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Unsteady flow rate evaluation methodology for identification of the dynamic transfer function
of a cavitating Venturi.

Artem MARIE-MAGDELEINE
CNES, Evry, France

Nicolas LEMOINE
Snecma, Vernon, France

SUMMARY

The develepment of new recket turbopumps makes it
necessary to study different phenomena occurring during
cavitation, such as auto-oscillations that can cause the P@G®
effect and damage the recket stiucture if they eccur at the
structural eigenfrequency. This 1s why an experimental facility
is currently being developed in the Cremhyg laboratory in
Greneble, France in erder to perferm dynamic characterization
of different cavitating devices te define the general
identification methodology. The work presented in this paper
serves the purpose to test this methodology on a simulation
case of the cavitating Venturi computed with the 1Z cede. The
principle of the 1Z code is presented in the secend paragraph.
The first step of the methodology consists of evaluating
pressures and mass flow rates at the inlet and the outlet of the
cavitating profile and the next steps aims at estimating the
dynamic transfer function of the cavitating Venturi. For this
purpose, the Kinetic Differential Pressure method was chosen
and introduced and its robustness tewards evaluation
uncertainties is evaluated in the third paragraph. Next, the
numerical simulation with the 1Z code gives the empirical
transfer function results frem the precise inlet and outlet
pressure data which is later cempared with the transfer matrix
coefficients obtained with the Kinetic Differential Pressure
methed using the standard identificatien procedures such as the
Empirical transfer function evaluation and the user-made Auto-
Regressive Moving Average e Xegenous algerithm,

INTRODUCTION

During the development of a new liquid propellant rocket
engine the knewledge of dynamic transfer functiens of
cavitating turbopumps is primordial in order to correctly assess
the risk of P@G® phenomenon occurrence and to possibly
propese a correspending solutien ef an anti-POGO cerrection.
Several studies on this topic were carried by every major space
agencies [1-4]. In France, CNES (Centre national d’Etudes
Spatiales) and Snecma are currently working in partnership
with LEG], Gipsa-lab and CremHyg laboratories in Grenoble
on building 2 hydredynamic test facility to perform
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identification of transfer functions of different cavitating
devices. In erder te ensure that the tests ge properly, several
methods of unsteady flow rate evaluatien and signal processing
need to be considered. [5-6].

This facility includes devices allowing pressure and flow
rate fluctuations in the demain from 5 to SOHz as well as
instrumentation capable of measuring these fluctuations.
Different eptical (LDV, PIV, PDI, LIF), aceustic (ADV),
electromagnetic, thermoanemometric (hot film, hot wire),
magnetic resenance and ionizatien metheds were censidered [6,
8-12]. Finally, the method using Kinetic Differential Pressures
(KDP) [13] was chosen as both the simplest to implement and
eneugh accurate. The perfermance of this method is presented
in this article. This methed allews deducing flow rate
fluctuations from the unsteady pressure evaluations and thus to
obtain all the infonnation the operator needs to identify the
dynamic transfer matrix of a cavitating device [3]:
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All variables are taken in the Fourier frequency domain.
The superscript ~ means that fluctuating quantities are taken,
but it will be emitted fer the remaining frequency-demain
fonnulae, Before applying KDP methed for experimental data
processing, a numerical method was developed in order to test
and to evaluate the methodology of the mass flow rate
restitution and of the dynamic transfer matrix identification.
This article describes this methedolegy and presents its first
application results.

OBJECT OF STUDY

The unsteady flow reconstitutien simulatien and the system
identification algorithms will be tested on the cavitating
Venturi CFD computations perfonned by the 2D unsteady code
“1Z”, which has been develeped in our team with the support of
the CNES-Centre National d’Etudes Spatiales. The code solves
the Reynelds Averaged Navier-Stekes equatiens for a
homogeneeus fluid; it applies the k-&¢ RNG turbulence model
associated to a barotropic approach to the cavitatien modeling.
The numerical code is widely described in [7], and has been



previously  validated under different  cavitating  flow
configurations,

The studied Venturi (Fig.1) is coupled to the pipes at the inlet
and the outlet of the system (Fig.2). The circuit impedance is
modeled by a 1D hydro-clastic madel that solves the Allievi’s
cquations.
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where u is the speed of the fluid flow, p is the pressure, Cf is
the friction factor, D the pipe diameter, p the water density, x
the coordinate and a the sound speed in the pipe, which is
defined frem the sound speed in the water, pipe wall thickness
¢ and Young modulus E:

a= i =
1+ EonterZ .

