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Shape derivatives of eigenvalue functionals.
Part one: scalar problems.

Fabien Caubet∗, Marc Dambrine†, Rajesh Mahadevan‡
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Abstract

In this work, we compute the shape derivatives of eigenvalues problem for elliptic operators as-
sociated to various boundary conditions, that is Dirichlet, Neumann, Robin, and Wentzell boundary
conditions. We also consider the case when the conductivity and the density have jumps, which corre-
sponds to composite structures.

The proposed method is based on a result for the derivative of a minimum with respect to a
parameter. The main advantage is that the procedure exposed in this work is uniform and efficient
with respect to the computations. Indeed, in order to underline this efficiency, we present in the
appendix the computation in the case of the mixture of two phases using the classical method based
on the material derivative, which turns out to be much more tedious.

Keywords: eigenvalues of elliptic operators, shape sensitivity analysis, shape derivatives, generalized
boundary condition.

AMS Classification: 49Q10, 35P15, 49R05.

1 Introduction

Many problems ranging from engineering to physics deal with questions of optimal shapes or designs.
An important class of these problems involves eigenvalues of elliptic operators since they are important
in understanding the vibrating modes of a mechanical structure. A famous example is the Rayleigh-
Faber-Krahn inequality for the first vibrating mode of a clamped membrane. In recent years, additive
manufacturing, or the so-called 3-d printing, has been used in the manufacturing of machine parts with
complex geometries or even spatial heterogeneities. The structural properties of these parts depend on two
important features: the distribution of the materials and the effect of thin coatings on the boundary of the
device. Of course, engineers would like to optimize the performance of such a printed device by means of
an optimal layout of the materials. A useful mathematical technique for obtaining information about the
sensitivity with respect to the design of the device consists in the computation of shape derivatives of the
vibration modes of such a printed device.

In the literature the shape derivative analysis for eigenvalue problems has often been made using ad hoc
methods (see [9, 12, 13]). We propose here a systematic analysis of these problems based on a simple proce-
dure for calculating the shape derivative of minimum problems discussed by M. Delfour and J.P. Zolesio [9].
This has the advantage of allowing one, at the same time, to establish the existence of the shape derivatives
through a verification of certain hypotheses and also to use simpler computations to obtain the expression
for the shape derivative. We now briefly discuss the notion of a shape derivative and the usual practices in
its study in a given problem before explaining our approach for the shape sensitivity analysis of the least
eigenvalue for elliptic variational problems.
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Consider a class of admissible open sets Oad in Rd, d = 1, 2, 3, which is stable with respect to a
family of diffeomorphisms, that is, for a given δ > 0, (I + tV )(Ω) in Oad for all t ∈ [0, δ] and for all V
smooth vector fields with compact support in a neighborhood of Ω, whenever Ω ∈ Oad. Consider a shape
functional F : Oad → R. The semi-derivative of F in the sense of J. Hadamard [11] at Ω ∈ Oad in the
direction of a vector field V is defined as

F ′(Ω;V ) := lim
t→0+

F (Ωt)− F (Ω)

t
, (1.1)

where
Ωt := Ψt(Ω), being Ψt(x) := x+ tV (x), (1.2)

whenever the limit in (1.1) exists. In general, even when this limit exists, it may not be linear or continuous
with respect to V . However, when this limit exists and is a distribution with respect to V , and if ∂Ω is of
class C1, the Hadamard’s structure theorem (see, e.g., [13, Proposition 5.9.1]) states that this distribution
is supported in ∂Ω and depends only on the normal component V · n of the vector field V . Usually it is
the boundary expression of F ′(Ω;V ) which is used in studying the evolution of the shapes in the shape
optimization problem. For a general discussion of the shape derivative analysis and its typical applications
we refer the interested reader to the following texts [9, 13, 14, 16] and the included references.

Frequently, in the applications, the shape functional of interest has the form

F (Ω) :=

∫
Ω

f(x, u,∇u,∇2u, · · · ) dx+

∫
∂Ω

g(x, u,∇Γu, · · · ) dς(x),

where the state u = u(Ω) is the solution of a boundary value problem in Ω and also may satisfy some
additional constraints (like in the case of eigenvalue problems where they may be normalized). A usual
procedure to calculate the sensibility of F is by transporting the functional to a fixed domain, which means
the state ut for the domain Ωt is composed with Ψt to give a function ut = ut ◦ Ψt on a fixed domain,
and by expressing the functional on Ωt as a functional on Ω by change of variables, and then the resulting
expression is derived with respect to t. This is sometimes referred to as the material derivative method
since it involves calculating the material derivative of u defined as the limit

u̇ := lim
t→0

ut − u
t

,

whenever it exists. A correct application of this method requires various steps: justifying the existence
of the material derivative, obtaining an equation which characterizes it, and suitable manipulations of the
derivative of the transported functional and the equations involved, culminating in a boundary expression
for F ′(Ω;V ) assured by Hadamard’s theorem.

On the one hand, it should be noted that the process of showing the existence of the material derivative
is often laborious and it can even happen, in some instances, that the material derivative does not exist. On
the other hand, usually, the final boundary expression for the shape derivative does not involve the material
derivative as can be seen in the typical examples discussed in [9, 13, 14, 16]. In view of this, at times, either
the shape derivative is derived formally by assuming the existence of the material derivative or rigorous
approaches have been proposed which bypass the use of the material derivative. In the past such methods
have been developed in the case of shape functionals which can be obtained as a minimum (for example, in
compliance optimization) or as min-max (for example, stress minimization) of integral functionals (see [10]
and the included references) or functionals which involve a Lagrangian [5]. In recent years, these methods
have been extended to include cases which could not be treated previously. For example, we refer to the
works by G. Bouchitté et al. [3, 4] for the treatment of shape functionals arising as the minimum of convex
non-differentiable integral functionals using the duality approach and to the works of K. Sturm [15] for
Lagrangian functionals without any saddle point assumption.

Nevertheless the power of these methods has not been fully exploited. A striking example is in the
treatment of optimization of eigenvalue functionals arising in different contexts. In this paper, we show
how to treat the shape derivative analysis for the least eigenvalue in several classes of elliptic variational
problems in a systematic way. In this work, we apply the procedure only to scalar problems in order to
convey the main ideas in a simpler context. In a forthcoming paper we apply the procedure to problems in
elasticity where the calculations are slightly more involved although the ideas are the same.

Our approach is based on applying the following result for the derivative of a minimum with respect to
a parameter (see, e.g., Theorem 2.1 in Chapter 10 in [9]).
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Theorem 1.1. Let X be a Banach space and let G : [0, δ]×X → R be a given functional and we set

g(t) := inf
X
G(t, x) and X(t) := {x ∈ X : G(t, x) = g(t)}.

If the following hypotheses hold,

(H1) X(t) 6= ∅ for all t ∈ [0, δ],

(H2) ∂tG(t, x) exists in [0, δ] at all x ∈ ∪t∈[0,δ]X(t),

(H3) there exists a topology τ on X such that, for every sequence {tn} ⊂]0, δ] tending to 0 and xn ∈ X(tn),
there exists x0 ∈ X(0) and a subsequence {tnk

} of {tn}, for which

(i) xnk
−→ x0 with respect to τ ,

(ii) lim inf
k−→∞

∂tG(tnk
, xnk

) ≥ ∂tG(0, x0),

(H4) for all x ∈ X(0), the function t −→ ∂tG(t, x) is upper semi-continuous at t = 0,

then we have
g′(0) = inf

x∈X(0)
∂tG(0, x).

In a typical application, the functional G(t, u) will be chosen to be the Rayleigh quotient associated to
the eigenvalue problem on the perturbed domain Ωt after it is transported back to Ω. To begin with, a
procedure for verifying the hypotheses of the theorem will be shown. This will be followed by a systematic
calculation of the derivatives of typical elementary terms which constitute the Rayleigh quotient in such
problems. Finally we will show how the initially obtained, and rather complicated, expressions on the
domain for the derivative can be simplified, thanks to a systematic choice of test functions in the variational
formulation of the eigenvalue problem, to yield the boundary expression for the shape derivative.

Let us emphasize that Theorem 1.1 can only provide directional semi-derivative. The disadvantage is
that one cannot recover the existence of true shape derivatives without additional work. However, if a true
derivative exists, it is given by the directional semi-derivative. The advantage is to avoid to discuss the
multiplicity of the eigenvalue.

The main results of the paper are stated in Section 2: we present first the result in the case of the
Laplace operator and then in the case of a mixture of two phases. The proofs are gathered in Section 3:
we first provide the derivatives of the elementary terms arising in Rayleigh quotient in Section 3.2 (see
Propositions 3.1 and 3.2) and then the proofs of the theorems are given. Finally we recall (classical)
background results in Section A.1, and give in Section A.2 an alternative proof of Theorem 2.5 in a
particular case with the material derivative method in order to highlight the advantage of the proposed
method.

