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Unsteady flow rate evaluation methodology for identification of the dynamic transfer function 
of a cavitating Venturi. 

SUMMARY 

Artem MARIE-MAGDELEINE 
CNES, Evry, France 

Nicolas LEMOINE 
Snecma, Vernon, France 

The development of new rocket turbopumps makes it 
necessary to study different phenome na occ urring during 
cavitation, such as auto-oscillations that can cause the POGO 
effect and damage the rocket structure if they occur at the 
structural eigenfrequency. This is why an experimental facility 
is currently being developed in the Cremhyg laboratory in 
Grenoble, France in order to perfom1 dynamic characterization 
of different cavitating devices to define the general 
identification methodology. The work presented in this paper 
serves the purpose to test this methodology on a simulation 
case of the cavitating Venturi computed with the IZ code. The 
principle of the IZ code is presented in the second paragraph. 
The first step of the methodology consists of evaluating 
pressures and mass flow rates at the inlet and the outlet of the 
cavitating profile and the next steps aims at estimating the 
dynamic transfer function of the cavitating Venturi. For this 
purpose, the Kinetic Differential Pressure metl1od was chosen 
and introduced and its robustness towards evaluation 
uncertainti.es is evaluated in the third paragraph. Next, the 
numerical simulation with the IZ code gives the empirical 
transfer function results from the precise inlet and outlet 
pressure data which is later compared with the transfer matrix 
coefficients obtained with the Kinetic Differential Pressure 
method using the standard identification procedures such as the 
Empirical transfer function evaluation and the user-made Auto­
Regressive Moving Average eXogenous algorithm. 

INTRODUCTION 
During th e development of a new liquid propellant rocket 

engine the knowledge of dynamic transfer functions of 
cavitating turbopumps is primordial in order to correctly assess 
the risk of POGO phenomenon occurrence and to possibly 
propose a corresponding solution of an anti-POGO correction. 
Several studies on this topic were carried by every major space 
agencies [1-4]. In France, CNES (Centre national d'Etudes 
Spatiales) and Snecma are currently working in partnership 
with LEGl, Gipsa-lab and CremHyg laboratories in Grenoble 
on building a hydrodynamic test facility to perfonn 
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identification of transfer functions of different cavitating 
devices. In order to ensure that the tests go properly, several 
methods of uns teady flow rate evaluation and signal processing 
need to be considered. [5-6]. 

This facility includes devices allowing pressure and flow 
rate fluctuations in the domain from 5 to 50Hz as well as
instrumentation capable of measuring these fluctuations. 
Different optical (LDV, PIV, PD!, LIF), acoustic (ADV), 
electromagnetic, thermoanemometric (hot film, hot wire), 
magnetic resonance and ionization methods were considered [6, 
8-12]. Finally, the method using Kinetic Differential Pressures 
(KDP) [13] was chosen as both the simplest to implement and 
enough accurate. The performanc e of this method is presented 
in this article. This method allows deducing flow rate 
fluctuations from the unsteady pressure evaluations and thus to 
obtain all the infonnation the operator needs to identify the 
dynamic transfer matrix of a cavitating device [3]: 

(�:) = (�; :�) (�:) 
All variables are taken in the Fourier frequency domain. 

The superscript - means that fluctuating quantities are taken, 
but it will be omitted for the remaining frequency-domain 
fonnulae. Before applying KDP method for experiment-di data 
processing, a numerical method was developed i n  order to test 
and to evaluate the methodology of the mass flow rate 
restitution and of the dynamic transfer matrix identification. 
This article describes this methodology and presents its first 
application results. 

