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CONSTRUCTION OF A TWO-PHASE FLOW WITH SINGULAR

ENERGY BY GRADIENT FLOW METHODS

CLÉMENT CANCÈS AND DANIEL MATTHES

Abstract. We prove the existence of weak solutions to a system of two dif-

fusion equations that are coupled by a pointwise volume constraint. The time

evolution is given by gradient dynamics for a free energy functional. Our pri-
mary example is a model for the demixing of polymers, the corresponding

energy is the one of Flory, Huggins and de Gennes. Due to the non-locality in

the equations, the dynamics considered here is qualitatively different from the
one found in the formally related Cahn-Hilliard equations.

Our angle of attack is from the theory of optimal mass transport, that is,
we consider the evolution equations for the two components as two gradient

flows in the Wasserstein distance with one joint energy functional that has the

volume constraint built in. The main difference to our previous work [6] is the
nonlinearity of the energy density in the gradient part, which becomes singular

at the interface between pure and mixed phases, leading to new theoretical

difficulties.

1. Introduction

We show existence of non-negative solutions to the following coupled system of
diffusion equations:

∂tc1 = div(m1c1∇µ1),(1a)

∂tc2 = div(m2c2∇µ2),(1b)

c1 + c2 = 1,(1c)

µ1 − µ2 = −f ′(c1)∆f(c1) + χ
(

1
2 − c1

)
,(1d)

on a bounded and convex domain Ω ⊂ Rd in the plane (d = 2) or physical space (d =
3) with smooth boundary ∂Ω. Solutions are subject to no-flux and homogeneous
Neumann boundary conditions

n · (c1∇µ1) = n · (c2∇µ2) = 0,(2a)

n · ∇c1 = n · ∇c2 = 0(2b)

on ∂Ω and to the initial conditions

c1(0) = c01, c2(0) = c02,(3)

with initial data c01, c
0
2 : Ω → [0, 1] satisfying the constraint (1c). The mobility

coefficients m1,m2 > 0 and the parameter χ > 0 are given constants, and the
function f : [0, 1]→ R in (1d) is assumed to satisfy:

Assumption 1. f is continuous on [0, 1], it is smooth on (0, 1) with f ′(r) > 0 there,
it satisfies f ′(r)→ +∞ for r ↓ 0 and for r ↑ 1, and the function 1/(f ′)2 is concave
on (0, 1). Moreover, f(r) is point-symmetric about r = 1/2, i.e., f(1− r) = −f(r)
for all r ∈ [0, 1].
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2 CLÉMENT CANCÈS AND DANIEL MATTHES

Systems of the type (1) are widely used as models for spinodal decomposition.
Particularly, the choice (4) of f below describes the demixing of two polymers, see
e.g. [9, 10, 23]. In the current paper, the example of primary interest is

f(r) = arcsin(2r − 1), with
1

f ′(r)2
= r(1− r).(4)

An alternative admissible choice for f is f(r) = rγ − (1 − r)γ with 1
2 ≤ γ < 1.

Note that these functions interpolate between the linear function f(r) = 2r − 1 at
γ ↑ 1, corresponding to the Cahn-Hilliard model, and a function with square-root
singularities like in (4) at γ = 1

2 .
An f satisfying Assumption 1 is singular in the sense that it has infinite slope at

the boundary of [0, 1]. It is this behaviour which makes the analysis of the problem
at hand significantly more challenging than the corresponding Cahn-Hilliard prob-
lem with f(r) = r − 1

2 that the authors have considered recently with Nabet [6].
The additional difficulty enters mainly at two points. First, the relevant a priori
estimates are significantly more difficult to obtain, already on the formal level. Our
main estimate is a bound on f(c1) in L2(0, T ;H2); its proof builds on a variety of
non-obvious manipulations and integration by parts, and it is made rigorous using
the flow interchange method from [21], see Section 4. Second, on the right-hand
side of equation (1d), the pre-factor f ′(c1) is +∞ in the “pure” regions of Ω where
either c1 ≡ 0 or c2 ≡ 1. Our global L2-bound on ∆f(c1) is not sufficient to esti-
mate the product with f ′(c1) in a decent way, and thus we have no control on the
potentials µi near the edges of the pure zones. Our approach, explained in more
details in Section 1.4 below, is to rewrite the system in a formally equivalent way
avoiding the “bare” potentials µi and instead using products qi = ω(ci)µi with a
suitable ω(ci) vanishing on the pure zones.

The role of f is best understood as follows: there is a dissipated free energy
functional for (1), which is given by

E(c1, c2) =
1

4

ˆ
Ω

(
|∇f(c1)|2 + |∇f(c2)|2 + 2χc1c2

)
dx.(5)

Assumption 1 guarantees that the gradient parts, i.e.,

ci 7→
ˆ

Ω

|∇f(ci)|2 dx,

are convex functionals. Consequently, E is of the form “convex plus smooth”. With
the choice (4), E is referred to as Flory-Huggins-de Gennes-energy.

We remark that thermal agitation effects can be incorporated into the model by
augmenting the energy (5) with the mixing entropy

θ

ˆ
Ω

(
c1 log c1 + c2 log c2

)
dx, θ ≥ 0.

Here we are concerned solely with the so-called deep-quench limit θ = 0, which is
analytically the most challenging case. Indeed, thermal effects introduce additional
diffusion to the problem which provide more regularity.

1.1. Local versus non-local dynamics. In dimensions d > 1, there is a subtle
difference between the “non-local” model under consideration here and its “local”
reduction in the sense of de Gennes [9]. That difference, and its consequences on
the long time asymptotics of solutions, have been discussed in detail in [23]. For
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the local model, one strengthens the constraint (1c) by requiring annihilation of
the fluxes of c1 and c2 (and not only the divergences of these fluxes), i.e.,

m1c1∇µ1 +m2c2∇µ2 = 0.(6)

This condition is stronger than the original constraint (1c) in the sense that the
system consisting of (1a), (1b), (1d), and (6) propagates (1c) in time. Moreover,
(6) allows to eliminate µ2 from (1d), and the system then becomes equivalent to
one single evolution equation of fourth order for c1; in the case m1 = m2 = 1, it
reads

∂tc1 = −div
(
c1(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
])
.(7)

There seems to be no way to reduce the original system (1) to a single differential
equation in a similar fashion. The reduction that comes closest to (7) — still in
the case m1 = m2 = 1 — is the following non-local equation, taken from [23],

∂tc1 = −div
(
c1P

{
(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
]})

,(8)

in which P is the Helmholtz projection onto the gradient vector fields. More ex-
plicitly, one combines (1a) with the following elliptic equation for µ1:

−∆µ1 = div
(
(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
])
,(9)

which is easily derived by adding (1a) and (1b), and using that ∂t(c1 + c2) = 0
because of (1c). Despite all the advantages that the reduced equation (8) might
have, the original two-component formulation (1) is the significant one for our
existence analysis.

The less restrictive constraint (1c) provides more flexibility for the fluxes than (6).
This effect is measurable on the level of energy decay, which is significantly faster
in the non-local model (8) than in the local model (7). Numerical evidence of this
fact has been presented in [7, 6] in the Cahn-Hilliard case. On the theoretical side,
the dynamics of (7) and of (8) have been compared in [23] in the sharp interface
limit: this is where χ is large and the considered time scale is proportional to χ.
Then the values of the solution c1 are concentrated around zero and one, and the
interfaces in between these pure phases become sharper the larger χ is. It turns
out that the long-time asymptotics of the interfaces in (7) and in (8) are different:
while (7) is asymptotically equivalent to (the slower) surface diffusion, (8) leads to
(the faster) Hele-Shaw flow. We refer to [13] for a recent mathematical study of
the interface dynamics inside the framework of optimal mass transport.

1.2. Gradient flow structure. Similarly as in our recent paper [6], we take the
interpretation of (1) as a metric gradient flow as starting point for the existence
analysis. More specifially, we use the gradient flow structure to construct time-
discrete approximations of the true solution c by means of the minimizing movement
scheme, derive a priori estimates on the approximation by variational methods, and
finally pass to the time-continuous limit. We emphasize that the interpretation of
(1) as gradient flow motivates the aforementioned procedure, but we are not going
to verify that solutions to (1) are curves of steepest descent in a rigorous way.

The potential E of the flow under consideration is essentially the system’s free
energy E from (5), however, modified such that the volume constraint (1c) is built
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in:

E(c) = E1(c1) + Ic1+c2≡1(c),

with E1(c1) =
1

2

ˆ
Ω

|∇f(c1)|2 dx+
χ

2

ˆ
Ω

c1(1− c1) dx.
(10)

Above, Ic1+c2≡1 denotes the indicator function that is zero if the constraint c1+c2 ≡
1 is satisfied, and is +∞ otherwise. E’s “gradient” is calculated with respect to a
metric d that combines the squared L2-Wasserstein distances of the components c1
and c2. More specifically, on the space

Xmass :=

{
c : Ω→ [0, 1]2

∣∣∣∣  
Ω

c1 dx = ρ1,

 
Ω

c2 dx = ρ2

}
,

with ρ1 =

 
Ω

c01 dx = 1− ρ2,

(11)

we introduce the metric d by (see Section 2 below for the definition of W)

d
(
ĉ, č
)2

=
W(ĉ1, č1)2

m1
+

W(ĉ2, č2)2

m2
.(12)

In the eyes of the metric d, the two components of c are independent, and the
constraint c1 + c2 ≡ 1 is enforced only by means of the energy. This way, the
metric d inherits all of the established properties of the L2-Wasserstein distance.
The analogous idea has been successfully used for analyzing related cross-diffusion
models with an inequality constraint 0 ≤ c1+c2 ≤ 1 instead of (1c), see e.g. [17, 15].
In comparison, to the best of our knowledge, very little is known about the metric
that would result by including the constraint already in its definition; see, however,
[3].

