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Abstract—Multi-robot task allocation (MRTA) problems re-
quire that robots take complex choices based on their un-
derstanding of a dynamic and uncertain environment. As a
distributed computing system, the Multi-Robot System (MRS)
must handle and distribute processing tasks (MRpTA). Each
robot must contribute to the overall efficiency of the system based
solely on a limited knowledge of its environment. Market-based
methods are a natural candidate to deal processing tasks over
a MRS but recent and numerous developments in reinforcement
learning and especially Deep Q-Networks (DQN) provide new
opportunities to solve the problem. In this paper we propose a
new DQN-based method so that robots can learn directly from
experience, and compare it with Market-based approaches as well
with centralized and purely local solutions. Our study shows the
relevancy of learning-based methods and also highlight research
challenges to solve the processing load-balancing problem in
MRS.

Index Terms—Multi-robot tasks allocation, distributed system,
reinforcement learning, deep Q-learning

I. INTRODUCTION

The robust and flexible nature of multi-robot systems (MRS)
makes them particularly suitable for critical tasks such as
security or rescue missions. However, effectively coordinating
the robots requires to accurately distribute the work within the
system which leads to the multi-robot task allocation (MRTA)
problem. This problem has been extensively studied and many
approaches have been proposed to solve it [1].

But autonomy, safety and accuracy requirements come with
a high computing cost due to a significant increase of sensor
infrastructure and of algorithm complexity developed to sense,
analyse and decide. A direct consequence is that processing
tasks, within the MRS, become a major impediment to their
development. In fact, despite the improvement of embedded-
systems processing and storage capacities, computing re-
sources are intrinsically limited. Cloud-robotics [2] have been
introduced as an alternative solution, but it is applicable only
when reliable and high bandwidth connections are available
and when the processing latency, namely the response time, is
not critical.

The concept of Robotic Cluster has also been introduced to
speed up computationally hard tasks such as SLAM, which
is detailed in [3]. This work demonstrates the possibility
to get benefit from multiple processing resources distributed
over a cluster of interconnected robots to execute a parallel
version (e.g. multithreaded) of a complex application task.
If we extend this work to multiple independent tasks, then
sharing resources allows to improve the processing capacity of

each single robot with multi-tasking capabilities. Considering
a set of processing tasks to be executed by the MRS, the
new question to solve becomes a task allocation problem with
constraints such as execution time and priorities. This question
is a variant of the MRTA problem focused on processing tasks
(MRpTA).

Considering the MRS context, different options are possible.
Firstly, the method can be centralized or decentralized. On the
one hand, a centralized approach solves most of the difficulties
by allowing a decision making based on a perfect knowledge
of the state of each processing resource. But on the other hand,
it brings two major drawbacks. The first one is the unreliability
since the central agent introduces a single point of failure.
The second one is the inherent communication overhead due
to the aggregation of the all system knowledge in a single
robot. This communication cost strongly limits the system
scalability and makes it unpractical for MRS. Therefore, we
only focus on distributed systems. Regardless the architecture
the system uses, the problem may take many forms from
travelling salesman problem (TSP) to job scheduling. The
latter is more frequently studied in the field of multiprocessors
or computer clusters than in robotics. It also raises new
challenges related to the rapid development of autonomous
systems. Indeed, the last few years have seen the emergence
of new heavy processing methods in several areas such as
computer vision, sensor fusion and especially machine (deep)
learning.

In this paper, we investigate the task allocation problem
within a MRS according to their computational and memory
costs, with the joint objectives of task completion and fair load
balancing.

A market-based approach is a quite straightforward possi-
ble candidate, which has been used in conventional MRTA
problem in robotics and that can be adapted to the specificity
of processing tasks as detailed in Sec. II. But a MRS is
also composed of increasingly complex embedded systems,
including multiple sensors, multi-core architecture with GPU,
which are almost impossible to accurately model. Moreover
the robots evolve within an uncertain environment and execute
applications accordingly. The dynamic nature of the whole
system requires a high degree of adaptability to cope with the
lack of information (data availability, communication errors)
and rapid changes (failure, object detection).