These equations are solved by using the Method of
Characteristics M@®C. Head losses are modelled by the
diaphragm approach [ 19].
The different boundary conditions during this study are the total
reflection (pressure node) or the total absorption at the outlet
(no-reflecting boundary conditions [18]). The mass flow is
imposcd &t the inlet. This choice is a primordial part of the
system identification procedure. Typically the imposed flow
rate fluctuations are cither & sum of several sinusoids or a chirp
signal. Depending on the inlet excitation signal, different data
post-trecatment algorithms may be applied in order to determine
the dynamic transfer matrix terms.
Calculations presented in this paper concemn cold water, @ mean
flow rate equal to 15.5L/s and inlet mean sigma cocfficient
value of about 2.4. The fluctuating pressure and flow rates are
taken by 3 pressure sensors placed in the inlet pipe and 3 in the

outlet pipe cquidistantly (Fig. 2).

Unsteady cuvitstion
Qauner( €} - Quates(t) = AV /g
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Figure 1: Venturi pipe coupling

Figure 2: Venturi geometry

KDP BACKGROUND THEORY

In this part equations characterizing the KDP method are
described. They are at applied in the case of a simple duct in
order to cvaluate the accuracy and the robustness of the method
when sensor data is polluted with a noise term.

General equations

Three cquidistant points at the inlet pipe and three nodes at the
outlet one are chosen as the positions of the pressure sensors.
The pressure data at these nodes is used to cstimate the
unstcady flow rate in the pipe using the acoustic wave
cquations, The pressure signal is composed of onc wave
travelling in onc direction and anather wave travelling in the
opposite direction [5, 6, 13]:
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Letk = z%f Hence the values read on the pressure sensors can

be written the following way after a Fourier transform, and the
system of equations is solved in order to obtain the values of
ascending and descending waves A and B and for the sound
speed a:
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The value of the sound speed a is to be taken at the frequency f
where the signal spectral density is important to be more
precise. The expressions of the unsteady pressure and the
unsteady mass flow rate at every coordinate x of the pipe can
be estimated using these acoustic wave equations:

P(x.f) = pg(A(fle™™ + B(f)e™ )

Qe f) = 22t - B()e)
It scems important to notice that the values of P and Q could be
taken clsewhere flrom the measuring scctions; hence the KDP
method can also be used ta extrapolate the unsteady pressure
and mass flow rate data closer to the inlet and the outlet of the
cavitating device to be characterized.
In order to reconstruct time-domain data of the unsteady flow
rate an inverse Fourier transform may be teken. However, for
the identification purposes only the frequency domain data
taken at the modulation frequency is needed. Firstly, several
calculations have been performed on & 1D line. At onc end of
the line the flow rate was modulated by a user as a sum of sine
waves or s & chirp signal, and on the other end of the hydraulic
linc a totally reflecting limit condition was implemented. The
CFL condition was sct te bc cqual te 1. The test scction had a
length of 12 m split into 41 nodes separated by 30cm, the initial
sound speced was 928mvs, and thus the time step df was
3,2.10* s which is 0.01 Tws. The position of the points givin
the pressure information P1, P2, P3 are typically the 5%, 20
and 35" Hewever, the acoustic wave equations allow
extrapolating the values of pressures and mass flow rates closer
to the duct boundaries, i.e. at the 1*' and the 41* nodes. The
results of the sound speed estimation and the flow rate
reconstruction from the pressure nodes data showed to be in a
good agreement with the originally implemented values. For
the sound speed, typical estimation errors were about 1% and
for the flow rate the amplitude of a reconstructed signal may
present the difference up to 3% with the simulated signal. The
comparison between the original simulated flow rate and the
reconstructed values are given at the Fig. 3 and 4:
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Figure 3: Simulated flow rate
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Figure 4: Recenstructed flow rate

