
HAL Id: hal-02510535
https://hal.science/hal-02510535v1

Preprint submitted on 17 Mar 2020 (v1), last revised 8 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of a two-phase flow with singular energy
by gradient flow methods
Clément Cancès, Daniel Matthes

To cite this version:
Clément Cancès, Daniel Matthes. Construction of a two-phase flow with singular energy by gradient
flow methods. 2021. �hal-02510535v1�

https://hal.science/hal-02510535v1
https://hal.archives-ouvertes.fr


CONSTRUCTION OF A TWO-PHASE FLOW WITH SINGULAR ENERGY BY

GRADIENT FLOW METHODS

CLÉMENT CANCÈS AND DANIEL MATTHES

Abstract. We prove the existence of weak solutions to a system of two diffusion equations that

are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics

for a free energy functional. Our primary example is a model for the demixing of polymers, the
corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in

the equations, the dynamics considered here is qualitatively different from the one found in the
formally related Cahn-Hilliard equations.

Our angle of attack is from the theory of optimal mass transport, that is, we consider the

evolution equations for the two components as two gradient flows in the Wasserstein distance
with one joint energy functional that has the volume constraint built in. The main difference to

our previous work [6] is the nonlinearity of the energy density in the gradient part, which becomes

singular at the interface between pure and mixed phases.

1. Introduction

We show existence of non-negative solutions to the following coupled system of diffusion equa-
tions:

∂tc1 = div(m1c1∇µ1), (1a)

∂tc2 = div(m2c2∇µ2), (1b)

c1 + c2 = 1, (1c)

µ1 − µ2 = −f ′(c1)∆f(c1) + χ
(

1
2 − c1

)
, (1d)

on a bounded and convex domain Ω ⊂ Rd in the plane (d = 2) or physical space (d = 3) with smooth
boundary ∂Ω. Solutions are subject to no-flux and homogeneous Neumann boundary conditions

n · (c1∇µ1) = n · (c2∇µ2) = 0, (2a)

n · ∇c1 = n · ∇c2 = 0 (2b)

on ∂Ω and to the initial conditions

c1(0) = c01, c2(0) = c02, (3)

with initial data c01, c
0
2 : Ω→ [0, 1] satisfying the constraint (1c). The mobility coefficients m1,m2 >

0 and the parameter χ > 0 are given constants, and the function f : [0, 1]→ R in (1d) is assumed
to satisfy:

Assumption 1. f is continuous on [0, 1], it is smooth on (0, 1) with f ′(r) > 0 there, it satisfies
f ′(r)→ +∞ for r ↓ 0 and for r ↑ 1, and the function 1/(f ′)2 is concave on (0, 1). Moreover, f(r)
is point-symmetric about r = 1/2, i.e., f(1− r) = −f(r) for all r ∈ [0, 1].

This research was supported by the DFG Collaborative Research Center TRR 109, Discretization in Geometry
and Dynamics and by Labex CEMPI (ANR-11-LABX-0007-01).
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2 CLÉMENT CANCÈS AND DANIEL MATTHES

Systems of the type (1) are widely used as models for spinodal decomposition. Particularly, the
choice (4) of f below describes the demixing of two polymers, see e.g. [9, 10, 20].

An f satisfying Assumption 1 is singular in the sense that it has infinite slope at the boundary
of [0, 1]. It is this behaviour which makes the analysis of the problem at hand significantly more
challenging than the corresponding Cahn-Hilliard problem with f(r) = r− 1

2 that the authors have
considered recently with Nabet [6]. In the current paper, the example of primary interest is

f(r) = arcsin(2r − 1), with
1

f ′(r)2
= r(1− r). (4)

An alternative admissible choice for f is f(r) = rγ − (1 − r)γ with 1
2 ≤ γ < 1. Note that these

functions interpolate between the linear function f(r) = 2r − 1 at γ ↑ 1, corresponding to the
Cahn-Hilliard model, and a function with square-root singularities like in (4) at γ = 1

2 .
The role of f is best understood as follows: there is a dissipated free energy functional for (1),

which is given by

E(c1, c2) =
1

4

ˆ
Ω

(
|∇f(c1)|2 + |∇f(c2)|2 + 2χc1c2

)
dx. (5)

Assumption 1 guarantees that the gradient parts, i.e.,

ci 7→
ˆ

Ω

|∇f(ci)|2 dx,

are convex functionals. Consequently, E is of the form “convex plus smooth”. With the choice (4),
E is referred to as Flory-Huggins-deGennes-energy.

