

Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th

Frank J Pavia, Robert F Anderson, Erin E Black, Lauren E Kipp, Sebastian M Vivancos, Martin Q Fleisher, Matthew A Charette, Virginie Sanial, Willard S Moore, Mikael Hult, et al.

▶ To cite this version:

Frank J Pavia, Robert F Anderson, Erin E Black, Lauren E Kipp, Sebastian M Vivancos, et al.. Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th. Earth and Planetary Science Letters, 2019, 506, pp.146 - 156. 10.1016/j.epsl.2018.10.038 . hal-02511018

HAL Id: hal-02511018

https://hal.science/hal-02511018

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pavia, F. J., Anderson, R. F., Black, E. E., Kipp, L. E., Vivancos, S. M., Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P. and Edwards, R. L.: Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th, Earth and Planetary Science Letters, 506, 146–156, doi:10.1016/j.epsl.2018.10.038, 2019.

Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th

Frank J. Pavia a,b,*, Robert F. Anderson a,b, Erin E. Black c,d, Lauren E. Kipp c,d, Sebastian M. Vivancos a,b, Martin Q. Fleisher a, Matthew A. Charette d, Virginie Sanial e, Willard S. Moore f, Mikael Hult g, Yanbin Lu h, Hai Cheng h,i, Pu Zhang h, R. Lawrence Edwards h

- ^a Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
- ^b Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- C Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, USA
- ^d Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- ^e Division of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA
- ^f Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA
- g European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Geel, Belgium
- ^h Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
- ¹ Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China

ARTICLE INFO

Article history:
Received 3 May 2018
Received in revised form 23 October 2018
Accepted 26 October 2018
Available online xxxx
Editor: D. Vance

Keywords: thorium hydrothermal activity scavenging GEOTRACES East Pacific Rise

ABSTRACT

Hydrothermal activity in the deep ocean generates plumes of metal-rich particles capable of removing certain trace elements from seawater by adsorption and sedimentation. This removal process, known as scavenging, can be probed using the insoluble radiogenic isotopes of thorium (Th), which are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. We present dissolved and particulate measurements of these three thorium isotopes in a hydrothermal plume observed in the southeast Pacific Ocean on the GEOTRACES GP16 section. Since their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th), the combination of their signals can be used to understand scavenging processes occurring on a wide range of timescales. Scavenging is a multi-step process involving adsorption and desorption onto particles, followed by particle aggregation, sinking, and eventual sedimentation. We use thorium isotopes to study how hydrothermal activity affects these steps. The rate constants for net adsorption of ²³⁴Th determined here are comparable to previous estimates from hydrothermal plumes in the Atlantic and North Pacific Oceans. The partitioning of ²³⁴Th and ²³⁰Th between large and small particles is more similar in the hydrothermal plume than above it, indicating faster aggregation of particles within the hydrothermal plume at stations nearby the East Pacific Rise than in waters outside the plume. In addition to rapid scavenging and aggregation near the ridge axis, we also infer continuous off-axis scavenging from observations and modeling of ²²⁸Th/²²⁸Ra activity ratios. The degree of depletion of the three thorium isotopes increases in order of half-life, with total ²³⁴Th activity close to that of its parent ²³⁸U, but ²³⁰Th showing nearly 70% depletion compared to expected values from reversible scavenging. By modeling the variations in depletion for the different isotopes, we show that much of the ²³⁰Th removal is inherited from scavenging events happening long before the most recent hydrothermal inputs.

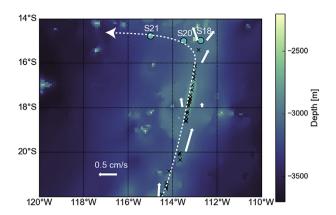
1. Introduction

Submarine hydrothermal vents emit hot, reducing fluids that are highly enriched in trace metals such as iron (Fe) and man-

E-mail address: fpavia@ldeo.columbia.edu (F.J. Pavia).

ganese (Mn) relative to the deep ocean (German and Seyfried, 2014). Upon reacting with seawater, dissolved Fe and Mn precipitate to form particles, with Fe initially forming sulfides closest to the ridge axis (e.g. Feely et al., 1987), and both Fe and Mn forming oxides over longer distances (Feely et al., 1996). These metalliferous particles have highly reactive surfaces that can readily remove trace metals, phosphorus, and carbon from solution (Feely et al.,

^{*} Corresponding author at: Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.


1990; German et al., 2015; Kadko et al., 1994), making hydrothermal systems important sinks for a wide range of elements in the ocean.

The south Pacific was identified as a major locality of hydrothermal activity by the discovery of volcanic ³He emanating from the East Pacific Rise (EPR) at 2500 m between 15°-20°S (Lupton and Craig, 1981). In 2013, the GEOTRACES GP16 cruise followed this south Pacific helium plume west of the EPR. In addition to ³He, the plume was found to be highly enriched in dissolved metals like Fe (dFe) and Mn (dMn) over 4000 km west of the EPR (Resing et al., 2015). Enrichments in particulate Fe (pFe) and Mn (pMn) were also found in the GP16 hydrothermal plume (Fitzsimmons et al., 2017). While pMn and dMn were both found to have peaks along the same isopycnal as ³He, the pFe and dFe peaks descended below the ³He isopycnal, indicating removal by sinking particles, despite the apparent conservative behavior of dFe previously inferred by Resing et al. (2015). Modeling studies have shown that hydrothermal Fe, stabilized in solution and carried by abyssal ocean circulation, could upwell and support new primary production, particularly in the Southern Ocean (Resing et al., 2015; Tagliabue et al., 2010). A better understanding of removal processes and their associated timescales in hydrothermal plumes could potentially improve models of Fe stabilization and removal.

Chemical scavenging encapsulates the sum of processes responsible for the removal of ions from the ocean by oceanic particles. These individual processes include adsorption and desorption reactions, aggregation and disaggregation of particles, and eventually particle settling and sedimentation at the seafloor (Bacon and Anderson, 1982). Net scavenging rates responsible for the removal of elements from the ocean integrate across the rates of these individual processes.

The radiogenic isotopes of thorium (234Th, 230Th, 228Th) are powerful tools for understanding the kinetics of oceanic scavenging processes. These thorium isotopes are produced at well-known rates in seawater by the decay of soluble uranium ($^{238}\text{U} \rightarrow ^{234}\text{Th}$, $^{234}\text{U} \rightarrow ^{230}\text{Th}$) and radium ($^{228}\text{Ra} \rightarrow ^{228}\text{Th}$). Thorium is highly insoluble in seawater, with a scavenging residence time on the order of 10-40 yr in the deep ocean (Henderson and Anderson, 2003). Thorium adsorbs onto particles that subsequently settle through the water column, generating radioactive disequilibrium with respect to their more soluble parents. The rapid removal of Th is apparent from the open ocean activity ratio of ²³⁰Th to its parent ²³⁴U of \sim 0.00002 (Moore and Sackett, 1964). With respective half-lives for ²³⁴Th, ²³⁰Th, and ²²⁸Th of 24.1 days (Knight and Macklin, 1948), 75,587 yr (Cheng et al., 2013), and 1.91 yr (Kirby et al., 1956), thorium isotopes can constrain scavenging behavior in the ocean on a range of timescales spanning months to millennia.

Pavia et al. (2018) studied hydrothermal scavenging of ²³⁰Th and ²³¹Pa in the GP16 hydrothermal plume, finding large depletions in total and dissolved ²³⁰Th and ²³¹Pa coincident with enrichments in the particulate phase. The authors determined that this intense scavenging was largely the result of iron and manganese coatings on particles, and that scavenging was continuous over the 4000 km extent of the plume. In this study, we use combined measurements of dissolved and particulate ²³⁴Th, ²³⁰Th, and ²²⁸Th and their parent activities to study the kinetics of the individual processes involved in scavenging, including adsorption and desorption, particle aggregation, and the net scavenging removal of thorium from the water column. We use these observations to assess the importance of local and distal hydrothermal activity on ²³⁰Th scavenging previously observed in the GP16 hydrothermal plume, and to study the timescales over which different scavenging processes act in hydrothermal settings.

Fig. 1. Site map of the study area. Net velocities of RAFOS floats deployed along the EPR (Hautala and Riser, 1993; Lupton and Jenkins, 2017) are shown as solid white arrows. Sampling sites discussed in this paper are teal dots. Locations of active hydrothermal vent sites (http://vents-data.interridge.org) are shown as black X marks. Dashed white arrow shows proposed flow path of waters entering the GP16 off-axis hydrothermal plume discussed in Section 4.3.