The small differences between the twe surfaces may be
explained by the head losses taken into account for the
simulation (A=0.019) but not taken into account in the acoustic
wave equation used fer mass flow rate reconstitutien, The Roet
Mean Square error is about 1 0% between the frequency domain
signals ef the simulated and the reconstructed flew rates.
Transfer matrix evaluation method
Once the inlet and outlet pressure and mass tlow rate trequency
domain data is obtained, it is possible to evaluate the
coeflicients of the transfer matrix. As there are in all 2 inlet and
2 outlet variables, it is necessary te perform a series of tests
with the linearly independent inlet frequency-domain data
vectors (Pe), Q.1) and (P, Qe2). This can be achieved through
different procedures. Firstly, the inlet mass flew rate amplitude
variatien fixed by the user dees not imply inlet pressure
fluctuations te vary propertionally. The other way te preceed is
to change the pipeline boundary conditions, that is for instance
to test the pressure node condition totally reflecting acoustic
waves and the “free outlet” conditien without any reflectien.
Moreover, the system linearity can be tested with at least 3 non-
collinear input data vecters (P, @). The expressions ef the
transfer matrix coefficients are the following:

Pez Qez Pez Q2
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This evaluation method is called the Empirical Transfer

Function Evaluation, or ETFE. It gives satisfactory results if
the signal to neise ratie is high eneugh. Otherwise, ether
methods may be used, e.g. auto-recursive metheds such as
ARMAX [14, 15], which will be presented later in the article.
KDP Method rebustness evaluation

The pressure sensers used may present high uncertainty values.
The pessible evaluatien errers may ceme frem intemal causes

(senser calibration, numerical noise, linearization errers, and
pipe vibrations) as well as from external ones (electromagnetic
pellution frem neighboring facilities) (16]). This is why it is
important to test the algorithm robustness in case when the
signal to noise ratio is low.

Te this extent, a random Gaussian neise variable is added te the
simulated pressure signal, uncertainty propagation is studied
and the obtained results are compared with those correspending
te the ‘clean’ simulation,

Propagation from P(1) to P(jw)

The error on the time-domain signal is noted n(t} and the one
on the frequency-domain signal is &{jw). The time-domain error
is a Gaussian zero-centered white noise uncorrelated with P(t),
and its amplitude may be estimated if the operator knews the
pessible error causes. The values of time-domain and
frequency-demain errers are linked by the Parseval Formula fer

the Discrete Fourier Transform:
e

T
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As t; is the time step and T the total simulation time, 1/T is the
frequency step and l/t; the maximum frequency vector value. n
is a zero-mean noise, when the number of samples N——:‘
increases, the relation between the standard deviations o, and g,
is ¢c = 0,VN. On the other side, Pyt are typically sums of
sine waves, and the amplitude of the spectral density function
of P; at modulated frequencies are directly propertienal te the
samples number N: P;(jw,04) = :_/ Hence, the noise to signal

ratio at the modulated frequency f.,4 is proportional te %W when
N increases:

€l wmoa) i

Pi(j®wmoa) VN
That means the longer the time-domain acquisition is, the
higher the accuracy of the frequency-domain data P{jw) is.
Propagation from P(j®,.4 to QGW .0
At first, the uncertainty prepagatien en the seund speed €,
needs te be estimated as a function ef the frequency demain
functions taken at the modulation frequency:

€a £ 26— €, — €5
a 2P, 2P, -Pi-P)
Using the uncertainties prepagatien law it is pessible to
calculate the standard deviation ef the seund ef the speed
evaluatien, suppesing the errors €, €, €; independent:
(G‘z‘ +oh+ (%3-)2032)4112[”2
- Py + Py
(4P2 - (P, + ). arccos? (<5p—2)

Numberswise an error on the seund speed is less than 5%. if the
initial time-domain pressure evaluatien errer n(t) is 7% of
measurement range. The expression ef the errer on the mass
flow rate may be retrieved from the acoustic wave equation:

¢l =

€o = Q‘a—“(ccg(ki). (kD) = 1) + 5250 (o, sin(ieCt)) ()P, sinCia))

a sin(kl)
_ 5 e cos{kn)—e2 cos(k(x+1))
a’ sin(k()

To quantify the possible errors on the mass flow rate a Monte-
Carle simulation was perfermed with 1000 runs en the pipeline
presented in the previous paragraph. For every simulation, each
sensor data was artificially polluted with the white noise. The



Fig. 5 illustrates the error distributien on the mass flew rate at
the medulated frequency Q(jtmoa):
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Figure 5: Mass flow rate error distribution
It can be seen at the diagram abeve that the estimated errer may
be decomposed into the systematic error of 0.6% of the flow
rate fluctuation amplitude and inte the random error with
standard deviation of 0.1%. The variation of the input random
noise standard deviation has only influence on the random
errer.
Propagation (e the empirical transfer finctien result
The evaluation errors committed on the pressure and flow rate
frequency-domain data will imply uncertainties on the final
result of the transfer matrix ceefficients. The exact fornnulation
of the uncertainty propagation to the transfer matrix
coefficients are presented below:
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The three other transfer matrix coefficients are expressed
mutatis mutandis using the ETFE fonnulae. In the case when
the user is not satisfied with the method robustness towards
white noise, a user-made auto-recursive multiple input noise
resistant algorithm ARMAX has been developed for this study.

