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Abstract: High-gain observers and sliding mode observers are two of the most common
techniques to design observers (or differentiators) for lower triangular nonlinear dynamics. While
sliding mode observers can handle bounded nonlinearities, high-gain linear techniques can handle
global Lipschitz nonlinearities. In this preliminary paper, we present a novel observer design
for second and third order systems which benefits from both techniques. More precisely, the
proposed observer converges in finite-time and handles nonlinearities satisfying an incremental
affine bound.

1. INTRODUCTION

In this paper our aim is to design a state observer for a
system in the form

ẋ1 = x2 + φ1(x1, t)
ẋ2 = x3 + φ2(x1, x2, t)

...
ẋn = φn(x1, . . . , xn, t)

, y = x1 (1)

where φi : Rn → R are continuous functions and y is
the measured output. This lower triangular form typically
arises when considering (uniformly) observable nonlinear
systems (see Gauthier and Kupka (2001) or more recently
Bernard et al. (2017b)). Designing an observer for this
particular nonlinear dynamical system has been deeply
studied in the last three decades. Two main approaches
can be distinguished.

The first one assumes global Lipschitz bound conditions
on the nonlinearities. More precisely, the functions φi are
supposed to satisfy for j = 2, . . . , n

|φj(y, x2, . . . , xj , t)− φj(y, x̂2, . . . , x̂j , t)|

6 `1

j∑
i=2

|xi − x̂i| ,∀(y, x, x̂, t) ∈ R2n+2. (2)

In that case, the very popular high-gain approach can
be followed, see, e.g., Tornambè (1989), Emelyanov et al.
(1989). The observer gain is then composed of a linear cor-
rection term which is amplified by a high-gain parameter
that is selected large enough compared to the Lipschitz
constant. Following this route, the obtained observer is
global and its convergence rate is exponential.

The second approach, initiated in Levant (1998), considers
finite time differentiators, see also Shtessel et al. (2014).
Employing set-valued homogeneous correction terms, in
Levant (1998), a sliding mode observer for (1) is obtained
in the particular case in which the functions φi satisfy

{
φj(y, x2 . . . , xj , t) = φj(y, t) , j = 2, . . . , n− 1
|φn(y, x2 . . . , xn, t)− φn(y, x̂2 . . . , x̂n, t)| 6 `0 ,

∀(y, x̂, x, t) ∈ R2n+2. (3)

The observer gain is then a homogeneous set-valued vector
field and allows to obtain convergence in finite time.
The only constraint on the function φn is that of being
bounded. On the other hand, the other functions φj , j < n
must be exactly known 1 . If they are not known, but satisfy

|φj(y, x2, . . . , xj , t)− φj(y, x̂2, . . . , x̂j , t)| 6 `0 ,
∀(x, y, x̂, t) ∈ C × R× Rn × R,

j = 2, . . . , n− 1, (4)

where C is a known compact set in Rn, it is possible
to follow the design proposed in Floquet and Barbot
(2007), consisting of a cascade of second order sliding mode
observers, each designed as in Levant (1998). The resulting
observer (see also Bejarano et al. (2007); Fridman et al.
(2007); Bernard et al. (2017a)) has finite time convergence
for state solutions of (1) remaining in the compact set C.

In this paper, a first attempt to unify these three frame-
works into a single global design is made. Indeed, we
consider the case in which the functions φj satisfy the
following assumption.

Assumption 1. For each j in 2, . . . , n, the function φj
satisfies a lower triangular incremental affine bound. More
precisely, there exist positive real numbers `0 and `1 such
that

|φj(y, x2, . . . , xj , t)− φj(y, x̂2, . . . , x̂j , t)|

6 `0 + `1

j∑
i=2

|xi − x̂i| ,∀(y, x, x̂, t) ∈ R2n+2. (5)

It can be checked that Assumption 1 encompasses nonlin-
earities satisfying (2), (3) or (4). But none of the existing

1 This condition may be relaxed by supposing that each function
φj in (1) satisfies an incremental homogeneous bound, see Bernard
et al. (2017a)



observers can be applied under Assumption 1. Instead, we
follow the interconnection design of second order high-gain
observers proposed in Astolfi and Marconi (2015), in which
we replace each block with second-order generalized super-
twisting algorithms, as proposed in Moreno (2009), where
both sliding-mode and linear corrections terms are mixed.
As explained in Moreno (2009), mixing linear and sliding-
mode correction terms destroys in general the homogeneity
of the system and homogeneous Lyapunov functions can
no longer be used, although some exception can be found
in Bernard et al. (2017a); Cruz-Zavala and Moreno (2017).
Some non-homogeneous Lyapunov functions have never-
theless been designed in Moreno (2014); Castillo et al.
(2018) for the second-order generalized super-twisting al-
gorithm. But in this paper, because of the presence of
perturbations verifying (5) for each i = 1, . . . , n, we cannot
follow the aforementioned approaches and a new global
observer is designed for system (1) with functions φj sat-
isfying Assumption 1, first in the case of dimension n = 2
in Section 2, and then n = 3 in Section 3.