OBJECT OF STUDY 
The unsteady flow reconstitution simulation and the system 
identification algorithms will be tested on the cavitating 
Venturi CFD computations perfonned by the 2D unsteady code 
"IZ", which has been developed in our team with the support of 
the CNES-Centre National d'Etudes Spatiales. The code solves 
the Reynolds Averaged Navier-Stokes equations for a 
homogeneous fluid; it applies the k-e RNG turbulence model 
associated to .a barotropic approach to the cavitation modeling. 
The numerical code is widely described in [7], and has been 
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previously validated under different cavitating flow 
configurations. 
The studied Venturi (Fig.I) is coupled to the pipes at the inlet 
and the outlet of the system (Fig.2). The circu.it impedance is 
modeled by a 1 D hydro-elastic model that solves the Allievi's 
equations. 

iJp + U .iJp + a2 iJu 
= 0 iJu + U iJu + 2. iJp + C ulul 

= 
0 

iJt .iJx p iJx iJt iJx p iJx f 2D 
where u is the speed of the fluid flow, p is the pressure, Cf is 
the friction factor, D the pipe diameter, p the water density, x
the coordinate and a the sound speed in the pipe, which is 
defined from the sound speed in the water, pipe wall thickness 
e and Young modulus E: 

c a = -;:::==== 
J1 + Pwawc2D; eE 

These equations are solved by using the Method of 
Characteristics MOC. Head losses are modelled by the 
diaphragm approach [ 19]. 
The different boundary conditions during this study are the total 
reflection (pressure node) or the total absorption at the outlet 
(no-reflecting boundary conditions [ 18]). The mass flow is 
imposed at the inlet. This choice is a primordial part of the 
system identification procedure. Typically the imposed flow 
rate fluctuations are either a sum of several sinusoids or a chirp 
signal. Depending on the inlet excitation signal, different data 
post-treatment algorithms may be applied in order to determine 
the dynamic transfer matrix terms. 
Calculations presented in this paper concern cold water, a mean 
flow rate equal to l 5.5Us and inlet mean sigma coefficient 
value of about 2.4. The fluctuating pressure and flow rates are 
taken by 3 pressure sensors placed in the inlet pipe and 3 in the
outlet pipe equidistantly (Fig. 2). 

Um.tend�· CU\"ilution 
Q, ... 1(1) - Q,.,.1(1) = dV,-.pldl 
P •• .,,(1) - r,..., (1 J • 6P(1) 

P,.1.,(1) 
Q,,k,(I) Q ... �.(1) 

P . , .. .CI) 

Figure 2: Venturi geometry 

KDP BACKGROUND THEORY 
In this pa1t equations characterizing the KDP method are 
described. They arc at applied in the case of a simple duct in 
order to evaluate the accuracy and the robustness of the method 
when sensor data is polluted with a noise tem1. 

General equations 
Three equidistant points at the inlet pipe and three nodes at the 
outlet one are chosen as the positions of the pressure sensors. 
The pressure data at these nodes is used to estimate the 
unsteady flow rate in the pipe using the acoustic wave 
equations. The pressure signal is composed of one wave 
travelling in one direction and another wave travelling in the 
opposite direction [5, 6, 13]: 

p(x, w, t) = pg(Aeiw(t-�) + Beiw(t+�))
2rrf Let k = -;;-· H!ence the values read on the pressure sensors can

be written the following way after a Fourier transform, and the 
system of equations is solved in order to obtain the values of 
ascending and descending waves A and B and fo.- the sound 
speed a: 

p1 (f) = pg(A(f)elkl + 8(/)e-iki) 
P,(f) = pg(A(f) + 8(/)) 

P,(f) = pg(A(f)e-1•1 + 8(f)e1•1) 
P, + P, 

= 
e1•1 + e-•kt cos (2rrfl) 

2P2 2 a 
2nfl a = 
llp +P II arccos( 

· 12P, 3 ) 
The value of the sound speed a is to be taken at the frequency f 
where the signal spectral density is important to be more 
precise. The expressions of the tmsteady pressure and the 
unsteady mass flow rate at every coordinate x o f the pipe can 
be estimated using these acoustic wave equations: 