Based on these observations we consider the opportunity
to use machine learning approaches and more specifically



Reinforcement Learning (RL), which has been successfully
applied in many fields, such as energy management, commu-
nication optimisation, job scheduling, etc. In RL, the agent
progressively learns to improve the quality of its decisions
according to the experience it acquires by means of a reward
that reflects the efficiency of the chosen actions. Recently,
the combination of deep neural networks and RL has been
introduced (Deep Q-Learning) to deal with the scalability issue
of RL. Thus, instead of storing values in tables that grow
with the environment dimensions, a neural network is used
to approximate the policy function and find the best action
according to the environment. This method has become very
popular with the success of the Deep Q-Learning on Atari
games [4].

In this article, we explore the viability of Deep Q-Learning
to solve the MRpTA problem and compare it with a multi-
robot task allocation problem with the following questions:

o Can robots of a fully decentralized system learn to
efficiently manage task allocation on their own?

o What is the performance of a method based on Deep Q-
Learning compared to a more traditional approach like
the market-based one?

o What does the use of learning imply for real-life appli-
cations?

The rest of this paper is organized as follows: Sec. II dis-
cusses relevant works on the MRTA problem and RL. Sec. III
explains the modelling of our problem and the approach used
to solve it. Sec. IV describes our experimentation set-up.
Experimental results are discussed in Sec. V. Finally, we
conclude and introduce future work based on this study.

II. RELATED WORK
A. Multi-robot tasks allocation

We briefly introduce the key points of our MRTA problem,
the reader can refer to cited references for detailed surveys
and complete formulations.

a) MRTA architecture: The literature provides various
instances of the MRTA problem, in order to offer a broader and
more theoretical view, Gerkey and Mataric [1] have proposed
a taxonomy for those problems. Based on their definition, our
architecture is a multi-task type, single robot and instanta-
neous assignment (MT-SR-IA). In this decentralized context,
we compare the efficiency of two methods: a market-based
approach and an approach using reinforcement learning.

b) Market-based systems: A market-based approach en-
hances the efficiency of the overall system by maximizing
individual profits. Several surveys address this subject [1], [5].
In our comparison cases, overloaded robots sell tasks to others
in order to maximize the system’s task completion rate. The
sale is made by auction where an auctioneer (the seller) offers
a task for sale. Each participating robot submits an auction
whose valuation depends on its ability to perform the task.
The best bidder wins the task and runs it. The model used for
auctions is sequential single item mechanism, which is both
efficient and inexpensive [6]. Further details on the auctions
can be found in [7], [8].

Although it is inexpensive in communication or processing,
this process raises the question of bid estimation. It is indeed
difficult to correctly estimate a bid when several parameters
are involved and especially, when their value depends on the
environment’s state. To overcome this problem, we propose
another approach based on reinforcement learning.

B. Reinforcement learning

One of the main goals of our RL approach is to remove the
auction system. Agents must then be able to correctly estimate
the relevance of a transfer without exchanging information
about their status.

1) Principles: In RL, the agent observes at each time step,
the environment’s state s; and chooses an action a;. This
action modifies the environment, which then proceeds to the
next state s;41. Then, the agent receives a reward r; according
to the quality of its choice. The learning aim of the agent is to
maximize the cumulative value of future rewards. To operate,
this method requires that the state transitions are stochastic and
have the properties of a Markov Decision Process (MDP). It
means that the rewards 7, and states’ transitions s;;; must
depend only on the environment s; and the action a;. Fig 1
illustrates the principle of reinforcement learning

Reward
Action .
Agent Environment
Observed state
Fig. 1. Reinforcement Learning Diagram

