (e 2 ) 2 dh and T 2 (ν, e 2 ) = (e 2 -q(ν)) × ν 1 2 -q -1 (e 2 ) 1 2 + ν 2 -q -1 (e 2 ) 2 .
Furthermore, that there exists a continuous single-valued map T 1 : R 3 → R such that T 1 (ν, e 2 ) = { T 1 (ν, e 2 , s) , s ∈ Sign(q(ν))} .

Define r 0 = (2, 1), r ∞ = (1, 1). T 2 and T 1 are both homogeneous in the bi-limit with weights r 0 , r ∞ and (r 0 , 0), (r ∞ , 0) respectively, with same degrees d 0 = 2, d ∞ = 3 and with homogeneous approximations

T 1,0 (ν, e 2 , s) = -s 3 e 2 2 + ν -e 2 2 , T 1,∞ (ν, e 2 , s) = -ν 3 e 2 2 + ν 2 -e 2 2 , and 
T 2,0 (s, e 2 ) = -e 2 -ν 1 2 2 , T 2,∞ (s, e 2 ) = (e 2 -ν) ν 2 -e 2 2 .
Moreover, q is an increasing function and T 2 0, with T 2 = 0 only if e 2 = q(ν). Note also that if e 2 = q(ν), T 1 (ν, e 2 ) = -3|e 2 | 2 -3|e 2 | 3 < 0. The same holds for the homogeneous approximation functions given above when s ∈ Sign(q(ν)). Employing the key technical Lemma 1, it yields the existence of κ > 0 such that for all κ > κ , max s∈Sign(q(ν)) Attributing to w the same homogeneous weights as e 1 , and to v 1 the same homogeneous weights as e 2 , η is homogeneous in the bi-limit and, according to Proposition 5, we obtain

T 1 (ν, e 2 , s)+κT 2 (ν, e 2 ) < 0 , ∀ (ν, e 2 ) ∈ R 2 \{0} .
η(e, 0, 0) + c V 2 V (e) 2 3 + V (e) < 0 ∀e .
Applying the key technical Lemma 1 with γ

(w, v 1 ) = |w| + |w| 3 + |v 1 | 2 + |v 1 | 3 , shows that there exists c > 0 such that η(e, w, v 1 ) + c V 2 V (e) 2 3 + V (e) -cγ(w, v 1 ) < 0 .
Finally, we can observe that ∂V ∂e2 (e) is homogeneous of degree 2, so that there exists c v2 > 0 such that ∂V ∂e 2 (e) ≤ c v2 V (e) η(x, s)

for some continuous maps η : R n+1 → R, and f : R n → R such that, for all x ∈ R n , for all λ > 0

Sign(f (λ r0 • x)) = Sign(f (x)) (B.1) Sign(f (λ r∞ • x)) = Sign(f (x)) , (B.2)
and such that η is homogeneous in the bi-limit, with weights (r 0 , 0) and (r ∞ , 0), degrees d 0 and d ∞ , and approximating functions η0 and η∞ . Consider a continuous function γ : R n → R + that is homogeneous in the bilimit, with same weights and degrees and with approximating functions γ 0 and γ ∞ such that ∀x ∈ R n \ {0}, ∀s ∈ Sign(f (x))

     γ(x) = 0 =⇒ η(x, s) < 0 , γ 0 (x) = 0 =⇒ η0 (x, s) < 0 , γ ∞ (x) = 0 =⇒ η∞ (x, s) < 0 .
Then there exists a real number c * such that, for all c ≥ c * , and for all x in R n \ {0} η(x) -c γ(x) < 0 .

(B.3)

Proof: First by homogeneity of the approximations, according to (Bernard et al., 2017a, Lemma 4), there exist c * 0 > 0 and c * ∞ > 0, * 0 > 0 and * ∞ > 0, such that for all c 0 ≥ c * 0 and c ∞ ≥ c * ∞ , and for all x in R n \ {0}, and for all s ∈ Sign(f (x)) η0 (x, s) -c 0 γ 0 (x) < -0 , η∞ (x, s) -c ∞ γ ∞ (x) < -∞ .

Define c 1 = max{c 0 , c ∞ } and 1 = min{ 0 , ∞ }. Reproducing arguments of (Andrieu et al., 2008, Appendix C), we next prove that there exists a compact set C such that for all c ≥ c 1 , {x ∈ R n , ∃s ∈ Sign(f (x)) , η(x, s) -c γ(x) ≥ 0} ⊆ C .