2. Materials and methods

2.1. Cruise setting

Samples were taken on board the *R.V. Thomas G. Thompson* during the GEOTRACES GP16 cruise (TGT303) between Ecuador and Tahiti from 25 October to 20 December, 2013. We focus on the three sampling locations at or nearest downstream of the EPR: station 18 at the EPR and stations 20 and 21, less than 250 km to the west along 15°S latitude (Fig. 1). Since the hydrothermal plume was interrupted by a discontinuity due to mixing of non-plume waters at the next station to the west (Jenkins et al., 2018; Lupton and Jenkins, 2017), we restrict our analysis to the three stations nearest to the EPR.

2.2. Sample collection and analysis

Dissolved ²³⁰Th and total ²³⁴Th samples were taken from Niskin bottles, with ²³⁰Th collected from bottles on a conventional steel rosette and deep ²³⁴Th samples taken from bottles hung above in-situ pumps. Dissolved ²²⁸Th and ²²⁸Ra samples were collected by pumping water filtered at 0.8 µm over in-line QMA and Supor filters using McLane in-situ pumps, and then over MnO2 coated acrylic cartridges (Henderson et al., 2013; Maiti et al., 2015). Particulate samples for all Th isotopes were collected via batteryoperated McLane in-situ pumps in two size classes: 0.8-51 μm, the small size fraction (SSF) and >51 µm, the large size fraction (LSF). All data from the GEOTRACES GP16 section presented in this paper are available in the 2017 GEOTRACES Intermediate Data Product (https://www.bodc.ac.uk/geotraces/data/idp2017/). Much of the data is also archived at the Biological and Chemical Oceanography Data Management Office (BCO-DMO), including total ²³⁴Th and ²³⁸U (https://www.bco-dmo.org/dataset/643213), particulate ²³⁴Th (https://www.bco-dmo.org/dataset/643316), dissolved ²³⁰Th (https://www.bco-dmo.org/dataset/643639), particulate ²³⁰Th (https://www.bco-dmo.org/dataset/676231), and ²²⁸Ra (https://www.bco-dmo.org/dataset/650340).

2.2.1. 234Th

The methods for analyzing GP16 samples for total and particulate ²³⁴Th have been summarized previously (Black et al., 2018). Briefly, 4 L samples for analysis of total ²³⁴Th were spiked with ²³⁰Th as a yield monitor, pre-concentrated by co-precipitation with MnO₂, and collected on Whatman quartz microfiber (QMA) filters. Particulate ²³⁴Th samples were taken in two size fractions

using *in-situ* pumps. The LSF particles were collected onto a prefilter, and rinsed onto silver filters. SSF particles were filtered onto QMA filters. The activity of ²³⁴Th for both total and particulate samples was determined using anti-coincidence beta counters and corrected for background radioactivity. To compute the radioactive disequilibrium of ²³⁴Th, ²³⁸U was predicted for each sample by the U-salinity relationship of Owens et al. (2011). Dissolved ²³⁴Th is calculated as the difference between the total and particulate pools.

2.2.2. ²³⁰Th

The ²³⁰Th data and methods in this paper have been previously published (Pavia et al., 2018). Seawater samples (\sim 5 L) were filtered over 0.45 µm Acropak capsule filters at sea and acidified to pH = 2 using redistilled 6M hydrochloric acid for storage and on-shore analysis. Size-fractionated particulate ²³⁰Th samples were taken using in-situ pumps, with LSF particles collected on a Sefar polyester mesh prefilter, and SSF particles collected on paired 0.8 µm Supor filters. Dissolved samples were spiked with ²²⁹Th, co-precipitated using iron oxyhydroxide, then digested using HF, HNO₃, and HClO₄. Particulate samples were spiked with ²²⁹Th and dissolved using HNO₃ and HClO₄, followed by iron coprecipitation and subsequent redissolution. For both dissolved and particulate samples, thorium isotopes were then separated using anion exchange chromatography (BioRad AG1-X8). Concentrations of ²³⁰Th were determined on a Thermo ELEMENT XR single collector inductively-coupled plasma mass spectrometer in peak jumping mode. Dissolved ²³⁰Th data presented here have been corrected for detrital ²³⁰Th present in the dissolved pool from the dissolution of continental material (e.g. Roy-Barman et al., 2009), and ingrowth from ²³⁴U decay during sample storage. The ²³⁴U activity in each sample was computed by multiplying the ²³⁸U-salinity relationship (Owens et al., 2011) by the oceanic ²³⁴U/²³⁸U activity ratio of 1.1468 (Andersen et al., 2010).

2.2.3. 228 Th and 228 Ra

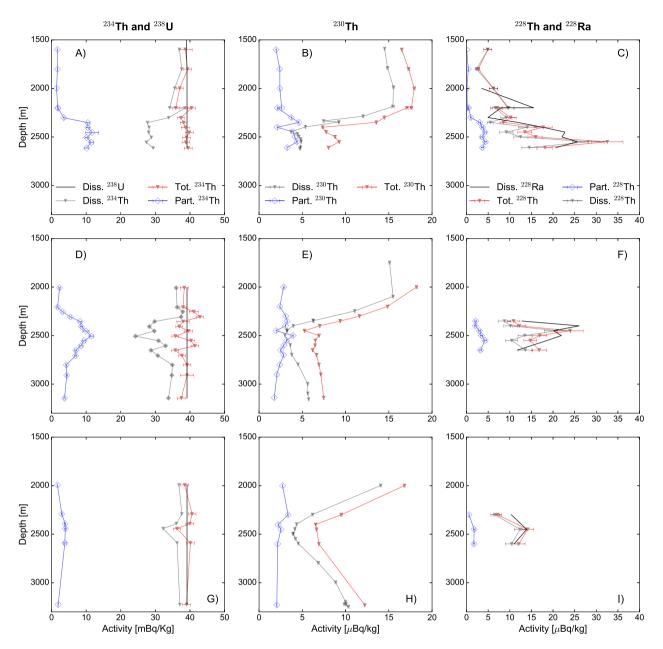
Filtered seawater was pumped over MnO2-coated cellulose filters by McLane in-situ pumps to collect dissolved ²²⁸Th and ²²⁸Ra samples. Typically, 1500-1700 L of seawater was filtered at an average flow rate of 6.5 L min⁻¹ with an average cartridge collection efficiency of $66 \pm 17\%$. Particulate samples were collected in the SSF on QMA filters via the same in-situ pumps. Full procedures for the analysis of ²²⁸Ra on the GP16 section have been published (Kipp et al., 2018b). The MnO₂ cartridges and QMA filters were counted for 228 Th via 220 Rn emanation with the RaDeCC alpha delayed coincidence system (Charette et al., 2015; Maiti et al., 2015; Moore and Arnold, 1996). This method detects adsorbed ²²⁸Th capable of releasing ²²⁰Rn; the resulting particulate activity should therefore be considered a lower limit, as there may be additional ²²⁸Th in phases that trap its ²²⁰Rn from being released. For dissolved samples, after RaDeCC analysis, the MnO2-coated cartridges were ashed and gamma counted for ²³⁴Th and ²²⁶Ra on high purity, well-type germanium detectors. The cartridge-based ²³⁴Th and 226 Ra measurements were compared to small-volume (\sim 4 L) beta counting measurements of 234 Th and 226 Ra collected from Niskin bottles hung at the depth of each sample, and the ratio of ²³⁴Th and ²²⁶Ra measured on the small-volume samples to that measured on the MnO2-coated cartridges was used to calculate the collection efficiency of ²²⁸Th and ²²⁸Ra on the cartridges (Maiti et

²²⁸Ra activities were measured on gamma detectors located underground at the Laboratoire Souterrain de Modane in France and the HADES laboratory in Belgium. The underground location of these laboratories serves to minimize the amount of cosmic radiation reaching the detectors, reducing the detection limits.

3. Results

At stations 18 and 20 there is a clear signature of hydrothermal scavenging observed in the profiles of all three thorium isotopes below 2200 m (Fig. 2). The most distinct signal for the shorter lived 234 Th and 228 Th is enrichment in the particulate phase. In background, non-plume influenced deep waters, particulate 234 Th makes up less than 5% of the total 234 Th, with activities of 1.4–1.8 mBq/kg. In the hydrothermal plume at stations 18 and 20, particulate 234 Th reaches a peak of 32% of the total pool and consistently has activities of 9–12 mBq/kg. Particulate 230 Th increases from background values near 2 µBq/kg to more than 4 µBq/kg, reaching 57% of the total pool. Particulate 228 Th increases from 0.1–0.5 µBq/kg in non-plume waters to 3.5–4.5 µBq/kg within the plume, peaking at 36% of the total 228 Th. At station 21, there is a slight enrichment in particulate 234 Th to 3.97 mBq/kg and in particulate 228 Th to 1.76 µBq/kg.