P(x,f) = pg(A(f)e-ikx + 8(f)e1kx) 
Q(x,f) = pyS (A(f)e-1"' -8(f)e1•") a 

It seems important to notice that the values of P and Q could be 
taken elsewhere from the measuring sections; hence the KDP 
method can also be used to extrapolate the unsteady pressure 
and mass flow rate data closer to the inlet and the outlet of the 
cavitating device to be characterized. 
In order to reconstruct time-domain data of the unsteady flow 
rate an inverse Fourier transform may be taken. However, for 
the identification purposes only the frequency domain data 
taken at the modulation frequency is needed. Firstly, several 
calculations have been performed on a ID line. At one end of 
the line the flow rate was modulated by a user as a sum of sine 
waves or as a chirp signal, and on the other end of the hydraulic 
line a totally reflecting limit condition was implemented. The 
CFL condition was set to be equal to 1. The test section had a 
length of 12 m split into 41 nodes separated by 30cm, the initial 
sound speed was 928m/s, and thus the time step dt was
3,2.104 s which is 0.0 I T ref· The position of the points �ivin� 
the pressure information P I, P2, P3 are typically the 5' , 20 
and 35•h. However, the acoustic wave equations allow
extrapolating the values of pressures and mass flow rates closer 
to the duct boundaries, i.e. at the I" and the 41" nodes. The 
results of the sound speed estimation and the flow rate 
reconstruction from the pressure nodes data showed to be in a 
good agreement with the originally implemented values. For 
the sound speed, typical estimation errors were about I% and 
for the flow rate the amplitude of a reconstructed signal may 
present the difference up to 3% with the simulated signal. The 
compari son between the original simulated flow rate and the 
reconstructed values are given at the Fig. 3 and 4: 
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Figure 3: Simulated flow rate 
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Figure 4: Reconstructed flow rate 
The small differences between the two surfaces may be 
explained by the head losses taken into account for the 
simulation (A.=0.019) but not taken into account in the acoustic 
wave equation used for mass flow rate reconstitution. The Root 
Mean Square error is about I 0% between the frequency domain 
signals of the simulated and the reconstmcted flow rates. 
Transfer matrix evaluation method 

Once the inlet and outlet pressure and mass flow rate frequency 
domain data is obtained, it is possible to evaluate the 
coefficients of the transfer matrix. As there are in all 2 inlet and
2 outlet variables, it is necessary to perfom1 a series of tests 
with the l inearly independent inlet frequency-domain data 
vectors (Pei, Q01) and (P02, Q02). This can be achieved through
different procedures. Firstly, the inlet mass flow rate amplitude 
variation fixed by the user does not imply inlet pressure 
fluctuations to vary proportionally. The other way to proceed is 
to change the pipeline boundary conditions, that is for instance 
to test the pressure node condition totally reflecting acoustic 
waves and the "free outlet" condition without any reflection. 
Moreover, the system l inearity can be tested with at least 3 non­
collinear input data vectors (P0;, Q0;). The expressions of the 
transfer matrix coefficients are the following: 

Pe i Pu 
z _ P,.2 P 

l - 1Pc1 Cll
Pc'l Oc2 
Pei Ost 

ZM = p�l Q"' 
Pc2 Qc2I 

This evaluation method is called the Empirical Transfer 
Function Evaluation, or ETFE. It gives satisfactory results if 
the signal to noise ratio is high enough. Otherwise, other 
methods may be used, e.g. auto-recursive methods such as 
ARM AX (I 4, I SJ, which will be presented later in the article.
KDP Method robustness evaluation 

The pressure sensors used may present high uncertainty values. 
The possible evaluation errors may come from internal causes 

(sensor calibration, numerical noise, linearization errors, and 
pipe vibrations) as well as from external ones (electromagnetic 
pollution from ne ighboring facilities) [ 16). This is why it is
important to test the algorithm robustness in case when the 
signal to noise ratio is low. 
To this extent, a random Gaussian noise variable is added to the 
simulated pressure signal, uncertainty propagation is studied 
and the obtained results are compared with those corresponding
to the 'clean' simulation. 
Propagation from P(t) to POw) 

The error on the time-domain signal is noted T](t) and the one 
on the frequency-domain signal is eUw). The time-domain error
is a Gaussian zero-centered white noise uncorrelated with P(t), 
and its amplitude may be estimated if the operator knows the 
possible error causes. The values of time-domain and 
frequency-domain errors are linked by the Parseva'I Formula for 
the Discrete Fourier Transform: 

T l/C1 

f Ll'1Ctr)l2 = L llE(jw)ll2 
t1:sO w:sO 

As t1 is the time step and T the total simulation time, l/T is the 
frequency step and l/t1 the maximum frequency vector value. 11 
is a ze ro-mean noise, when the number of samples N=.!. 