We remark that thermal agitation effects can be incorporated into the model by augmenting the
energy (5) with the mixing entropy

θ

ˆ
Ω

(
c1 log c1 + c2 log c2

)
dx, θ ≥ 0.

Here we are concerned solely with the so-called deep-quench limit θ = 0, which is analytically the
most challenging case. Indeed, thermal effects introduce additional diffusion to the problem which
provide more regularity.

1.1. Local versus non-local dynamics. In dimensions d > 1, there is a subtle difference between
the “non-local” model under consideration here and its “local” reduction in the sense of de Gennes
[9]. That difference, and its consequences on the long time asymptotics of solutions, have been
discussed in detail in [20]. For the local model, one strengthens the constraint (1c) by requiring
annihilation of the fluxes of c1 and c2 (and not only the divergences of these fluxes), i.e.,

m1c1∇µ1 +m2c2∇µ2 = 0. (6)

This condition is stronger than the original constraint (1c) in the sense that the system consisting
of (1a), (1b), (1d), and (6) propagates (1c) in time. Moreover, (6) allows to eliminate µ2 from (1d),
and the system then becomes equivalent to one single evolution equation of fourth order for c1; in
the case m1 = m2 = 1, it reads

∂tc1 = −div
(
c1(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
])
. (7)

There seems to be no way to reduce the original system (1) to a single differential equation in a
similar fashion. The reduction that comes closest to (7) — still in the case m1 = m2 = 1 — is the
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following non-local equation, taken from [20],

∂tc1 = −div
(
c1P

{
(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
]})

, (8)

in which P is the Helmholtz projection onto the gradient vector fields. More explicitly, one combines
(1a) with the following elliptic equation for µ1:

−∆µ1 = div
(
(1− c1)∇

[
f ′(c1)∆f(c1) + χ(c1 − 1

2 )
])
, (9)

which is easily derived by adding (1a) and (1b), and using that ∂t(c1 + c2) = 0 because of (1c).
Despite all the advantages that the reduced equation (8) might have, the original two-component
formulation (1) is the significant one for our existence analysis.

The less restrictive constraint (1c) provides more flexibility for the fluxes than (6). This effect
is measurable on the level of energy decay, which is significantly faster in the non-local model (8)
than in the local model (7). Numerical evidence of this fact has been presented in [7, 6] in the
Cahn-Hilliard case. On the theoretical side, the dynamics of (7) and of (8) have been compared in
[20] in the sharp interface limit: this is where χ is large and the considered time scale is proportional
to χ. Then the values of the solution c1 are concentrated around zero and one, and the interfaces
in between these pure phases become sharper the larger χ is. It turns out that the long-time
asymptotics of the interfaces in (7) and in (8) are different: while (7) is asymptotically equivalent
to (the slower) surface diffusion, (8) leads to (the faster) Hele-Shaw flow. We refer to [12] for a recent
mathematical study of the interface dynamics inside the framework of optimal mass transport.

1.2. Gradient flow structure. Similarly as in our recent paper [6], we take the interpretation of
(1) as a metric gradient flow as starting point for the existence analysis. More specifially, we use the
gradient flow structure to construct time-discrete approximations of the true solution c by means
of the minimizing movement scheme, derive a priori estimates on the approximation by variational
methods, and finally pass to the time-continuous limit. We emphasize that the interpretation of
(1) as gradient flow motivates the aforementioned procedure, but we are not going to verify that
solutions to (1) are curves of steepest descent in a rigorous way.

The potential E of the flow under consideration is essentially the system’s free energy E from
(5), however, modified such that the volume constraint (1c) is built in:

E(c) = E1(c1) + Ic1+c2≡1(c), E1(c1) =
1

2

ˆ
Ω

|∇f(c1)|2 dx+
χ

2

ˆ
Ω

c1(1− c1) dx. (10)

Above, Ic1+c2≡1 denotes the indicator function that is zero if the constraint c1 + c2 ≡ 1 is satisfied,
and is +∞ otherwise. E’s “gradient” is calculated with respect to a metric d that combines the
squared L2-Wasserstein distances of the components c1 and c2. More specifically, on the space