One of the most popular reinforcement learning methods
is Q-Learning, which chooses its actions based on Q-values.
Q-Learning uses a table to store all Q-values of all possible
{state, action} pairs. This Q-table is updated using the Bellman
equation (eq. 1). The action selection is usually done with
an e-greedy policy. The Q value can be calculated using the
following formula and definitions:

er(Smat) = T(St, at) + ’Ymaerr(StHaatH) (D

o 7(8¢,ay) returns the reward of action a; in the state s;

e v in [0,1] is the discount factor witch control the value
of future rewards

o Qr(St+1,a:41) returns the optimal possible Q-value of
the next state

Although effective, the Q-Learning method has some limita-
tions. Indeed, it does not scale with the number of states since
the number of pairs {state,action} increases exponentially
leading to a very large Q-table and so requiring a large amount
of memory. To overcome this problem, the Deep Q Network
(DQN) method has been introduced, it combines principles of
Q-Learning and a deep neural network (DNN) [4].



a) Deep Q Network: The limitation can be solved using
a DNN like a function approximator. An approximation is
possible since an agent must take similar actions for ’close-
by’ states. Fig.2 shows a Deep Q Network who uses parameter
fitting to construct a function able to predict Q-values.

l Reward

Agent

Action

State Environment

Observed state

Fig. 2. DQN diagram

First, we construct a loss function using the mean square
deviation to define the target function (eq. 2). Then we update
weights using the Adam optimiser [9], which is computation-
ally efficient.

Li(0;) = El(yi — Qn (1, a1, 0;))] )

with: y; = 7(s¢, a¢) + ymarQr(se41, apy1:6i-1)

However, by replacing the estimating function Q-values with
a DNN the algorithm becomes unstable. The main reason is
that there is a strong correlation between continuous states
and action inputs. Each small update of the Q value of an
action causes the modification of the set of network weights,
which affects the Q value of each action in the other states.
This strongly impacts the distribution of sampling data. To
avoid instability we use experience replay developed by [10].
With this mechanism, each experiment {state, action, reward }
is stored in a database. The agent learns from samples selected
randomly and consistently in its database. Thus, all correla-
tions are broken, and learning is accelerated.

b) Distributed reinforcement learning: Our approach be-
ing decentralized, each robot has its own learning system.
Many distributed approaches take advantage of the multiplicity
of local learning to accelerate the learning of the system
[11]. Indeed, it is possible to exchange experiences between
agents. Thus, each agent learns from others which allows
it to converge more quickly towards an optimal solution as
shown by [12]. We do not consider this mechanism that
requires a large data exchange which is incompatible with a
real deployment of mobile robots. Hereafter we describe the
method used to compare these two approaches.

III. METHOD DEFINITION

The two compared approaches share the same definition of
the environment. They differ by their decision making process,
in particular for the load balancing mechanism.

A. Definitions shared by both approaches

1) Context and objectives:

a) MRS objectives: the system pursues two objectives.
The first one is the completion of a maximum of tasks assigned
to it. It means that it must distribute the load over the entire
MRS. The second objective is to favour high priority tasks. But
the environment constraint and evolution make impossible to
fully respect both objectives. The system must make choices.

For each task assigned to it, the agent must choose from
one of three possible actions: run, postpone and transfer.

1) run : if enough resources are available, it executes the

task until completion.

2) postpone : postpones the task until the next allocation
cycle or fails the task if its deadline is reached.

3) transfer : transfers the task to another agent (see III.B
and III.C for details). This transfer involves a penalty in
order to model the overhead generated by the communi-
cations. The CPU and memory resources equivalent to
the consumption of the transferred task during a cycle
are blocked on the receiving agent while the transfer
occurs. The task runs only in the next cycle.

b) MRS communications: the system being totally de-
centralized, robots communicate only during a transfer. There
is no other information’s exchange. Each robot relies solely on
its local information to schedule its tasks. This low communi-
cation’s level ensures a high-level of scalability. To get closer
to a real deployment, we consider an environment composed of
multiple areas where communications can only be established
between robots of a same area.

c) Further information:

o The presence of a robot in a given area is not known by
other robots.

o Transfer occurs via broadcast.

o Communications take place smoothly.

o Time is modelled as discrete timesteps.

e Robots are homogeneous and evolve in parallel

o Tasks are assigned to robots in a sporadic and uniformly
random manner.