" 
increases, the relation between the standard deviations a� and a. 

is (JE = (J,,.JN. On the other side, P;(t} are typically sums of
sine waves, and the amplitude of the spectral density function 
of P; at modulated frequencies are directly proportional to the 

samples number N: Pi(jwmod) = �-Hence, the noise to signal 

ratio at the modulated frequency fni00 is proportional to �when

N increases: 
E;UWmod) CIC _2_ 
P;(jWmod) ,fN 

That means the longer the time-domain acqms1tton is, the 
higher the accuracy of the frequency-domain data P(jw) is. 
Propagation from POw,.,"'J to QOw,.,"'J 
At first, the uncerta inty propagation on the sound speed Ea 
needs to be estimated as a function of the frequency domain 
functions taken at the modulatio.n frequency: 

fa €2 2 €2 - E1 - €3 
-;;-= 2P2 - 2(2P2 - P1 - P3) 

Using the uncertainties propagation law it is possible to 
calculate the standard deviation of the sound of the speed 
evaluation, su.pposing the errors E1, e2, e3 independent: 

(ai, +ala+(• ;,p')2 ab)4n2f2l2a:f = p +P (4Pl- (P1 + P3)2).arccos2 ( 1zp2 ') 

Numberswise an error on the sound speed is less than 5%o if the 
initial time-domain pressure evaluation error 11(t) is 7% of 
measurement range. The expression of the error on the mass 
flow rate may be retrieved from the acoustic wave equation: 

f s jk!.. fQ = Q ...! (ctg(kl). (kl) - 1) + �(· ) P2 sin(k(l+x)).(l+x)-P, sin(lcx))
a a _sin kl 

j.S e, cos(kx)-£2 cos(k(x+I)) 
a · sin(kl) 

To quantify the possible errors on the mass flow rate a Monte­
Carlo simulation was performed with I 000 runs on the pipeline 
presented in the previous paragraph. For every simulation, each 
sensor data was artificially polluted with the white noise. The 
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Fig. 5 illustrates the error distribution on the mass flow rate at 
the modulated frequency QOwmo<1): 
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Figure 5: Mass flow rate error distribution

10 
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It can be seen at the diagram above that the estimated error may 
be decomposed into the systematic error of 0.6% of the flow 
rate fluctuation amplitude and into the random error with 
standard deviation of 0.1 %. The variation of the input random 
noise standard deviation has only influence on the random 
error. 
Propagation to the empirical transferjimction result 
The evaluation errors committed on the pressure and flow rate 
frequency-domain data will imply uncertainties on the final 
result of the transfer matrix coefficients. The exact fonnulation 
of the uncertainty propagation to the transfer matrix 
coefficients are presen ted below: 

I
Q., Ep"

I 
+
I
P" Eqei

l I
P., eq.,

I 
+
I
Q., Ep•2 1 

_Ez_m = Q., EpSl P,2 EQe2 Pei EQe2 Q., Epe1 
Zm 

I
p" Q"

I I
p" Q.,

IP,2 Qei Pei Q., 
The three other transfer matrix coefficients are expressed 
mutatis mutandis using the ETFE fonnulae. In the case when 
the user is not satisfied with the method robustness towards 
white noise, a user-made auto-recursive multiple input noise 
resistant algorithm ARMAX has been developed for this study. 