There is little sign of significant excess in or deficit of total 234 Th relative to its parent 238 U. A steady state mass balance model of 234 Th can be used to determine scavenging and removal rates of 234 Th in hydrothermal plumes (Kadko, 1996). The mass budget for dissolved 234 Th can be written:


$$\frac{\partial^{234} Th_{diss}}{\partial t} = (^{238} U - ^{234} Th_{diss})\lambda - J_{Th}$$
 (1)

where 238 U is the dissolved 238 U inventory (Bq/m²) in the plume, defined here as the depth interval between 2200 and 3000 m, 234 Th $_{diss}$ is dissolved 234 Th inventory (Bq/m²) in the plume, λ is the decay constant of 234 Th in yr $^{-1}$ and J_{Th} is the net rate at which dissolved 234 Th is adsorbed onto particles in Bq m $^{-2}$ yr $^{-1}$. Assuming steady state, we can solve for J_{Th} , then the net adsorption rate constant of 234 Th in the plume (k_1 , in units yr $^{-1}$) by dividing the scavenging rate by the dissolved 234 Th inventory:

$$k_1 = \frac{J_{\text{Th}}}{^{234}\text{Th}_{diss}} \tag{2}$$

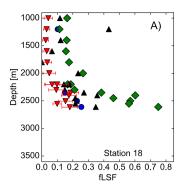
At station 18, we derive $J_{Th}=106\pm16$ Bq m $^{-2}$ day $^{-1}$ and $k_1=2.99\pm0.47$ yr $^{-1}$. At station 20, we find $J_{Th}=147\pm31$ Bq m $^{-2}$ day $^{-1}$ and $k_1=2.32\pm0.51$ yr $^{-1}$. At station 21, J_{Th} and k_1 decrease to 35.5 \pm 17 Bq m $^{-2}$ day $^{-1}$ and 1.21 \pm 0.58 yr $^{-1}$ respectively. Our estimates of J_{Th} are comparable to previous values of 152 Bq m $^{-2}$ day $^{-1}$ found by Owens et al. (2015) at the Mid-Atlantic Ridge and 81.6–202 Bq m $^{-2}$ day $^{-1}$ found by Kadko et al. (1994) at the Juan de Fuca Ridge.

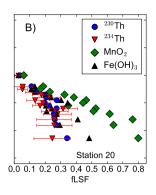
Unlike ²³⁴Th, there is a large deficit of total ²³⁰Th in the hydrothermal plume at stations 18-21 relative to the concentration profiles expected for removal by reversible scavenging. Reversible scavenging should drive dissolved, particulate, and total ²³⁰Th activities to linearly increase with depth throughout the water column (Bacon and Anderson, 1982). Above the hydrothermal plume this is the case along GP16 (Pavia et al., 2018); however, below 2200 m at stations 18-21, total ²³⁰Th sharply declines from 15-17 $\mu Bq/kg$ to less than 5 $\mu Bq/kg$ (Fig. 2). A similar signal is seen in the dissolved phase, and the depletion of both total and dissolved ²³⁰Th in the hydrothermal plume is roughly similar between the three stations. Whereas the imprint of hydrothermal scavenging signals on ²³⁴Th essentially disappeared by station 21, roughly 250 km from the EPR, the hydrothermal depletion of dissolved and total ²³⁰Th and enrichment of particulate ²³⁰Th extends over 4000 km from the ridge axis (Pavia et al., 2018).

Fig. 2. Profiles of at station 18 (top row), station 20 (middle row), and station 21 (bottom row) of thorium isotopes and their parent activities from the GP16 section. Dissolved ²³⁸U, and total, particulate, and dissolved ²³⁴Th are shown in panels A, D, and G. Dissolved, particulate, and total ²³⁰Th are shown in panels B, E, and H. Dissolved ²²⁸Ra, and dissolved, particulate, and total ²²⁸Th are shown in panels C, F, and I. Error bars represent 1-sigma uncertainty, and are smaller than the symbol size where not visible.

4. Discussion

4.1. Size partitioning of ²³⁴Th and ²³⁰Th


The isotopes of thorium are expected to have identical chemical scavenging behavior. Differences in observed scavenging intensities of the different isotopes can therefore be attributed to the different timescales over which they integrate, which are related to their half-lives. One of the key variables in determining the scavenging rates and sinking fluxes of particles is their size (Burd and Jackson, 2009). Smaller particles typically have a larger surface area to volume ratio, allowing for greater adsorption per unit mass of particles (Honeyman and Santschi, 1989), while larger particles are exported faster by gravitational settling (Burd and Jackson, 2009). Measuring thorium isotopes with varying half lives in particles of different size classes can be used to constrain the aggregation of


small particles, with large surface area to mass ratios, into large particles that settle more rapidly.

On the GP16 section, particulate ²³⁴Th measurements were made on both the LSF and SSF throughout the water column. Particulate ²³⁰Th was mostly measured in the SSF, but there are 44 LSF measurements, including 17 in the hydrothermal plume at stations 18–21 that permit comparison with ²³⁴Th. ²²⁸Th was only measured in the SSF, so we can only compare the size partitioning of ²³⁴Th and ²³⁰Th. To do this, we use the fraction of thorium activity found in the large size fraction relative to the total particulate activity (Lee et al., 2018):

$$fLSF = \frac{[pTh]_{LSF}}{([pTh]_{LSF} + [pTh]_{SSF})}$$
 (3)

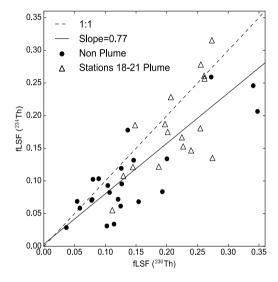

where [pTh] is the particulate activity of thorium. For the data available outside the hydrothermal plume, a slightly higher fraction

Fig. 3. Fractions of total particulate (sum of LSF and SSF size fractions) 230 Th (blue dots), 234 Th (red upside-down triangles), particulate MnO₂ (green diamonds), and particulate Fe(OH)₃ (black triangles) found in the large size fraction (>51 μ m) from GP16 stations 18 (A), 20 (B), and 21 (C). Fe(OH)₃ and MnO₂ data from Lam et al. (2018). 1-Sigma uncertainties are shown for 234 Th and 230 Th and are smaller than the symbol size where not visible. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Scatter plots of fLSF (fraction of total particulate thorium found in >51 μm particles, see Equation (3)) for 234 Th and 230 Th. Samples not in the hydrothermal plume (2200–3000 m) at stations 18, 20, and 21 are shown as dots. Samples within the hydrothermal plume as stations 18–21 are shown as open triangles. The dashed line shows the 1:1 line that would be expected if 234 Th and 230 Th were partitioned equally into the >51 μm size fraction. The solid line shows the best-fit linear slope of 0.77, indicating that 230 Th is preferentially incorporated into >51 μm particles in non-plume samples.

of particulate 230 Th is found in the large size fraction than 234 Th (Fig. 3). Linear regression of fLSF of ²³⁴Th against fLSF of ²³⁰Th from the entire GP16 section (n = 44 samples) reveals an intercept of 0, but a slope of 0.77 \pm 0.09 (r^2 = 0.63), indicating consistently higher fLSF of ²³⁰Th (Fig. 4). This could be explained by the kinetics of adsorption and desorption being more rapid than those of aggregation-disaggregation, as ²³⁴Th would have decreased via radioactive decay to lower activities during the aggregation of the SSF into large particles much more so than ²³⁰Th, leaving more ²³⁰Th in the LSF than ²³⁴Th. Since there is limited sampling of 230 Th and 228 Th in the >51 µm size fraction, inverse models of particle cycling must assume identical size partitioning of the different thorium isotopes to calculate the bulk (SSF + LSF) particulate activities of these isotopes (Lerner et al., 2016, 2017). More measurements of ²³⁰Th and ²²⁸Th in the LSF would be highly beneficial for further constraining the differential size partitioning of thorium isotopes and its effect on models of particle cycling.