Notations/Definitions:

• for all s in R,

Sign(s) =

{ {−1} s < 0
{[−1, 1]} s = 0
{1} s > 0

. (6)

• for (s, a) in R2, bsea = Sign(s)|s|a.

2. OBSERVER FOR SECOND ORDER SYSTEMS

2.1 Mixed sliding mode observers

In this section, an observer is designed for system (1) for
n = 2 when φ1 and φ2 satisfy Assumption 1. The system
reads as {

ẋ1 = x2 + φ1(x1, t)
ẋ2 = φ2(x1, x2, t)

, y = x1 . (7)

The observer we consider is in the form{
˙̂x1 = x̂2 + φ1(y, t) + Lk1(y − x̂1)
˙̂x2 ∈ φ2(y, x̂2, t) + L2k2(y − x̂1)

, (8)

where k1 : R 7→ R is a continuous function, k2 : R⇒ R is a
set valued map which is outer semi-continuous with convex
and compact values 2 , and L is a positive parameter to
be selected large enough and referred to as high-gain
parameter, according to standard nomenclature.

Depending on the mappings (k1, k2), this observer may be
the usual high-gain observer or the sliding mode observer:

• If we select

k1(s) := κs , k2(s) := κs , ∀s ∈ R , (9)

where κ is a positive real number, this is the usual high-
gain observer. Picking L sufficiently large compared to
`1, the system (8) is an observer for system (7) when φ2
satisfies the Lipschitz bound (2).

• If we consider the sliding mode observer given by Levant
(1998), we select

k1(s) := bκse
1
2 , k2(s) := Sign(s) ,∀s ∈ R , (10)

2 We refer to the definition of semi-outer continuity given in Filippov
(1988).

where κ is a positive real number selected sufficiently
large. Picking L sufficiently large compared to `2, (8) is
an observer for system (7) when φ2 satisfies the bounded
assumption (3).

Note however that none of these two approaches can be
applied when φ2 satisfies Assumption 1.

Inspired by the observer construction given in Andrieu
et al. (2008) and Moreno (2009), we introduce the novel
mixed sliding mode observer by selecting the functions
k1, k2 as{

k1(s) := q(κs)
k2(s) := Sign(s) + q(κs)

, q(s) := bse
1
2 + s . (11)

From there, it yields the following theorem.

Theorem 1. Assume System (7) satisfies Assumption 1.
There exists a positive real number κ∗ such that for all
κ > κ∗, there exists L, such that for all L > L, the
observer (8) ensures finite time and stable estimation of
system (7). More precisely, the set {x = x̂} is globally
and asymptotically stable and there exists a time T ≥ 0,
depending on the initial condition, such that

x(t) = x̂(t) ∀ t ≥ T .

Before proving the previous result, we analyse in the
following section a disturbed error system, and we give a
proposition that is instrumental to the proof of Theorem 1.

2.2 Robustness analysis for a disturbed chain of integrator

In this subsection, the following system is considered{
ė1 = e2 − k1(e1 + w) + v1
ė2 ∈ −k2(e1 + w) + v2

, (12)

where k1 and k2 are given in (11) and where v = (v1, v2) :
R 7→ R2, w : R 7→ R are locally integrable time functions.
System (12) is obtained by considering the error dynamics
e = x−x̂, with x, x̂ satisfying (7) and (8), respectively, L =
1, φ2 = 0, and disturbances w, v acting on the measured
output y and on the state-dynamics, respectively.

Consider the function V : R2 → R+ defined as

V (e1, e2) = |e2|3 +

∫ κe1

q−1(e2)

bhe
1
2 −

⌊
q−1(e2)

⌉ 1
2

+ bhe2 −
⌊
q−1(e2)

⌉2
dh , (13)

where q−1(s) is the continuous function satisfying

q−1(q(s)) = s.

The function V is well defined and C1. Moreover, in the
following proposition it is shown that it is an ISS Lyapunov
function for system (12).

Proposition 1. There exists κ∗ ≥ 0 such that, for all
κ > κ∗, there exist positive real numbers v, v, cV , cw,
cv1 , cv2 , such that the function V defined in (13) satisfies

v
(
|e1|

3
2 + |e1|3 + |e2|3

)
6 V (e) 6 v

(
|e1|

3
2 + |e1|3 + |e2|3

)
, (14)

and along the solutions 3 of (12)

3 Here and all along the paper, V̇ (e, v, w) is the upper right Dini
derivative of the function V along any solution of (12).



V̇ (e, v, w) 6 −cV
[
V (e)

2
3 + V (e)

]
+ cw

[
|w|+ |w|3

]
+ cv1

[
|v1|2 + |v1|3

]
+ cv2V (e)

2
3 |v2| . (15)

The proof of this proposition is given in Appendix A and
relies on the use of homogeneous in the bi-limit frame-
work introduced in Andrieu et al. (2008). We see that
the disturbances w, v1 and v2 are treated in a different
manner in equation (15). Indeed, for cv2 |v2| < cV the Lya-
punov function is decreasing. This highlights the deadzone
of the stability margin with respect to the disturbance
|v2|, coming from the sliding mode part of the observer.
This crucial property confers to those observers their well-
known robustness to bounded disturbance on their last
line. However, as opposed to standard sliding mode ob-
server design, the Lyapunov inequality (15) also estab-
lishes an ISS property with respect to all disturbances.
With the help of Proposition 1, we can now give the proof
of Theorem 1.