Xmass :=

{
c : Ω→ [0, 1]2

∣∣∣∣  
Ω

c1 dx = ρ1,

 
Ω

c2 dx = ρ2

}
, with ρ1 =

 
Ω

c01 dx = 1− ρ2, (11)

we introduce the metric d by (see Section 2 below for the definition of W)

d
(
ĉ, č
)2

=
W(ĉ1, č1)2

m1
+

W(ĉ2, č2)2

m2
. (12)

In the eyes of the metric d, the two components of c are independent, and the constraint c1 +c2 ≡ 1
is enforced only by means of the energy. This way, the metric d inherits all of the established
properties of the L2-Wasserstein distance. In comparision, to the best of our knowledge, very little
is known about the metric that would result by including the constraint already in its definition;
see, however, [3].



4 CLÉMENT CANCÈS AND DANIEL MATTHES

1.3. Estimates. There are three essential a priori estimates that play a role in our existence proof
for (1). The first two are consequences of the gradient flow structure outlined above: first, the
energy is non-increasing in time, and in particular, E(c(t)) ≤ E(c0) for each t ≥ 0. This ensures
validity of the constraint (1c), and provides a priori estimates of ci and f(ci) in L∞(0, T ;H1(Ω)).
Second, the curve c is L2-absolutely continuous in time with respect to d, that is, both components
ci are absolutely continuous in W. That means that the kinetic energy densities mi

2 ci|∇µi|
2 —

see the continuity equations (1a)&(1b) — are integrable in space and time. This provides a priori
estimate on

√
ci∇µi in L2(ΩT ).

The third estimate is related to the dissipation of an auxiliary functional, namely the entropy:

H(c) =
H̃(c1)

m1
+

H̃(c2)

m2
, where H̃(ci) =

ˆ
Ω

ci(log ci − 1) + 1 dx. (13)

Indeed, it follows from a formal calculation given below in (38) that H’s dissipation can be estimated
in the form

− d

dt
H(c) ≥ 1

2d

ˆ
Ω

(
∆f(c1)

)2
dx−M, (14)

with some constant M ≥ 0 that is independent of the specific solution c. This provides an a priori
estimate on f(c1) in L2

loc(R>0;H2(Ω)), which is our main source of compactness.

1.4. Reformulation of the equations. A key element in our existence analysis is a very particular
weak formulation of the system (1), which is taylored to the special nonlinearity under consideration.
In the Cahn-Hilliard case, where f is smooth up to the boundary, it is possible to define a proper
notion of phase chemical potential µi even when the corresponding phase vanishes, ci = 0, see [6].
This approach does not extend easily to the case of singular f ’s considered here. Our ansatz is to
substitute the bare potentials µ1 and µ2, which are difficult to analyze, by auxiliary quantites q1

and q2 given in (16) below.
Some notation is needed: by Assumption 1 on f , there exists a continuous ω : [0, 1] → R with

ω(0) = 0 that is smooth and positive on (0, 1] such that

1

f ′(r)
= ω(r)ω(1− r) for 0 < r < 1. (15)

For notational convenience, we further introduce the continuous function α : [0, 1] → R with
α(0) = 0 and α(r) = r/ω(r) for r ∈ (0, 1]; continuity at r = 0 is a consequence of the assumed
concavity of r 7→ 1

f ′(r)2 = ω(r)2ω(1 − r)2. For f from (4), one may choose ω(r) =
√
r, and then

finds that α(r) =
√
r as well.

The auxiliary quantities that replace µ1 and µ2 are

q1 = ω(c1)µ1, q2 = ω(c2)µ2. (16)

The qi are much better behaved than the µi, since they vanish by definition when ci does since
ω(0) = 0. Accordingly, the continuity equation (1a) is interpreted in the following way:

∂tc1 = div

(
m1c1∇

[
q1

ω(c1)

])
= m1 div

(
∇
[
c1

q1

ω(c1)

]
−∇c1

q1

ω(c1)

)
= m1 div

(
∇[α(c1)q1]− ω(c2)∇f(c1) q1

)
,

(17)
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and similarly for (1b). Concerning the constitutive equation (1d): after multiplication by 1/f ′(c1),
it can be reformulated in in terms of the qi as