At stations 18–21, there are 17 measurements of particulate ^{230}Th in the LSF in the depth range of the hydrothermal plume. The slope of the regression between fLSF of ^{234}Th against fLSF of ^{230}Th for these samples is 0.9 \pm 0.24 – much closer to the

expected 1:1 line than for samples collected outside the plume (Fig. 4). While the difference in slopes is not statistically significant, these results are still suggestive that particle aggregation at station 20, and in general the near-axis hydrothermal plume, is more rapid than in the typical deep ocean. Rapid particle aggregation is consistent with the enrichment of fLSF for pFe, pMn, and bulk suspended particulate matter (SPM) in the hydrothermal plume relative to samples taken above the plume at stations 18 and 20 (Lee et al., 2018). The similar size partitioning of ²³⁴Th and ²³⁰Th within the plume also indicates that the greater depletion of total ²³⁰Th than total ²³⁴Th in the plume cannot be due to differential incorporation of ²³⁰Th into faster sinking particles.

4.2. Scavenging intensity of thorium

The paradigm for understanding 230 Th cycling in the ocean is reversible scavenging, whereby thorium reversibly exchanges between the dissolved phase and a small, slow-sinking particulate phase, resulting in the linear increase of both dissolved and particulate 230 Th activities with depth (Bacon and Anderson, 1982). In this model, the ratio of particulate thorium activity (A_p) to dissolved thorium activity (A_d), or $K_{\rm Th}$, is a function of the relative rates of dissolved thorium adsorption onto particles (k_1), desorption and remineralization of thorium from particles into solution (k_{-1}), and the radioactive decay constant (λ):

$$K_{\text{Th}} = \frac{A_p}{A_d} = \frac{k_1}{\lambda + k_{-1}} \tag{4}$$

In the reversible scavenging model, variations in K for a given isotope would be due to changes in the relative rates of adsorption and desorption. For 230 Th, the decay constant is negligible, so Equation (4) can be simplified to $K = k_1/k_{-1}$.

Because this conceptualization of K does not include sinking losses of particulate thorium, we compute K using only the ratio of small particulate thorium activity to dissolved thorium activity. We find that K values increase for all of the thorium isotopes in the hydrothermal plume (Fig. 5). K is consistently higher for 230 Th than for the two shorter-lived isotopes, which is reasonable given that the decay constants for 230 Th, 228 Th, and 234 Th are $9.1 \times 10^{-6} \text{ yr}^{-1}$, 0.36 yr^{-1} , and 10 yr^{-1} , respectively. Thus, if k_1 and k_{-1} are the same for all the thorium isotopes, we would expect K to be largest for 230 Th, and smallest for 234 Th. However, the K values of 234 Th and 228 Th are similar to each other both above and within the hydrothermal plume. For average deep ocean values of $k_1 = 0.71 \text{ yr}^{-1}$, and $k_{-1} = 2.7 \text{ yr}^{-1}$ (Lerner et al., 2017), we would expect to observe K values of 0.27 for 230 Th, 0.23 for 228 Th, and 0.05 for 234 Th. We note that the average values of Lerner et al. (2017) are for the deep North Atlantic, and may be somewhat

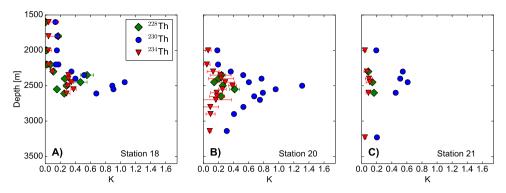
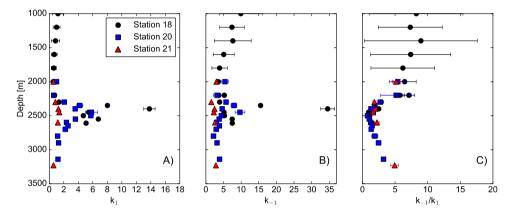
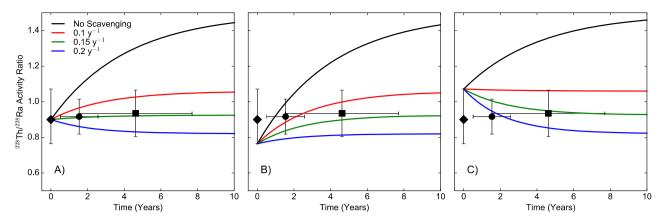



Fig. 5. Particulate (SSF only) to dissolved ratios (K) of ²²⁸Th (green diamonds), ²³⁰Th (blue circles), and ²³⁴Th (red upside-down triangles) at GP16 stations 18 (A), 20 (B), and 21 (C). Uncertainties are 1-sigma and are smaller than the symbol size where not visible.

Fig. 6. Adsorption (A) and desorption (B) rate constants (yr^{-1}) for thorium cycling on the GP16 section, as well as the desorption/adsorption rate constant ratio (C). Rate constants are calculated by plugging measured K values for both 234 Th and 230 Th into Equation (4) (Bacon and Anderson, 1982).

different in the South Pacific. These estimates are still close to observations for 230 Th and 234 Th, but the observed K values for 234 Th are much smaller than predicted, closer to those of 234 Th (Fig. 5). This may be an artifact of the measurement method, which can only detect surface adsorbed 228 Th. If there is additional 228 Th inside particles, perhaps as the result of metal oxide co-precipitation during hydrothermal plume particle formation, this would result in higher K values for 228 Th.


We can use Equation (4) to calculate k_1 and k_{-1} values at each station using the measured K values for both 230 Th and 234 Th (Bacon and Anderson, 1982). We find increases in both adsorption and desorption rate constants from 2400 m–2500 m at stations 18 and 20 (Fig. 6), similar to increases in both rate constants found at the TAG hydrothermal vent site in the North Atlantic (Lerner et al., 2017). However, below 2500 m, the depth of this sharp increase, adsorption and desorption rates rapidly decline, the desorption rates falling below values above the plume, and the ratio of k_{-1}/k_1 reaches a minimum (Fig. 6).

Reversible scavenging assumes that suspended deep ocean particles are at a steady state between adsorption of Th and desorption plus decay of Th. However, Bacon and Anderson (1982) also propose a hybrid model where the adsorption of Th is balanced by decay, desorption, and incorporation of Th into a fast sinking flux, the third process accomplished by the aggregation of small particles into large, faster sinking particles. At stations 18 and 20, both bulk (SSF + LSF) and LSF SPM within the plume are strongly elevated over background levels outside the plume (Lam et al., 2018), generating conditions where particle sinking could be rapid enough to affect the steady state balance of thorium isotopes. Under these conditions, the ratio of particulate to dissolved thorium activity would be described as:

$$K_{\text{Th}} = \frac{k_1}{\lambda + k_{-1} + k_2} \tag{5}$$

where the new term k_2 is the rate constant for the rapid removal of small particulate Th by aggregation into rapidly settling large particles. Since we compute K only using 0.8–51 μ m particles, the k_2 term is equivalent to an aggregation rate for the conversion of 0.8–51 μ m particles into >51 μ m particles. Given the faster particle aggregation inferred from the similar size partitioning of 234 Th and 230 Th in the hydrothermal plume (Section 4.1), it is likely that particle aggregation is a significant loss term in the budget of small particulate thorium. Thus, k_{-1} values we derived using Equation (4) are in reality a combination of the desorption rate constant and the particle aggregation rate constant. This would imply even lower values for the desorption rate constant than what were previously inferred, especially at stations 18 and 20 where fLSF of particulate Th isotopes is highest.

The controls on Th desorption rate are poorly understood. Values we compute for k_{-1} on GP16 are lower than average values in the deep North Atlantic ocean (e.g. Lerner et al., 2017), especially when the additional effect of particle aggregation is considered. We argue that lower desorption rates are a consequence of a portion of dissolved Th being scavenged irreversibly. Thousands of kilometers west of Station 21, where most of the high mass of pMn has been removed, K values for 230 Th and 231 Pa remain anomalously high and Th/Pa fractionation factors are anomalously low with respect to the background deep ocean, and close to the endmember values of particulate manganese and iron scavenging (Pavia et al., 2018). One possibility is that Th simply binds to some Fe and Mn particles irreversibly. Another hypothesis is that the production of new Mn and Fe surfaces on particles creates a physical barrier between seawater and solutes already bound to the

Fig. 7. Observed and modeled total (dissolved + particulate) 228 Th/ 228 Ra activity ratios in the hydrothermal plume for a range of initial 228 Th and 228 Th and 228 Th shows the modeled evolution of 228 Th/ 228 Ra using the mean values of 228 Ra and 228 Th below 2400 m at station 18 as initial activities in Equations (7) and (8). Panel B) shows the same model, but with the lower bound of the 228 Th/ 228 Ra ratio at station 18 as the initial activities, and Panel C) shows the same model with the upper bound of 228 Th/ 228 Ra at station 18 as the initial activities. The solid lines represent the modeled 228 Th/ 228 Ra activity ratio in for a range of scavenging rate constants: black is the no scavenging scenario ($λ_s = 0$ yr $^{-1}$ in Equation (8)), red is $λ_s = 0.1$ yr $^{-1}$, green is $λ_s = 0.1$ yr $^{-1}$, and blue is $λ_s = 0.2$ yr $^{-1}$. Mean observed total 228 Th/ 228 Ra activity ratios within the hydrothermal plume at stations 18, 20, and 21 and their 1-sigma uncertainties are shown as diamonds, circles, and squares, respectively. Plume ages and their uncertainties at stations 20 and 21 are derived from 227 Ac measurements and physical oceanographic estimates of flow velocities (see Section 4.3).

particle, preventing desorption back into solution and resulting in the irreversible scavenging of Th. Additional research is required to discriminate between these two possibilities.