1.3. Estimates. There are three essential a priori estimates that play a role in our
existence proof for (1). The first two are consequences of the gradient flow struc-
ture outlined above: first, the energy is non-increasing in time, and in particular,
E(c(t)) ≤ E(c0) for each t ≥ 0. This ensures validity of the constraint (1c), and
provides a priori estimates of ci and f(ci) in L∞(0, T ;H1(Ω)). Second, the curve
c is L2-absolutely continuous in time with respect to d, that is, both components
ci are absolutely continuous in W. That means that the kinetic energy densities
mi

2 ci|∇µi|
2 — see the continuity equations (1a)&(1b) — are integrable in space

and time. This provides a priori estimate on
√
ci∇µi in L2(ΩT ).

The third estimate is related to the dissipation of an auxiliary functional, namely
the entropy:

H(c) =
H̃(c1)

m1
+

H̃(c2)

m2
, where H̃(ci) =

ˆ
Ω

ci(log ci − 1) + 1 dx.(13)

Indeed, it follows from a formal calculation given below in (38) that H’s dissipation
can be estimated in the form

− d

dt
H(c) ≥ 1

2d

ˆ
Ω

(
∆f(c1)

)2
dx−M,(14)

with some constant M ≥ 0 that is independent of the specific solution c. This
provides an a priori estimate on f(c1) in L2

loc(R>0;H2(Ω)), which is our main
source of compactness. Notice that thanks to the constraint c1 + c2 = 1 and the
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symmetry f(r) = f(1− r), the dissipation relation (14) can equivalently be written
in the symmetric form

− d

dt
H(c) ≥ 1

4d

ˆ
Ω

[(
∆f(c1)

)2
+
(
∆f(c2)

)2]
dx−M.

1.4. Reformulation of the equations. A key element in our existence analysis is
a very particular weak formulation of the system (1), which is taylored to the special
nonlinearity under consideration. In the Cahn-Hilliard case, where f is smooth up
to the boundary, it is possible to define a proper notion of phase chemical potential
µi even when the corresponding phase vanishes, ci = 0, see [6]. This approach
does not extend easily to the case of singular f ’s considered here. Our ansatz is
to substitute the potentials µ1 and µ2, which are difficult to analyze, by auxiliary
quantites q1 and q2 given in (16) below.

Some notation is needed: by Assumption 1 on f , there exists a continuous ω :
[0, 1]→ R with ω(0) = 0 that is smooth and positive on (0, 1] such that

1

f ′(r)
= ω(r)ω(1− r) for 0 < r < 1.(15)

For notational convenience, we further introduce the continuous function α : [0, 1]→
R with α(0) = 0 and α(r) = r/ω(r) for r ∈ (0, 1]; continuity at r = 0 is a conse-
quence of the assumed concavity of r 7→ 1

f ′(r)2 = ω(r)2ω(1 − r)2. For f from (4),

one may choose ω(r) =
√
r, and then finds that α(r) =

√
r as well.

The auxiliary quantities that replace µ1 and µ2 are

q1 = ω(c1)µ1, q2 = ω(c2)µ2.(16)

The qi are much better behaved than the µi, since they vanish by definition when
ci does since ω(0) = 0. Accordingly, the continuity equation (1a) is — formally —
interpreted in the following way:

∂tc1 = div

(
m1c1∇

[
q1

ω(c1)

])
= m1 div

(
∇
[
c1

q1

ω(c1)

]
−∇c1

q1

ω(c1)

)
= m1 div

(
∇[α(c1)q1]− ω(c2)∇f(c1) q1

)
,

(17)

and similarly for (1b). Concerning the constitutive relation (1d): after multipli-
cation by 1/f ′(c1), it can be reformulated — still formally — in terms of the qi
as

ω(c1)q2 − ω(c2)q1 = F[c1] := ∆f(c1) + χω(c1)ω(c2)
(
c1 − 1

2

)
,(18)

which makes perfectly sense in view of the L2(ΩT )-regularity of ∆f(c1).
The significance of the formulation (17) is that the right-hand side can be in-

terpreted in the sense of distributions as soon the product q1∇f(c1) is locally in-
tegrable. Since f(c1) ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) thanks to the a priori
estimates, we have ∇f(c1) ∈ L3(ΩT ) by interpolation (recall that d ≤ 3), and
so it is sufficient that q1 ∈ L3/2(ΩT ). That latter is deduced by means of the
representation

(19) q1 = ω(c1)µ̄+ α(c2)F[c1],

in which µ̄ = c1µ1 +c2µ2 = α(c1)q1 +α(c2)q2 is an average chemical potential. The
quantity F[c1] is bounded in L2(ΩT ) thanks to the main a priori estimate; a bound
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on µ̄ is obtained from the following representation of µ̄’s gradient:

∇µ̄ = c1∇µ1 + c2∇µ2 +∇c1(µ1 − µ2)

=
√
c1
(√
c1∇µ1

)
+
√
c2
(√
c2∇µ2

)
+∇f(c1)F[c1],

(20)

in which the first two terms are controlled thanks to the L2(ΩT )-bound on
√
ci∇µi,

and the last term is controlled by a combination of the L∞(0, T ;H1(Ω))-bound
on f(c1) and the L2(ΩT )-bound on ∆f(c1). This provides an estimate of µ̄ in
L2(0, T ;W 1,1(Ω)) ↪→ L3/2(ΩT ), and thus also the desired bound on qi via (19).

Remark 1. Our approach is bound to fail in high dimensions d. The bottleneck is to
ensure local integrability of q1∇f(c1) to give a meaning to (17) in the distributional
sense. To indicate the difficulty, let us ignore integrability in time for the moment,
i.e., we only want to have q1∇f(c1) ∈ L1(Ω) at almost every time. The a priori
estimate (14) will not provide more than F[c1] ∈ L2(Ω) and, via Sobolev embedding,
∇f(c1) ∈ L2d/(d−2)(Ω) at almost every time. Hence, the best integrability that we
could possibly conclude from (20) is ∇µ̄ ∈ Ld/(d−1)(Ω), and thus µ̄ ∈ Ld/(d−2)(Ω) by
means of Sobolev-Poincaré. In view of (19), also q1 ∈ Ld/(d−2)(Ω). In general, the
product of q1 ∈ Ld/(d−2)(Ω) and ∇f ∈ L2d/(d−2)(Ω) is not integrable in dimensions
d > 6.

The admissible integrability exponents are significantly more complicated to com-
pute if integrability in time is taken into account as well, and in any case they will
lead to a more restrictive condition on the dimension d. We did not try to deter-
mine the maximal possible value of d, but simply restrict attention to the physically
relevant dimensions.

1.5. Main result. In the following, C∞c,n(R>0 × Ω) denotes the space of all test

functions ξ ∈ C∞(R≥0 ×Ω) such that ξ(t, ·) ≡ 0 for all t ≥ 0 outside of some com-
pact time interval I ⊂ R>0, and for which ξ(t; ·) satisfies homogeneous Neumann
boundary conditions at each t > 0.

Our main result is the following.

Theorem 1. Let initial data c0 = (c01, c
0
2) with c01+c02 ≡ 1 and f(c01), f(c02) ∈ H1(Ω)

be given. Then there exists c = (c1, c2) : R≥0 × Ω → [0, 1]2 with the following
properties:

• regularity in time:
c1, c2 are Hölder continuous with respect to time as a map into L2(Ω).

• regularity in space:
c1, c2, f(c1), f(c2) ∈ L∞(R≥0;H1(Ω)) and f(c1), f(c2) ∈ L2

loc(R≥0;H2(Ω))
• boundary conditions:
c1(t), c2(t) satisfy homogenous Neumann conditions (2b) at a.e. t ≥ 0

• initial conditions:
c1(0) = c01, c2(0) = c02.
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c is accompanied by q = (q1, q2) : R≥0 × Ω → R2 with q1, q2 ∈ L3/2(ΩT ) for each
T > 0, such that the system (1) is satisfied in the following sense:

0 =

ˆ ∞
0

ˆ
Ω

[
∂tξ ci +miqi

(
α(ci) ∆ξ + ω(1− ci)∇f(ci) · ∇ξ

)]
dxdt(21a)

for i = 1, 2 and all test functions ξ ∈ C∞c,n(R>0 × Ω),

1 = c1 + c2 a.e. on R≥0 × Ω,(21b)

ω(c1) q2 − ω(c2) q1 = ∆f(c1) +
χ

2
(c1 − c2)ω(c1)ω(c2) a.e. on R≥0 × Ω.(21c)

Notice that the no-flux boundary conditions (2a) are encoded in the weak form
(21a) of the continuity equations (1a)&(1b): since the test function ξ is only sup-
posed have vanishing normal derivative, but still may attain arbitrary values on
∂Ω, a formal integration by parts in (21a) produces a weak form of (2a).

1.6. Plan of the paper. In Section 2 below, we give a very brief summary of the
relevant results from the theory of optimal transportation that are needed in our
proof of Theorem 1. In Section 3, we describe the construction of the time-discrete
approximate solutions, and we derive a priori estimates in Sections 4 and 5 on the
approximate volume fractions c and phase potentials q respectively. Finally, in
Section 6, we pass to the time-continuous limit, obtaining a weak solution in the
sense of Theorem 1.

1.7. Notation. When we write in the following that some constant depends only
on the parameters of the problem, then we mean that this constant can in principle
be expressed in terms of the factor χ, the mobilities m1, m2, the averages ρ1, ρ2

from (11), properties of the function f , and geometric properties of the domain Ω.

2. Preliminaries from the theory of optimal transportation

In the section, we briefly recall three alternative definitions of the L2-Wasserstein
distance W; in the proof of our main result, we need all three of them. For more
information on the mathematical theory of optimal mass transportation, we refer
to the monographs [26, 27, 25]. Below, we assume that ρ0, ρ1 : Ω → [0, 1] are two
measurable functions of the same total mass,ˆ

Ω

ρ0(x) dx =

ˆ
Ω

ρ1(x) dx.

In this case, the definitions are all equivalent.