2 The results

We now present the main results of this work. We first deal with the special case of the eigenvalues of the
Laplace operator. Then we focus on eigenvalue problems related to the structural optimization of multi-
phase materials which is our original motivation, more specifically, eigenvalues of elliptic operators of the
type −div (σ∇·) in the specific case where σ only takes two values 0 < σ1 ≤ σ2. Although the Laplacian
operator constitutes a special case of the latter situation we prefer this order in order to transparent the
procedure. This also allows to recover quickly the shape derivative results for the Laplacian eigenvalue
involving several boundary conditions (that is Dirichlet, Neumann, Robin, Steklov, or Wentzell).

In what follows we consider a bounded open set Ω of Rd, d = 1, 2, 3, with a C2,1 boundary ∂Ω and two
fixed real numbers α, β ≥ 0. The unit exterior normal of ∂Ω is denoted by n. Moreover the tangential
gradient operator is denoted by ∇Γ, and ∆Γ is the so-called Laplace-Beltrami operator on ∂Ω. We also
consider H(Ω) as an appropriate subspace of H1(Ω) or H2(Ω) depending on whether the parameter β is not
active (i.e. β = 0) or active (i.e. β > 0). Finally, in the sequel, we denote by b the signed distance to the
boundary ∂Ω, by H = Tr(D2b) the mean curvature function on ∂Ω, and by Vn the normal component V ·n
of the vector field V .
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2.1 Shape derivative for Laplacian eigenvalues

We are interested in two families of eigenvalues problems for the Laplacian which cover an ample range of
boundary conditions. First we consider the least eigenvalue in eigenvalue problems of volume type, that is,
the spectral parameter is in the domain:{

−∆u = ΛΩ(Ω)u in Ω,
−β∆Γu+ αu+ ∂nu = 0 on ∂Ω.

(2.1)

Then we look at the least eigenvalue in eigenvalue problems of surface type, that is, the spectral parameter
is on the boundary: {

−∆u = 0 in Ω,
−β∆Γu+ αu+ ∂nu = Λ∂Ω(Ω)u on ∂Ω.

(2.2)

In the first of the situations, the eigenvalue problem results from a minimization of the Rayleigh quotient
given by

ΛΩ(Ω) = inf
u∈H(Ω)


∫

Ω

|∇u|2 dx+ α

∫
∂Ω

u2 dς(x) + β

∫
∂Ω

|∇Γu|2 dς(x)∫
Ω

u2 dx

 . (2.3)

In the surface type eigenvalue problem, it comes from the minimization of the Rayleigh quotient given by

Λ∂Ω(Ω) = inf
u∈H(Ω)


∫

Ω

|∇u|2 dx+ α

∫
∂Ω

u2 dς(x) + β

∫
∂Ω

|∇Γu|2 dς(x)∫
∂Ω

u2 dς(x)

 . (2.4)

As mentioned earlier, the above formulations include a variety of eigenvalue problems. For example, for
the choice β = 0 and α = 0 in (2.1) and H(Ω) as the subspace of functions in H1(Ω) whose mean value
is 0, we obtain the first non-trivial Neumann eigenvalue. The Dirichlet eigenvalue problem is obtained
from (2.1) in the limiting case α→ +∞ or alternately by taking β = 0 and choosing H(Ω) = H1

0(Ω) in (2.3).
The Robin eigenvalue problem is obtained from (2.1) by taking β = 0 and H(Ω) = H1(Ω). Moreover, if we
take β = 0 and α = 0 in (2.2) while working on H(Ω) = H1(Ω), we obtain the Steklov eigenvalue problem.
Finally, the choice β > 0 and the space H(Ω) = H2(Ω) give rise to the Wentzell problem for the Laplacian.

We obtain the following results (see Section 3.3 for the proofs).

Theorem 2.1. Let Ω be a C2,1 domain, and V be a smooth vector field. Then the semi-derivative Λ′Ω(Ω;V )
of ΛΩ(Ω) in the direction of the vector field V exists and is given by

Λ′Ω(Ω;V ) = inf
{∫

∂Ω

(
|∇Γu|2 − (∂nu)2 + αH |u|2 + β(HId − 2D2b)∇Γu · ∇Γu− ΛΩ(Ω)|u|2

)
Vn dς(x)

}
,

where the inf is taken with respect to all normalized eigenfunctions u ∈ H(Ω) for which ΛΩ(Ω) is attained
in (2.3).

Remark 2.2. The particular cases of Dirichlet, Neumann and Robin volumic eigenvalues are known since
a long time (see [12]). The result for the Wentzell volumic eigenvalue problem (β > 0) for ΛΩ(Ω) is new
to the best of our knowledge.

Theorem 2.3. Let Ω be a C2,1 domain Ω, and V be a smooth vector field. Then the semi-derivative
Λ′∂Ω(Ω;V ) of Λ∂Ω(Ω) in the direction of the vector field V exists and is given by

Λ′∂Ω(Ω;V ) = inf
{∫

∂Ω

(
|∇Γu|2 − (∂nu)2 + αH |u|2 + β(HId − 2D2b)∇Γu · ∇Γu− Λ∂Ω(Ω)H|u|2

)
Vn dς(x)

}
,

where the inf is taken with respect to all normalized eigenfunctions u ∈ H(Ω) for which Λ∂Ω(Ω) is attained
in (2.4).

Remark 2.4. The expression for the shape derivative of the Wentzell eigenvalue Λ∂Ω(Ω) has been obtained
in [8] using the material derivative approach and then used to study the problem of maximizing the first
eigenvalue.
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2.2 Shape derivative for eigenvalue problems for composites

Consider an open subset Ω1 of Ω with a C2,1 boundary and set Ω2 = Ω \ Ω1. We assume that there
exists r > 0 such that ‖x − y‖ ≥ r for all x ∈ Ω1 and y ∈ ∂Ω. We consider two conducting materials
with coefficients 0 < σ1 ≤ σ2 which occupy respectively the regions Ω1 and Ω2 according to respective
densities 0 < ρ1 ≤ ρ2. We set

ρ = ρ1χΩ1
+ ρ2χΩ2

and σ = σ1χΩ1
+ σ2χΩ2

,

with χΩ1
and χΩ2

denoting the characteristic functions of the sets Ω1 and Ω2 respectively.
The interface between Ω1 and Ω2 will be denoted by Γ, that is Γ = ∂Ω1 ∩ ∂Ω2 = ∂Ω1. The exterior

normal on ∂Ω as well as the unit normal pointing outward from Ω1 will be denoted n. We also use the
notation [·] in order to represent the jump on the interface Γ, that is, for a function u and a point x ∈ Γ:

[u] (x) = lim
ε→0+

(u(x− εn(x))− u(x+ εn(x))) .

We summarize the notations in Figure 1.

Ω1

Ω2

Γ

∂Ω

n

n

Figure 1: Notations

We consider the eigenvalue problem of volume type{
−div (σ(x)∇u) = MΩ(Ω)ρ(x)u in Ω,

−β∆Γu+ αu+ σ2∂nu = 0 on ∂Ω,
(2.5)

whose first eigenvalue is given by

MΩ(Ω) = inf
u∈H(Ω)


∫

Ω

σ(x)|∇u|2 dx+ α

∫
∂Ω

u2 dς(x) + β

∫
∂Ω

|∇Γu|2 dς(x)∫
Ω

ρ |u|2

 . (2.6)

We also consider the eigenvalue problem of surface type{
−div (σ(x)∇u) = 0 in Ω,

−β∆Γu+ αu+ σ2∂nu = M∂Ω(Ω)u on ∂Ω,
(2.7)

whose first eigenvalue is given by

M∂Ω(Ω) = inf
u∈H(Ω)


∫

Ω

σ(x)|∇u|2 dx+ α

∫
∂Ω

u2 dς(x) + β

∫
∂Ω

|∇Γu|2 dς(x)∫
∂Ω

|u|2 dς(x)

 . (2.8)

We obtain the following results (see Section 3.4 for the proofs).
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Theorem 2.5. Let Ω be a C2,1 domain, and V be a smooth vector field. Then the semi-derivative M′Ω(Ω;V )
of MΩ(Ω) in the direction of the vector field V exists and is given by

M′Ω(Ω;V ) = inf

{∫
Γ

(
[σ]|∇Γu|2 − [σ(∂nu)2]−MΩ(Ω)[ρ]|u|2

)
Vn dς(x)

+

∫
∂Ω

(
σ2(|∇Γu|2 − (∂nu)2) + αH|u|2 + β

(
HId − 2D2b

)
∇Γu · ∇Γu−MΩ(Ω)ρ2|u|2

)
Vn dς(x)

}
,

where the inf is taken with respect to all normalized eigenfunctions u ∈ H(Ω) for which ΛΩ(Ω) is attained
in (2.6).

Remark 2.6. A particular case of the above problem was studied in [7]: the difference is that we allow for
arbitrary densities ρ1 and ρ2 and boundary variations of ∂Ω while considering general boundary conditions
and not only Dirichlet boundary conditions.