4.3. Variable depletion among the Th isotopes

Measurements of the three thorium isotopes can be used to study the kinetics of scavenging in the early history of the hydrothermal plume. Total 230 Th is highly depleted in the plume relative to reversible scavenging, while total 234 Th is nearly in secular equilibrium with its parent 238 U. This difference informs us about the time scale for scavenging and removal.

We can quantify the percent depletion of any thorium isotope at a given depth by the following equation (Lopez et al., 2015; Pavia et al., 2018):

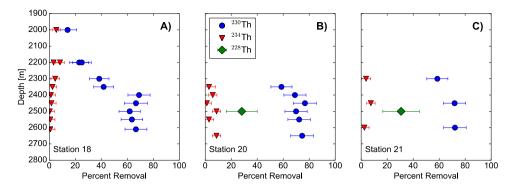
$$Percent Depletion = \frac{A_{pred} - A_{obs}}{A_{pred}} \times 100$$
 (6)

where A_{pred} is the predicted total (dissolved + bulk particulate) activity of a Th isotope, and A_{obs} is the observed total activity. Given the need to use total activities, and the lack of 230 Th and 228 Th measurements in the large size fraction for every sample, we multiply SSF activities of 230 Th (where there are no measurements in the LSF) and 228 Th by the LSF/SSF activity ratio observed for 234 Th for a given sample to estimate the LSF contribution to the total 228 Th and 230 Th for that sample.

For ²³⁴Th, the predicted activity is that of its parent isotope ²³⁸U (secular equilibrium). For ²³⁰Th, the predicted activity is derived by extrapolating the increase in activity with depth above the hydrothermal plume into the observed depths within the hydrothermal plume, as expected from reversible scavenging (Bacon and Anderson, 1982; Lopez et al., 2015; Pavia et al., 2018).

For 228 Th, the predicted activity is more complicated. Since the half-life of 228 Th is only slightly shorter than that of its parent 228 Ra, in a closed system 228 Th will approach a transient equilibrium with 228 Ra where 228 Th/ 228 Ra activity ratios reach 1.5 (e.g. Turekian et al., 1975). This behavior has been modeled in studies of shelf-basin exchange and scavenging dynamics (Kipp et al., 2018a; Rutgers van der Loeff et al., 2012, 2018). We adapt these models for use in the GP16 hydrothermal plume. For a purely advective system, once hydrothermal supply of 228 Ra has ceased, 228 Ra activities will change only as a function of radioactive decay over time (t):

$$^{228}\text{Ra}(t) = ^{228}\text{Ra}_0 e^{-\lambda_{228}t} \tag{7}$$


In this and the following equation, the subscript $_0$ indicates initial activity at the time when the hydrothermal plume leaves the ridge. The activity of 228 Th at time t is a function of ingrowth, decay, and scavenging (Kipp et al., 2018a ; Rutgers van der Loeff et al., 2012 , 2018):

$$^{228}\text{Th}(t) = ^{228}\text{Th}_{0}e^{-(\lambda_{\text{Th}} + \lambda_{\text{s}})t}$$

$$+ \frac{\lambda_{\text{Th}}}{\lambda_{\text{Th}} + \lambda_{\text{s}} - \lambda_{\text{Ra}}} ^{228}\text{Ra}_{0} \left(e^{-\lambda_{\text{Ra}}t} - e^{-(\lambda_{\text{Th}} + \lambda_{\text{s}})t}\right)$$
(8)

where λ_{Th} and λ_{Ra} are the decay constants of ²²⁸Th and ²²⁸Ra, and λ_s is the ²²⁸Th scavenging rate constant. This model neglects the impacts of lateral and vertical mixing on ²²⁸Th and ²²⁸Ra, and requires knowledge of the initial ²²⁸Th and ²²⁸Ra activities at the time the plume advects away from the ridge axis. We use the ²²⁸Ra and ²²⁸Th activities at station 18 as the initial values to predict ²²⁸Th/²²⁸Ra ratios at stations 20 and 21. Plume ages (t) at stations 18 and 20 were determined using a wide range of offaxis flow velocities in the hydrothermal plume of 0.1–0.5 cm/s based on dilution-corrected ²²⁷Ac decay (Hammond et al., 2016; Lupton and Jenkins, 2017), neutrally buoyant floats (Lupton and Jenkins, 2017), and inverse modeling (Faure and Speer, 2012; Hautala and Riser, 1993). These flow velocities, multiplied by the distances of stations 20 (81 km) and 21 (243 km) from the ridge, yield plume ages of 0.5–2.6 yr at station 20, and 1.5–7.7 yr at station 21.

The best-fit off-axis scavenging rate for the measured $^{228}\text{Th}/^{228}\text{Ra}$ ratios at stations 20 and 21 is 0.15 yr $^{-1}$ (Fig. 7). The mean ratio of $^{228}\text{Th}/^{228}\text{Ra}$ activities below 2400 m at station 18 is 0.9. The best-fit scavenging rate of 0.15 is relatively insensitive to the initial $^{228}\text{Th}/^{228}\text{Ra}$ ratio, consistent with the upper and lower error bounds of the $^{228}\text{Th}/^{228}\text{Ra}$ ratio at station 18 – varying only by \sim 0.05 yr $^{-1}$ for the range of initial $^{228}\text{Th}/^{228}\text{Ra}$ ratios at station 18 (Figs. 7B and 7C). Since the $^{228}\text{Th}/^{228}\text{Ra}$ ratios at stations 18–21 are relatively invariant, and the scavenging rate of 0.15 yr $^{-1}$ results in a nearly constant $^{228}\text{Th}/^{228}\text{Ra}$ ratio over time, our results are also insensitive to uncertainties in the plume ages. While we do not take mixing into account, the effect of lateral mixing on the $^{228}\text{Th}/^{228}\text{Ra}$ ratios should also be minimal, since ^{228}Th and ^{228}Ra activities are both a factor of 2–3 higher in the hydrothermal plume than in overlying waters, which we take to be

Fig. 8. Percent removal for total pools of ²³⁴Th (red upside-down triangles), ²²⁸Th (green diamonds), and ²³⁰Th (blue circles) at stations 18 (A), 20 (B), and 21 (C). Uncertainties shown are 1-sigma. Station 18 is used to constrain the initial conditions for the ²²⁸Th-²²⁸Ra pair, so there is no percent removal value for ²²⁸Th shown in (A).

representative of background, non-plume waters (Fig. 2C). The off-axis hydrothermal Th scavenging rate constant of 0.15 ± 0.05 yr⁻¹ will be useful for future studies of off-axis scavenging dynamics.

We can use the no scavenging scenario (solid black lines in Fig. 7, $\lambda_s = 0$ in Equation (8)) to determine the percent depletion of ²²⁸Th at stations 20 and 21, but not station 18, since we initiate the model using the ²²⁸Th/²²⁸Ra ratios from station 18. In Equation (6), A_{pred} is the ²²⁸Th/²²⁸Ra ratio of the no scavenging scenario (dashed line in Fig. 7C) at the age of the plume at a given station, and A_{obs} is the averaged observed ²²⁸Th/²²⁸Ra ratio at that station. The percent depletion is thus averaged within the plume, and we display the average value at 2500 m in Fig. 8.