2.1. Monge characterization. One says that a measurable map T : Ω → Ω
pushes ρ0 forward to ρ1, written as T#ρ0 = ρ1, ifˆ

Ω

Θ(x)ρ1(x) dx =

ˆ
Ω

Θ ◦ T (y)ρ0(y) dy for all Θ ∈ C0(Ω).

The Monge characterization of the L2-Wasserstein distance between ρ0 and ρ1 is
given by

W(ρ0, ρ1)2 = inf
T#ρ0=ρ1

ˆ
Ω

|T (x)− x|2ρ0(x) dx,(22)

where the infimum runs over all measurable maps T : Ω→ Ω with T#ρ0 = ρ1. In
the situation at hand, the infimum in (22) is actually a minimum. It is attained
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by an optimal transport map Topt; the optimal map is uniquely determined on the
support of ρ0.

2.2. Kantorovich characterization. A Borel measure γ on the product space
Ω× Ω is called a transport plan from ρ0 to ρ1 if the latter are the marginals of γ,
i.e., ¨

Ω×Ω

ϕ(x) dγ(x, y) =

ˆ
Ω

ϕ(x)ρ0(x) dx,

¨
Ω×Ω

ψ(y) dγ(x, y) =

ˆ
Ω

ψ(y)ρ1(y) dy,

for all ϕ,ψ ∈ C0(Ω). The set of all such transport plans is denoted by Γ(ρ0, ρ1).
The Kantorovich characterization of W amounts to

W(ρ0, ρ1)2 = inf
γ∈Γ(ρ0,ρ1)

¨
Ω×Ω

|x− y|2 dγ(x, y),

and the infimum is attained by some optimal plan γopt. In the situation at hand,
γopt is unique. Moreover, it is concentrated on a graph: γopt’s support is contained
in {(x, Topt(x))|x ∈ Ω} ⊂ Ω × Ω, where Topt is an optimal map from the Monge
characterization.

2.3. Dual characterization. The dual characterization of the Wasserstein dis-
tance is given by

1

2
W(ρ0, ρ1)2 = sup

ϕ(x)+ψ(y)≤ 1
2 |x−y|2

(ˆ
Ω

ϕ(x)ρ0(x) dx+

ˆ
Ω

ψ(y)ρ1(y) dy

)
,(23)

where the supremum runs over all potentials φ, ψ ∈ C0(Ω) satisfying ϕ(x)+ψ(y) ≤
1
2 |x − y|2. The infimum is attained by a pair of globally Lipschitz functions
(ϕopt, ψopt), which are referred to as Kantorovich potentials. The potentials are
related to the optimal Monge map Topt via Topt(x) = x − ∇ϕopt(x) which holds
ρ-a.e.

There are always infinitely many pairs of Kantorovich potentials, since the value
of the function and the constraint are invariant under the exchange of a global
constant, i.e., ϕ ϕ+C and ψ  ψ −C for any C ∈ R. On the other hand, if at
least one of the two densities ρ0 and ρ1 has full support, then this global constant
is the only degree of non-uniqueness.

3. Time-discrete approximation via minimizing movement scheme

As explained in Section 1.2, the problem (1)–(3) can be interpreted as the gradi-
ent flow of the singular energy E with respect to the metric d on the space Xmass.
In view of that structure, a natural approach to construction of solutions to (1)
is the time-discrete approximation by means of the minimizing movement scheme.
This approach has been proven extremely robust, and has been applied for ex-
istence proofs in linear and nonlinear Fokker-Planck equations [14, 2], non-local
aggregation-diffusion equations [4, 8, 16, 28], doubly non-linear and flux-limited
equations [1, 22], fourth order quantum and lubrication equations [12, 21, 18, 20],
multi-phase flows [19, 5, 6], also with volumetric constraints [17, 15], and many
more settings.

In addition to approximations of the volume fractions c1 and c2, we also need
to construct approximations of the auxiliary quantities q1 and q2. These will be
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obtained from the Kantorovich potentials for the optimal transport of the volume
fractions between time steps. In order to ensure that these potentials are well-
defined (up to a global additive constant), we regularize the minimizing movement
scheme by modifying the volume fractions in the previous time step such that both
have full support. This removes the ambiguity in the definition of the Kantorovich
potentials, as explained in Section 2.3.

Throughout this section, let two parameters be fixed: a time step size τ > 0,
and a positivity parameter δ > 0. We assume that τ and δ are related as follows:

δ ≤ τ2.(24)

Recall the definitions of the energy functional E from (10) and of the metric d from
(12) on the space Xmass. Recall further the definition of the averages ρ1 and ρ2 in
(11), and introduce the regularization [c]δ = ([c1]δ, [c2]δ) of a c = (c1, c2) ∈ Xmass

by

(25) [ci]δ = δρi + (1− δ)ci.
With these notations at hand, define for given c̄ ∈ Xmass a variational functional
in c ∈ Xmass by

Eτ,δ(c; c̄) =
1

2τ
d
(
c, [c̄]δ

)2
+ E(c).(26)

At each instance of discretized time t = nτ , an approximation (cn, qn) of (c(t), q(t))
is constructed as follows. Starting from the given initial condition c0, each cn is
inductively chosen as a global minimizer of Eτ,δ(·; cn−1), i.e.,

(27) cn ∈ argmin
c∈Xmass

Eτ,δ(c; c
n−1).

Solvability of that minimization problem is shown in Lemma 2 below.
The accompanying auxiliary quantities qn1 and qn2 are obtained as follows. First,

let (ϕn1 , ψ
n
1 ) and (ϕn2 , ψ

n
2 ) be two pairs of Kantorovich potentials for the respective

optimal transport of [cn−1
i ]δ to cni ; since [cn−1

i ]δ ≥ δρi on Ω, these pairs are unique
up to addition of global constants. These constants are normalized by requiring

ˆ
Ω

[
cn1ψ

n
1

m1
+
cn2ψ

n
2

m2

]
dx = 0,

ˆ
Ω

[
ψn2 − ψn1 − χ

(
c1 −

1

2

)]
ω(cn1 )ω(cn2 ) dx = 0.

(28)

From the ψni , define the rescaled pair of potentials µn = (µn1 , µ
n
2 ) via

µn1 :=
ψn1
m1τ

, µn2 :=
ψn2
m2τ

,

and finally qn = (qn1 , q
n
2 ) is given — as indicated in (16) — by

qn1 := ω(cn1 )µn1 , qn2 := ω(cn2 )µn2 .

Lemma 2. Given initial data c0 as in Theorem 1, the minimization problem for cn

can be solved inductively, leading to infinite sequences (cn)n∈N and (qn)n∈N. The
cn satisy the constraint

(29) cn1 + cn2 = 1.

Proof. Inductive solvability of the minimization problem follows by the direct meth-
ods from the calculus of variations. Indeed, it suffices to observe the following about
the functional Eτ,δ(·; cn−1), considered as a map from Xmass with the topology of
L2(Ω;R2) to the extended non-negative real numbers:
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• It is bounded below (in fact: is non-negative) and is not identically +∞
(e.g., is finite at cn−1).

• It is coercive: if c̃k is a sequence in Xmass such that Eτ,δ(c̃
k; cn−1) is

bounded, then in particular
´

Ω
|∇f(c̃k1)|2 dx is bounded, i.e., f(c̃k1) is bounded

in H1(Ω). Rellich’s compactness theorem now implies strong convergence

of a subsequence f(c̃k
′

1 ) in L2(Ω), and thanks to the properties of f , also c̃k
′

1

itself converges in L2(Ω). Finally, since finiteness of Eτ,δ(c̃
k; cn−1) implies

that c̃k2 = 1− c̃k1 , convergence of c̃k
′

2 follows as well.

• It is lower semi-continuous. To see this, let c̃k be a sequence in Xmass that
converges to c̃∗ in L2(Ω;R2). Convergence of d(c̃k, cn−1) and of

´
Ω
c̃k1(1−

c̃k1) dx towards their respective limits is immediate. On the other hand, it
follows by continuity of f that also f(c̃k1) converges to f(c̃∗1) in L2(Ω). And
so,

lim inf
k→∞

ˆ
Ω

|∇f(c̃k1)|2 dx ≥
ˆ

Ω

|∇f(c̃∗1)|2 dx

is a consequence of the lower semi-continuity of the H1(Ω)-norm on L2(Ω).

The relation (29) holds since each minimizer cn has a finite energy. �

4. A priori estimates on the volume fractions

The ultimate goal is to obtain solutions c and q of the weak formulation (21) as
appropriate limits of the time-discrete quantities cn and qn for τ ↓ 0 and δ ↓ 0. In
this and the next section, we establish the a priori estimates that eventually provide
sufficient compactness for performing the limit. As indicated in the introduction,
there are three essential estimates: the first two, given in Lemma 3 right below,
follow almost immediately from the gradient flow structure. These two estimates
are sufficient to conclude the weak convergence of the volume fractions. The third
estimate, given in Lemma 5, follows from the control (13) on the dissipation rate of
the entropy H. It provides strong convergence of the volume fractions and indirectly
— see Section 5 below — also weak convergence of the auxiliary functions.

Lemma 3. There is a constant K, only depending on the parameters of the problem,
such that for all N = 1, 2, . . .