2) Task definition: In our model tasks are independent and
have a fixed priority (but no task is imperative). Furthermore,
there is no task preemption except case given in IIL.B. Sim-
ilarly to prior work [3], we assume that task characteristics
is known upon its arrival in the robot queue. The main task
features are the following:

o CPU usage: processing resource needed to run the task.

e Memory usage: memory space needed to run the task.

o Execution time: the number of iterations required to
complete the task.

« Priority: upon its creation, each task is assigned to a fixed
priority level. There are three levels, high, medium, and
low corresponding to values 1, 2, and 3 respectively. This
value is randomly selected in a uniform manner.

o Laxity: maximum time allowed before the task starts.
After this delay, the task is considered failed if not started.

Since pending tasks are stored in a queue, agents cannot
choose which task to deal with. To solve this problem, the
tasks in the queue are automatically sorted by priority (1 to 3)
and by earliest deadline. Then the decision process depends
on the approach used.



B. Market-based approaches

We consider two approaches, with or without preemption.
They share the same decision making process, only the scope
of the transfer mechanism differs as explained in III-B2.

1) Decision process: First, each agent tries to run local
tasks as long as resources permit it. Then, it tries to transfer the
non-executed tasks to other robots. And finally, it postpones
the remaining tasks that have not found a buyer. A complete
diagram of the decision process of the different algorithms
used in this article can be found in Fig. 4. The transfer action
uses an auction system to select the best receiver.

2) The auction system: When an agent wants to transfer a
job, it uses the auction system mechanism. It then becomes
an auctioneer and proposes selling a task to all other agents
in its area. Any agent receiving the offer submits a bid whose
evaluation process is described in Algo. 1. The preemptive
method allows agents to stop the execution of certain tasks to
accept a transfer. Preemption can only be done to the detriment
of lower priority tasks. Stopped tasks can be restarted by the
agent but will start from scratch (as penalty) and must respect
their initial deadline. In the preemptive method the auctioneer
can participate to its own auction which consequently allows
local preemption. It is worth mentioning that the centralized
nature of auctions does not contradict the decentralized nature
of the system. Indeed, this centralization is temporary and
any agent can become an auctioneer. Therefore, there is not
introduction of a single point of failure (SPOF).

C. DON approaches

Unlike market-based approaches, the system has complete
freedom over the action it chooses. The only limit being the
validity of the action, the system cannot perform an impos-
sible action like allocating more resources than owning. The
decision process depends on the Q-values calculated during
the learning. Moreover, no preemption is allowed for this
approach so the system must learn to refrain from performing
low priority tasks to ensure high-priority task execution.

1) Decision process: As mentioned earlier, our RL method
relies on a DNN to predict Q-values. These Q-values deter-
mine which of the three actions (run, transfer or postpone) to
choose in the current state. The architecture of our network
comprises an input layer of 9 neurons, two hidden layers of 32
neurons each and an output layer of 3 neurons as described by
Fig. 3. The input layer brings two types of information. The
first one is the state of the agent and consists of four neurons
(CPU load, memory load, current area and tasks remaining in
the queue). The second one, composed of five neurons, delivers
information (CPU requirement, memory requirement, priority,
deadline, transfer) about the task to be allocated.

In this approach, there is no explicit system for selecting the
receiver robot for the transferred task. As a result, the process
differs from the auction approach.