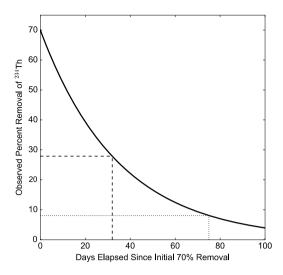
Depletion of total 230 Th in the hydrothermal plume relative to that predicted by extrapolating trends above 2000 m reaches a maximum of 70% at stations 18–20 (Fig. 8). At those stations, total 234 Th is only depleted a maximum of 8%. Depletion of total 228 Th is $28\pm12\%$ at station 20 and $31\pm14\%$ at station 21. Scavenging occurring over 100 days in the past would have a negligible lasting imprint on 234 Th, but 230 Th and 228 Th would largely retain the signal of scavenging. Greater depletion of 230 Th and 228 Th than 234 Th at those stations could indicate that the majority of the Th was scavenged and removed from seawater over 100 days prior to sampling, long enough for 234 Th to have nearly returned to its predicted value of secular equilibrium.

If this early scavenging history were true, and the scavenging was the result of the most recent input of hydrothermal materials. then we might expect the scavenging signals of the three thorium isotopes to be coherent at station 18, which was sampled directly above the EPR, though not necessarily above an active vent. Station 18 had measurable ²²³Ra ($t_{1/2} = 11.4$ days), meaning that there had been a recent input of hydrothermal fluids. However, there was no hydrothermal 224 Ra ($t_{1/2} = 3.66$ days), which is enriched in high-temperature vent fluids (Kipp et al., 2018b), indicating that the plume was at least 18 days (five ²²⁴Ra half-lives) old. Using a range of ²²³Ra/²²⁶Ra ratios observed in vent fluids, Kipp et al. (2018b) constrained the age of the hydrothermal plume at Station 18 to be 24-32 days. However, it is possible that hydrothermal activity >50 days in the past could have injected additional ²²⁶Ra, which would decrease the apparent age of the plume since any additional ²²³Ra injected would have decayed away. Thus we suggest that a more appropriate age range of the hydrothermal plume at station 18 is 18-32 days. Future surveys of Ra injection along the EPR may be able to confirm where and when additional hydrothermal ²²⁶Ra is added as waters flow northward above the ridge.

At station 18, the depletion of ²³⁰Th reaches 70%, while the maximum depletion of ²³⁴Th is 8%. Given that the 18–32 day age of the plume is similar to the half-life of ²³⁴Th, if the two Th isotopes had been removed to the same degree at the EPR crest 18–32 days prior to sample collection, then a far greater depletion of ²³⁴Th should be observed. Below, we model the time evolu-

tion of Th isotopes following a scavenging event to specifically test whether our data are consistent with a single recent scavenging event being responsible for the 8% depletion of total ²³⁴Th and 70% depletion of ²³⁰Th at station 18.

The mass balance of a radioactive daughter isotope (denoted here N_2 , in atoms) of a given parent (N_1 , in atoms) following scavenging removal can be written from the Bateman equations for radioactive decay as follows:


$$\frac{dN_2}{dt} = \lambda_1 N_1^0 e^{-\lambda_1 t} - \lambda_2 N_2 \tag{9}$$

where λ is the decay constant of the isotope, N_1^0 indicates the initial atoms of the parent isotope present, and t is time elapsed since a scavenging event early in the history of the hydrothermal plume. This equation can be solved for the number of N_2 daughter atoms present at time t:

$$N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) + N_2^0 e^{-\lambda_2 t} \tag{10}$$

The first term on the right side of the Equation (10) is the number of N_2 atoms present that have ingrown from its parent N_1 , but have not yet undergone radioactive decay. The second term on the right side of the equation is the loss by radioactive decay of the daughter nuclide initially present immediately after the scavenging event. We can use this model to assess the depletion that ought to be observed if 234 Th experienced the same 70% depletion as 230 Th at the upper age limit of the plume age (32 days) derived from 223 Ra/ 226 Ra dating – the most conservative possible condition, allowing the most time for 234 Th ingrowth from U decay. If 234 Th was 70% depleted 32 days before sampling, there should have been a 30% deficit in 234 Th observed at station 18 (dashed line in Fig. 9), far greater than the observed maximum of 8% depletion.

If we assume that 70% depletion of ²³⁴Th did occur and that the plume age is an unknown variable, then we can solve for the minimum amount of time that must have elapsed for 8% depletion to be observed at station 18. For 8% depletion to be measured at station 18, 70% removal of ²³⁴Th would have to have happened 75 days prior to sampling (dotted line in Fig. 9). The observed ²²³Ra_{xs}/²²⁶Ra ratio at station 18 of 0.011 and a 75 day old plume would require a vent fluid ²²³Ra/²²⁶Ra activity of 1.09, which is both 2–3 times larger than the maximum ²²³Ra/²²⁶Ra ratios ever measured in vent fluids, and over an order of magnitude larger than the average vent fluid ²²³Ra/²²⁶Ra ratio (Kipp et al., 2018b). It is also an order of magnitude higher than ²³¹Pa/²²⁶Ra activity ratios measured in basalts from the EPR, which, at steady state, set the ²²³Ra/²²⁶Ra ratios of vent fluids (Bourdon et al., 2000; Lundstrom et al., 1999; Sims et al., 2002). The decoupling of ²³⁴Th depletion and ²³⁰Th depletion could be explained if ²³⁰Th had pre-existing depletion due to scavenging that had occurred before the

Fig. 9. Modeled 234 Th depletion (y-axis) as a function of elapsed time after a 70% depletion (maximum observed 230 Th depletion relative to reversible scavenging) of 234 Th (x-axis). The dashed line corresponds to the predicted depletion of 234 Th if 70% scavenging had occurred 32 days previously, the upper limit for the age of the plume at Station 18. The dotted line marks the time necessary to have elapsed for an 8% depletion of 234 Th to be observed at station 18.

most recent injection of hydrothermal material prior to sampling at station 18.

Finally, we rearrange Equation (10) to solve for the maximum initial removal of 234 Th (N_2^0) in the early history of the hydrothermal plume:

$$N_2^0 = \frac{N_2(t) - \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 (e^{-\lambda_1 t} - e^{-\lambda_2 t})}{e^{-\lambda_2 t}}$$
(11)

We find that an 18–32 day plume age and maximum observed depletion of ²³⁴Th of 8% at station 18 would require the instantaneous Th removal of 14–20% since the water mass encountered the vent source of the hydrothermal plume, much less than the 70% observed depletion of ²³⁰Th at station 18. Given the enrichment of particulate ²³⁴Th at station 18 but lack of total depletion, it is likely that particle aggregation and sinking occurs on timescales greater than the half-life of ²³⁴Th, so instantaneous 14–20% depletion of ²³⁴Th at a vent is an endmember scenario rather than a requirement of our model. Regardless, we have shown that the 70% depletion of ²³⁰Th cannot be explained by a single recent scavenging event, indicating that ²³⁰Th has an inherited scavenging signal, most reasonably from hydrothermal activity preceding the most recent scavenging event.

Float trajectories and modeling studies suggest topographicallysteered equatorward flow extending hundreds of meters above the EPR ridge axis from 40°S to 10°S, with velocities of 0.2-0.5 cm/s (Hautala and Riser, 1993; Zilberman et al., 2017). This flow passes across a number of active high-temperature hydrothermal vents just south of our study area (Fig. 1). Previous surveys documented particularly intense hydrothermal activity between 17°S-19°S, with Fe- and Mn-rich particle-laden plumes in the water column (Feely et al., 1996; Urabe et al., 1995). Resing et al. (2015) suggested that the dFe and dMn enrichment in the GP16 plume at station 20 and westward was from these 17°S-19°S vent fields. Jenkins et al. (2018) suggested that the ³He in the GP16 plume may have been sourced from further south as well, since the 3 He and 4 He were correlated with a slope of 9.04 \pm 0.24 R/R_a (³He/⁴He ratio relative to the atmospheric ratio), higher than the typical MORB value of 8 R/R_a , and consistent with high 3 He/ 4 He of 9-11 R/R_a in EPR basalts at 17°S (Kurz et al., 2005). We hypothesize that much of the 70% depletion of ²³⁰Th observed in the GP16 hydrothermal plume is due to scavenging in the particle-rich plumes of this 17°S-19°S region, which then veered west towards stations 20 and 21 (dashed white arrow in Fig. 1).

If the ²³⁰Th removal rates were greater than the integrated production rate from U decay in the overlying water column, it would require a lateral diffusive source of ²³⁰Th, making this portion of the EPR a boundary sink for ²³⁰Th, and potentially biasing the near- and off-axis application of sedimentary ²³⁰Th-normalization for determining mass accumulation rates (e.g. Bacon, 1984; Francois et al., 2004) in the South Pacific at these latitudes. More research is required to determine the effect of hydrothermal activity on sedimentary ²³⁰Th burial rates.