E(cN ) +
τ

2

N∑
n=1

(
d(cn, [cn−1]δ)

τ

)2

≤ E(c0) +
K

2
Nτ.(30)

Consequently, for all indices n ≤ N and n < n ≤ N ,

‖∇f(cn1 )‖2L2 ≤ 2E(c0) +KNτ, for all n = 1, 2, . . . , N,(31)

d(cn, cn) ≤ 2
(
E(c0) +KNτ

) 1
2
(
τ(n− n)

) 1
2 for 0 ≤ n < n ≤ N,(32)

‖cn − cn‖L2 ≤ 2 4
√
m1

(
E(c0) +KNτ

) 1
2
(
τ(n− n)

) 1
4 .(33)

Proof. By definition of cn as a minimizer, Eτ,δ(c
n; cn−1) ≤ Eτ,δ(c

n−1; cn−1), which
amounts to

E(cn) +
τ

2

(
d(cn; [cn−1]δ)

τ

)2

≤ E(cn−1) +
1

2τ
d(cn−1, [cn−1]δ)

2.(34)
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The last term is bounded by Kδ/(2τ) ≤ Kτ/2 thanks to Lemma 13 from the
appendix, and to our assumption δ ≤ τ2 from (24). Summation of (34) from n = 1
to n = N yields (30), and (31) is an immediate consequence from the definition
of E. To conclude (32) from here, we use the triangle inequality for d — which is
inherited from W — and Hölder’s inequality for sums,

d(cn, cn) ≤
n∑

n=n+1

d(cn, cn−1) ≤

τ n∑
n=n+1

(
d(cn, cn−1)

τ

)2
 1

2 (
τ(n− n)

) 1
2 .

The expression inside the first pair of brackets is now estimated with the help of
(30) above, and another application of Lemma 13:

τ

n∑
n=n+1

(
d(cn, cn−1)

τ

)2

≤ τ
n∑

n=n+1

[
2

(
d(cn, [cn−1]δ)

τ

)2

+
2Kδ

τ2

]

≤ 4

[
E(c0) +

KT

2

]
+

2Kδ

τ
N.

Substitution of this estimate above and recalling (24) produces (32). Estimate (33)
emerges as a consequence of (31) and (32) via Lemma 14 from the appendix. �

The bound (30) can be formulated as a weighted H1-estimate on the Kantorovich
potentials.

Corollary 4. At each n = 1, 2, . . ., we have that

[cn−1
1 ]δ = (id−∇ψn1 )#cn1 , and [cn−1

2 ]δ = (id−∇ψn2 )#cn2 ,(35)

and therefore, with the same constant K as in Lemma 3 above, for all N = 1, 2, . . .,

τ

N∑
n=1

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx ≤ 2E(c0) +
KδN

τ
.(36)

Proof. The relations (35) express the property of the Kantorovich potential ψni that
x 7→ x − ∇ψni (x) is a transport map from cni to [cn−1

i ]δ. In fact, it is the optimal
transport map, see Section 2.3, and hence (22) implies that(

d
(
cn, [cn−1]δ

)
τ

)2

=
W(cn1 , [c

n−1
1 ]δ)

2

m1τ2
+

W(cn2 , [c
n−1
2 ]δ)

2

m2τ2

=

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx.

By non-negativity of E, the desired estimate (36) is now implied by (30). �

The third a priori estimate below is more specific to the system (1), and is also
more difficult to prove.

Lemma 5. There is a constant C, only depending on the parameters of the problem,
such that for all N = 1, 2, . . .:

τ

N∑
n=1

ˆ
Ω

∥∥f(cn1 )
∥∥2

H2 dx ≤ C(1 +Nτ).(37)

Moreover, cn1 and f(cn1 ) satisfy homogeneous Neumann boundary conditions at each
n = 1, 2, . . .



12 CLÉMENT CANCÈS AND DANIEL MATTHES

Remark 2. If 1/(f ′)2 has a bounded derivative — as is the case for the f from
(4) — then one also obtains the analogous estimate as (37) for c1 itself in place of
f(c1). Indeed, with c1 = f−1(f(c1)),

∆c1 =
1

f ′(c1)
∆f(c1)− f ′′(c1)

f ′(c1)3
|∇f(c1)|2,

with bounded factors

1

f ′
and − f ′′

(f ′)3
=

1

2

(
1

(f ′)2

)′
.

Combining this with the Gagliardo-Nirenberg inequality

‖∇f‖2L4 ≤ 3‖f‖L∞‖f‖H2 ,

that is easily derived using integration by parts, shows that ‖∆c1‖2L2 ≤ C‖f(c1)‖2H2 ,
and therefore, see (41) below, also ‖c1‖2H2 ≤ C‖f(c1)‖2H2 .

We divide the proof of Lemma 5 into two parts: the first part contains the formal
calculations — for smooth and positive classical solutions to (1) — that lead to (14),
the second part is the fully rigorous justification of (37) as a time-discrete version
of (14), using the flow interchange technique from [21].

Formal calculation leading to (14). Assume that a smooth and classical solution c
to (1) with 0 < c1 < 1 is given. We consider the dissipation of the entropy functional
defined in (13). We have, thanks to the no-flux and Neumann boundary conditions
(2),

− d

dt
H(c) = −

ˆ
Ω

[
log c1
m1

∂tc1 +
log c2
m2

∂tc2

]
dx

=

ˆ
Ω

[
∇c1 · ∇µ1 +∇c2 · µ2] dx

=

ˆ
Ω

∇c1 · ∇[µ1 − µ2] dx

=

ˆ
Ω

f ′(c1)∆c1∆f(c1) dx− χ
ˆ

Ω

|∇c1|2 dx.

(38)

We shall now use various manipulations to obtain a lower bound on

J :=

ˆ
Ω

f ′(c1)∆c1∆f(c1) dx.(39)

On the one hand,

∆f(c1) = f ′(c1)∆c1 + f ′′(c1)|∇c1|2.(40)

And on the other hand, thanks to the homogeneous Neumann boundary conditions
from (2b) — that are inherited from c1 to f(c1) thanks to 0 < c1 < 1 — and the
convexity of Ω, we have that (see e.g., [12, Lemma 5.1])ˆ

Ω

(
∆f(c1)

)2
dx ≥

ˆ
Ω

‖∇2f(c1)‖2 dx,(41)

where ‖A‖ =
√

tr(ATA) is the Frobenius norm of the square matrix A. Thus, we
obtain

J ≥
ˆ

Ω

[
‖∇2f(c1)‖2 − f ′′(c1)

f ′(c1)2
|∇f(c1)|2∆f(c1)

]
dx.(42)
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Now introduce f, g : (0, 1)→ R by

g(r) :=
f ′′(r)

f ′(r)2
, h(r) :=

g′(r)

f ′(r)
,

and notice that

∇g(c1) = h(c1)∇f(c1).(43)

In the following, we write shortly f , g and h for f(c1), g(c1) and h(c1). Thanks again
to the homogeneous Neumann boundary conditions and to (43), the divergence
theorem implies that

0 =
d

d+ 2

ˆ
Ω

div
(
g|∇f |2∇f

)
dx

=
d

d+ 2

ˆ
Ω

[
g∆f |∇f |2 + 2g∇f · ∇2f∇f + h|∇f |4

]
dx.

Adding the final integral expression to the right-hand side of (42) produces

J ≥
ˆ

Ω

[
‖∇2f‖2 − 2g

d+ 2
∆f |∇f |2 +

2dg

d+ 2
∇f · ∇2f · ∇f +

dh

d+ 2
|∇f |4

]
dx.

Next, introduce the matrix-valued function R : Ω→ Rd×d by

R := ∇2f(c1)− ∆f(c1)

d
1d.

Then, using that tr1d = d and trR = 0, we obtain that

‖∇2f(c1)‖2 = tr

[(
R+

∆f(c1)

d
1d

)2
]

= ‖R‖2 +
(∆f(c1))

2

d
,

which allows to conclude that

J ≥ 1

d

ˆ
Ω

(∆f)2 dx+

ˆ
Ω

[
‖R‖2 +

2dg

d+ 2
∇f ·R · ∇f +

dh

d+ 2
|∇f |4

]
dx.

The last step is to verify that the expression inside the final integral is pointwise
non-negative:

‖R‖2 +
2dg

d+ 2
∇f ·R · ∇f +

dh

d+ 2
|∇f |4

=

∥∥∥∥R+
dg

d+ 2
∇f ∇fT

∥∥∥∥2

+

[
dh

d+ 2
−
(

dg

d+ 2

)2
]
|∇f |4.

The squared norm is trivially non-negative. For the coefficient of the term |∇f |4
to be non-negative, it suffices to have h ≥ g2. Since

h− g2 =
1

f ′

(
f ′′

(f ′)2

)′
−
(

f ′′

(f ′)2

)2

=
f ′′′

(f ′)3
− 3

(f ′′)2

(f ′)4
= −1

2

(
1

(f ′)2

)′′
,

the assumed concavity of 1/(f ′)2 is sufficient to guarantee h ≥ g2. In summary,

J ≥ 1

d

ˆ
Ω

∆f(c1)2 dx.(44)

It remains to estimate the other integral. Recall that f is continuous, and that f ′

is positive with 1/(f ′)2 concave, so there is a constant a > 0 such that |f | ≤ a and
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f ′ ≥ a−1. Since Ω is bounded, and thanks to the Neumann boundary conditions
(2b),

χ

ˆ
Ω

|∇c1|2 dx ≤ a2χ

ˆ
Ω

|∇f(c1)|2 dx = −a2χ

ˆ
Ω

f(c1)∆f(c1) dx

≤ a2χ
(
a2|Ω|

) 1
2
(
dJ
) 1

2 ≤ 1

2
J +

dχ2a4

2
|Ω|.

(45)

Going back to (38), we arrive at (14), or more specifically:

− d

dt
H(c) ≥ 1

2d

ˆ
Ω

(∆f)2 dx− dχ2a4

2
|Ω|.(46)

An integration of this inequality in time providesˆ T

0

ˆ
Ω

(∆f)2 dx ≤ 2d
[
H(c0)−H

(
c(T )

)]
+ d2χ2a4|Ω|T.(47)

Notice that the value of the entropy H(c) is uniformly bounded from above and
below for all c ∈ Xmass. The estimate (37) under consideration is a time-discrete
version of (47), using that the integral over ∆f(c1) on the left hand side yields
control on the H2-norm of f(c1) by means of another application of (41) and
interpolation with the trivial L∞(L2)-bound on c1. �

Making the formal calculations rigorous. For each fixed n, we show the following
time-step version of (47):

τ

ˆ
Ω

(
∆f(cn1 )

)2
dx ≤ 2d

[
H(cn−1)−H(cn)

]
+ τ(d2χ2a4|Ω|+K),(48)

where K is independent of τ . With (48) at hand, the estimate (37) follows by
summation over n = 1, 2, . . . , N .