2) DQON and transfer: The transfer action causes the release
of a transfer proposal to other agents in the area. Each
concerned agent uses its DQN to choose whether to accept
the task or not. If only one agent responds favourably, it
will execute the task at the next cycle with the penalties

Algorithm 1: Bid valuation algorithm
(In red, steps specific to the pre-emptive approach)
Data: T, the auctioned task
A, the list of active tasks on the robot
A;, the list of active tasks with a priority 4
Rpy, the amount of free CPU on the robot
Ryem, the amount of free memory on the robot
Function : cpu(i), returns the CPU required by task ¢
mem(i), returns the memory required by task i
Result: Bid, The bid valuation
if Repy = cpu(T) and Rper, > mem(T') then
‘ Bid «+ chu + R’rnenL 5
else if priority(T) = 1 and
Repu + cpu(i) = epu(T) and
IEA\A,
Ryem + Z mem(i) = mem(T) then
IEA\ A,
Bld — chu + Rmem, -

Z (epu(i) + mem(i))
i€A;
else if priority(T) = 2 and
Repu+ Y cpuli) > cpu(T) and
i€As
Riem + Z mem(i) = mem(T) then

i€As
Bid < Repy + Rmem — Z (cpu(i) + mem(i))
1€A\ A3
else
‘ Bid = -2 ;
end

e e

7
S

Agent state (x4)

Task state (x5)

PG
./\/\‘
RS

Y N\

Intput layer Output layer

Hidden layers (2x32)

Fig. 3. Schematic view of our DQN architecture

due to the transfer. If several favourable answers exist, the
agent is randomly selected regardless of the relevance of this
choice. Agents must learn to properly evaluate the appropriate
response to a transfer request. Finally, the task is postponed if
no favourable response is sent to the auctioneer.

Another key factor of a DQN method is its reward system,
which fully conditions the learning quality and its relevance.

3) The rewards’ system: Our system has two objectives: the
completion of a maximum of tasks and the respect of priorities.
Moreover, the total freedom of this approach implies a third
objective: the limitation of the use of the transfer in order
to avoid over-communication between the agents. Our system
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Fig. 4. Decision process diagram for the different methods

rewards differently if the action leads to performing a task
(action O or action 1 successfully) or not.

Vi if performed.

Jx (3—1) 3)

r(s¢,a¢) = i
(st,a4) T + Bd0o,, otherwise.

e 1,7, L : the priority, the number of postponement and the
laxity of the task, respectively. These values are obtained
from s; and s;41.

o V =[ay, a9, as] : reward based on priority

o 7 : takes the value 0 if the transfer is a success, 1
otherwise

e [ : the transfer’s penalty

The values of aj, ag, as, 5 have been determined by
successive simulations and are 1, 0.3, 0.05, —0.2 , respectively.
We will now present the other parameters of our experiments.

IV. EXPERIMENTAL CONDITIONS

A. Experimentation set up

Before deploying our algorithms on mobile robots, we test
our comparison on an emulator to evaluate its relevance.

1) Emulator set up: Learning methods based on DNN
require intensive computing. We have, therefore, tested the
learning and inference times on an embedded architecture
adapted to mobile robots. Our emulator is coded in python
3.7.3. The learning and deployment part of DNN rely on
the widely used Tensorflow (with Keras), open source ML
framework.

2) Viability for robot deployment: The Jetson TX2 is a
power-efficient (< 15W) computing device suitable for Em-
bedded AI. Since it is very popular on mobile robot, it will
serve as a reference. As shown in Table I, results attest our
reinforcement approach is fully compatible with the computing
power available on a robotic architecture.

TABLE I
COMPARISON OF EMULATOR AND EMBEDDED ARCHITECTURES

Set up Emulator Nvidia Jetson TX2
Components 2 Intel Xeon Silver 4114 ARM Cortex-AS57
P ) Nvidia GTX 1080 TI NVIDIA Denver2
20 cores at 2.20 GHz 4 cores at 2 GHz +
Hardware 64 GB of DDR4 2 cores at 2 GHz
3584 CUDA cores 8GB 128-bit LPDDR4
11 GB GDDR5X 256 CUDA cores
Inference 0.002s 0.0045s
Experience repla
(Bfmh of 24)p y 0.21s 0.52s

B. Reference performances

We introduce a lower and upper bounds in order to get
comparison points for our three methods: DQN, market based
(’Auction’) and market-based with preemption ("P-Auction’).