Theorem 2.7. Let Ω be a C2,1 domain and V be a smooth vector field. Then the semi-derivative M′∂Ω(Ω;V )
of M∂Ω(Ω) in the direction of the vector field V exists and is given by

M′∂Ω(Ω;V ) = inf

{ ∫
Γ

(
[σ] |∇Γu|2 −

[
σ(∂nu)2

] )
Vn dς(x)

+

∫
∂Ω

(
σ2(|∇Γu|2 − (∂nu)2) + αH |u|2 + β

(
HId − 2D2b

)
∇Γu · ∇Γu−M∂Ω(Ω)H |u|2

)
Vn dς(x)

}
,

where the inf is taken with respect to all normalized eigenfunctions u ∈ H(Ω) for which M∂Ω(Ω) is attained
in (2.8).

3 Proofs

The shape derivative results stated in the previous section will be established in the framework of Theo-
rem 1.1. This will be done systematically by the following general strategy. Also we will treat one of the
cases, Theorem 2.1, in its fullest details while limiting ourselves in the other cases to more or less the main
calculations for the shape derivative.

In the sequel we consider a smooth vector field V and we recall that the perturbed Ωt and the diffeo-
morphism Ψt are defined by (1.2).

3.1 General strategy

The least eigenvalue problem on the perturbed domain Ωt obtained by the minimization of a Rayleigh
quotient will need to be formulated in a space independent of the parameter t giving rise to family of
functions G(t, ·). For this, we will use the fact that u 7→ u ◦Ψ−1

t is, usually, an isomorphism between H(Ω)
and H(Ωt). Recall that H(Ωt) is an appropriate subspace of the Sobolev spaces H1(Ωt) or H2(Ωt) for the
eigenvalue problem concerned.

The next step will consist in verifying that the assumptions of Theorem 1.1 are satisfied. For verifying
the hypothesis (H3), in the class of eigenvalue problems, we will usually need to show the Γ-convergence
(see Appendix A.1 for some reminders on this notion) of G(t, ·) to G(0, ·) as t→ 0+ in the weak topology
of H(Ω) and later the strong convergence of a sequence of minimizers.

Then the Theorem 1.1 will allow us to calculate the shape derivative by evaluating infu∈X(0) ∂tG(0, u)
where X(0) will be the eigenspace for the problem over the domain Ω. In the case of a simple eigenfunction,
it is enough to evaluate at a normalized eigenfunction. A boundary expression for ∂tG(0, u) can be obtained
by usually choosing −∇u · V as a test function in the governing equation to transform and simplify the
initial calculation of ∂tG(0, u).
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3.2 Preliminary computations

In this subsection we gather together preliminary calculations of derivatives with respect to t of some
typical integrals which will constitute the functionals G(t, ·). For this we will rely on the classical derivative
with respect to the shape formulærecalled in Lemma A.1 and Lemma A.2 in the appendix. The regularity
necessary on u for applying these lemma will be guaranteed by the classical regularity of the eigenfunctions
in the problems considered.

Proposition 3.1. For sufficiently smooth u, we have

∂t

(∫
Ωt

|∇(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
∂Ω

|∇u|2Vn dς(x) + 2

∫
Ω

∇u · ∇(−∇u · V ) dx, (3.1)

∂t

(∫
Ωt

|(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
∂Ω

|u|2Vn dς(x) + 2

∫
Ω

u (−∇u · V ) dx, (3.2)

∂t

(∫
∂Ωt

|(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn + 2u (−∇u · V ) dς(x). (3.3)

Proof. The above formulae are obtained by a straightforward application of the formulae for derivatives
of domain and boundary integrals given in Lemma A.1 and Lemma A.2 in the appendix and the fact
that ∂t(u ◦Ψ−1

t ) t=0 = −∇u · V since ∂t(Ψ−1
t ) t=0 = −V (see, e.g., [13, Equation (5.7)]).

Proposition 3.2. For sufficiently smooth u, we have

∂t

(∫
∂Ωt

|∇Γt
(u ◦Ψ−1

t )|2 dx

)
t=0

=

∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇Γ(−∇u · V ) +∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x). (3.4)

Proof. By applying the classical derivation formula recalled in Lemma A.2, we get

∂t

(∫
∂Ωt

|∇Γt
(u ◦Ψ−1

t )|2 dx

)
t=0

=

∫
∂Ω

(
H |∇Γu|2 + ∂n(|∇Γu|2)

)
Vn dς(x) + 2

∫
∂Ω

∇Γu · ∂t
(
∇Γt

(u ◦ Φ−1
t )
)
t=0

dς(x).

We conclude using the fact that (see respectively Lemma A.3 and Lemma A.4)

∂n|∇Γu|2 = 2∇Γu · (∇Γ(∂nu)−D2b∇Γu)

and
∂t
(
∇Γt(u ◦Ψ−1

t )
)
t=0

= ∇Γ(−∇u · V ) +∇u · ∇ΓVn n + ∂nu∇ΓVn.

Proposition 3.3. For sufficiently smooth u, we have

∂t

(∫
Ωt

σt|∇(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
Γ

[σ|∇u|2]Vn dς(x) + 2

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx

+

∫
∂Ω

σ2|∇u|2Vn dς(x) + 2

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx (3.5)

and

∂t

(∫
Ωt

ρt|(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
Γ

[ρ]|u|2Vn dς(x) + 2

∫
Ω1

ρ1u (−∇u · V ) dx

+

∫
∂Ω

ρ2|u|2Vn dς(x) + 2

∫
Ω2

ρ2u (−∇u · V ) dx. (3.6)
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Proof. The above formulae are obtained by an application of the classical derivative formula (see Lemma A.1)
after writing ∫

Ωt

σt|∇(u ◦Ψ−1
t )|2 dx =

∫
Ω1,t

σ1|∇(u ◦Ψ−1
t )|2 dx+

∫
Ω2,t

σ2|∇(u ◦Ψ−1
t )|2 dx

and ∫
Ωt

ρt|(u ◦Ψ−1
t )|2 dx =

∫
Ω1,t

ρ1|(u ◦Ψ−1
t )|2 dx+

∫
Ω2,t

ρ2|(u ◦Ψ−1
t )|2 dx,

where Ω1,t := Ψt(Ω1) and Ω2,t := Ψt(Ω2). To begin with one has

∂t

(∫
Ωt

σt|∇(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
∂Ω1

σ1|∇u|2Vn dς(x) + 2

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx

−
∫
∂Ω1

σ2|∇u|2Vn dς(x) + 2

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx+

∫
∂Ω

σ2|∇u|2Vn dς(x)

and

∂t

(∫
Ωt

ρt|(u ◦Ψ−1
t )|2 dx

)
t=0

=

∫
∂Ω1

ρ1|u|2Vn dς(x) + 2

∫
Ω1

ρ1u (−∇u · V ) dx

−
∫
∂Ω2∩∂Ω1

ρ2|u|2Vn dς(x) + 2

∫
Ω2

ρ2u (−∇u · V ) dx+

∫
∂Ω

ρ2|u|2Vn dς(x).

In the above, notice that the domain Ω2 has two boundaries, ∂Ω2 ∩∂Ω1 and ∂Ω. The boundary ∂Ω2 ∩∂Ω1

is identified with ∂Ω1 but the outward pointing normal on ∂Ω2 ∩ ∂Ω1 with respect to Ω2 is just −n with n
being the outward pointing normal to ∂Ω1 with respect to Ω1.

3.3 Shape derivatives for the Laplacian eigenvalues

3.3.1 Proof of Theorem 2.1

The considered eigenvalue functional on the perturbed domain is

ΛΩ(Ωt) = inf
v∈H(Ωt)


∫

Ωt

|∇v|2 dx+ α

∫
∂Ωt

v2 dς(x) + β

∫
∂Ωt

|∇Γv|2 dς(x)∫
Ωt

v2 dx

 , (3.7)

which can reformulated on Ω as

ΛΩ(Ωt) = inf
u∈H(Ω)


∫

Ωt

|∇(u ◦Ψ−1
t )|2 dx+ α

∫
∂Ωt

(u ◦Ψ−1
t )2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)∫

Ωt

(u ◦Ψ−1
t )2 dx

 .

This corresponds to a minimization of the functional

GΩ(t, u) =

∫
Ωt

|∇(u ◦Ψ−1
t )|2 dx+ α

∫
∂Ωt

(u ◦Ψ−1
t )2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)∫

Ωt

(u ◦Ψ−1
t )2 dx

.

First we verify that the assumptions of Theorem 1.1 are satisfied before proceeding to calculate an expression
for Λ′Ω(Ω;V ).
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Existence of the semi-derivative. Let us start by Assumption (H1). The set of minimizers of (3.7)
is non-empty for each t since the numerator is convex and continuous for the strong topology on H(Ωt)
(and therefore weakly lower semi-continuous), and since the denominator is continuous due to the compact
inclusion of H1(Ωt) into L2(Ωt). The set X(t), defined in Theorem 1.1 of minimizers for GΩ(t, ·) is obtained
by transporting the minimizers in (3.7) to Ω by composition with Ψt. Therefore Assumption (H1) is
satisfied.