The starting point for the derivation of (48) is a particular variation of the
minimizer cnτ of Eτ,δ(·; cn−1

τ ): consider the family cs = (cs1, c
s
2) ∈ Xmass, where

cs1 and cs2 are the time-s-solutions to the heat flow on Ω for data cn1 and cn2 , with
homogeneous Neumann boundary conditions:

∂sc
s
i = ∆csi for (s, x) ∈ R>0 × Ω,(49a)

n · ∇csi = 0 on R>0 × ∂Ω,(49b)

csi |s=0
= cni in Ω.(49c)

The pair cs = (cs1, c
s
2) has a variety of nice properties that facilitate the further

analysis. Thanks to the smoothing effect of the heat equation, the map (s, x) 7→
csi (x) is a C∞-function on R>0×Ω, and it satisfies both the equation (49a) and the
boundary condition (49b) in the classical sense. Moreover, one has 0 < infx c

s
i (x) ≤

supx c
s
i (x) < 1 for each s > 0, which implies that the map (s;x) 7→ f(csi (x)) inherits

the C∞-smoothness as well as the homogeneous Neumann boundary conditions,

n · ∇f(csi ) = 0 on R>0 × ∂Ω.(50)

Concerning the attainment of the initial condition (49c): it follows from E(cn) <∞
that f(cni ) ∈ H1(Ω), and hence also cni ∈ H1(Ω) in view of Assumption 1. This
implies

csi → cni in H1(Ω) as s ↓ 0.(51)
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Note, however, that we cannot conclude f(csi )→ f(cni ) in H1(Ω) from here because
of f ′(r) → +∞ for r ↓ 0 and for r ↑ 1. Finally, the incompressibility constraint is
preserved,

cs1 + cs2 = 1.(52)

There are many further possibilities for the perturbation (cs) that would share
the aforementioned properties. Our motivation for the particular choice (49) is

that solutions to the heat equation form a so-called EVI0-flow of the entropy H̃
in the L2-Wasserstein metric [2, Theorem 11.1.4]; we emphasize that convexity of
Ω is essential here. The EVI0-property means that R≥0 3 s 7→ W(csi , [c

n−1
i ]δ)

2 is
absolutely continuous — and in particular differentiable at almost every s > 0 —
and that its derivative satisfies

1

2
lim sup
s↓0

d

ds
W(csi , [c

n−1
i ]δ)

2 ≤ H̃([cn−1
i ]δ)− H̃(cni ).(53)

We combine (53) with the fact that Eτ,δ(c
s; cn−1) ≥ Eτ,δ(c

n; cn−1) by definition
of cn as a minimizer. The latter can be equivalently formulated as

E(cn)−E(cs) ≤ 1

2τ

[
d(cs, [cn−1]δ)

2 − d(cn, [cn−1]δ)
2
]
.

Plugging in the definition of d, dividing by s > 0, and passing to the limit s ↓ 0
yields in view of (53):

lim sup
s↓0

E(cn)−E(cs)

s
≤ 1

2τ
lim sup
s↓0

d

ds

(
d(cs, [cn−1]δ)

2
)

≤ 1

2m1τ
lim sup
s↓0

d

ds
W(cs1; [cn−1

1 ]δ)
2 +

1

2m2τ
lim sup
s↓0

d

ds
W(cs2; [cn−1

2 ]δ)
2

≤ H̃([cn−1
1 ]δ)− H̃(cn1 )

m1τ
+

H̃([cn−1
2 ]δ)− H̃(cn2 )

m2τ
=

H([cn−1]δ)−H(cn)

τ
.

For simplification of the left-hand side above, observe that E(cn)−E(cs) = E1(cn1 )−
E1(cs1) thanks to (52). For further estimation of the right-hand side, we use that
H is a non-negative convex functional, and thus

H([cn−1]δ) ≤ (1− δ)H(cn−1) + δH(ρ) ≤ H(cn−1) +Kδ,

where K = H(ρ) depends only on the parameters of the problem. In summary, we
have obtained so far that

lim sup
s↓0

E1(cn1 )−E1(cs1)

s
≤ H(cn−1)−H(cn)

τ
+K

δ

τ
.(54)

The remaining step is to derive a lower bound on the expression on the left-hand
side in (54) of the same form as the right-hand side in (46). Ideally, we would
like to express the left-hand side of (54) by means of the fundamental theorem
of calculus as an average of −dE1(cs1)/ds. The technical difficulty here is that
E1(cs1) → E1(cn1 ) as s ↓ 0 might fail; note that Assumption 1 guarantees lower —
but a priori not upper — semi-continuity of E1 with respect to the H1-convergence
(51). To overcome this, introduce for ε ∈ (0, 1) the following approximations fε :
[0, 1]→ R of f :

fε

(
1

2
+ z

)
= (1− ε)−1f

(
1

2
+ (1− ε)z

)
for −1

2
≤ z ≤ 1

2
.
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Thanks to Assumption 1, f ′ε is positive, 1/(f ′ε)
2 is concave, and fε(1− r) = −fε(r).

Moreover, since f ′( 1
2 + z) is non-decreasing for z > 0 and non-increasing for z < 0

thanks to concavity of 1/(f ′)2 and symmetry of f ′(r) about r = 1
2 , it follows with

f ′ε(
1
2 + z) = f ′( 1

2 + (1− ε)z) for all z ∈ [− 1
2 ,

1
2 ] that

0 < f ′ε(r) ≤ f ′(r) for all r ∈ [0, 1].(55)

Observe further that fε : [0, 1]→ R is smooth up to the boundary, and in particular,
f ′ε is bounded. Therefore, the desired continuity, i.e., fε(c

s
1)→ fε(c

n
1 ) in H1(Ω) as

s ↓ 0, follows directly from (51).
From the smoothness of cs1 for s > 0 it follows in particular that fε(c

s
1) is a

smooth curve in H1(Ω) for s > 0 with ∂sfε(c
s
1) = f ′ε(c

s
i )∆c

s
1. Observing further

that fε(c
s
1) satisfies homogeneous Neumann boundary conditions since cs1 does, the

fundamental theorem of calculus now implies for any s̄ > 0 that

1

2

ˆ
Ω

|∇fε(cn1 )|2 dx− 1

2

ˆ
Ω

|∇fε(cs̄1)|2 dx = −
ˆ s̄

0

ˆ
Ω

∇fε(cs1) · ∇∂sfε(cs1) dxds

=

ˆ s̄

0

ˆ
Ω

f ′ε(c
s
1)∆cs1∆fε(c

s
1) dxds.

The integrand for the s-integral is of the form J in (39). Since in the derivation
of (44), no property of f other than smoothness, positivity of f ′, and concavity of
1/(f ′)2 was used, the estimate (44) also holds with fε in place of f , i.e.,

ˆ
Ω

f ′ε(c
s
1)∆cs1∆fε(c

s
1) dx ≥ 1

d

ˆ
Ω

[
∆fε(c

s
1)
]2

dx

for each s > 0; the technical hypotheses for the derivation of (44) — smoothness
of cs1, the bounds 0 < cs1 < 1, and the homogeneous Neumann boundary conditions
for f(cs1) — are guaranteed by the properties of the heat flow.

Now we pass to the limit ε ↓ 0. On the one hand, we can directly estimate´
Ω
|∇fε(cn1 )|2 dx ≤

´
Ω
|∇f(cn1 )|2 dx thanks to (55). On the other hand, using that

fε(c
s
1) → f(cs1) uniformly as well as the lower semi-continuity of the H1- and the

H2-semi-norms with respect to convergence in measure, we finally arrive at

1

2

ˆ
Ω

|∇f(cn1 )|2 dx− 1

2

ˆ
Ω

|∇f(cs̄1)|2 dx ≥ 1

d

ˆ s̄

0

ˆ
Ω

[
∆f(cs1)

]2
dxds.(56)

Another — this time completely straight-forward — application of the fundamental
theorem of calculus provides

χ

2

ˆ
Ω

cn1 (1− cn1 ) dx− χ

2

ˆ
Ω

cs1(1− cs̄1) dx = −χ
2

ˆ s̄

0

ˆ
Ω

(1− 2cs1)∂sc
s
1 dxds

= χ

ˆ s̄

0

ˆ
Ω

|∇cs1|2 dxds ≥ −
ˆ s̄

0

(
1

2d

ˆ
Ω

[
∆f(cs1)

]2
dx+

dχ2a4|Ω|
2

)
ds,

(57)

where we have derived the last estimate in analogy to (45), with a > 0 defined
there. Summation of (56) and (57) yields

ˆ s̄

0

(
1

2d

ˆ
Ω

[
∆f(cn1 )

]2
dx− dχ2a4|Ω|

2

)
ds ≤ E1(cn1 )−E1(cs̄1).(58)
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We substitute this estimate into (54) and obtain, using again the lower semi-
continuity of the H2-semi-norm,

1

2d

ˆ
Ω

[
∆f(cs1)

]2
dx− dχ2a2|Ω|4

2
≤ H(cn−1)−H(cn)

τ
+K

δ

τ
.

Recalling (24), this is (48).
Concerning the boundary condition: the estimate (56) implies in particular that

there is a sequence (sk) of sk > 0 with sk ↓ 0 such that ∆f(csk1 ) is bounded in L2(Ω).