1) Lower bound: A purely decentralized and local approach
acts as a lower bound (’L-Bound’). There is no communication
between the agents. Each robot acts independently of the oth-
ers. All other approaches must be superior because otherwise
they are counter-productive.

2) Upper bound: As an upper bound ("U-Bound’), we log-
ically chose a centralized approach with preemption. Indeed,
because of its overall knowledge of the state of the system, the
centralized vision offers optimal performance. All decentral-
ized systems must aim to achieve such performances. Since
our system is spread over multiple areas, our centralization is
done by area. Each of them has a central agent independent
of the MRS and equivalent to a local cloud. At each iteration,
the new tasks to be assigned to the area agents are, instead,
assigned to the central agent of the corresponding area. Then,
the central agent distributes the tasks by favouring the load
balancing among all available agents. At each iteration, all
tasks are assigned to allow agents moving between areas
(carrying’ their tasks with them). The surplus tasks are
distributed uniformly between the robots and reclaim, at the
beginning of each new iteration, to be redistributed.
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C. Experimentation configurations
Because of space limitations, we restrict our study to a

representative set of configurations.

Environment Settings: Learning parameters:

o Number of robots: 7 e« v=0.5

e Number of areas: 3 e €min = 0.01

e Maximum postpone o Epsilon decay = 0.995
value: 5 o Learning rate o = 0.001

o Task execution time : 4 o Batch size: 24

1) Tasks assignment: Tasks appear over time in an aperi-
odic way and are randomly assigned to an agent. To simulate
activity peaks, the number of new tasks assigned to the systems
is of serrated type from two to twelve (and then twelve to
two) and so on. The average number of tasks assigned per
iteration is therefore seven, which, according to the experi-
ments and configurations, seems to be the sweet spots between
the overload and the complete system saturation. During the
experiments, the approaches evolve in parallel in a strictly
identical environment (the assignment of tasks is identical).

2) Area assignment: Our experiment includes three areas
(areay, areas and areas) and all agents start in the area;.
Every ten iterations, each robot is assigned to a zone that can
be the same as the current one. The assignment probabilities
for each area are as follows: P(area;) = 3, P(areay) = %
and P(areas) = §. The differences in probabilities introduce
an imbalance to which the DQN approach must fit. As with
tasks assignment, this assignment is identical for each studied

approach.

We now present the results of our experiments obtained with
dataset described in Table II. We have generated a balanced
synthetic task set where no preference exists for CPU or
memory usage. So the task set is built with the following
property: if a task requesting x CPU and y memory (MEM)
exists, then a mirrored task requiring y CPU and x MEM exists
as well. In addition, there is also a balanced task that requires
z CPU and  MEM. These results are those of an experiment
taking place over 800 iterations. Since the DQN approach
requires about 300 iterations to be effective, we discard the
data out of the first 300 iterations to only analyse the last 500
iterations.
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L-Bound Auction P-Auction U-Bound

Fig. 6. Tasks failed

3-priority 60

Average load in %
B w
o o

= CPU
10 == memory
reserved

L-Bound Auction P-Auction U-Bound

DQN

Fig. 7. Average load
TABLE II
TASKS’ DATASET
CPU | MEM CPU | MEM CPU | MEM

Pl@w| @ | Plwm| @[] @] @
T1 5 30 T2 5 5 T3 10 15
T4 10 40 T5 10 10 T6 15 10
T7 15 25 T8 15 15 T9 20 35
T10 20 30 T11 20 20 T12 25 15
T13 25 35 T14 25 25 T15 30 5
T16 30 20 T17 30 30 TI18 35 20
T19 35 25 T20 35 35 T21 40 10
T22 40 40

V. RESULTS

A. Overall performances

These simulations are intended to answer questions raised
by the use of these approaches. The first question is how do
these strategies affect the system’s capacity to complete its
tasks?