2.3 Proof of Theorem 1

Let e1 := x̂1 − x1 and e2 := x̂2 − x2. Along the solutions
of (1)-(8), e is solution of{

ė1 = e2 − Lk1(e1)
ė2 ∈ φ2(x1, x2 + e2, t)− φ2(x1, x2, t)− L2k2(e1)

.

(16)
This system can be rewritten

1

L
ė1 =

e2
L
− k1(e1)

1

L

ė2
L
∈ −k2(e1) +

v2
L2

, (17)

where
v2 = φ2(y, x̂2, t)− φ2(y, x2, t) ,

which is exactly in the form of system (12) in the coor-
dinates (e1,

e2
L ), with the perturbation multiplied by L−2

and with the time scaled by 1
L . Hence, consider κ > κ∗

given in Proposition 1. With Proposition 1, it yields

V̇
(
e1,

e2
L , v2

)
L

6 −cV
[
V
(
e1,

e2
L

) 2
3

+ V
(
e1,

e2
L

)]
+ cv2V

(
e1,

e2
L

) 2
3 |v2|
L2

. (18)

With Assumption 1, it yields

|v2|
L2
6

`0
L2

+
`1
L

|e2|
L
6

`0
L2

+
`1

Lv
1
3

V
(
e1,

e2
L

) 1
3

.

Hence, the former inequality becomes

V̇
(
e1,

e2
L , v2

)
L

6 −
[
cV −

cv2`0
L2

]
V
(
e1,

e2
L

) 2
3

−
[
cV −

cv2`1

Lv
1
3

]
V
(
e1,

e2
L

)
. (19)

Let L > 0 be such that
cv2`0

L2 6
cV
2

and
cv2`1

Lv
1
3

6 cV
2 . It

implies, for any L > L,

V̇
(
e1,

e2
L
, v2

)
6 −cV

2
L

[
V
(
e1,

e2
L

) 2
3

+ V
(
e1,

e2
L

)]
.

(20)
Consequently, by standard Lyapunov arguments, see, e.g.,
Bhat and Bernstein (2005), the result follows.

3. OBSERVER FOR THIRD ORDER SYSTEM

3.1 Statement of the result

We are now interested in the design of an observer for third
order dynamical systems in triangular form. As it has been
done in Floquet and Barbot (2007) in the semi-global case,
namely, when the state of system (1) is supposed to evolve
in a known given compact set C, the idea is to employ
a cascade of second order observers. However, to obtain
a global result, we need to consider interconnections of
second order systems as it has been recently introduced in
Astolfi and Marconi (2015). In our context, the observer
is therefore given as follows.{

˙̂x11 = x̂12 + φ1(y) + L1k1(x̂11 − y)
˙̂x12 ∈ x̂23 + φ2(y, x̂12) + L2

1k2(x̂11 − y){
˙̂x22 = x̂23 + φ2(y, x̂12) + L2k1(x̂22 − x̂12)
˙̂x23 ∈ φ3(y, x̂22, x̂23) + L2

2k2(x̂22 − x̂12)

(21)

where L1 and L2 are two positive real numbers that will
be selected later on. In particular, we recover the design
proposed by Floquet and Barbot (2007) when we don’t

put the term x̂23 in the dynamics of ˙̂x12, and we recover
the design in Astolfi and Marconi (2015), when k1, k2
are selected as in (9). In our context, observer (21) is
composed of two blocks of second order observers, with
k1 a non locally Lipschitz function and k2 a set-valued
correction term defined in (11). Before discussing the
convergence properties of this observer, it can be checked
that this set valued map is outer semi-continuous with
convex and compact values, thus ensuring well-posedness
and sequential compactness of solutions (Filippov, 1988,
p65, p77).

In the following theorem, it is shown that by selecting L2

and L1 sufficiently large, this observer ensures finite time
convergence of the estimate to the state of the system.

Theorem 2. Consider system (1) with n = 3 and suppose
Assumption 1 holds. There exist positive real numbers
(κ, L1, L2), such that the observer (21) ensures finite time
estimation of system (1), namely there exists a time T
such that

x̂11(t) = x1(t) , x̂12(t) = x̂22(t) = x2(t) ,

x̂23(t) = x3(t) , ∀ t > T . (22)

As opposed to existing finite time results, see, e.g., Floquet
and Barbot (2007), Levant (1998), we obtain a global
finite-time observer. Indeed, no restriction is imposed on
the set of initial conditions, nor on the set in which
the system (1) is evolving, which may be, in this case,
unbounded. Note however that the convergence time is not
uniform. It is still an open question to achieve uniform
finite time convergence since our approach fails to be
applied in this context yet. Moreover, as opposed to
Theorem 1, for the time being, this result does not show
the stability of this observer.