This implies weak convergence of a further subsequence f(c
s′k
1 ) to f(cn1 ) in H2(Ω),

and this is sufficient to conclude that the normal trace n ·∇f(c
s′k
1 ) converges weakly

in L2(∂Ω) to n · ∇f(cn1 ). In particular, f(c
s′k
1 )’s homogeneous Neumann bound-

ary condition is inherited by f(cn1 ), and by Assumption 1, also cn1 itself satisfies
homogeneous Neumann conditions. �

Corollary 6. There is a constant C, only depending on the parameters of the
problem, such that, for all N = 1, 2, . . .,

τ

N∑
n=1

∥∥F[cn1 ]
∥∥2

L2 ≤ C(1 +Nτ).(59)

Proof. This follows immediately from (37), since

‖F[cn1 ]‖L2 ≤
∥∥∆f(cn1 )

∥∥
L2 + χ‖ω‖2C0

∥∥∥∥cn1 − 1

2

∥∥∥∥
L2

≤
∥∥f(cn1 )

∥∥
H2 +M,

where M only depends on the parameters of the problem. �

5. A priori estimates on the auxiliary potentials

The aim of the current section is to derive — on the basis of the estimates on cn

— a priori estimates on the discrete approximation of the auxiliary functions qn.
We start by showing that thanks to our construction of cn and qn, the constitutive
equation (18) holds with cn in place of the true solution c. Recall the definition
of F given there. Further recall that ω : [0, 1] → R has been fixed such that (15)
holds.

Proposition 7. At each n ≥ 1,

ω(cn1 )qn2 − ω(cn2 )qn1 = F[cn1 ].(60)

Proof. Thanks to the continuity of cn — recall that H2(Ω) ⊂ C(Ω) since d ≤ 3 —
the set P = {x ∈ Ω | 0 < cn1 (x) < 1} is open. Let η ∈ C∞c (Ω) with support in P ,

and of vanishing mean, i.e.,
´

Ω
η(x) dx = 0. Define c̃h = (c̃h1 , c̃

h
2 ) with c̃h1 := cn1 +hη

and c̃h2 := cn2 − hη for all h > 0 sufficiently small such that c̃h ∈ Xmass. Then

Eτ,δ(c̃
h; cn−1) ≥ Eτ,δ(c

n; cn−1) by definition of cn as a global minimizer.

Recall that the (ϕni , ψ
n
i ) are the (uniquely determined since [cn−1

i ]δ > 0) pairs of

Kantorovich potentials for the optimal transport from [cn−1
i ]δ to cni normalized by

(28). Analogously, let (ϕ̃hi , ψ̃
h
i ) be the (still uniquely determined) pair of potentials

for the optimal transport from [cn−1
i ]δ to c̃hi , normalized such that ϕhi (x̄) = ϕni (x̄)

for all h > 0 at some arbitrarily chosen x̄ ∈ Ω. By the stability of optimal pairs,
see e.g. [25, Theorem 1.52], it follows that ϕ̃hi → ϕni and ψ̃hi → ψni uniformly on Ω
as h→ 0.
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Using the dual characterization (23) of the Wasserstein distance, we obtain:ˆ
Ω

(
ψ̃h1 c

n
1 + ϕ̃h1 [cn−1

1 ]δ + ψ̃h2 c
n
2 + ϕ̃h2 [cn−1

2 ]δ
)

dx+ E1(cn1 )

≤
ˆ

Ω

[
ψn1 c

n
1 + ϕn1 [cn−1

1 ]δ + ψn2 c
n
2 + ϕn2 [cn−1

2 ]δ
]

dx+ E1(cn1 )

= Eτ,δ(c
n; cn−1)

≤ Eτ,δ(c̃
h; cn−1)

=

ˆ
Ω

(
ψ̃h1 c̃

h
1 + ϕ̃h1 [cn−1

1 ]δ + ψ̃h2 c̃
h
2 + ϕ̃h2 [cn−1

2 ]δ
)

dx+ E1(c̃h1 ).

Subtracting the first line from the ultimate one, and dividing by h > 0 yields:

0 ≤ 1

h

ˆ
Ω

(
ψ̃h1 (c̃h1 − cn1 ) + ψ̃h2 (c̃h2 − cn2 )

)
dx+

E1(c̃h1 )−E1(cn1 )

h

=

ˆ
Ω

(ψ̃h1 − ψ̃h2 )η dx+

ˆ
Ω

|∇f(c̃h1 )|2 − |∇f(cn1 )|2

2h
dx+ χ

ˆ
Ω

c̃h1 c̃
h
2 − cn1 cn2

2h
dx.

(61)

On the one hand, it follows immediately by boundedness of η that

ˆ
Ω

c̃h1 c̃
h
2 − cn1 cn2

2h
dx =

ˆ
Ω

h(cn2 − cn1 )η − h2η2

2h
dx→ 1

2

ˆ
Ω

(cn2 − cn1 )η dx as h ↓ 0.

(62)

On the other hand, thanks to the elementary inequality |a|2− |b|2 ≤ 2a · (a− b) for
vectors a, b ∈ Rd, and by the homogeneous Neumann boundary conditions satisfied
by f(cn1 ) and hence also by f(c̃h1 ), we have thatˆ

Ω

|∇f(c̃h1 )|2 − |∇f(cn1 )|2

2h
dx ≤

ˆ
Ω

∇f(c̃h1 ) · ∇
[
f(c̃h1 )− f(cn1 )

h

]
dx

= −
ˆ

Ω

∆f(c̃h1 )
f(c̃h1 )− f(cn1 )

h
dx.

On the compact support K ⊂ P of η, we have κ ≤ cn1 ≤ 1−κ for a suitable constant
κ > 0. We further have κ/2 ≤ c̃h1 ≤ 1 − κ/2 for all sufficiently small h > 0. By
smoothness of f on [κ/2, 1− κ/2] thanks to Assumption 1, it follows that

f(c̃h1 )− f(cn1 )

h
→ f ′(cn1 )η uniformly as h ↓ 0.(63)

And it further follows that also

∆f(c̃h1 )→ ∆f(cn1 ) strongly in L2(Ω) as h ↓ 0(64)

because of the following. We know from Lemma 5 that f(cn1 ) lies in H2(Ω), i.e., has
square integrable first and second order derivatives. Again thanks to Assumption
1, f has a smooth inverse f−1 on [f(κ), f(1 − κ)]. By the chain rule for the con-
catenation of Sobolev functions with smooth maps, it follows that cn1 = f−1(f(cn1 ))
has square integrable first and second order weak derivatives on K. By smoothness
of η, the first and second order derivatives of cn1 are uniformly approximated by the
respective ones of c̃h1 on K. Using again the smoothness of f on [κ/2, 1− κ/2], we
conclude uniform approximation of ∆f(cn1 ) by ∆f(c̃h1 ) as h ↓ 0. Now (64) follows
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since c̃h1 = cn1 in Ω \ K. Plugging (62), (63) and (64) into (61), we obtain in the
limit h ↓ 0 that

0 ≤
ˆ

Ω

[
ψn1 − ψn2 − f ′(cn1 )∆f(cn1 )− χ

(
cn1 − 1

2

)]
η dx.

The same inequality is true also for −η in place of η, and thus is an equality. Since η
was an arbitrary test function with support in P of zero average, there is a constant
A such that

ψn1 − ψn2 +A = f ′(cn1 )∆f(cn1 ) + χ
(
cn1 − 1

2

)
holds a.e. on P . Multiplication by 1/f ′(cn1 ) = ω(cn1 )ω(cn2 ) leads to

ω(cn1 )ω(cn2 )[ψn1 − ψn2 +A] = ∆f(cn1 ) + χ
(
cn1 − 1

2

)
ω(cn1 )ω(cn2 ).(65)

On the complement Ω \ P , where either cn1 = 0 or cn2 = 0, the left-hand side of
(65) above vanishes a.e. because of ω(0) = 0, and for the same reason, the second
term on the right-hand side vanishes as well. Also ∆f(cn1 ) vanishes a.e., because
f(cn1 ) ∈ H2(Ω), and so all of its first and second order weak partial derivatives are
zero a.e. on the level sets, see e.g. [11, Theorem 4.4]. That is, the validity of (65)
extends from P to all of Ω.

Now integrate (65) on Ω to obtain:ˆ
Ω

ψn1 − ψn2 + χ
(
cn1 − 1

2

)
+A

f ′(cn1 )
dx =

ˆ
Ω

∆f(cn1 ) dx = 0,

where we have used that f(cn1 ) satisfies homogeneous Neumann boundary condi-
tions. In view of the normalization (28), it follows that A = 0. Finally, recalling
the definition (16) of q1 and q2, the claim of the lemma now follows from (65). �

With the consitutive relation (60) at hand, we can now make the idea outlined
in Section 1.4 of the introduction rigorous and prove τ -uniform integrability of the
qni . In the following, let

pd :=
d

d− 1
=

{
2 if d = 2,

3/2 if d = 3.
(66)

Lemma 8. There is a constant C, only depending on the parameters of the problem,
such that, for all N = 1, 2, . . .,

τ

N∑
n=1

(
‖qn1 ‖2Lpd + ‖qn2 ‖2Lpd

)
≤ C(1 +Nτ).(67)

Proof. We introduce the quantity

µ̄n :=
cn1ψ

n
1

m1τ
+
cn2ψ

n
2

m2τ
= α(cn1 )qn1 + α(cn2 )qn2 ,(68)

where the equality follows by definition (16) of the qni , and since α(r)ω(r) = r. We
notice further that, by the normalization (28),ˆ

Ω

µ̄n dx = 0.(69)

Next, we recall that

F[cn1 ] = ω(cn2 )qn1 − ω(cn1 )qn2(70)
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by Proposition 7. Multiply (68) by ω(cn1 ) and (70) by α(cn2 ), then the sum amounts
to

ω(cn1 )µ̄n + α(cn2 )F[cn1 ] = (cn1 + cn2 )qn1 = qn1 .

Similarly, we obtain for qn2 :

ω(cn2 )µ̄n − α(cn1 )F[cn1 ] = (cn1 + cn2 )qn2 = qn2 .

Below, we show that

τ

N∑
n=1

∥∥µ̄n∥∥2

Lpd
≤ C(1 +Nτ),(71)

which in combination with the bound (59) on F[cn1 ], and the fact that α and ω are
bounded functions, yields (67).