1) Completion rate: Fig. 5, 6 show the number of tasks
completed and missed respectively, according to their priority
for each approach. Pre-emptive approaches (P-Auction and U-
Bound) and to a lesser extent the DQN approach provide a
much lower completion rate. This is explained by the penalty
caused by the eviction of low priority tasks which forces the
execution to be repeated from the beginning. The Auction
approach takes advantage of the transfer to offer the best
completion rate regardless of priorities.

Approaches using pre-emption or learning have a lower
completion rate. Are they able to show better performance
in respect of critical tasks?

2) Criticality management: Pre-emptive approaches are ef-
fective in fulfilling criticality with a zero failure rates for /-
priority tasks, as shown in Fig. 6. The DQN approach is likely
to provide better results than non-pre-emptive approaches.
This shows that this solution refrains from allocating as soon
as possible and retains some scope for high priority tasks.
However, it fails to ensure all /-priority tasks.

We see a need for compromise. The system cannot both
complete a maximum of tasks and effectively maximize the
completion of high priority tasks. The relevance of an ap-
proach therefore depends on the weighting given to the two
objectives. In this situation, how to evaluate the performance
of the different solutions?

3) Load balancing: The ability of a solution to maximize
the use of available resources is a good performance indicator.
Fig. 7 shows the average load distribution of an agent during
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500 iterations. The orange amount represents the resources
spent on processing the transfer overhead. Unsurprisingly, the
U-Bound offers the best resource utilization available thanks
to its centralized vision. On the other side of the spectrum,
the absence of a mechanism to transfer the load makes L-
bound the worst method for load distribution. Of the three
distributed approaches, the DQN is the most performing with a
greater payload and few resources spent on penalties. Although
having a large average load, the P-Auction spends too much in
penalties and therefore offers a payload barely over the lower
bound.

Distributed systems manage to distribute the load by using
the transfer mechanism. How often and effectively do market-
based and DQN approaches use the transfer mechanism?

B. Quality of the distribution

1) Transfer and communication: Fig. 8 shows the number
of successful and failed transfer queries over time. It appears
that the DQN-type approach has more control over the transfer
mechanism. Indeed, the success/failure rate is much more
advantageous than for market-based approaches. We also find
that the number of successful transfers is close to that of the
P-Auction. However, we note in Fig. 7 that the resources used
to pay the transfer penalties are significantly less important in
the DQN method. This solution therefore adopts a task transfer
strategy requiring few resources. The results regarding the
transfer are therefore mixed. On the one hand, we manage to
limit the number of transfers via our reward model as desired.
On the other hand, we fail to eliminate unsuccessful transfer
requests. This is explained by the fact that the success of
the transfer action does not depend solely on the transmitting
agent.

The transfer’s efficiency depends directly on the number of
potential recipients.What happens if we increase the transfer
range so that it can reach all areas?

2) Impact of areas: Fig. 9 and 10 show the evolution of
the transfer requests over time when the range is maximum
and the comparison of the results according to transfer range
respectively. As expected, increasing the transfer range allows
agents to find new sales opportunities. This results in an
increase in the number of successful transfers as well as a
decrease in failures for market-based methods. More surpris-
ingly, the DQN approach does not take advantage of these new
opportunities to transfer more. On the contrary, the number of
transfers decreases sharply leading to greater control over this
mechanism. This reluctance of the system to transfer tasks

is explained by the penalty incurred. Indeed, this solution
transfers only high-priority tasks where the non-completion
appears to the system as a greater penalty than the overhead
generated. Once again, it behaves to minimize the overhead.
This was already present with the selection of inexpensive
tasks for the transfer (thus generating the least penalty). The
greater number of transfers when fewer opportunities are
present is due to the uncertainty of success. Indeed, the DQN
approach does not seek to transfer more tasks, but to ensure
its transfers (to avoid greater penalties). To do so, the only
choice is to increase its number of requests.