3.2 Some auxiliary results

The proof of Theorem 2 is obtained in several steps. In a
first step, we study each subsystem separately employing
Proposition 1 on each subsystem. In a second step, we
introduce a global practical Lyapunov function which



shows that a certain set is reached in finite time. Finally,
by properly selecting the coefficient L1, it is shown that e1
converges to zero in finite time and afterwards e2 converges
to zero in finite time.

Robustness analysis of each error subsystems: The sug-
gested observer gives two error dynamical (sub)systems
which interact with each other. Writing e1 := (e11, e12),
with e11 := x̂11 − x1 and e12 := x̂12 − x2, gives{

ė11 = e12 + L1k1(e11)
ė12 ∈ v12 + L2

1k2(e11)
, (23)

with

v12 = e23 + φ2(y, x12)− φ2(y, x̂12) .

Also writing e2 := (e22, e23), with e22 := x̂22 − x2 and
e23 := x̂23 − x3, gives{

ė22 = e23 + L2k1(e22 + w2) + v21
ė23 ∈ v22 + L2

2k2(e22 + w2)
, (24)

with

w2 = −e12 ,
v21 = φ2(y, x̂12)− φ2(y, x2) ,
v22 = φ3(x1, x2 + e22, x3 + e23)− φ3(x) .

Employing (5), it yields

|v12| 6 |e23|+ `0 + `1|e12| , (25a)

|v21| 6 `0 + `1|e12| , (25b)

|v22| 6 `0 + `1|e22|+ `1|e23| . (25c)

We consider two Lyapunov functions V1(e1) and V2(e2)
defined as

V1(e1) := V

(
e11,

e12
L1

)
, V2(e2) := V

(
e22,

e23
L2

)
, (26)

where V is defined in (13). With (14), it yields that the
functions V1 and V2 satisfy

v

(
|e11|3 + |e11|

3
2 +
|e12|3

L3
1

)
6

V1(e1) 6 v

(
|e11|3 + |e11|

3
2 +
|e12|3

L3
1

)
, (27)

v

(
|e22|3 + |e22|

3
2 +
|e23|3

L3
2

)
6

V2(e2) 6 v

(
|e22|3 + |e22|

3
2 +
|e23|3

L3
2

)
. (28)

Furthermore, we have the following two propositions.

Proposition 2. There exist positive real numbers L1, c̃v12 ,
such that for all L1 > L1, the time derivative of V1 along
the solutions of (23) satisfies

V̇1(e1, e2)

L1
6 −cV

2

[
V1(e1)

2
3 + V1(e1)

]
+ c̃v12

L2

L2
1

V1(e1)
2
3V2(e2)

1
3 (29)

Moreover, if there exist a time T0 > 0 and ε > 0 such that

V2(e2(t)) < L6
1

c3V
8c̃3v12L

3
2

− ε , ∀ t > T0 (30)

then, there exists T1 > T0 such that

V1(e1(t)) = 0 , ∀ t > T1 . (31)

Proposition 3. There exist positive real numbers L2, c̃v22 ,
such that, for all L2 > L2, the time derivative of V2 along
the solutions of (24) satisfies

V̇2(e1, e2)

L2
6 −cV

2

[
V2(e2)

2
3 + V2(e2)

]
+ c̃wL

3
1

[
V1(e1) + V1(e1)

1
3

]
+
c̃v21
L2
2

+ c̃v22
1

L2
2

V1(e1)
1
3V2(e2)

2
3

+ c̃v21
L3
1

L2
2

[
V1(e1) + V1(e1)

2
3

]
(32)

Moreover, if there exist a time T1 > 0 such that (31) holds,
then there exists a time T2 > T1 such that

V2(e2(t)) = 0 , ∀ t > T2 . (33)

Equation (29) can be written in the form of a ISS Lya-
punov inequality. Note, however, that more information is
given here. Indeed, it is due to its particular form that
the second statement related to finite time convergence is
obtained. In Proposition 3, the second statement exhibits
the fact that when V1 = 0, the constant term in the time
derivative disappears since it comes from the incremental
bound on the non linearity. Hence, again, V2 converges in
finite time to zero.

Proof of Proposition 2:

(1) Study of V̇1: Following the same steps of the proof
of Theorem 1, it can be checked that System (23) is
exactly in the form of system (12) in the coordinates
(e11,

e12
L1

), with the perturbation v12 multiplied by

L−21 and with the time scaled by 1
L1

. Hence, from

(15), the time derivative of V1 along the solutions of
(23) satisfies, for all L1 > 0,

V̇1(e1, e2)

L1
≤ −cV

[
V1(e1)

2
3 + V1(e1)

]
+cv2V1(e1)

2
3
|v12|
L2
1

which gives (29) with (25a), (27), (28), L1 sufficiently
large, and c̃v12 >

cv2

v
1
3

.