RESULTS AND DISCUSSION

In a first series of simulations the Venturi is taken coupled with
3m ducts (with 10 nedes) at the inlet and outlet. The small
number of nodes makes it impossible to apply the KDP method
on this simulation. Thus, the values of pressure and mass flow
rates are taken at the inlet and outlet of the Venturi tube in order
to test the prepesed identification metheds.

The Fig. 6 and 7 shew the system linearity demain. Peint [ is
the evaluation of the transfer matrix using inlet mass flow rate
fluctuations of 1% and 2% of amplitude, point 2 uses 2% and
3% and so on.
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Figure 7: Phase linearity

Teer 18 0.032s for this simulation. The tests were nm with the
same frequency of 5Hz. These diagrams shew that tor the
amplitudes between 2% and 5% of flow rate modulation the
gain and the phase of the system remains the same. Even with
the strong input neise (7% eof measurement range) the transfer
matrix coeflicients remain quasi-constant.

The next simulatiens shew the Bede diagram of the frequency
transfer matrix of the cavitating Venturi obtained by the

empirical estimation formulae ETFE (Fig. 8 and 9)
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Figure 8: Bede gain for cavitating Venturi
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Figure 9: Bode phase for cavitaling Venturi
The input neise has a less than [dB influence on the final ETFE
result. Hence the frequency per frequency method is very
accurate to estimate the transfer matrix ceefficients both for the
gain and the phase. The drawback of this method is that the
values of the transfer function are only known at the modulated
frequencies. This is why it seems logical to try an identificatien
of a transfer function for another type of input signal in order to
make the identification process quicker. To performn this task, a
chirp-type signal was used, because it presents a very large
spectral density which is corresponding to the operater’s needs.
The next simulations (Fig. 10 and 11) were performed for a
dewn-chirp signal sin(y/t). The spectral density of the input
signal is centained between 0 and 0.2 Hz*T,. Accerding te the
graphs below, the results give more data points using only two
simulations with linearly independent input vectors, however it
is less accurate than frequency by frequency tests, with neise



crrors rcaching S to 10dB, even if most of the points sccm very
accurate. The phasc crrors secem however important for the
inductance and compressibility, reaching 20 degrces.
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In order to make the transfer matrix calculation from the ETFE
input signal even morc accurate and noise-proof the ARMAX
(Auto-Regressive Moving Average Exogenous) identification
method was implemented for this MIMO (Multiple Input
Multiple Output) case [14, 15]. The chosen algorithm uscs least
mean squares by Kalman filter approach and forgetting factor.
Only one simulation is nccessary to perform the identification
on the spectral domain set by the input which was chosen to be
an up-chirp signal (sin(t?)).

The last scrics of simulations of cavitating Venturi combined
the mass flow rate reconstruction by KDP mecthod, ETFE and
ARMAX identification methods. Thus it is possible to evaluate
the accuracy of the KDP mecthod on the test casc and the
accuracy of the ARMAX identification mcthod applicd on the
reconstructed pressurc and flow rates, which will not be
possible during experiments. The simulation was performed on
the up-chirp signals with totally reflecting or totally absorbing
limit conditions. The Fig. 12 and 13 allow us to compare the
ETFE of the four transfcr matrix coefficients on the reference
inlet-outlet signals, with thc ETFE on pressure and flow rate
signals reconstructed by the KDP method at the inlet and the
outlet and with the transfcr matrix cocfficients obtained by
uscr-madc auto-recursive algorithm ARMAX. The ciror on the
sound speed reconstitution was of 1% on both the inlet and the
outlet lines compared to the initially implemented value. The
results show that the KDP method in this case gives up to 10dB
crrors for the majority of the frequencies on the transfer
function identification. For the phase, the reconstructed ETFE
values may present up to 90 degrees error. It has to be noticed
that the zcros and poles of the sysicm dctermined by the
ARMAX algorithm arc lying in the entire frequency domain,
cven if the input signal presented no power density associated
to the concerned frequency. This is why sometimes the uscr
needs to define a very high order on the system (the 30" order

was uscd for this simulation) which makes it difficult to link the
model to any physical representation.