Let us now check Assumption (H2). Since

∇(u ◦Ψ−1
t ) =

(
(DΨ−1

t )>∇u
)
◦Ψ−1

t and ∇Γt
= (Id − nt ⊗ nt)∇,

where nt the normal vector field on ∂Ωt, we have

GΩ(t, u) =
1∫

Ωt

(u ◦Ψ−1
t )2 dx

(∫
Ωt

|
(
(DΨ−1

t )>∇u
)
◦Ψ−1

t |2 dx

+

∫
∂Ωt

(
α(u ◦Ψ−1

t )2 + β|(Id − nt ⊗ nt)
(
(DΨ−1

t )>∇u
)
◦Ψ−1

t |2 dς(x)
))

.

Then, by a change of variables, the Rayleigh quotient GΩ can also be written as

GΩ(t, u) =
1∫

Ω

|u|2j(t)dx

(∫
Ω

|(DΨ−1
t )>∇u|2j(t)dx

+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

|(Id − nt ⊗ nt)(DΨ−1
t )>∇u|2ω(t)dς(x)

)
, (3.8)

where j(t) = det(DΨt(x)) is the Jacobian, ω(t) = det(DΨt(x))‖(DΨ−1
t )>(x)n(x)‖ is the surface Jacobian

and nt = nt ◦ Ψt. Since the deformation Ψt is smooth with respect to t and x, it follows that j(t)
and ω(t) are smooth functions of t and since ∂Ω is also smooth, nt is a smooth function too, for t small
enough. Therefore we are able to conclude from the previous expression (3.8) that GΩ(·, u) is derivable for t
small enough for all u ∈ H(Ω) and this gives the hypothesis (H2) of Theorem 1.1. Furthermore, the new
coefficients are continuous with respect to t and so the continuity of ∂tGΩ(·, u) follows by the dominated
convergence theorem. This gives Assumption (H4).

Finally let us verify the remaining assumption (H3) of Theorem 1.1. The functional ∂tGΩ(t, ·) is not
necessarily lower semicontinuous for the weak topology on H(Ω) but is continuous for the strong topology
on H(Ω). Our aim is to show that (H3) holds for this topology. This will be done in a few steps. Firstly,
we show that GΩ(t, ·) has the Γ-limit GΩ(0, ·) as t→ 0+, in the weak topology on H(Ω) (see Definition A.5
and Proposition A.6 in the Appendix for some reminders on this notion; also refer to [6]). We use the
expression (3.8) and prove the Γ−lim inf and Γ−lim sup inequalities as follows.

(i) Consider ut which converges weakly to a u in H(Ω). We obtain the estimate

GΩ(t, ut) = GΩ(0, ut) + (GΩ(t, ut)−GΩ(0, ut)) ≥ GΩ(0, ut) +O(t).

Indeed we obtain that GΩ(t, ut)−GΩ(0, ut) is O(t) (that is, goes to 0 as t → 0+) using the uniform
convergence of the coefficients, as t→ 0+, in the numerator and denominator of GΩ and using the fact
that any weakly convergent sequence ut is bounded in H(Ω). Then the Γ−lim inf inequality follows
from the already observed fact that GΩ(0, ·) is lower semi-continuous for the weak topology on H(Ω).

(ii) The Γ − lim sup inequality is obtained by taking the constant sequence u, for any given u ∈ H(Ω),
and observing that GΩ(t, u)→ GΩ(0, u) as t→ 0+.

Then Theorem A.6 allows us to deduce that the minimum of GΩ(t, ·) (which is ΛΩ(Ωt)) converges to the
minimum of GΩ(0, ·) (namely, ΛΩ(Ω)). Now, using the 0-homogeneity of GΩ(t, ·), for each t, consider a
minimizer ut for which the denominator in (3.8) is 1. The boundedness of ΛΩ(Ωt) and the equi-coercivity
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of the numerators in (3.8) implies, by Theorem A.6, that ut converges weakly in H(Ω) to a minimizer u
of GΩ(0, ·). Finally we prove the strong convergence of ut to u in H(Ω) as follows:

C‖ut − u‖2H(Ω) ≤
∫

Ω

|DΨ−Tt ∇(ut − u)|2j(t)dx+ α

∫
∂Ω

|(ut − u)|2ω(t)dς(x)

+ β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇(ut − u)|2ω(t)dς(x) =: A(t).

It remains to prove that A(t)→ 0 when t→ 0+. We expand the quadratic expression for A(t) which gives

A(t) =

∫
Ω

|DΨ−Tt ∇ut|2j(t)dx+ α

∫
∂Ω

|ut|2ω(t)dς(x) + β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇ut|2ω(t)dς(x)

+

∫
Ω

|DΨ−Tt ∇u|2j(t)dx+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇u|2ω(t)dς(x)

− 2

{∫
Ω

DΨ−Tt ∇ut ·DΨ−Tt ∇uj(t)dx+ α

∫
∂Ω

2ut uω(t)dς(x)

+β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇ut ·DΨ−Tt ∇uω(t)dς(x)

}
= ΛΩ(Ωt) +

∫
Ω

|DΨ−Tt ∇u|2j(t)dx+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇u|2ω(t)dς(x)

− 2

{∫
Ω

DΨ−Tt ∇ut ·DΨ−Tt ∇uj(t)dx+ α

∫
∂Ω

2ut uω(t)dς(x)

+β

∫
∂Ω

|(Id − nt ⊗ nt)DΨ−Tt ∇ut ·DΨ−Tt ∇uω(t)dς(x)

}
.

Then we use the uniform convergence of the coefficients, the weak convergence of ut to u and the convergence
of ΛΩ(Ωt) to ΛΩ(Ω) to obtain that

A(t) −→ ΛΩ(Ω) + ΛΩ(Ω)− 2

{∫
Ω

|∇u|2dx+ α

∫
∂Ω

2|u|2dς(x) + β

∫
∂Ω

|∇u|2dς(x)

}
= ΛΩ(Ω) + ΛΩ(Ω)− 2ΛΩ(Ω) = 0.

The existence of the semi-derivative Λ′Ω(Ω;V ) follows from Theorem 1.1 since we have proved above
that all the the four assumptions of the theorem are satisfied for GΩ.

Computation of the semi-derivative. We want to obtain a suitable expression for ∂tGΩ(0, u) when-
ever u is a normalized eigenfunction for ΛΩ(Ω) since, by the theorem,

Λ′Ω(Ω;V ) = inf{∂tGΩ(0, u); ΛΩ(Ω) is attained at u}.

First, using the expressions (3.1)-(3.4), we get

∂tGΩ(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x) + 2

∫
Ω

∇u · ∇(−∇u · V ) dx

+α

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)
+β

∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+2β

∫
∂Ω

∇Γu · (∇Γ(−∇u · V ) +∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

− ΛΩ(Ω)

(∫
∂Ω

|u|2Vn dς(x) + 2

∫
Ω

u (−∇u · V ) dx

)
.

Using −∇u · V as a test function in (2.1), we observe that∫
Ω

∇u · ∇(−∇u · V ) dx+ α

∫
∂Ω

u(−∇u · V ) dς(x) + β

∫
∂Ω

∇Γu · ∇Γ(−∇u · V ) dς(x)

= ΛΩ(Ω)

∫
Ω

u(−∇u · V ) dx,
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Notice that the function−∇u·V belongs to H1(Ω) and can be used as test function. Indeed the boundary ∂Ω
has the C2,1 regularity and u belongs to H2(Ω) by usual elliptic a priori estimates (see [1]). Since n is
orthogonal to ∇Γu, we conclude that

∂tGΩ(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u∂nu

)
Vn dς(x)

+β

∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+2β

∫
∂Ω

∇Γu · (∂nu∇ΓVn) dς(x)− ΛΩ(Ω)

∫
∂Ω

|u|2Vn dς(x). (3.9)

By an integration by parts in the term 2β
∫
∂Ω
∇Γu · (∂nu∇ΓVn) dς(x) which appears in the last line of (3.9),

we get

2β

∫
∂Ω

∇Γu · (∂nu∇ΓVn) dς(x) = −2β

∫
∂Ω

divΓ(∂nu∇Γu)Vn dς(x)

= −2β

∫
∂Ω

(∂nu∆Γu+∇Γ(∂nu) · ∇Γu)Vn dς(x). (3.10)

Thus, inserting (3.10) in (3.9), we get

∂tGΩ(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u∂nu

)
Vn dς(x)

+ β

∫
∂Ω

(
H |∇Γu|2 − 2D2b∇Γu · ∇Γu

)
Vn dς(x)− 2β

∫
∂Ω

∂nu∆ΓuVndς(x)− ΛΩ(Ω)

∫
∂Ω

|u|2Vn dς(x).