5. Conclusions

Combined measurements of dissolved and particulate $^{234}\mathrm{Th},$ $^{230}\mathrm{Th},$ and $^{228}\mathrm{Th}$ allowed us to better understand the kinetics of hydrothermal plume particle dynamics and scavenging in the South Pacific Ocean. The size partitioning of $^{234}\mathrm{Th}$ and $^{230}\mathrm{Th}$ between $>\!51~\mu\mathrm{m}$ and $0.8\!-\!51~\mu\mathrm{m}$ particles was more closely coupled in the hydrothermal plume than for typical waters from the rest of the section, indicating that particle aggregation was occurring much more rapidly in the plume. By determining adsorption and desorption rate constants for thorium, in combination with the finding of rapid particle aggregation, we hypothesize that hydrothermal scavenging is partially irreversible.

Modeling the evolution of ²²⁸Th/²²⁸Ra ratios revealed an off-axis hydrothermal Th scavenging rate of 0.15 yr⁻¹. We found variable removal among the three Th isotopes in the near-axis plume, with ²³⁰Th the most depleted, followed by ²²⁸Th, then ²³⁴Th. The large degree of ²³⁰Th removal is inconsistent with a single local scavenging event, and is more likely due to progressive scavenging in the region of intense hydrothermal activity from 17°S to 19°S.

These results illustrate the complexity of interpreting the GP16 hydrothermal plume as being solely a local phenomenon. The time information provided by the radioactivity of the thorium isotopes shows that the scavenging signals observed in the GP16 section are a result of hydrothermal activity further south on the EPR. Future studies combining data from multiple radiogenic thorium isotopes in this manner will be useful for understanding the time dynamics from other parts of the GP16 section, such as the upper water column, the continental shelf, and benthic nepheloid layers.

Acknowledgements

This work was supported by the U.S. National Science Foundation (OCE-1233688 to LDEO, OCE-1233903 to UMN), OCE-1232669 to WHOI, OCE-1231211 to USC) and an NSF Graduate Research Fellowship to F.J.P. (DGE-16-44869). We thank the captain, crew, and scientists aboard the R/V Thomas G. Thompson. Constructive comments from three anonymous reviewers greatly improved the quality of this manuscript. We are grateful to John Lupton for sharing Helios float trajectories, Ken Buesseler for overseeing the collection of the ²³⁴Th data, and to Phoebe Lam and Kassandra Costa for helpful discussions.

References

Andersen, M.B., Stirling, C.H., Zimmermann, B., Halliday, A.N., 2010. Precise determination of the open ocean ²³⁴U/²³⁸U composition. Geochem. Geophys. Geosyst. 11. https://doi.org/10.1029/2010GC003318.

Bacon, M.P., 1984. Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from ²³⁰Th measurements. Chem. Geol. 46, 97–111. https://doi.org/10.1016/0009-2541(84)90183-9.

Bacon, M.P., Anderson, R.F., 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res. 87, 2045–2056. https://doi.org/10.1111/j.1365-3091.2012.01327.x.

https://doi.org/10.1111/j.1365-3091.2012.01327.x.
Black, E.E., Buesseler, K.O., Pike, S.M., Lam, P.J., 2018. ²³⁴Th as a tracer of particulate export and remineralization in the southeastern tropical Pacific. Mar. Chem. 201, 35–50. https://doi.org/10.1016/j.marchem.2017.06.009.

- Bourdon, B., Goldstein, S.J., Bourles, D., Murrell, M.T., Langmuir, C.H., 2000. Evidence from ¹⁰Be and U series disequilibria on the possible contamination of mid-ocean ridge basalt glasses by sedimentary material. Geochem. Geophys. Geosyst. 1. https://doi.org/10.1029/2000GC000047.
- Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.
- Charette, M.A., Morris, P.J., Henderson, P.B., Moore, W.S., 2015. Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Mar. Chem. 177, 184–195. https://doi.org/10.1016/j.marchem.2015.01.001.
- Cheng, H., Edwards, R.L., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hell-strom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander Jr., E. Calvin, 2013. Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91. https://doi.org/10.1016/j.epsl. 2013.04.006
- Faure, V., Speer, K., 2012. Deep circulation in the Eastern South Pacific Ocean. J. Mar. Res. 70, 748–778. https://doi.org/10.1357/002224012806290714.
- Feely, R.A., Baker, E.T., Marumo, K., Urabe, T., Ishibashi, J., Gendron, J., Lebon, G.T., Okamura, K., 1996. Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise. Geochim. Cosmochim. Acta 60, 2297–2323. https://doi.org/10.1016/0016-7037(96)00099-3.
- Feely, R.A., Geiselman, T.L., Baker, E.T., Massoth, G.J., Hammond, S.R., 1990. Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge. J. Geophys. Res., Oceans (1978–2012) 95, 12855–12873. https://doi.org/10.1029/JB095iB08p12855.
- Feely, R.A., Lewison, M., Massoth, G.J., Baldo, G.R., Lavelle, J.W., Byrne, R.H., Von Damm, K.L., Curl, H.C., 1987. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J. Geophys. Res., Oceans (1978–2012) 92, 11347–11363. https://doi.org/10.1029/JB092iB11p11347.
- Fitzsimmons, J.N., John, S.G., Marsay, C.M., Hoffman, C.L., Nicholas, S.L., Toner, B.M., German, C.R., Sherrell, R.M., 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat. Geosci. 10, 195–201. https://doi.org/10.1038/ngeo2900.
- Francois, R., Frank, M., Rutgers van der Loeff, M.M., Bacon, M.P., 2004. ²³⁰Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19. https://doi.org/10.1029/2003PA000939.
- German, C.R., Legendre, L.L., Sander, S.G., Niquil, N., Luther III, G.W., Bharati, L., Han, X., Le Bris, N., 2015. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments. Earth Planet. Sci. Lett. 419, 143–153. https://doi.org/10.1016/j.epsl.2015.03.012
- German, C.R., Seyfried, W.E., 2014. Hydrothermal processes. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier Ltd., pp. 191–233.
- Hammond, D.E., Charette, M.A., Moore, W.S., Henderson, P., Sanial, V., Kipp, L.E., Anderson, R.F., Primeau, F., 2016. ²²⁷Ac in the Deep South Pacific along the Peru–Tahiti GEOTRACES Transect: mixing and transport rates. In: Ocean Sciences Meeting 2016. American Geophysical Union. Abstract #CT14B-0138.
- Hautala, S.L., Riser, S.C., 1993. A nonconservative β-spiral determination of the deep circulation in the Eastern South Pacific. J. Phys. Oceanogr. 23, 1975–2000. https://doi.org/10.1175/1520-0485(1993)023<1975:ansdot>2.0.co;2.
- Henderson, G.M., Anderson, R.F., 2003. The U-series toolbox for paleoceanography. Rev. Mineral. Geochem. 52, 493–531. https://doi.org/10.2113/0520493.
- Henderson, P.B., Morris, P.J., Moore, W.S., Charette, M.A., 2013. Methodological advances for measuring low-level radium isotopes in seawater. J. Radioanal. Nucl. Chem. 296, 357–362. https://doi.org/10.1007/s10967-012-2047-9.
- Honeyman, B.D., Santschi, P.H., 1989. A Brownian-pumping model for oceanic trace metal scavenging: evidence from Th isotopes. J. Mar. Res. 47, 951–992. https:// doi.org/10.1357/002224089785076091.
- Jenkins, W.J., Lott III, D.E., German, C.R., Cahill, K.L., Goudreau, J., Longworth, B., 2018. The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16). Mar. Chem. 201, 167–182. https://doi.org/10.1016/j.marchem.2017.03.009.
- Kadko, D., 1996. Radioisotopic studies of submarine hydrothermal vents. Rev. Geophys. 34, 349–366. https://doi.org/10.1029/96RG01762.
- Kadko, D., Feely, R., Massoth, G., 1994. Scavenging of ²³⁴Th and phosphorus removal from the hydrothermal effluent plume over the North Cleft segment of the Juan de Fuca Ridge. J. Geophys. Res., Oceans (1978–2012) 99, 5017–5024. https:// doi.org/10.1029/93JB02952.
- Kipp, L.E., Charette, M.A., Moore, W.S., Henderson, P.B., Rigor, I.G., 2018a. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Sci. Adv. 4, eaao1302. https://doi.org/10.1126/sciadv.aao1302.
- Kipp, L.E., Sanial, V., Henderson, P.B., van Beek, P., Reyss, J.-L., Hammond, D.E., Moore, W.S., Charette, M.A., 2018b. Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean. Mar. Chem. 201, 51–65. https://doi.org/10.1016/j.marchem.2017.06.011.
- Kirby, H.W., Grove, G.R., Timma, D.L., 1956. Neutron-capture cross section of actinium-227. Phys. Rev. 102, 1140. https://doi.org/10.1103/PhysRev.102.1140.
- Knight, G.B., Macklin, R.L., 1948. Half-life of U X1(Th234). Phys. Rev. 74, 1540–1541. https://doi.org/10.1103/PhysRev.74.1540.
- Kurz, M.D., Moreira, M., Curtice, J., Lott III, D.E., Mahoney, J.J., Sinton, J.M., 2005. Correlated helium, neon, and melt production on the super-fast spreading East