(2) Finite time convergence for small V2: Assume
there exists T0 such that inequality (30) is satisfied.
This implies with (29) that the time derivative of V1
along the solutions of the system verifies :

V̇1(e1, e2)

L1
6 −ε̃

[
V1(e1)

2
3 + V1(e1)

]
, (34)

where ε̃ > 0. From this Lyapunov inequality, it yields
finite time convergence of V1 to zero (see Bhat and
Bernstein (2005)). In other words, there exists T1 such
that (31) holds. 2

Proof of Proposition 3:

(1) As before, we follow the preliminary step of the
proof of Theorem 1, transforming System (24) in the
form of (12) in the coordinates (e21,

e22
L2

), with the

perturbations v21 and v22 multiplied by L−12 and L−22 ,
respectively, and with the time scaled by 1

L2
. Hence,

the time derivative of V2 along the solutions of (24)
satisfies, for all L2 > 0,



V̇2(e1, e2)

L2
6 −cV

[
V2(e2)

2
3 + V2(e2)

]
+ cw

[
|w2|+ |w2|3

]
+ cv2V2(e2)

2
3
|v22|
L2
2

+ cv1

[(
|v21|
L2

)2

+

(
|v21|
L2

)3
]
, (35)

which gives with (25a) and L2 sufficiently large that
for all L2 > L2,

V̇2(e1, e2)

L2
6 −cV

2

[
V2(e2)

2
3 + V2(e2)

]
+ cw

[
|e12|+ |e12|3

]
+ cv2V2(e2)

2
3
`1|e11|
L2
2

+ cv1

[(
`0 + `1|e12|

L2

)2

+

(
`0 + `1|e12|

L2

)3
]
. (36)

Also, in inequality (36), we have, using (a + b)n 6
nan + nbn,

cv1

[(
`0 + `1|e12|

L2

)2

+

(
`0 + `1|e12|

L2

)3
]

6 3cv1

[
`20
L2
2

+
`30
L3
2

]
+ 3cv1

[
`21|e12|2

L2
2

+
`31|e12|3

L3
2

]
6 3cv1

[
`20
L2
2

+
`30
L3
2

]
+ 3cv1L

3
1

[
`21
L2
2

|e12|2

L2
1

+
`31
L3
2

|e12|3

L3
1

]
.

With (27), there exist c̃v21 , c̃w > 0 such that

3cv1L
3
1

[
`21
L2
2

|e12|2

L2
1

+
`31
L3
2

|e12|3

L3
1

]
6 c̃v21

L3
1

L2
2

(
V1(e1) + V1(e1)

2
3

)
,

cw
[
|e12|+ |e12|3

]
6 c̃wL

3
1

[
V1(e1) + V1(e1)

1
3

]
. (37)

Consequently, the first point is satisfied.
(2) For the second point, note that if V1(e1) = 0 then

w2 = 0 and v21 = 0. Hence, the time derivative of V2
along the solutions of (24) satisfies

V̇2(e1, e2)

L2
6 −cV

2

[
V2(e2)

2
3 + V2(e2)

]
. (38)

With Bhat and Bernstein (2005), this allows to con-
clude that V2 converges in finite time to zero. 2

3.3 A global and practical Lyapunov function

Let W : R4 → R+ be the C1 function defined as

W (e1, e2) =
V2(e2)

L2
+ L3

1V1(e1) . (39)

We have then the following result.

Proposition 4. For all L2 ≥ L2, with L2 given by Proposi-

tion 3, there exist positive real numbers L̃1, ν and µ such

that, for all L1 > L̃1, the time derivative of W , along the
solution of the system (23), (24), satisfies

Ẇ (e1, e2) 6 −νW (e1, e2) + L3
1µ . (40)

Proof: Let L1 and L2 be given by Proposition 2 and 3,
respectively. For all L1 > L1 and L2 > L2, we have by the
propositions 2 and 3

Ẇ (e1, e2) = L4
1

V̇1(e1, e2)

L1
+
V̇2(e1, e2)

L2

6 − L4
1

cV
2

[
V1(e1)

2
3 + V1(e1)

]
− cV

2

[
V2(e2)

2
3 + V2(e2)

]
+

5∑
i=1

Υi,

where

Υ1 = L4
1c̃v12

L2

L2
1

V1(e1)
2
3V2(e2)

1
3 ,

Υ2 = c̃wL
3
1

[
V1(e1) + V1(e1)

1
3

]
,

Υ3 =
c̃v21
L2
2

,

Υ4 = c̃v22
1

L2
2

V1(e1)
1
3V2(e2)

2
3 ,

Υ5 = c̃v21
L3
1

L2

[
V1(e1) + V1(e1)

2
3

]
.

Note that with Young inequality we have for some positive
real numbers c̄v12 , c̄w, c̄v22 , independent of L1 and L2, the
following inequalities:

Υ1 6
cV
8
V2(e2) + c̄v12V1(e1)L

3
2
2 L

3
1 ,

Υ2 6 c̃wL
3
1V1(e1) +

L3
1c̃

2
w

4
V1(e1)

2
3 + L3

1 ,

6 c̄wL
3
1

[
V1(e1) + V1(e1)

2
3

]
+ L3

1 ,

Υ4 6
cV
8
V2(e2) + c̄v22V1(e1)

1

L6
2

.