To obtain (71), we estimate the gradient of µ̄ in L2(0, T ;L1(Ω)). From the
definition of µ̄n in (68) and the fact that ∇cn2 = −∇cn1 , it follows that

∇µ̄n = ∇cn1
(
ψn1
m1τ

− ψn2
m2τ

)
+
cn1
m1

∇ψn1
τ

+
cn1
m2

∇ψn2
τ

.(72)

We treat the two groups of terms on the right hand side separately. For estimation of
the first term, we observe that ω(cn1 )ω(cn2 )∇f(cn1 ) = ∇cn1 , since ω(cn1 )ω(cn2 )f ′(cn1 ) =
1 on the positivity set P := {0 < cn1 < 1}, and both sides vanish a.e. on the
complement Ω \ P . Therefore, also recalling (70) again,

∇cn1
(
ψn1
m1τ

− ψn2
m2τ

)
= ∇f(cn1 )

[
ω(cn2 )qn1 − ω(cn1 )qn2

]
= ∇f(cn1 )F[cn1 ],

hence it follows thatˆ
Ω

∣∣∣∣∇cn1 ( ψn1
m1τ

− ψn2
m2τ

)∣∣∣∣ dx ≤ ‖∇f(cn1 )‖L2‖F[cn1 ]‖L2 .

The second group of terms on the right hand-side of (72) is estimated by means of
Hölder’s inequality,

ˆ
Ω

∣∣∣∣ cn1m1

∇ψn1
τ

+
cn1
m2

∇ψn2
τ

∣∣∣∣ dx ≤ K

[ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx

]1/2

,

with a K that only depends on the parameters of the problem. Thanks to the
normalization (69), it follows by means of the Poincare-Wirtinger inequality that

τ

N∑
n=1

∥∥µ̄n∥∥2

Lpd
≤ Cτ

N∑
n=1

[ˆ
Ω

|∇µ̄n|dx
]2

dt

≤ C sup
n
‖∇f(cn1 )‖2L2τ

N∑
n=1

‖F[c1]‖2L2

+ CK2τ

N∑
n=1

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx,

with a constant C that only depends on the geometry of Ω. And so, recalling
the estimates (31) on ∇f(cn1 ) in L2, (59) on F[cn1 ] in L2, and (36) on the ψni in a
weighted H1-norm, we arrive at (71). �
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6. Convergence and conclusion of the proof of Theorem 1

In this final section, we show that the time-discrete approximations (cnτ ) and
(qnτ ) converge to a weak solutions of the initial boundary value problem (1)–(3) in
the sense of Theorem 1. First, introduce the usual piecewise constant interpolations
in time c̄τ = (c̄τ1 , c̄

τ
2) and q̄τ = (q̄τ1 , q̄

τ
2 ) with c̄τi ∈ L∞(ΩT ) and q̄τi ∈ Lpd(ΩT ) by

c̄τi (t; ·) = cni , q̄τi (t; ·) = qni for all t with (n− 1)τ < t ≤ nτ.

Recall that d = 2 or d = 3, and the definition (66) of pd.

Lemma 9. There are functions c1, c2 ∈ L∞loc(R≥0;H1(Ω)) with f(c1), f(c2) ∈
L2
loc(R≥0;H2(Ω)), and q1, q2 ∈ Lpd(R≥0 × Ω) such that, for each T > 0, in the

limit τ ↓ 0, at least along a suitable sequence,

q̄τi ⇀ qi weakly in Lpd(ΩT ),(73)

c̄τi → ci strongly in Lr(ΩT ), for each 1 ≤ r <∞,(74)

∇f(c̄τi )→ ∇f(ci) strongly in L24/7(ΩT ),(75)

f(c̄τi ) ⇀ f(ci) weakly in L2(0, T ;H2(Ω)).(76)

Moreover, the limits ci are Hölder continuous as curves in L2(Ω).

Proof. The statements (73)–(76) are shown separately.
Proof of (73): recall that (67) provides a τ -uniform bound on q̄τi in Lpd(ΩT ).

Since this space is reflexive, there exist subsequences with respective weak limits.
Proof of (74): from (31) and the fact that f ′(r) ≥ f ′(1/2) > 0 thanks to As-

sumption 1, it follows for i = 1, 2, and for any T > 0 that

‖c̄τi ‖2L∞(0,T ;H1(Ω)) dt ≤ K(77)

with a bound K that might depend on T , but is independent of τ . Moreover, (33)
shows that the same sequences satisfy a uniform quasi-Hölder estimate in time,

sup
0<s<t<T

∥∥c̄τi (s)− c̄τi (t)
∥∥
L2(Ω)

≤ C
(
τ + |t− s|

)1/4
.(78)

We can thus invoke the generalized version of the Aubin-Lions compactness lemma
from [24, Theorem 2]. There, we choose L2(Ω) as the base space. The role of
the coercive integrand is played by the H1(Ω)-norm — whose sublevels are clearly
compact in L2(Ω) by Rellich’s theorem — so that (77) amounts to the required
integral bound. Moreover, almost-continuity in time is guaranteed by (78). We
thus conclude strong convergence of the c̄τi to respective limits ci in L2(ΩT ). And
thanks to the uniform bound 0 ≤ c̄τi ≤ 1, this implies strong convergence in any
Lr(ΩT ) with r < ∞. Moreover, these limits belong to L∞(0, T ;H1(Ω)) by lower
semi-continuity of the H1-norm, and are Hölder continuous curves with respect to
L2(Ω), again thanks to (77) and (78) above.

Proof of (75): since f : [0, 1] → R is a continuous function, we conclude that
also f(c̄τi ) converges to the respective f(ci) in any Lq(ΩT ) with q < ∞. Further,
observe that (37) implies that

‖f(c̄τi )‖2L2(0,T ;H2(Ω)) ≤ K(79)

with a constant K that might depend on T , but not on τ . Thanks to lower semi-
continuity of the H2-norm, it follows that f(ci) ∈ L2(0, T ;H2(Ω)) satisfies the same
bound (79). We are now going to show that this implies convergence of ∇f(c̄τi ) to
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∇f(ci) in L24/7(ΩT ). By the Gagliardo-Nirenberg and Hölder’s inequality, we have
(independently of the dimension d):∥∥∇[f(c̄τi )− f(ci)

]∥∥24/7

L24/7(ΩT )
=

ˆ T

0

∥∥∇[f(c̄τi )− f(ci)
]∥∥24/7

L24/7(Ω)
dt

≤ C
ˆ T

0

(
‖f(c̄τi )‖H2(Ω) + ‖f(ci)‖H2(Ω)

)12/7‖f(c̄τi )− f(ci)‖12/7
L12(Ω) dt

≤ C

(ˆ T

0

[
‖f(c̄τi )‖2H2(Ω) + ‖f(ci)‖2H2(Ω)

]
dt

)6/7(ˆ T

0

‖f(c̄τi )− f(ci)‖12
L12(Ω) dt

)1/7

≤ C(2K)6/7‖f(c̄τi )− f(ci)‖12/7
L12(ΩT ),

where K is the bound from (79). Therefore, convergence of f(cτi ) carries over to
convergence of ∇f(cτi ).

Proof of (76): by (79) and reflexivity of L2(0, T ;H2(Ω)), we conclude weak
convergence of f(c̄τi ) in that space. For identification of the limit, we use (75)
above. �

Having proven the existence of limits c and q, we shall now verify that these
satisfy the equations (21a) and (21c). The proof of (21a) is divided into two steps:
in Lemma 10 below, we derive a discrete-in-time version of the continuity equation
(21a), and in the subsequent Lemma 11, we pass to the limit τ ↓ 0.

Lemma 10. Let ζ ∈ C∞(Ω) satisfy homogeneous Neumann boundary conditions.
Then

ˆ
Ω

ζ
cn1 − cn−1

1

τ
dx = −m1

ˆ
Ω

qn1
[
α(cn1 )∆ζ + ω(1− cn1 )∇f(cn1 ) · ∇ζ

]
dx+ τεn[ζ],

(80)

where the error term satisfies

|εn[ζ]| ≤ 1

2
‖ζ‖C2

ˆ
Ω

cn1

∣∣∣∣∇ψn1τ
∣∣∣∣2 dx+ ‖ζ‖C0 |Ω|.(81)

Proof. Recalling the representation (35) of cn−1
1 as push-foward of cn1 , we obtain

ˆ
Ω

ζ
cn1 − cn−1

1

τ
dx =

ˆ
Ω

ζ
cn1 − [cn−1

1 ]δ
τ

dx+

ˆ
Ω

ζ
[cn−1

1 ]δ − cn−1
1

τ
dx

=
1

τ

ˆ
Ω

[
ζ − ζ ◦ (id−∇ψn1 )

]
cn1 dx+

δ

τ

ˆ
Ω

ζ(ρ1 − cn−1
1 ) dx

=

ˆ
Ω

[
∇ζ ·

(
∇ψn1
τ

)
+
τ

2

(
∇ψn1
τ

)T
· ∇̂2ζ ·

(
∇ψn1
τ

)]
cn1 dx

+
δ

τ

ˆ
Ω

ζ(ρ1 − cn−1
1 ) dx

=

ˆ
Ω

∇ζ ·
(
∇ψn1
τ

)
cn1 dx+ τεn[ζ].