- Pacific Rise near 17°S. Earth Planet. Sci. Lett. 232, 125–142. https://doi.org/10.1016/j.epsl.2005.01.005.
- Lam, P.J., Lee, J.M., Heller, M.I., Mehic, S., Xiang, Y., Bates, N.R., 2018. Size-fractionated distributions of suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201, 90–107. https://doi.org/10.1016/j.marchem.2017.08.013.
- Lee, J.M., Heller, M.I., Lam, P.J., 2018. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201, 108–123. https://doi.org/10.1016/j.marchem.2017.09.006.
- Lerner, P., Marchal, O., Lam, P.J., Anderson, R.F., Buesseler, K., Charette, M.A., Edwards, R.L., Hayes, C.T., Huang, K.-F., Lu, Y., Robinson, L.F., Solow, A., 2016. Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 113, 57-79. https://doi.org/10.1016/j.dsr.2016.03.008.
- Lerner, P., Marchal, O., Lam, P.J., Buesseler, K., Charette, M., 2017. Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 125, 106–128. https://doi.org/10.1016/j.dsr.2017. 05.003.
- Lopez, G.I., Marcantonio, F., Lyle, M., Lynch-Stieglitz, J., 2015. Dissolved and particulate ²³⁰Th-²³²Th in the Central Equatorial Pacific Ocean: evidence for far-field transport of the East Pacific Rise hydrothermal plume. Earth Planet. Sci. Lett. 431, 87–95. https://doi.org/10.1016/j.epsl.2015.09.019.
- Lundstrom, C.C., Sampson, D.E., Perfit, M.R., Gill, J., Williams, Q., 1999. Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. J. Geophys. Res., Oceans (1978–2012) 104, 13035–13048. https://doi.org/10.1029/1999JB900081.
- Lupton, J.E., Craig, H., 1981. A major helium-3 source at 15°S on the East Pacific Rise. Science 214, 13–18. https://doi.org/10.1126/science.214.4516.13.
- Lupton, J.E., Jenkins, W.J., 2017. Evolution of the south Pacific helium plume over the past three decades. Geochem. Geophys. Geosyst. 18, 1810–1823. https://doi.org/ 10.1002/2017GC006848.
- Maiti, K., Charette, M.A., Buesseler, K.O., Zhou, K., Henderson, P., Moore, W.S., Morris, P., Kipp, L., 2015. Determination of particulate and dissolved ²²⁸Th in seawater using a delayed coincidence counter. Mar. Chem. 177, 196–202. https://doi.org/10.1016/j.marchem.2014.12.001.
- Moore, W.S., Arnold, R., 1996. Measurement of ²²³Ra and ²²⁴Ra in coastal waters using a delayed coincidence counter. J. Geophys. Res., Oceans (1978–2012) 101, 1321–1329. https://doi.org/10.1029/95JC03139.
- Moore, W.S., Sackett, W.M., 1964. Uranium and thorium series inequilibrium in sea water. J. Geophys. Res. 69, 5401–5405. https://doi.org/10.1029/JZ069i024p05401.
- Owens, S.A., Buesseler, K.O., Sims, K.W.W., 2011. Re-evaluating the ²³⁸U-salinity relationship in seawater: implications for the ²³⁸U-²³⁴Th disequilibrium method. Mar. Chem. 127, 31–39. https://doi.org/10.1016/j.marchem.2011.07.005.
- Owens, S.A., Pike, S., Buesseler, K.O., 2015. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep-Sea Res., Part 2, Top. Stud. Oceanogr. 116, 42–59. https://doi.org/10.1016/j.dsr2.2014.11.010.
- Pavia, F., Anderson, R., Vivancos, S., Fleisher, M., Lam, P., Lu, Y., Cheng, H., Zhang, P., Edwards, R.L., 2018. Intense hydrothermal scavenging of ²³⁰Th and ²³¹Pa in the deep Southeast Pacific. Mar. Chem. 201, 212–228. https://doi.org/10.1016/j.marchem.2017.08.003.
- Resing, J.A., Sedwick, P.N., German, C.R., Jenkins, W.J., Moffett, J.W., Sohst, B.M., Tagliabue, A., 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203. https://doi.org/10.1038/ nature14577.
- Roy-Barman, M., Lemaître, C., Ayrault, S., Jeandel, C., Souhaut, M., Miquel, J.C., 2009. The influence of particle composition on Thorium scavenging in the Mediterranean Sea. Earth Planet. Sci. Lett. 286, 526–534. https://doi.org/10.1016/j.epsl. 2009.07.018.
- Rutgers van der Loeff, M., Cai, P., Stimac, I., Bauch, D., Hanfland, C., Roeske, T., Moran, S.B., 2012. Shelf-basin exchange times of Arctic surface waters estimated from ²²⁸Th/²²⁸Ra disequilibrium. J. Geophys. Res., Oceans (1978–2012) 117. https://doi.org/10.1029/2011JC007478.
- Rutgers van der Loeff, M., Kipp, L., Charette, M.A., Moore, W.S., Black, E., Stimac, I., Charkin, A., Bauch, D., Valk, O., Karcher, M., Krumpen, T., Casacuberta, N., Smethie, W., Rember, R., 2018. Radium isotopes across the Arctic Ocean show time scales of water mass ventilation and increasing shelf inputs. J. Geophys. Res., Oceans 123, 4853–4873. https://doi.org/10.1029/2018/C013888.
- Sims, K.W.W., Goldstein, S.J., Blichert-toft, J., Perfit, M.R., Kelemen, P., Fornari, D.J., Michael, P., Murrell, M.T., Hart, S.R., DePaolo, D.J., Layne, G., Ball, L., Jull, M., Bender, J., 2002. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504. https://doi.org/10.1016/S0016-7037(02)00909-2.
- Tagliabue, A., Bopp, L., Dutay, J.-C., Bowie, A.R., Chever, F., Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M., Jeandel, C., 2010. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3, 252–256. https://doi.org/10.1038/ngeo818.
- Turekian, K.K., Cochran, J.K., Kharkar, D.P., Cerrato, R.M., Vaisnys, J.R., Sanders, H.L., Grassle, J.F., Allen, J.A., 1975. Slow growth rate of a deep-sea clam determined by ²²⁸Ra chronology. Proc. Natl. Acad. Sci. USA 72, 2829–2832. https://doi.org/ 10.1073/pnas.72.7.2829.

- Urabe, T., Baker, E.T., Ishibashi, J., Feely, R.A., Marumo, K., Massoth, G.J., Maruyama, A., Shitashima, K., Okamura, K., Lupton, J.E., Sonoda, A., Yamazaki, T., Aoki, M., Gendron, J., Greene, R., Kaiho, Y., Kisimoto, K., Lebon, G., Matsumoto, T., Nakamura, K., Nishizawa, A., Okano, O., Paradis, G., Roe, K., Shibata, T., Tennant, D., Vance, T., Walker, S.L., Yabuki, T., Ytow, N., 1995. The effect of magmatic ac-
- tivity on hydrothermal venting along the superfast-spreading East Pacific Rise. Science 269, 1092–1095. https://doi.org/10.1126/science.269.5227.1092. Zilberman, N.V., Roemmich, D.H., Gille, S.T., 2017. The East Pacific Rise current: topo-
- Zilberman, N.V., Roemmich, D.H., Gille, S.T., 2017. The East Pacific Rise current: topographic enhancement of the interior flow in the South Pacific Ocean. Geophys. Res. Lett. 44, 277–285. https://doi.org/10.1002/2016GL069039.