Hence, it yields

Ẇ (e1, e2) 6

−
(
L4
1

cV
2
− c̄v12L

3
2
2 L

3
1 − c̄wL3

1 + c̄v22
1

L6
2

− c̃v21
L3
1

L2

)
×
[
V1(e1)

2
3 + V1(e1)

]
− cV

4

[
V2(e2)

2
3 + V2(e2)

]
+ L3

1 +
c̃v21
L2
2

. (41)

Note that there exists L̃1 > L1 > 0 such that

L4
1

cV
2
− c̄v12L

3
2
2 L

3
1 − c̄wL3

1 + c̄v22
1

L6
2

− c̃v21
L3
1

L2
> L4

1

cV
4
,

(42)

for all L1 > L̃1. With the previous expression, we obtain,

for L1 > L̃1,

Ẇ (e1, e2) 6 − cV
4

(
L4
1

[
V1(e1)

2
3 + V1(e1)

]
+
[
V2(e2)

2
3 + V2(e2)

])
+ L3

1 +
c̃v21
L2
2

(43)

6 −cV
4

(
L3
1V1(e1) +

V2(e2)

L2

)
+ L3

1 +
c̃v21
L2
2

(44)

= −cV
4
W (e1, e2) + L3

1

(
1 +

c̃v21
L2
2L

3
1

)
, (45)

thus concluding the proof with µ = 1 +
c̃v21
L2

2L̃
3

1

. 2



3.4 Proof of the Theorem 2

Assume L2 is sufficiently large such that Proposition 3 can
be applied. With Proposition 4, there exists ν and µ such
that for all L1 sufficiently large,

Ẇ (e1, e2) 6 −νW (e1, e2) + L3
1µ . (46)

This implies that for all L1 there exists a time T0(L1) such
that

W (e1(t), e2(t)) 6 L3
1

µ

ν
, ∀ t > T0(L1) .

From which it yields

V2(e2(t)) 6 L2L
3
1

µ

ν
, ∀ t > T0(L1) . (47)

On another hand, if L1 is selected sufficiently large such
that

L2L
3
1

µ

ν
< L6

1

c3V
8c̃3v12L

3
2

,

Then, from (47), inequality (30) holds and consequently
Proposition 2 implies that there exists T1 such that (31)
holds, i.e. V1 converges to zero in finite time. With the
second statement of Proposition 3, (33) holds, i.e. V2
converges to zero in finite time. This concludes the proof
of the theorem.

4. CONCLUSION

In this paper, a novel observer, which allows to obtain
a global finite time observer when the nonlinearity are
affinely bounded, has been presented for lower-triangular
systems of dimension 2 and 3. The proposed design gener-
alizes two usual observer design techniques, since its struc-
ture combines high-gain observer, sliding mode observer
and cascaded second-order observers. Future developments
include the generalization of the proposed cascade design
to systems of any state dimension and the stability analysis
of the error dynamics.

Appendix A. HOMOGENEOUS IN THE BI-LIMIT
CORRECTION TERMS

The objective of this appendix is to establish Proposition
1. This proof is based on the use of the homogeneous in
the bi-limit framework and is obtained in several steps.

A.1 Homogeneous in the bi-limit framework

The particular feature of the bound (5) is that, for small
values of the error, it is bounded by a constant, but
for large values, it is Lipschitz. Homogeneity in the bi-
limit is a property that has been introduced in Andrieu
et al. (2008). It characterizes functions which have two
(homogeneous) distinct behaviors at infinity and around
the origin. Typically, the set-valued mappings k1 and k2
given in (11) have two different behaviors. Around the
origin, (k1, k2) are (almost) equal to

k1,0(s) = bκse
1
2 , k2,0(s) = Sign(s)

and at infinity (k1, k2) are (almost) equal to

k1,∞(s) = κs , k2,∞(s) = κs.

k0 = (k1,0, k2,0) and k∞ = (k1,∞, k2,∞) are homogeneous
approximating vector fields corresponding to the sliding

mode observer and the high-gain observer respectively, and
k = (k1, k2) is a homogeneous in the bi-limit vector field.

More precisely, we say that φ : Rn → R is bi-homogeneous
(or homogeneous in the bi-limit) with weights r0 ∈ Nn and
r∞ ∈ Nn, degrees d0 and d∞, and approximating functions
φ0 and φ∞ if

• φ0 and φ∞ are homogeneous with weights r0 and r∞,
and degrees d0 and d∞ respectively.

• for every compact set C which doesn’t contain the
origin, every ε > 0, there exists λ0 > 0 and λ∞ > 0
such that for all x ∈ C,∣∣∣∣φ(λr0 · x)

λd0
− φ0(x)

∣∣∣∣ ≤ ε ∀λ ∈ (0, λ0]∣∣∣∣φ(λr∞ · x)

λd∞
− φ∞(x)

∣∣∣∣ ≤ ε ∀λ ∈ [λ∞,+∞)

where we denote λr · x = (λr1x1, . . . , λ
rnxn). To simplify

we say that φ is bi-homogeneous with triples (r0, d0, φ0)
and (r∞, d∞, φ∞).