Above, ∇̂2ζ is the average of the Hessian∇2ζ along the straight line segment joining
x to x − ∇ψn1 (x). Consequently, also using that |cn−1

1 − ρ1| ≤ 1 and that δ ≤ τ2
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by (24), we obtain the estimate (81) on εn[ζ]. Now integrate by parts in the final
integral above,ˆ

Ω

∇ζ ·
(
∇ψn1
τ

)
cn1 dx = −

ˆ
Ω

[
ψn1
τ
cn1 ∆ζn +

(
ψn1
τ
∇cn1

)
· ∇ζ

]
dx.(82)

We rewrite the integral on the right-hand side. First, observe that

cn1ψ
n
1 = m1τα(cn1 )qn1 ,(83)

using on {cn1 > 0} that qn1 = ω(cn1 )ψn1 /(m1τ) by definition, and on {cn1 = 0} that
both sides are zero, thanks to α(0) = 0. And second, observe that

∇cn1 ψn1 = m1τω(cn2 )∇f(cn1 ) qn1 ,(84)

since ∇cn1 = ω(cn1 )ω(cn2 )∇f(cn1 ) on the positivity set P = {0 < cn1 < 1} by the fact
that f ′(r)ω(r)ω(1− r) for 0 < r < 1, and on the complement Ω\P by the fact that
both ∇cn1 and ∇f(cn1 ) vanish a.e. Substitution of (83)&(84) in (82) yields (80). �

Lemma 11. For all test functions ξ ∈ C∞c,n(R>0 × Ω),ˆ ∞
0

ˆ
Ω

[−∂tξ c1 +m1 (∆ξ α(c1)q1 +∇ξ · ∇f(c1)ω(1− c1)q1)] dx dt = 0.(85)

Proof. Introduce ζn(x) := ξ(nτ ;x) for n = 1, 2, . . ., and the following piecewise

constant and piecewise linear in time approximations ξτ and ξ̂τ of ξ, respectively,
by:

ξ̄τ (t; ·) = ζn and ξ̂τ (t; ·) =
t− (n− 1)τ

τ
ζn+1 +

nτ − t
τ

ζn

for all t ∈ ((n− 1)τ, nτ ]. Use ζn for ζ in (80), sum over n:

τ
∑
n

εn[ζn] = τ
∑
n

ˆ
Ω

[
cn1
ζn − ζn+1

τ
+ ∆ζnα(cn1 )qn1 +∇ζn · ∇f(cn1 )ω(1− cn1 )qn1

]
dx

=

ˆ ∞
0

ˆ
Ω

[
c̄τ1∂tξ̂

τ + ∆ξ̄τα(c̄τ1)q̄τ1 +∇ξ̄τ · ∇f(c̄τ1)ω(1− c̄τ1)q̄τ1

]
dxdt.

We pass to the limit τ ↓ 0 on both sides. On the left-hand side, we have thanks to
(81) and (30),

τ

N∑
n=1

∣∣εn[ζn]
∣∣ ≤ m1‖ξ‖C2

2
τ

N∑
n=1

ˆ
Ω

∣∣∣∣∇ψn1τ
∣∣∣∣ cn1m1

dx+ τ(Nτ)|Ω|‖ξ‖C0

≤ 2m1‖ξ‖C2E(c0) τ + τ |ΩT |
(
m1 + ‖ξ‖C0

)
,

which converges to zero as τ → 0. On the right-hand side, we use that ∂tξ̂
τ → ∂tξ

as well as ∇ξ̄τ → ∇ξ and ∆ξ̄τ → ∆ξ uniformly. Moreover, by (74), and since
α, ω : [0, 1]→ R are continuous, we have in particular that

α(c̄τ1)→ α(c1) and ω(1− c̄τ1)→ ω(1− c1)

in L24(ΩT ). In view of (73) and (75),

q̄τ1∇f(c̄τ1) ⇀ q1∇f(c1) in L24/23(ΩT ).

Therefore, the integral converges. �

The purpose of the next and final lemma is to derive the constitutive equa-
tions (21b) and (21c).



24 CLÉMENT CANCÈS AND DANIEL MATTHES

Lemma 12. Let ci and qi be as in Lemma 9, then c1 + c2 = 1 and

ω(c1) q2 − ω(c2) q1 = ∆f(c1) + χ
(
c1 − 1

2

)
ω(c1)ω(c2).(86)

Proof. Because of (29), we have c̄τ1 + c̄τ2 = 1, which clearly yields c1 + c2 = 1 in the
limit, using the strong convergence from (74).

Next, recall that (60) is precisely (86), with c̄τ in place of c, and with q̄τ in place
of q, i.e.,

ω(c̄τ1) q̄τ2 − ω(c̄τ2) q̄τ1 = ∆f(c̄τ1) + χ
(
c̄τ1 − 1

2

)
ω(c̄τ1)ω(c̄τ2).(87)

By the strong convergence (74) of c̄τi and thanks to the continuity of ω, it follows
that ω(c̄τi ) converges to ω(ci) strongly in, say, L3(ΩT ). In combination with the
weak convergence (73) of the q̄τi , we obtain weak convergence of the products,

ω(c̄τ1) q̄τ2 ⇀ ω(c1)q2 and ω(c̄τ2) q̄τ1 ⇀ ω(c2)q1

in L1(Ω). Trivially, also(
c̄τ1 − 1

2

)
ω(c̄τ1)ω(c̄τ2)→

(
c1 − 1

2

)
ω(c1)ω(c2)

strongly in L1(ΩT ). Finally, weak convergence ∆f(c̄τ1) ⇀ ∆f(c̄1) in L2(ΩT ) is
implied by (76). We thus obtain (86) as limit of (87). �

The proof of Theorem 1 is a conclusion of Lemma 11 and Lemma 12.

Appendix A

Lemma 13. There is a constant K, expressible in terms of ρ1/m1, ρ2/m2, and
geometric properties of Ω, such that for all c ∈ Xmass:

d(c, [c]δ)
2 ≤ Kδ.(88)

Consequently, for any c, c̄ ∈ Xmass:

d(c, c̄)2 ≤ 2d
(
c, [c̄]δ

)2
+ 2Kδ.(89)

Proof. Define a (sub-optimal) transport plan γ from ci to [ci]δ = (1− δ)ci + δρi as
follows:

γ = (1− δ)(id, id)#(ciLΩ) +
δ

|Ω|
(ciLΩ)⊗ LΩ.

The marginals are as desired, i.e., for any ξ, η ∈ C(Ω), we have that
¨

Ω×Ω

ξ(x) dγ(x, y) = (1− δ)
ˆ

Ω

ξ(x)ci(x) dx+ δ

ˆ
Ω

ξ(x)ci(x) dx

 
Ω

dy

=

ˆ
Ω

ξ(x)η(x) dx,

¨
Ω×Ω

η(y) dγ(x, y) = (1− δ)
ˆ

Ω

η(y)ci(y) dx+ δ

 
Ω

ci(x) dx

ˆ
Ω

η(y) dy

=

ˆ
Ω

η(y)
[
(1− δ)ci(y) + δρi

]
dy.
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And the corresponding costs amount to¨
Ω×Ω

|x− y|2 dγ(x, y) =
δ

|Ω|

¨
Ω×Ω

|x− y|2ci(x) dxdy

≤ δ diam(Ω)2

|Ω|

ˆ
Ω

ci(x) dx

ˆ
Ω

dy = δ diam(Ω)2|Ω|ρi.

In summary,

d(c, [c]δ)
2 =

W(c1, [c1]δ)
2

m1
+

W(c2, [c2]δ)
2

m2
≤ δ diam(Ω)2

(
|Ω|ρ1

m1
+
|Ω|ρ2

m2

)
.

The inequality (89) now follows from the triangle inequality, that is inherited from
W to d,

d(c, c̄)2 ≤ 2d
(
c, [c̄]δ

)2
+ 2d

(
c̄, [c̄]δ

)2
,

in combination with (88). �

Lemma 14. For all c, c′ ∈ Xmass with ci, c
′
i ∈ H1(Ω) and c1 + c2 ≡ 1 ≡ c′1 + c′2,

‖c′ − c‖2L2 ≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)
d(c′, c).(90)

Proof. Let (ϕ1, ψ1) be a pair of Kantorovich potentials for the optimal transport
from c1 to c′1. For each s ∈ [0, 1], define Ts : Ω→ Ω by Ts(x) = x− s∇ϕ1(x). For
any test function ζ ∈ C1(Ω),ˆ

Ω

[c′1 − c1]ζ dx =

ˆ
Ω

[
ζ ◦ T1 − ζ

]
c1 dx

=

ˆ
Ω

[ˆ 1

0

∇ζ ◦ Ts · ∇ϕds

]
c1 dx

≤
ˆ 1

0

(ˆ
Ω

|∇ζ|2 ◦ Ts c1 dx

)1/2(ˆ
Ω

|∇ϕ1|2c1 dx

)1/2

ds

=

ˆ 1

0

(ˆ
Ω

|∇ζ|2Ts#c1 dx

)1/2

dsW(c1, c
′
1).

Using the fact that

sup
Ω
Ts#c1 ≤ max

(
sup

Ω
c1, sup

Ω
c′1

)
= 1,

it follows that ˆ
Ω

∣∣[c′1 − c1]ζ
∣∣ dx ≤ ‖∇ζ‖L2W(c1, c

′
1),

and consequently — using for ζ approximations of c′1 − c1 in C1 —

‖c′1 − c1‖2L2 ≤ ‖∇(c′1 − c1)‖L2W(c1, c
′
1) ≤

(
‖∇c′1‖L2 + ‖∇c1‖L2

)
W(c1, c

′
1).

By hypothesis, c1 − c′1 = c′2 − c2. Thus, recalling the definition of d, we obtain

‖c′ − c‖2L2 = 2‖c′1 − c1‖2L2

≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)2(W(c′1, c1)2

m1

)1/2

≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)
d(c′, c).

�
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[21] D. Matthes, R. J. McCann, and G. Savaré. A family of nonlinear fourth order equations of
gradient flow type. Comm. Partial Differential Equations, 34:1352–1397, 2009.

[22] Robert J. McCann and Marjolaine Puel. Constructing a relativistic heat flow by transport
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87. Birkhäuser Basel, 1 edition, 2015.

[26] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

[27] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
2009. Old and new.

[28] Jonathan Zinsl and Daniel Matthes. Exponential convergence to equilibrium in a coupled

gradient flow system modeling chemotaxis. Anal. PDE, 8(2):425–466, 2015.

Clément Cancès (clement.cances@inria.fr): Univ. Lille Inria, CNRS, UMR 8524 -
Laboratoire Paul Painlevé, F-59000 Lille
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