RESULTS AND DISCUSSION 
In a first series of simulations the Venturi is taken coupled with 
3m ducts (with IO nodes) at the inlet and outlet. The small
number of nodes makes it impossible to apply the KDP method 
on this simulation. Thus, the values of pressure and mass flow 
rates are taken at the inlet and outlet of the Venturi tube in order 
to test the proposed identification methods. 
The Fig. 6 and 7 show the system linearity domain. Point I is 
the evaluation of the transfer matrix using inlet mass flow rate 
fluctuations of I% and 2% of amplitude, point 2 uses 2% and 
3% and so on. 
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Figure 6: Gain linearity 
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Figure 7: Phase linearity 
T rer is 0.032s for this simulation. The tests were nm with the 
same frequency of 5 Hz. These diagrams show that for the 
amplitudes between 2% and 5% of flow rate modulation the
gain and the phase of the system remains the same. Even with 
the strong input noise (7% of measurement range) the transfer 
matrix coefficients remain quasi-constant. 
The next simulations show the Bode diagram of the frequency 
transfer matrix of the cavitating Venturi obtained by the 
empirical estimation formulae ETFE (Fig. 8 and 9) 
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Figure 8: Bode gain for cavitating Venturi 
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Figure 9: Bode phase for cavitating Ven1uri
The input noise has a less than I dB influence on the final ETFE 
result. Hence the frequency per frequency method is very 
accurate to estimate the transfer matrix coefficients both for the 
gain and the phase. The drawback of this method is that the 
values of the transfer function are only known at the modulated 
frequencies. This is why it seems logical to try an identification 
of a transfer fi.mction for another type of input signal in order to 
make the identification process quicker. To perfonn this task, a 
chirp-type signal was used, because it presents a very large 
spectral density which is corresponding to the operator's needs. 
The next simulations (Fig. 10 and 11) were performed for a 
down-chirp signal sin( ...fi). The spectral density of the input 
signal is contained between 0 and 0.2 Hz*T,er· According to the 
graphs below, the results give more data points using only two 
simulations with linearly independent input vectors, however it 
is less accurate than frequency by frequency tests, with noise 
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errors reaching 5 to I OdB, even if most of the points seem very 
accurate. The phase errors seem however imponant for the 
inductance and compressibility, reaching 20 degrees. 
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Figure 10: Bode gain for a down-chirp 
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Figure 11: Bode phase for a down-chirp 

In order to make the transfer matrix calculation from the ETFE 
input signal even more accurate and noise-proof the ARMAX 
(Auto-Regressive Moving Average Exogenous) identification 
method was implemented for this MIMO (Multiple Input 
Multiple Output) case [14, 15]. The chosen algorithm uses least 
mean squares by Kalman filter approach and forgetting factor. 
Only one simulation is necessary to perform the identification 
on the spectral domain set by the input which was chosen to be 
an up-chirp signal (sin(t2)). 
The last series of simulations of cavitating Venturi combined 
the mass flow rate reconstnaction by KDP method, ETFE and 
ARMAX identification methods. Thus it is possible to evaluate 
the accuracy of the KDP method on the test case and the 
accuracy of the ARMAX identification method applied on the 
reconstructed pressure and flow rates, which will not be 
possible during experiments. The simulation was performed on 
the up-chirp signals with totally reflecting or totally absorbing 
limit conditions. The Fig. 12 and 13 allow us to compare the 
ETFE of the four transfer matrix coefficients on the reference 
inlet-outlet signals, with the ETFE on pressure and flow rate 
signals reconstructed by the KDP method at the inlet and the 
outlet and with the transfer matrix coefficients obtained by 
user-made auto-recursive algorithm ARMAX. The error on the 
sound speed reconstitution was of 1% on both the inlet and the 
outlet lines compared to the initially implemented value. The 
results show that the KDP method in this case gives up to JOdB 
errors for the majority of the frequencies on the transfer 
function identification. For the phase, the reconstructed ETFE 
values may present up to 90 degrees error. It has to be noticed 
that the zeros and poles of the system determined by the 
ARMAX algorithm are lying in the entire frequency domain, 
even if the input signal presented no power density associated 
to the concerned frequency. This is why sometimes the user 
needs to define a very high order on the system (the 301h order 

was used for this simulation) which makes it difficult to link the 
model to any physical representation. 