As for a vector field f =
∑
fi

∂
∂xi

, it is bi-homogeneous

with triples (r0, d0, f0) and (r∞, d∞, f∞) if each fi is bi-
homogeneous with triples (r0, d0+r0,i, f0,i) and (r∞, d∞+
r∞,i, f∞,i).

Homogeneity in the bi-limit has been studied in Andrieu
et al. (2008) only when there are functions with homoge-
neous degree larger than 0. So the case of Sign (set-valued)
function has not been considered. However, by extending
these tools, it is possible to include this case.

A.2 Finite time stability for the error system

In this section we consider the set valued vector field

F (e) =

[
e2 − k1(e1)
−k2(e1)

]
(A.1)

where k1 and k2 are given in (11). We show in the following
proposition that when κ is selected sufficiently large, the
function V defined in (13) is a Lyapunov function for this
vector field (see also Cruz-Zavala and Moreno (2017) for
the homogeneous case).

Proposition 5. There exists a positive real number κ∗ such
that, for all κ > κ∗, there exists a positive real number cV,0
such that the function V given in (13) satisfies

max

{
∂V

∂e
(e)F (e)

}
≤ −cV,0

[
V (e) + V (e)

2
3

]
, ∀e ∈ R2 .

(A.2)

Proof: The proof is inspired from Theorem 3.1 in Andrieu
et al. (2008). Note that

∂V

∂e
(e)F (e) ⊂ {T1(κe1, e2) + κT2(κe1, e2)} , (A.3)

where

T1(ν, e2) = −(Sign(q(ν)) + q(ν))

×

(
3 be2e2 +

∫ ν

q−1(e2)

(⌊
q−1(e2)

⌉ 1
2 +

⌊
q−1(e2)

⌉2)′
dh

)
and



T2(ν, e2) = (e2 − q(ν))

×
(
bνe

1
2 −

⌊
q−1(e2)

⌉ 1
2 + bνe2 −

⌊
q−1(e2)

⌉2)
.

Furthermore, that there exists a continuous single-valued

map T̃1 : R3 → R such that

T1(ν, e2) = {T̃1(ν, e2, s) , s ∈ Sign(q(ν))} .
Define r0 = (2, 1), r∞ = (1, 1). T2 and T̃1 are both
homogeneous in the bi-limit with weights r0, r∞ and
(r0, 0), (r∞, 0) respectively, with same degrees d0 = 2,
d∞ = 3 and with homogeneous approximations

T̃1,0(ν, e2, s) = −s
(

3 be2e2 + ν − be2e2
)
,

T̃1,∞(ν, e2, s) = −ν
(

3 be2e2 + bνe2 − be2e2
)
,

and

T2,0(s, e2) = −
(
e2 − bνe

1
2

)2
,

T2,∞(s, e2) = (e2 − ν)
(
bνe2 − be2e2

)
.

Moreover, q is an increasing function and T2 6 0, with
T2 = 0 only if e2 = q(ν). Note also that if e2 = q(ν),
T1(ν, e2) = −3|e2|2 − 3|e2|3 < 0. The same holds for the
homogeneous approximation functions given above when
s ∈ Sign(q(ν)). Employing the key technical Lemma 1, it
yields the existence of κ? > 0 such that for all κ > κ?,

max
s∈Sign(q(ν))

T̃1(ν, e2, s)+κT2(ν, e2) < 0 , ∀ (ν, e2) ∈ R2\{0} .

It thus follows that

max

{
∂V

∂e
(e)F (e)

}
< 0 , ∀ (e1, e2) ∈ R2 \ {0},

and the same for its homogeneous approximation. Follow-
ing the proof of Corollary 2.15 in Andrieu et al. (2008) em-
ployed with Lemma 1, it implies that there exists cV > 0
such that

max

{
∂V

∂e
(e)F (e)

}
≤ −cV V (e1, e2)− cV V (e1, e2)

2
3 .

2

A.3 Proof of Proposition 1

Let κ > κ∗ where κ∗ is given in Proposition 5. Along any
solution of system (12), we have

V̇ (e, v, w) ≤ η(e, v, w) +
∂V

∂e2
(e)v2

with

η(e, v, w) = max

{
∂V

∂e
(e)

(
e2 + k1(e1 + w) + v1

k2(e1 + w)

)}
.

Attributing to w the same homogeneous weights as e1, and
to v1 the same homogeneous weights as e2, η is homoge-
neous in the bi-limit and, according to Proposition 5, we
obtain

η(e, 0, 0) +
cV
2

[
V (e)

2
3 + V (e)

]
< 0 ∀e .

Applying the key technical Lemma 1 with

γ(w, v1) =
[
|w|+ |w|3

]
+
[
|v1|2 + |v1|3

]
,

shows that there exists c > 0 such that

η(e, w, v1) +
cV
2

[
V (e)

2
3 + V (e)

]
− cγ(w, v1) < 0 .