Then using the boundary condition in (2.1), we obtain

∂tGΩ(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u∂nu

)
Vn dς(x)

+β

∫
∂Ω

(
H |∇Γu|2 − 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+2

∫
∂Ω

∂nu (−αu− ∂nu)Vndς(x)− ΛΩ(Ω)

∫
∂Ω

|u|2Vn dς(x)

=

∫
∂Ω

(
|∇Γu|2 − (∂nu)2 + αH |u|2 + β(HId − 2D2b)∇Γu · ∇Γu− ΛΩ(Ω)|u|2

)
Vn dς(x),

which concludes the proof.

3.3.2 Proof of Theorem 2.3

The eigenvalue functional on the perturbed domain is

Λ∂Ω(Ωt) = inf
v∈H(Ωt)


∫

Ωt

|∇v|2 dx+ α

∫
∂Ωt

v2 dς(x) + β

∫
∂Ωt

|∇Γv|2 dς(x)∫
∂Ωt

v2 dς(x)

 , (3.11)

and we has the following reformulation on Ω

Λ∂Ω(Ωt) = inf
u∈H(Ω)


∫

Ωt

|∇(u ◦Ψ−1
t )|2 dx+ α

∫
∂Ωt

(u ◦Ψ−1
t )2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)∫

∂Ωt

(u ◦Ψ−1
t )2 dς(x)

 .

This corresponds to a minimization of the functional

G∂Ω(t, u) =

∫
Ωt

|∇(u ◦Ψ−1
t )|2 dx+ α

∫
∂Ωt

(u ◦Ψ−1
t )2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)∫

∂Ωt

(u ◦Ψ−1
t )2 dς(x)

.

The arguments for verifying the assumptions of Theorem 1.1 for Λ′∂Ω(Ω;V ) are similar to those used in
the previous subsection. We only indicate some pertinent differences.
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Existence of the semi-derivative. For proving that the set of minimizers of (3.11) is non-empty for
each t, the numerator is weakly lower semi-continuous on H(Ωt) similarly as in the previous case. However,
for the continuity of the denominator, one requires now the compact injection of H1(Ωt) into L2(∂Ωt) which
also holds (see, e.g., [2, Theorem 1.1]). Then, as in the previous case, the set X(t) of minimizers for G∂Ω(t, ·)
is obtained by transporting the minimizers in (3.11) to Ω by composition with Ψt. Thus Assumption (H1)
holds.

Concerning Assumption (H2), we first get the following expression for G∂Ω

G∂Ω(t, u) =
1∫

∂Ω

|u|2ω(t)dς(x)

(∫
Ω

|(DΨ−1
t )>∇u|2j(t)dx

+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

|(Id − nt ⊗ nt)(DΨ−1
t )>∇u|2ω(t)dς(x)

)
, (3.12)

where we recall that j(t) = det(DΨt(x)) is the Jacobian, ω(t) = det(DΨt(x))‖(DΨ−1
t )>(x)n(x)‖ is the

surface Jacobian and nt = nt ◦ Ψt. Due to the smoothness of these functions in (3.12) we conclude
that G(·, u) is derivable for all u ∈ H(Ω) giving Assumption (H2).

The derivative of G(·, u) is obtained by deriving under the integral sign and the continuity of the ensuing
coefficients leads to the Assumption (H4).

Finally, for Assumption (H3), firstly it has to be shown that G∂Ω(t, ·) converges to G∂Ω(0, ·) as t→ 0 in
the sense of Γ-limit in the weak topology onH(Ω). Then it is possible to show that there exists a sequence ut,
with ut ∈ argminG∂Ω(t, ·), such that ut converges strongly in H(Ω) to a minimizer u of GΩ(0, ·). This gives
Assumption (H3).

The existence of the semi-derivative Λ′∂Ω(Ω;V ) then follows from Theorem 1.1.

Computation of the semi-derivative. We will now obtain a suitable expression for ∂tG∂Ω(0, u) when-
ever u is a normalized eigenfunction for Λ∂Ω(Ω) since, by the theorem,

Λ′∂Ω(Ω;V ) = inf{∂tG∂Ω(0, u); Λ∂Ω(Ω) is attained at u}.

Using the expressions (3.1)-(3.4), we get

∂tG∂Ω(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x) + 2

∫
Ω

∇u · ∇(−∇u · V ) dx

+α

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)
+β

∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+2β

∫
∂Ω

∇Γu · (∇Γ(−∇u · V ) +∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

− Λ∂Ω(Ω)

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)
.

Using −∇u · V as a test function in (2.2) we observe that∫
Ω

∇u · (−∇u · V ) dx+ α

∫
∂Ω

u(−∇u · V ) dς(x) + β

∫
∂Ω

∇Γu · ∇Γ(−∇u · V ) dς(x)

= Λ∂Ω(Ω)

∫
∂Ω

u(−∇u · V ) dx,
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and then arguing as in the previous subsection while using the boundary condition in (2.2), we get

∂tG∂Ω(0, u) t=0 =

∫
∂Ω

|∇u|2Vn dς(x)

+α

∫
∂Ω

(
H |u|2 + 2u∂nu

)
Vn dς(x) + β

∫
∂Ω

(
H |∇Γu|2 − 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+2

∫
∂Ω

∂nu (Λ∂Ω(Ω)u− αu− ∂nu)Vndς(x)− Λ∂Ω(Ω)

∫
∂Ω

(
H |u|2 + 2u∂nu

)
Vn dς(x).

=

∫
∂Ω

(
|∇Γu|2 − (∂nu)2 + αH |u|2 + β(HId − 2D2b)∇Γu · ∇Γu− Λ∂Ω(Ω)H|u|2

)
Vn dς(x),

which concludes the proof.

3.4 Shape derivatives for the eigenvalue problems for composites

3.4.1 Proof of Theorem 2.5

The considered perturbed problem reads

MΩ(Ωt) = inf
v∈H(Ωt)


∫

Ωt

σt(x) |∇v|2 dx+ α

∫
∂Ωt

v2 dς(x) + β

∫
∂Ωt

|∇Γv|2 dς(x)∫
Ωt

ρt |v|2 dx

 ,

where σt := σ1χΩ1,t
+ σ2χΩ2,t

and ρt := ρ1χΩ1,t
+ ρ2χΩ2,t

with Ω1,t := Ψt(Ω1) and Ω2,t := Ψt(Ω2). The
above can be formulated as

MΩ(Ωt) = inf
u∈H(Ω)

GΩ(t, u),

with the corresponded functional defined by

GΩ(t, u) =
1∫

Ωt

ρt
∣∣(u ◦Ψ−1

t )
∣∣2 dx

(∫
Ωt

σt(x)
∣∣∇(u ◦Ψ−1

t )
∣∣2 dx

+ α

∫
∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)

)
. (3.13)

The existence of the semi-derivative M′Ω(Ω;V ) will follow from Theorem 1.1 since it can be shown, similarly
as in Subsection 3.3.1, that, for GΩ given by (3.13), the hypotheses of the theorem are satisfied. Thus, as
before, we only need to get a suitable expression for ∂tGΩ(0, u) whenever u is a normalized eigenfunction
for MΩ(Ω) since, by the theorem,

M′Ω(Ω;V ) = inf{∂tGΩ(0, u);MΩ(Ω) is attained at u}.
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Using the expressions (3.5) and (3.6), and the previous formulae (3.3) and (3.4), we get

∂tGΩ(0, u) t=0 =

∫
∂Ω1

[σ|∇u|2]Vn dς(x) + 2

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx

+

∫
∂Ω

σ2|∇u|2Vn dς(x) + 2

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx

+ α

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇Γ(−∇u · V ) +∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

)

−MΩ

(∫
∂Ω1

[ρ]|u|2Vn dς(x) + 2

∫
Ω1

ρ1u (−∇u · V ) dx

+

∫
∂Ω

ρ2|u|2Vn dς(x) + 2

∫
Ω2

ρ2u (−∇u · V ) dx

)
.

Notice that the eigenmode u does not belong to H2(Ω) due to the jumps of the interface. Therefore, the
function −∇u · V does not belong anymore to H1(Ω) and hence cannot be used as test function directly.
However, its restriction to each Ωi for i = 1, 2 belongs to H2(Ωi) thanks to the regularity assumptions on
both the outer boundary and the interface. Multiplying (2.5) by −∇u · V in each Ωi and integrating by
parts in Ωi for i = 1, 2, then noticing that the jump conditions impose that

−
∫
∂Ω1

[σ∂nu (−∇u · V )] dς(x) =

∫
∂Ω1

σ∂nu [(∇u · V )] dς(x) =

∫
∂Ω1

σ∂nu [∂nu]Vn dς(x),

we observe that

0 =

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx+

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx+

∫
∂Ω1

[
σ(∂nu)2

]
Vn dς(x)

+α

∫
∂Ω

u (−∇u ·V )+β

∫
∂Ω

∇Γu ·∇Γ(−∇u ·V )−MΩ

(∫
Ω1

ρ1u (−∇u · V ) dx+

∫
Ω2

ρ2u (−∇u · V ) dx

)
.