(B.4) Indeed, the bi-homogeneity of η and γ means that there exist λ 0 > 0, λ ∞ > 0 such that, denoting the homogeneous Therefore, by defining the compact set C := {x ∈ R n , |x| r0,d0 ≥ λ 0 , |x| r∞,d∞ ≤ λ ∞ } , we indeed have (B.4). Finally, assume that for all c ≥ c 1 , there exists x = 0 such that η(x) -c γ(x) ≥ 0. Then, we can build a sequence (x k , s k ) of elements of C × [-1, 1] such that η(x k , s k ) -kγ(x k ) ≥ 0 with s k ∈ sign(f (x k )) for all k ∈ N * . Since C is compact, there exists a subsequence which converges to (x * , s * ) ∈ C × [-1, 1]. Taking the limit and using the continuity of η, necessarily implies that γ(x * ) = 0 and η(x * , s * ) ≥ 0. This is impossible if s * ∈ Sign(f (x * )). But either f (x * ) = 0, and s * = Sign(f (x * )) by continuity of f , or f (x * ) = 0 and s * ∈ [-1, 1] = Sign(f (x * )). This concludes the proof. 2

with v 12

 12 = e 23 + φ 2 (y, x 12 ) -φ 2 (y, x12 ) . Also writing e 2 := (e 22 , e 23 ), with e 22 := x22 -x 2 and e 23 := x23 -x 3 , gives ė22

  F (e) < 0 , ∀ (e 1 , e 2 ) ∈ R 2 \ {0}, and the same for its homogeneous approximation. Following the proof of Corollary 2.15 in[START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] employed with Lemma 1, it implies that there exists c V > 0 such that max ∂V ∂e (e)F (e) ≤ -c V V (e 1 , e 2 ) -c V V (e 1 , e 2 )Let κ > κ * where κ * is given in Proposition 5. Along any solution of system (12), we haveV (e, v, w) ≤ η(e, v, w) k 1 (e 1 + w) + v 1 k 2 (e 1 + w) .

  (Key technical lemma). Let η : R n → R be homogeneous in the bi-limit, with weights r 0 and r ∞ , degrees d 0 and d ∞ , of the formη(x) = max s∈Sign(f (x))

•

  For all λ ∈ (0, λ 0 ], for all x such that |x| r0,d0 = 1, and for all s ∈ Sign(f (x)),|η(λ r0 • x, s) -λ d0 η0 (x, s)| λ d0 4 , |γ(λ r0 • x) -λ d0 γ 0 (x, s)| λ d0 4 , which implies for c c 1 η(λ r0 • x, s) -cγ(λ r0 • x) λ d0 η0 (λ r0 • x, s) -cγ 0 (λ r0 • x) + λ d0 2 -2 ,using (B.1), and therefore, η(x, s) -cγ(x) < 0 ∀ 0 < |x| r0,d0 ≤ λ 0 . • For all λ ∈ [λ ∞ , +∞), for all x such that |x| r∞,d∞ = 1, and for all s ∈ Sign(f (x)),|η(λ r∞ • x, s) -λ d∞ η∞ (x, s)| λ d∞ 4 , |γ(λ r∞ • x) -λ d∞ γ ∞ (x, s)| λ d∞ 4 ,which implies for c ≥ c 1 in the same way η(x, s) -cγ(x) < 0 ∀|x| r∞,d∞ ≥ λ ∞ .

This condition may be relaxed by supposing that each function φ j in (1) satisfies an incremental homogeneous bound, seeBernard et al. (2017a) 

Here and all along the paper, V (e, v, w) is the upper right Dini derivative of the function V along any solution of (12).

Proof of the Theorem 2

Assume L 2 is sufficiently large such that Proposition 3 can be applied. With Proposition 4, there exists ν and µ such that for all L 1 sufficiently large, Ẇ (e 1 , e 2 ) -νW (e 1 , e 2 ) + L 3 1 µ .

(46) This implies that for all L 1 there exists a time T 0 (L 1 ) such that

From which it yields

On another hand, if L 1 is selected sufficiently large such that

Then, from (47), inequality (30) holds and consequently Proposition 2 implies that there exists T 1 such that (31) holds, i.e. V 1 converges to zero in finite time. With the second statement of Proposition 3, (33) holds, i.e. V 2 converges to zero in finite time. This concludes the proof of the theorem.

CONCLUSION

In this paper, a novel observer, which allows to obtain a global finite time observer when the nonlinearity are affinely bounded, has been presented for lower-triangular systems of dimension 2 and 3. The proposed design generalizes two usual observer design techniques, since its structure combines high-gain observer, sliding mode observer and cascaded second-order observers. Future developments include the generalization of the proposed cascade design to systems of any state dimension and the stability analysis of the error dynamics.

Appendix A. HOMOGENEOUS IN THE BI-LIMIT CORRECTION TERMS

The objective of this appendix is to establish Proposition 1. This proof is based on the use of the homogeneous in the bi-limit framework and is obtained in several steps.

A.1 Homogeneous in the bi-limit framework