Finally, we can observe that ∂V
∂e2

(e) is homogeneous of
degree 2, so that there exists cv2 > 0 such that∣∣∣∣ ∂V∂e2 (e)

∣∣∣∣ ≤ cv2V (e)
2
3 ,

concluding the proof.

Appendix B. KEY TECHNICAL LEMMA

Lemma 1. (Key technical lemma). Let η : Rn → R be
homogeneous in the bi-limit, with weights r0 and r∞,
degrees d0 and d∞, of the form

η(x) = max
s∈Sign(f(x))

η̃(x, s)

for some continuous maps η̃ : Rn+1 → R, and f : Rn → R
such that, for all x ∈ Rn, for all λ > 0

Sign(f(λr0 · x)) = Sign(f(x)) (B.1)

Sign(f(λr∞ · x)) = Sign(f(x)) , (B.2)

and such that η̃ is homogeneous in the bi-limit, with
weights (r0, 0) and (r∞, 0), degrees d0 and d∞, and ap-
proximating functions η̃0 and η̃∞. Consider a continuous
function γ : Rn → R+ that is homogeneous in the bi-
limit, with same weights and degrees and with approxi-
mating functions γ0 and γ∞ such that ∀x ∈ Rn \ {0},
∀s ∈ Sign(f(x))

γ(x) = 0 =⇒ η̃(x, s) < 0 ,

γ0(x) = 0 =⇒ η̃0(x, s) < 0 ,

γ∞(x) = 0 =⇒ η̃∞(x, s) < 0 .

Then there exists a real number c∗ such that, for all
c ≥ c∗, and for all x in Rn \ {0}

η(x)− c γ(x) < 0 . (B.3)

Proof: First by homogeneity of the approximations, ac-
cording to (Bernard et al., 2017a, Lemma 4), there exist
c∗0 > 0 and c∗∞ > 0, ε∗0 > 0 and ε∗∞ > 0, such that for all
c0 ≥ c∗0 and c∞ ≥ c∗∞, and for all x in Rn \ {0}, and for
all s ∈ Sign(f(x))

η̃0(x, s)− c0 γ0(x) < −ε0 , η̃∞(x, s)− c∞ γ∞(x) < −ε∞ .

Define c1 = max{c0, c∞} and ε1 = min{ε0, ε∞}. Repro-
ducing arguments of (Andrieu et al., 2008, Appendix C),
we next prove that there exists a compact set C such that
for all c ≥ c1,

{x ∈ Rn , ∃s ∈ Sign(f(x)) , η̃(x, s)− c γ(x) ≥ 0} ⊆ C .
(B.4)

Indeed, the bi-homogeneity of η̃ and γ means that there
exist λ0 > 0, λ∞ > 0 such that, denoting the homogeneous

norm |x|r,d =
(∑n

i=1 |xi|
d
ri

) 1
d

, we have the following

properties.

• For all λ ∈ (0, λ0], for all x such that |x|r0,d0 = 1, and
for all s ∈ Sign(f(x)),

|η̃(λr0 · x, s)− λd0 η̃0(x, s)| 6 λd0 ε
4
,

|γ(λr0 · x)− λd0γ0(x, s)| 6 λd0 ε
4
,

which implies for c > c1



η̃(λr0 · x, s)− cγ(λr0 · x)

6 λd0
(
η̃0(λr0 · x, s)− cγ0(λr0 · x)

)
+ λd0

ε

2
6 − ε

2
,

using (B.1), and therefore,

η̃(x, s)− cγ(x) < 0 ∀ 0 < |x|r0,d0 ≤ λ0 .
• For all λ ∈ [λ∞,+∞), for all x such that |x|r∞,d∞ = 1,

and for all s ∈ Sign(f(x)),

|η̃(λr∞ · x, s)− λd∞ η̃∞(x, s)| 6 λd∞ ε
4
,

|γ(λr∞ · x)− λd∞γ∞(x, s)| 6 λd∞ ε
4
,

which implies for c ≥ c1 in the same way

η̃(x, s)− cγ(x) < 0 ∀|x|r∞,d∞ ≥ λ∞ .

Therefore, by defining the compact set

C := {x ∈ Rn , |x|r0,d0 ≥ λ0 , |x|r∞,d∞ ≤ λ∞} ,
we indeed have (B.4). Finally, assume that for all c ≥ c1,
there exists x 6= 0 such that η(x) − c γ(x) ≥ 0. Then, we
can build a sequence (xk, sk) of elements of C × [−1, 1]
such that

η̃(xk, sk)− kγ(xk) ≥ 0

with sk ∈ sign(f(xk)) for all k ∈ N∗. Since C is compact,
there exists a subsequence which converges to (x∗, s∗) ∈
C× [−1, 1]. Taking the limit and using the continuity of η̃,
necessarily implies that γ(x∗) = 0 and η̃(x∗, s∗) ≥ 0. This
is impossible if s∗ ∈ Sign(f(x∗)). But either f(x∗) 6= 0,
and s∗ = Sign(f(x∗)) by continuity of f , or f(x∗) = 0 and
s∗ ∈ [−1, 1] = Sign(f(x∗)). This concludes the proof. 2
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