Using the above we get

∂tGΩ(0, u) t=0 =

∫
∂Ω1

[σ|∇u|2]Vn dς(x) +

∫
∂Ω

σ2|∇u|2Vn dς(x)− 2

∫
∂Ω1

[
σ(∂nu)2

]
Vn dς(x)

+ α

∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

)

−MΩ

(∫
∂Ω1

[ρ]|u|2Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.
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Using the facts that |∇u|2 = |∇Γu|2 + |∂nu|2 and that both ∇Γu and u have a continuous trace on ∂Ω1,
the above may be written as

∂tGΩ(0, u) t=0 =

∫
∂Ω1

(
[σ] |∇Γu|2 −

[
σ(∂nu)2

] )
Vn dς(x) +

∫
∂Ω

(
σ2|∇u|2 + α

(
H |u|2 + ∂nu

2
) )
Vn dς(x)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

)

−MΩ

(∫
∂Ω1

[ρ] |u|2Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.

By an integration by parts in the term 2β
∫
∂Ω
∇Γu · (∂nu∇ΓVn) dς(x) which appears in the above equality,

we get

2β

∫
∂Ω

∇Γu · (∂nu∇ΓVn) dς(x) = −2β

∫
∂Ω

divΓ(∂nu∇Γu)Vn dς(x)

= −2β

∫
∂Ω

(∂nu∆Γu+∇Γ(∂nu) · ∇Γu)Vn dς(x).

Hence, using the fact that ∇Γu is orthogonal to n, we obtain

∂tGΩ(0, u) t=0 =

∫
∂Ω1

[σ] |∇Γu|2Vn dς(x)−
∫
∂Ω1

[
σ(∂nu)2

]
Vn dς(x)

+

∫
∂Ω

σ2|∇u|2Vn dς(x) + α

∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

− 2

∫
∂Ω

(∂nu∆Γu+∇Γ(∂nu) · ∇Γu)Vn dς(x)

)

−MΩ

(∫
∂Ω1

[ρ] |u|2Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.

We conclude using the boundary condition −β∆Γu+αu+ ∂nu = 0 on ∂Ω and the fact that ∂nu
2 = 2u∂nu.

3.4.2 Proof of Theorem 2.7

We will now calculate the sensitivity of M∂Ω(Ω) with respect to variations of the domain Ω and of the
interface Γ. The perturbed problem then reads

M∂Ω(Ωt) = inf
v∈H(Ωt)


∫

Ωt

σt(x) |∇v|2 dx+ α

∫
∂Ωt

v2 dς(x) + β

∫
∂Ωt

|∇Γv|2 dς(x)∫
∂Ωt

|v|2 dς(x)

 ,

where σt := σ1χΩ1,t + σ2χΩ2,t with Ω1,t := Ψt(Ω1) and Ω2,t := Ψt(Ω2). The above can be formulated as

M∂Ω(Ωt) = inf
u∈H(Ω)

G∂Ω(t, u),

with the corresponded functional defined by

G∂Ω(t, u) =

∫
Ωt

σt(x)
∣∣∇(u ◦Ψ−1

t )
∣∣2 dx+ α

∫
∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x) + β

∫
∂Ωt

|∇Γ(u ◦Ψ−1
t )|2 dς(x)∫

∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x)

.

(3.14)
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The existence of the semi-derivative M′∂Ω(Ω;V ) will follow from Theorem 1.1 since it can be shown, as
outlined in Subsection 3.3.2, that, for G∂Ω given by (3.14), the assumptions of the theorem are satisfied.
Thus, as before, we only need to get a suitable expression for ∂tG∂Ω(0, u) whenever u is a normalized
eigenfunction for M∂Ω(Ω) since, by the theorem,

M′∂Ω(Ω;V ) = inf{∂tG(0, u);M∂Ω(Ω) is attained at u}.

Using the expressions in the previous formulae (3.3), (3.4) and (3.5), we get

∂tG∂Ω(0, u) t=0 =

∫
∂Ω1

[σ|∇u|2]Vn dς(x) + 2

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx

+

∫
∂Ω

σ2|∇u|2Vn dς(x) + 2

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx

+ α

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇Γ(−∇u · V ) +∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

)

−M∂Ω(Ω)

(∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x) + 2

∫
∂Ω

u (−∇u · V ) dς(x)

)
.

Multiplying (2.7) by −∇u ·V in each Ωi and integrating by parts in Ωi for i = 1, 2, then noticing that the
jump conditions impose that

−
∫
∂Ω1

[σ∂nu (−∇u · V )] dς(x) =

∫
∂Ω1

σ∂nu [(∇u · V )] dς(x) =

∫
∂Ω1

σ∂nu [∂nu]Vn dς(x),

we observe that

0 =

∫
Ω1

σ1∇u · ∇(−∇u · V ) dx+

∫
Ω2

σ2∇u · ∇(−∇u · V ) dx+

∫
∂Ω1

[
σ(∂nu)2

]
Vn dς(x)

+ α

∫
∂Ω

u (−∇u · V ) + β

∫
∂Ω

∇Γu · ∇Γ(−∇u · V )−M∂Ω(Ω)

∫
∂Ω

u (−∇u · V ) dς(x).

Using the above, we get

∂tG∂Ω(0, u) t=0 =

∫
∂Ω1

(
[σ] |∇Γu|2 −

[
σ(∂nu)2

] )
Vn dς(x) +

∫
∂Ω

(
σ2|∇u|2 + α

(
H |u|2 + ∂nu

2
) )
Vn dς(x)

+ β

(∫
∂Ω

(
H |∇Γu|2 + 2∇Γu · ∇Γ(∂nu)− 2D2b∇Γu · ∇Γu

)
Vn dς(x)

+ 2

∫
∂Ω

∇Γu · (∇u · ∇ΓVnn + ∂nu∇ΓVn) dς(x)

)
−M∂Ω(Ω)

∫
∂Ω

(
H |u|2 + ∂nu

2
)
Vn dς(x).

Then we conclude similarly as in the proof of Theorem 2.5.
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A Appendix

A.1 Technical results

The purpose of this subsection is to recall some auxiliary results or notions used in the calculations of the
shape sensitivity.

Classical shape derivative formulæ.

Lemma A.1 (See, e.g., [13]). Let δ > 0. Let a vector field V ∈W1,∞(Rd) and let

Ψ : t ∈ [0, δ) 7→ Ψt = I + tV ∈W1,∞(Rd).

Let a bounded Lipschitz open set Ω in Rd and let Ωt := Ψt(Ω) for all t ∈ [0, δ). We consider a function f
such that t ∈ [0, δ) 7→ f(t) ∈ L1(Rd) is differentiable at 0 with f(0) ∈W1,1(Rd). Then the function

t ∈ [0, δ) 7→ F(t) =

∫
Ωt

f(t, x) dx

is differentiable at 0 (we say that F admits a semi-derivative) and we have

F ′(0) =

∫
∂Ω

f(0, x)Vn dς(x) +

∫
Ω

f ′(0, x) dx,

where Vn = V · n.
Lemma A.2 (See, e.g., [13]). Let δ > 0. Let a vector field V ∈ C1,∞(Rd) and let

Ψ : t ∈ [0, δ) 7→ Ψt = I + tV ∈ C1,∞(Rd).

Let a bounded open set Ω in Rd of classe C2 and let Ωt := Ψt(Ω) for all t ∈ [0, δ). We consider a function g
such that t ∈ [0, δ) 7→ g(t) ◦Ψt ∈W1,1(Ω) is differentiable at 0 with g(0) ∈W2,1(Ω). Then the function

t ∈ [0, δ) 7→ G(t) =

∫
∂Ωt

g(t, x) dx

is differentiable at 0 (we say that G admits a semi-derivative), the function t ∈ [0, δ) 7→ g(t) ω ∈ W1,1(ω)
is differentiable at 0 for all open set ω ⊂ ω ⊂ Ω and the derivative g′(0) belongs to W 1,1(Ω) and we have

G′(0) =

∫
∂Ω

(g′(0, x) + (H g(0, x) + ∂ng)Vn) dς(x),

where Vn = V · n and where H is the mean curvature function on ∂Ω.

Some results on the tangential gradient.

Lemma A.3. Given a bounded open set Ω in Rd of class C2 and u ∈ H2(Rd), we have

∂n|∇Γu|2 = 2∇Γu · (∇Γ(∂nu)−D2b∇Γu),

where b is the signed distance to the boundary ∂Ω.

Proof. Let us first notice that ∂nΠd = 0 and that ΠdD
2b = D2bΠd = D2b, and we underline the fact

that ∇Γu = Πd∇u. Then we have

∂n(∇Γu) = ∂n(Πd∇u) = Πd∂n(∇u) and ∂n(∇u) = D2un.

Thus ∇(∂nu) = ∇(∇u · n) = D2un +∇n∇u = ∂n(∇u) + D2b∇u. Hence we obtain

∇Γ(∂nu) = Πd∇(∂nu) = Πd∂n(∇u) + ΠdD
2b∇u = ∂n(∇Γu) + D2b∇u.