CONCLUSION

In this paper the precision of thc KDP mecthod to cvaluate
unstcady mass flow rate and its robusiess towards pressurc
evaluation unccrtaintics was evaluated. This algorithm can be
used to find the sound of the spced value, and to cstimatc the
valuc of the mass flow rate fluctuations, thus making it possible
to perform the whole identification procedure. The frequency
per frequency tests proved to be the most accurate, but also to
nced the biggest amount of experience data. The study of a
chirp signal neced much less data but is also less accurate.
Finally, the KDP method scems enough precise to implement it
to the experimental facility. The present work will be pursued
especially to adapt the recursive algorithm part te thc operator
needs. The simulations presented in this paper had for purpose
to develop the methodology to work with the experimental
results that will come trom the test facility. The tests began in
April 2012.
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NOMENCLATURE

P — fluid static pressure, frequency domain
Q — mass flow rate, frequency domain
Z - impedance

p — fluid static pressure, time domain
u — fluid velocity, time domain
C=M4 — friction coefficients

a —speed of sound in the pipe

¢ —speed of sound in the water

D — pipe diameter

¢ — pipc wall thickness

E — pipc matericl Young modulus

S — pipe section

x, dx — coordinate, space step

t, dt — time, time step

g— gravity

k — wavenumber

[ - distance between pressure evaluations
£ frequency

T — total simulation time

N - number of samples

GCreek letters

p — fluid density

@ — pulsation



Preszire goin Bode gain

referevce ETFE
40| - ETFE recomtitied measwrement
- ARMAX on recoretiisted masartement

ETFE reconginAad messurament
ARMAX on fesormbaned measwemant’

o 30
§ 2
iw
8 kb
B0 ¥
L3
-20 I
I
-30
02 04 0f 08 1 12 14
frequency Hz
Compressbdty Bode gain
raleranse ETFE
40 ETFE recorstuted mevmsement
e ARMAX on reconsifed messuement
EZO
.
8 'IUI
£
v O
i
£.10- ™
g
=20 ;
30
02 04 06 ®F 1 12 {4
frequency Hz
Pressure pain Bode phass
150 reference ETFE
100
| | |

-150+ | 1
02 04 06 08 1 12
frequency Hz
Compressibdty Bode phasa
relerence EYFE 1
150 ETFE tecarstitted measwemertt
| - ARMAX oi1 reconstiiAed measurement
100
g 50
; 1. 1
o L |
E 50 |
a00° L
-150 v
02 04 o8 o8 1 12

frequency Mz

G — standard deviation

n — time domain noise on pressure signal

¢ - frcquency domain noisc on pressurc signal
Superscript

~ - tfluctuating quantities

Subscripts

m — pressure gain

8 o ¥ B

emplitude 9B coeficents

&

releranee ETFE
ETFE reconsfuled measuremerd

50 : - ARMAX, o1 reconsiitied measutemant.
02 64 o8 08 1 12 14 16 18 2
frequency Hz
Flow rote gein Bode gem
30
raferenes ETFE
ETFE reconstited measisemerd
20 - ARMAX on, (Bcanaed M easUBMARL
5 i
= 10 | .
LN l -l
g 04l o 1
g-w i (VYR
[ '
-20 !
02 04 08 08 1 12 14 16 18 2
frequency Mz

150 - ETFE

100

50

phasa degrae
o

s | 1 [ th 1,
-100 {51y [ | RK
% | | | \ 41
150 || i .
e | .
0 0s 1 [ 2
frequancy Hz
Plow rate pain Bode phase
"""" —refarance ETFE
150 [ ETFE recoistitded mosswement
- ARMAX on resorestitifed measwement|
100 bl T .
50 I
E A I
0oty |
1 | i T
E .50 . ! | A
| b i | |
-100. \ ' 1
B |
-150 | |
6 02 04 o6 o8 1 12 14 18 {8

Figure 13: Bode phase diagrams

L— inductance
C — compressibility
M — Mass flow gain

i — inner
e —inlet
s —outlet

1, 2, 3 — pressure data nodes



[, 2 — non-collinear vecters

mod — modulated

a — speed of seund

@ — mass flow rate

P — pressure

Z — impedance

¢ - ftequency demain noise on pressure signal
ref - reference
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