CONCLUSION 
In this paper the precision of the KDP method to evaluate 
unsteady mass now rate and its robusmess towards pressure 
evaluation uncertainties was evaluated. This algorithm can be 
used to find the sound of the speed value, and to estimate the 
value of the mass flow rate fluctuations, thus making it possible 
to perform the whole identification procedure. The frequency 
per frequency tests proved to be the most accurate, but also to 
need the biggest amount of experience data. The study of a 
chirp signal need much less data but is also less accurate. 
Finally, the KDP method seems enough precise to implement it 
to the experimental facility. The present work will be pursued 
especially to adapt the recursive algorithm pan to the operator 
needs. The simulations presented in this paper had for purpose 
to develop the methodology to work with the experimental 
results that will come from the test facility. The tests began in 
April 2012. 

ACKNOWLEDGMENTS 
The authors would like to express their sincere gratitude to 
Fabio Carvalho (LEG!) who provided his assistance for several 
simulations with the IZ code, as well as to A. Pintiau, A. 
Kemilis, J. Toutin (Snecma) for their help with KDP method of 
the unsteady flow measurement, to J.J. Maninez (Gipsa-lab) for
the cxpla11atio11 of the auto-recursive identification methods, 
and finally to 0. Brugiere (LEGI) for his advice about the 
uncertainties propagation. We would especially like to thank 
the Centre National d'Etudes Spatiales for the IZ simulation
code. 

NOMENCLATURE 
P- nuid static pressure, frequency domain 
Q - mass now rate, frequency domain 
Z - impedanc·e 
p - nuid static pressure, time domain 
ll - nuid velocity, time domain 
CFAl4 - friction coefficients 
a - speed of sound in the pipe 
c - speed of sound in the water 
D - pipe diameter 
c - pipe wall thickness 
E - pipe materiel Young modulus 
S - pipe section 
x, dx - coordinate, space step 
t, dt - time, time step 
g- gravity 
k - wavenumber 
I - distance between pressure evaluations 
f - frequency 
T- total simulation time 
N - number of samples 
Greek letters 
p- fluid density 
w - pulsation 

5



Pressure gain Bode gain 
reference ETFE 

40 ETFE rcoonstiluted meouemem 
ARMAX on reconstituted meHUtement 

e 3() 

j 20 

8 10 

� 
0
, .... . ......... .. .. . . ............ ., .••.•... \-············· 

l10t 
-20 

-3() 

40 

J! 3() 
J 20 

! 101 � 0 
i-10

•-201 . 
• 3() 

0.2 0.4 

reference ETFE 

0.6 0.8 1 1.2 1.4 
ltequency Hz 

Compre� Sode g�h 

ETFE rKOn$li'luted mea5Ul'ement 
• ARMAX on reconslltuted measuremen1 

0.2 0.4 0.6 D.8 1 1.2 1.4 
ltequency Hi 

1.6 1.8 

1.6 1.8 

40 

J
20 

8 0
ID •• • 

i·20 .. ········ .. ... · 

1..J .. 
·�·· ...

referMCe ETFE 
ETFE reconstituted meaSU"eme.nt 
A.A.MAX on reconstttuted measur&ment 

3() 

·20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
ltequency Hz 

Aow rote g11'1 Bode g.oin 
ref�ttiee ETFE 
ETFE rec::ons.tituted mea50remeot · AA.MAX on reconstituted measurement 

02 o.� o.s o.8 1 12 1.4 1.6 1.8 
bequency Hi 

Figure 12: Bode gain diagrams 
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cr - standard deviation 
ri - time domain noise on pressure signal
( - frequency domain noise on pressure signal 
Superscript 

- - fluctuating quantities 
Subscripts 
m - pressure gain 

L- inductance 
C - compressibility 
M - Mass flow gain 
i- inner 
e - inlet 
s- outlet 
1, 2, 3 - pressure data nodes 
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I, 2 - non-collinear vectors 
mod - modulated 
a - speed of sound 
Q - mass flow rate 
P - pressure 
Z - impedance 
€ - frequency domain noise on pressure signal 
ref - reference 
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