So far, the results attest the great adaptability of the DQN
approach. In order to evaluate the scalability and robustness
of the method to the experiment parameters, we must explore
different configurations. Due to the exploration space and
space limitation we focus on two important features of an MRS
namely the scalability and the behaviour in case of imbalance.

C. Scalability and imbalance

1) Scalability: To test the scalability of our simulations,
we increase the number of robots from 7 to 20 as well
as the average number of tasks per iteration from 7 to 20.
The number of areas remains unchanged and has the same
transitions’ probabilities. Fig. 11, 12, 13 show the number of
tasks completed by priority, the number of tasks failed by
priority and the average load of an agent respectively. The
observed results are identical to those obtained for a system
three times smaller. It appears therefore that our conclusions
remain relevant on a larger scale.

2) Imbalance: In order to model an imbalance, we propose
the experimentation of a new set of tasks favouring one of the
metrics, the CPU (the results are identical if we choose to
favour the memory). This new set presented in Table III is a
refined version of the previous set where tasks requiring more
MEM than CPU have been removed.

TABLE III
TASKS’ DATASET WITH IMBALANCE

CPU MEM CPU MEM CPU MEM
DPl@w| @ | Pl l@w| @l P|@®| @
Tl 5 5 T2 10 10 T3 15 10
T4 15 15 T5 20 20 T6 25 15
T7 25 25 T8 30 5 T19 30 20
T10 30 30 T11 30 25 T12 35 25
T13 35 35 T14 40 10 TI15 40 40

Fig. 14, 15, 16 represent the completion rate by priority,
failures by priority and the average load of the agents. Com-
pletion rates remain close to those observed for a balanced
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game, but resource balancing performance differs significantly.
Indeed, the DQN is more efficient than the U-Bound and
manages to make greater use of system’s resources (77%
CPU + 1% reserved vs 75% CPU and 57% MEM + < 1%
reserved vs 56% MEM) , that reflects a profound difference
between studied approaches. On one side, we observe classical
approaches (without learning) trapped by their static nature.
Indeed, they are defined for a specific model and therefore
cannot adapt to a different problem. Here, we find the problem
of auctions’ valuation. On the other hand, we note the adaptive
nature of models based on RL that can learn by themselves
the correct valuation of a metric. The result is a functional
system that performs well without any a priori information.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose a comparative analysis of two
types of approaches to solve the MRpTA problem that emerge
to take advantage of shared computing resources within a
MRS. In a distributed context, agents must spread the com-
putational load through the transfer mechanism to compensate
for local overheads. To complicate the problem, the transfer
has a range limit and generates a penalty (20%).

As the complexity of the system is increasing, we have
imposed a simple auction valuation algorithm to represent the
impossibility of correctly valuing the bids of a real system. As
far as RL is concerned, we have limited the size of the neural
network architecture to make it compatible with mobile robot
computing capabilities. In addition, we impose a simple reward
scheme for the same reasons as auction valuation. Despite
these restrictions, the use of learning is relevant. Indeed, the
tested solution is able to:

e Respect a priorities system

o Schedule tasks effectively

o Develop a transfer strategy

o Adapt to a dynamic distributed context

There are however some expected limitations:
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Fig. 16. Average load with imbalance

« While complying to the priorities system, we could not
guarantee the execution of all /-priority tasks

o The distributed nature of the system does not allow to
sufficiently reduce the number of unsuccessful transfers

Overall our conclusion to this study is that DQN appears as
very relevant alternative.This first comparative approach to this
MRpTA problem paves the way for the following future works:

« Introduce a more accurate model for heterogeneous MP-
SOC (multi-core processors, GPU), a concrete simulation
of robot movements and the use of real task sets.

o Study the relevance of other RL methods such as those
based on the policy gradient, or other architectures such
as recursive neural networks.
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