Therefore, we obtain the result since ∂n

(
|∇Γu|2

)
= 2∂n (∇Γu) · ∇Γu.

Lemma A.4. Given a bounded open set Ω in Rd of class C2, V ∈ C1(Rd) and u ∈ H2(Rd), we have

∂t
(
∇Γt(u ◦Ψ−1

t )
)
t=0

= (∇Γ(−∇u · V ) +∇u · ∇ΓVn n + ∂nu∇ΓVn)

where Vn is the normal component V · n of the vector field V .

Proof. We first recall that, since ∂tnt t=0 = −∇ΓVn, we have ∂tΠd t=0 = n⊗∇ΓVn +∇ΓVn⊗n. Hence we
obtain the result noticing that ∇Γu = Πd∇u.
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Some reminders on Γ-convergence. For the convenience of the reader, we recall the definition and the main
property of the Γ-convergence. For further details we refer to the book of G. Dal Maso [6].

Definition A.5. (Sequential Γ-convergence) A family of functionals {Ft}t>0 defined on a topological
space X is said to be sequentially Γ-convergent to a functional F as t → 0+ if the two following state-
ments hold:

(i) Γ−lim inf inequality: for every sequence {xt} converging to x ∈ X, we have

lim inf
t→0+

Ft(xt) ≥ F (x);

(ii) Γ−lim sup inequality: for every x ∈ X there exists a sequence {xt} converging to x such that

lim sup
t→0+

Ft(xt) ≤ F (x).

When Properties (i) and (ii) are satisfied, we write F = Γ−lim
t→0+

Ft.

Proposition A.6. Let Ft : X → R be a sequence of functionals on a topological space such that:

(i) F = Γ−lim
t→0+

Ft;

(ii) supt Ft(xt) < +∞ ⇒ {xt} is sequentially relatively compact in X.

Then we have the convergence: inf Ft → inf F as t → 0+ and, every cluster point of a minimizing se-
quence {xt} (i.e. such that Ft(xt) = inf

x∈X
Ft(x)) achieves the minimum of F .

A.2 Second proof of Theorem 2.5 in the Dirichlet case using the material derivative

In this section, we shall recalculate the expression for M′Ω(Ω;V ) obtained in Theorem 2.5, while considering
the particular case of Dirichlet boundary condition on ∂Ω, based on the material derivative approach. We
omit the proof of the existence of the material derivative which is a direct adaptation of the existing works
(see for example [7]). It can be made out from the following calculations that those based on the classical
material derivative method are much more tedious as compared to the calculations obtained in the previous
sections.

A.2.1 First characterization with the material derivative

We use the notations for the problem on the perturbed domain given in the beginning of subsection 3.4.1.
Let ut be a normalized eigenfunctions for MΩ(Ωt). We set ut = ut ◦ Ψt. The existence of the shape
derivative and of the material derivative of u, and of the shape derivative M′Ω(Ω;V ) are assumed to begin
with and we will perform calculations using them.

The shape derivative M′Ω(Ω;V ) can be obtained by deriving the Rayleigh quotient on Ωt evaluated at a

normalized eigenfunction ut. In view of the normalization condition
∫

Ωt

ρt |ut|2 dx = 1, it is enough to

derive
∫

Ωt

σt(x) |∇ut|2 dx for which we use the Hadamard’s formula. So, arguing similarly as in Proposi-

tion 3.5, we obtain,

M′Ω(Ω;V ) = 2

∫
Ω

σ(x)∇u′ · ∇udx+

∫
Γ

[
σ(x) |∇u|2

]
Vn dς(x) +

∫
∂Ω

σ2 |∇u|2 Vn dς(x). (A.1)

This does not give a boundary expression of the shape derivative and also involves u′ which has to be
characterized through a boundary value problem. This involves several difficulties and so, classically, one
takes the route through the material derivative (cf. [7]).

We have the following variational formulation for the perturbed problem on Ωt∫
Ωt

σt(x)∇ut · ∇ϕt dx = MΩ(Ωt)

∫
Ωt

ρtutϕt dx for all ϕt ∈ H1
0(Ωt).
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So, for any ϕ ∈ H1
0(Ω), by choosing ϕt := ϕ ◦Ψ−1

t and then making a change of variables in the variational
problem y = Ψt(x) we have∫

Ω

σ(x)
(
A(t)∇ut

)
· ∇ϕdx = MΩ(Ωt)

∫
Ω

ρ utϕj(t) dx,

by noticing that σt(Ψt(x)) = σ(x) and ρt(Ψt(x)) = ρ(x). We set A(t) := j(t)DΨ−1
t

(
DΨ−1

t

)>
while recalling

that j(t) = det(DΨt). Deriving the equation with respect to t at t = 0 under the integral sign we obtain
that, ∫

Ω

σ(x) (∇u̇+A′(0)∇u) · ∇ϕdx =

∫
Ω

ρ (M′Ω(Ω;V )u+ ΛΩ(Ω) (J ′(0)u+ u̇))ϕdx. (A.2)

Using the Hadamard’s formula given in Lemma A.1 on the normalization condition

1 =

∫
Ωt

ρt |ut|2 dx =

∫
Ω1,t

ρ1 |ut|2 dx+

∫
Ω2,t

ρ2 |ut|2 dx,

we obtain

0 =

∫
Ω

2ρ u′udx+

∫
∂Ω

ρ |u|2 Vn dς(x) + (ρ1 − ρ2)

∫
Γ

|u|2 Vn dς(x)

= 2

∫
Ω

ρ u′udx+

∫
Γ

[ρ] |u|2 Vn dς(x), (A.3)

since u = 0 on ∂Ω.

A.2.2 Rewriting of some terms

Let ϕ ∈ H1
0(Ω). Since A′(0) = (divV ) I−

(
DV + DV >

)
(see, e.g., [16, Lemma 2.31]), we have in both Ωi,

i = 1, 2, where σ is constant,

σ(x)A′(0)∇u · ∇ϕ = σ(x) (divV )∇u · ∇ϕ− σ(x)
(

DV + DV >
)
∇u · ∇ϕ

= div
(

(σ(x)∇u · ∇ϕ)V
)
−∇ (σ(x)∇u · ∇ϕ) · V − σ(x)

(
DV + DV >

)
∇u · ∇ϕ

= div
(

(σ(x)∇u · ∇ϕ)V
)
− σ(x)∇ (∇u · V ) · ∇ϕ− σ(x)∇u · ∇(∇ϕ · V ).

Moreover∫
Ω

div
(

(σ(x)∇u · ∇ϕ)V
)

dx =

∫
∂Ω

(σ(x)∇u · ∇ϕ)Vn dς(x) +

∫
Γ

[σ(x)∇u · ∇ϕ]Vn dς(x),

and∫
Ω

σ(x)∇u · ∇(∇ϕ · V ) dx

= −
∫

Ω

divσ(x)∇u∇ϕ · V dx+

∫
∂Ω

σ(x)∂nu∇ϕ · V dς(x) +

∫
Γ

[σ(x)∂nu∇ϕ · V ] dς(x)

= MΩ(Ω)

∫
Ω

ρ u∇ϕ · V dx+

∫
∂Ω

σ(x)∂nu∇ϕ · V dς(x) +

∫
Γ

[σ(x)∂nu∇ϕ · V ] dς(x).

Thus∫
Ω

σ(x)A′(0)∇u · ∇ϕdx =

∫
∂Ω

(σ(x)∇u · ∇ϕ)Vn dς(x)−
∫
∂Ω

σ(x)∂nu∇ϕ · V dς(x)

+

∫
Γ

[σ(x)∇u · ∇ϕ]Vn dς(x)−
∫

Γ

[σ(x)∂nu∇ϕ · V ] dς(x)

−
∫

Ω

σ(x)∇ (∇u · V ) · ∇ϕdx−MΩ(Ω)

∫
Ω

ρ u∇ϕ · V dx.

19



Using this equality in (A.2) and since J ′(0) = divV (see, e.g., [16, Lemma 2.31]), we obtain∫
Ω

σ(x)∇u̇ · ∇ϕdx+

∫
∂Ω

(σ(x)∇u · ∇ϕ)Vn dς(x)−
∫
∂Ω

σ(x)∂nu∇ϕ · V dς(x)

+

∫
Γ

[σ(x)∇u · ∇ϕ]Vn dς(x)−
∫

Γ

[σ(x)∂nu∇ϕ · V ] dς(x)−
∫

Ω

σ(x)∇ (∇u · V ) · ∇ϕdx

−MΩ(Ω)

∫
Ω

ρ u∇ϕ · V dx =

∫
Ω

ρ (M′Ω(Ω;V )uϕ+ MΩ(Ω) ((divV )u+ u̇)ϕ) dx.