ω(c1)q2 − ω(c2)q1 = F[c1] := ∆f(c1) + χω(c1)ω(c2)
(
c1 − 1

2

)
, (18)

which makes perfectly sense in view of the L2(ΩT )-regularity of ∆f(c1).
The significance of the formulation (17) is that the right-hand side can be interpreted in the

sense of distributions as soon the product q1∇f(c1) is well-defined. Since f(c1) ∈ L2(0, T ;H2(Ω))∩
L∞(0, T ;H1(Ω)) thanks to the a priori estimates, we have ∇f(c1) ∈ L3(ΩT ) by interpolation (recall
that d ≤ 3), and so it is sufficient that q1 ∈ L3/2(ΩT ). That latter is deduced by means of the
representation

q1 = ω(c1)µ̄+ α(c2)F[c1], (19)

in which µ̄ = c1µ1 + c2µ2 = α(c1)q1 + α(c2)q2 is an average chemical potential. The quantity F[c1]
is bounded in L2(ΩT ) thanks to the main a priori estimate; a bound on µ̄ is obtained from the
following representation of µ̄’s gradient:

∇µ̄ = c1∇µ1 + c2∇µ2 +∇c1(µ1 − µ2) =
√
c1
(√
c1∇µ1

)
+
√
c2
(√
c2∇µ2

)
+∇f(c1)F[c1], (20)

in which the first two terms are controlled thanks to the L2(ΩT )-bound on
√
ci∇µi, and the last

term is controlled by a combination of the L∞(0, T ;H1(Ω))-bound on f(c1) and the L2(ΩT )-bound
on ∆f(c1). This provides an estimate of µ̄ in L2(0, T ;W 1,1(Ω)) ↪→ L3/2(ΩT ), and thus also the
desired bound on qi via (19).

1.5. Main result. In the following, C∞c,n(R>0 × Ω) denotes the space of all test functions ξ ∈
C∞(R≥0 × Ω) such that ξ(t, ·) ≡ 0 for all t ≥ 0 outside of some compact time interval I ⊂ R>0,
and for which ξ(t; ·) satisfies homogeneous Neumann boundary conditions at each t > 0.

Our main result is the following.

Theorem 1. Let initial data c0 = (c01, c
0
2) with c01 + c02 ≡ 1 and f(c01), f(c02) ∈ H1(Ω) be given.

Then there exists c = (c1, c2) : R≥0 × Ω→ [0, 1]2 with the following properties:

• regularity in time: c1, c2 are Hölder continuous with respect to time as a map into L2(Ω).
• regularity in space: c1, c2, f(c1), f(c2) ∈ L∞(R≥0;H1(Ω)) and f(c1), f(c2) ∈ L2

loc(R≥0;H2(Ω))
• boundary conditions: c1(t), c2(t) satisfy the homogenous Neumann conditions (2b) at a.e.
t ≥ 0

• initial conditions: c1(0) = c01, c2(0) = c02.

c is accompanied by q = (q1, q2) : R≥0 × Ω→ R2 with q1, q2 ∈ L3/2(ΩT ) for each T > 0, such that
the system (1) is satisfied in the following sense:

0 =

ˆ ∞
0

ˆ
Ω

[
∂tξ ci +miqi

(
α(ci) ∆ξ + ω(1− ci)∇f(ci) · ∇ξ

)]
dxdt (21a)

for i = 1, 2 and all test functions ξ ∈ C∞c,n(R>0 × Ω),

1 = c1 + c2 a.e. on R≥0 × Ω, (21b)

ω(c1) q2 − ω(c2) q1 = ∆f(c1) +
χ

2
(c1 − c2)ω(c1)ω(c2) a.e. on R≥0 × Ω. (21c)

Notice that the no-flux boundary conditions (2a) are encoded in the weak form (21a) of the
continuity equations (1a)&(1b): since the test function ξ is only supposed have vanishing normal
derivative, but still may attain arbitrary values on ∂Ω, a formal integration by parts in (21a)
produces a weak form of (2a).
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1.6. Plan of the paper. In Section 2 below, we give a very brief summary of the relevant results
from the theory of optimal transportation that are needed in our proof of Theorem 1. In Section
3, we describe the construction of the time-discrete approximate solutions, and we derive a priori
estimates in Sections 4 and 5 on the approximate volume fractions c and phase potentials q respec-
tively. Finally, in Section 6, we pass to the time-continuous limit, obtaining a weak solution in the
sense of Theorem 1.