Hence∫
Ω

σ(x) (∇u̇−∇ (∇u · V )) · ∇ϕdx+

∫
∂Ω

(σ(x)∇u · ∇ϕ)Vn dς(x)−
∫
∂Ω

σ(x)∂nu∇ϕ · V dς(x)

= −
∫

Γ

[σ(x)∇u · ∇ϕ]Vn dς(x) +

∫
Γ

[σ(x)∂nu∇ϕ · V ] dς(x)

+ M′Ω(Ω;V )

∫
Ω

ρ uϕdx+ MΩ(Ω)

∫
Ω

ρ u̇ϕdx+ MΩ(Ω)

∫
Ω

ρ ((divV )ϕ+∇ϕ · V )udx.

Moreover, using the fact that u = 0 and ϕ = 0 on ∂Ω,∫
Ω

ρ ((divV )ϕ+∇ϕ · V )udx =

∫
Ω

ρ div (ϕ · V )udx

=

∫
∂Ω

ρϕVnudς(x) + (ρ1 − ρ2)

∫
Γ

ϕVnudς(x)−
∫

Ω

ρϕV · ∇udx

= (ρ1 − ρ2)

∫
Γ

(ϕ⊗ V )n · udx−
∫

Ω

(ϕ⊗ V ) · ∇udx =

∫
Γ

[ρ]ϕVnudς(x)−
∫

Ω

(∇u · V )ϕdx,

and since V = Vnn, we have, on Γ,

− [(σ(x)∇u · ∇ϕ)]Vn + [σ(x)∂nu∇ϕ · V ] = − [σ(x)]∇Γ(u) · ∇Γ(ϕ)Vn.

Notice that we have used here the fact that u has no jump on Γ and so do ∇Γu. Then∫
Ω

σ(x) (∇u̇−∇ (∇u · V )) · ∇ϕdx

= −
∫

Γ

[σ(x)]∇Γ(u) · ∇Γ(ϕ)Vn dς(x) + M′Ω(Ω;V )

∫
Ω

ρ uϕdx

+ MΩ(Ω)

∫
Ω

ρ u̇ϕdx+ MΩ(Ω)

∫
Γ

[ρ]ϕVnudς(x)−MΩ(Ω)

∫
Ω

ρ (∇u · V )ϕdx.

A.2.3 Conclusion: characterization with the shape derivative

Since u′ = u̇−∇u · V , we deduce from the above equality that for all ϕ ∈ H1
0(Ω),∫

Ω

σ(x)∇u′ · ∇ϕdx = −
∫

Γ

[σ(x)]∇Γ(u) · ∇Γ(ϕ)Vn dς(x)

+ M′Ω(Ω;V )

∫
Ω

ρ uϕdx+ MΩ(Ω)

∫
Ω

ρ u′ϕdx+ MΩ(Ω)

∫
Γ

[ρ]ϕVnudς(x). (A.4)

Thus, taking ϕ = u and using the normalization conditions
∫

Ω

ρ |u|2 = 1 and (A.3),

∫
Ω

σ(x)∇u′ · ∇udx = −
∫

Γ

[σ(x)] |∇Γ(u)|2 Vn dς(x) + M′Ω(Ω;V )

− 1

2
MΩ(Ω)

∫
Γ

[ρ] |u|2 Vn dς(x) + MΩ(Ω)

∫
Γ

[ρ]uVnudς(x).
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Then, using (A.1), we can eliminate the volume term
∫

Ω

σ(x)∇u′ · ∇u to obtain

M′Ω(Ω;V ) = 2

∫
Γ

[σ(x)] |∇Γ(u)|2 Vn dς(x)−
∫

Γ

[
σ(x) |∇u|2

]
Vn dς(x)

−MΩ(Ω)

∫
Γ

[ρ] |u|2 Vn dς(x)−
∫
∂Ω

σ2 |∇u|2 Vn dς(x).

Finally, we obtain

M′Ω(Ω;V ) =

∫
Γ

[σ(x)] |∇Γ(u)|2 Vn dς(x)−
∫

Γ

[
σ(x) |∂nu|2

]
Vn dς(x)

−MΩ(Ω)

∫
Γ

[ρ] |u|2 Vn dς(x)−
∫
∂Ω

σ2 |∇u|2 Vn dς(x),

using the facts that [∇Γu] = 0 since [u] = 0 on Γ and |∇Γ(u)|2 = |∇Γu|2 + |∂nu|2. This concludes the proof
of Theorem 2.5 in the case of Dirichlet boundary conditions.

A.2.4 Characterization of the shape derivative as the solution of a transmission problem

We conclude this section noticing that we can, classically, characterize the shape derivative of the initial
problem as the solution of a transmission problem. Indeed, from (A.4), we obtain that, for all ϕ ∈ H1

0(Ω),

−
∫

Ω

div (σ(x)∇u′)ϕdx+

∫
Γ

[σ∂nu
′]ϕdς(x)

=

∫
Γ

divΓ ([σ]∇ΓuVn)ϕdς(x) + Λ′Ω(Ω,V )

∫
Ω

ρ uϕdx+ ΛΩ(Ω)

∫
Ω

ρ u′ϕdx+ ΛΩ(Ω)

∫
Γ

[ρ]ϕVnudς(x),

and then
[σ∂nu

′] = divΓ ([σ]∇ΓuVn) + ΛΩ(Ω) [ρ]uVn = [σ] divΓ (∇ΓuVn) + ΛΩ(Ω) [ρ]uVn.

Moreover, since u1 = u2 on Γ, we have

u′1 − u′2 = (∇u2 −∇u1) · V = − [∂nu]Vn,

the last equality being obtained using the fact that ∇Γu1 = ∇Γu2. Hence

[u] = − [∂nu]Vn.

Finally we classically have
u′ = −∂nuVn on ∂Ω.

Hence we obtain that the shape derivative u′ is solution of
−div (σ(x)∇u′) = ΛΩ(Ω)ρu′ + Λ′Ω(Ω,V )ρu in (Ω\ω) ∪ ω,

[u] = − [∂nu]Vn on Γ,
[σ∂nu

′] = [σ] divΓ (∇ΓuVn) + ΛΩ(Ω) [ρ]uVn on Γ,
u′ = −∂nuVn on ∂Ω.

References

[1] V. Bonnaillie-Noël, M. Dambrine, F. Hérau and G. Vial On generalized Ventcel’s type boundary
conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal. 42 (2) pp.931-945. (2010)

[2] M. Biegert, On traces of Sobolev functions on the boundary of extension domains, Proc. Amer. Math.
Soc., Volume 137, Number 12, December 2009, Pages 4169–4176.

[3] G. Bouchitté, I. Fragalà and I. Lucardesi, Shape derivatives for minima of integral functionals, Math.
Program., Ser. B 1-2, 111–142 (2014).

21



[4] G. Bouchitté, I. Fragalà and I. Lucardesi, A variational method for second order shape derivatives,
SIAM J. Control Optim., 54, 1056-1084 (2016).

[5] J. Céa, Conception optimale ou identification de formes, calcul rapide de la derivée directionelle de la
function cout, Math.Mod. Numer. Anal. 20, 371–402 (1986).

[6] G. Dal Maso, An introduction to Γ-convergence. Bikhäuser, Boston (1993).

[7] M. Dambrine and D. Kateb. On the shape sensitivity of the first Dirichlet eigenvalue for two-phase
problems. Appl. Math. Optim., 63(1), 45–74, (2011).

[8] M. Dambrine, D. Kateb and J. Lamboley, An extremal eigenvalue problem for the Wentzell-Laplace
operator, Annales de l’IHP, Analyse non linéaire, 33(2), 409–450 (2016).

[9] M. Delfour and J.P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization,
Advances in Design and Control SIAM, Philadelpia, PA (2001).

[10] M. Delfour and J.P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control
Optim. 26, 834Ð862 (1988).

[11] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées.
Mémoire des savants étrangers 33, 515-629 (1907).

[12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics,
Birkhäuser, Basel (2006).

[13] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique, Mathé-
matiques & Applications 48, Springer, Berlin (2005).

[14] J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. and
Optimiz. 2(7-8), 649–687 (1980).

[15] K. Sturm, Mini-max Lagrangian approach to the differentiability of non-linear pde constrained shape
functions without saddle point assumption, SIAM J. Control Optim. 53 (No. 4), 2017Ð2039 (2015).

[16] J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis,
Springer Series in Computational Mathematics 10 Springer, Berlin (1992).

22


	Introduction
	The results
	Shape derivative for Laplacian eigenvalues
	Shape derivative for eigenvalue problems for composites

	Proofs
	General strategy
	Preliminary computations
	Shape derivatives for the Laplacian eigenvalues
	Proof of Theorem 2.1
	Proof of Theorem 2.3

	Shape derivatives for the eigenvalue problems for composites
	Proof of Theorem 2.5
	Proof of Theorem 2.7


	Appendix
	Technical results
	Second proof of Theorem 2.5 in the Dirichlet case using the material derivative
	First characterization with the material derivative
	Rewriting of some terms
	Conclusion: characterization with the shape derivative
	Characterization of the shape derivative as the solution of a transmission problem


	References