1.7. Notation. When we write in the following that some constant depends only on the parameters
of the problem, then we mean that this constant can in principle be expressed in terms of the factor
χ, the mobilities m1, m2, the averages ρ1, ρ2 from (11), properties of the function f , and geometric
properties of the domain Ω.

2. Preliminaries from the theory of optimal transportation

In the section, we briefly recall three alternative definitions of the L2-Wasserstein distance W; in
the proof of our main result, we need all three of them. For more information on the mathematical
theory of optimal mass transportation, we refer to the monographs [24, 25, 22]. Below, we assume
that ρ0, ρ1 : Ω→ [0, 1] are two measurable functions of the same total mass,ˆ

Ω

ρ0(x) dx =

ˆ
Ω

ρ1(x) dx.

In this case, the definitions are all equivalent.

2.1. Monge characterization. One says that a measurable map T : Ω→ Ω pushes ρ0 forward to
ρ1, written as T#ρ0 = ρ1, ifˆ

Ω

Θ(x)ρ1(x) dx =

ˆ
Ω

Θ ◦ T (y)ρ0(y) dy for all Θ ∈ C0(Ω).

The Monge characterization of the L2-Wasserstein distance between ρ0 and ρ1 is given by

W(ρ0, ρ1)2 = inf
T#ρ0=ρ1

ˆ
Ω

|T (x)− x|2ρ0(x) dx, (22)

where the infimum runs over all measurable maps T : Ω→ Ω with T#ρ0 = ρ1. In the situation at
hand, the infimum in (22) is actually a minimum. It is attained by an optimal transport map Topt;
the optimal map is uniquely determined on the support of ρ0.

2.2. Kantorovich characterization. A Borel measure γ on the product space Ω× Ω is called a
transport plan from ρ0 to ρ1 if the latter are the marginals of γ, i.e.,ˆ

Ω×Ω

ϕ(x) dγ(x, y) =

ˆ
Ω

ϕ(x)ρ0(x) dx,

ˆ
Ω×Ω

ψ(y) dγ(x, y) =

ˆ
Ω

ψ(y)ρ1(y) dy,

for all ϕ,ψ ∈ C0(Ω). The set of all such transport plans is denoted by Γ(ρ0, ρ1). The Kantorovich
characterization of W amounts to

W(ρ0, ρ1)2 = inf
γ∈Γ(ρ0,ρ1)

ˆ
Ω×Ω

|x− y|2 dγ(x, y),

and the infimum is attained by some optimal plan γopt. In the situation at hand, γopt is unique.
Moreover, it is concentrated on a graph: γopt’s support is contained in {(x, Topt(x))|x ∈ Ω} ⊂ Ω×Ω,
where Topt is an optimal map from the Monge characterization.
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2.3. Dual characterization. The dual characterization of the Wasserstein distance is given by

1

2
W(ρ0, ρ1)2 = sup

ϕ(x)+ψ(y)≤ 1
2 |x−y|2

(ˆ
Ω

ϕ(x)ρ0(x) dx+

ˆ
Ω

ψ(y)ρ1(y) dy

)
, (23)

where the supremum runs over all potentials φ, ψ ∈ C0(Ω) satisfying ϕ(x) +ψ(y) ≤ 1
2 |x− y|

2. The
infimum is attained by a pair of globally Lipschitz functions (ϕopt, ψopt), which are referred to as
Kantorovich potentials. The potentials are related to the optimal Monge map Topt via Topt(x) =
x−∇ϕopt(x).

There are always infinitely many pairs of Kantorovich potentials, since the value of the function
and the constraint are invariant under the exchange of a global constant, i.e., ϕ  ϕ + C and
ψ  ψ − C for any C ∈ R. On the other hand, if at least one of the two densities ρ0 and ρ1 has
full support, then this global constant is the only degree of non-uniqueness.

3. Time-discrete approximation via minimizing movement scheme

As explained in Section 1.2, the problem (1)–(3) can be interpreted as the gradient flow of the
singular energy E with respect to the metric d on the space Xmass. In view of that structure, a
natural approach to construction of solutions to (1) is the time-discrete approximation by means
of the minimizing movement scheme. This approach has been proven extremely robust, and has
been applied for existence proofs in linear and nonlinear Fokker-Planck equations [13, 2], non-local
aggregation-diffusion equations [4, 8, 14, 26], doubly non-linear and flux-limited equations [1, 19],
fourth order quantum and lubrication equations [11, 18, 15, 17], multi-phase flows [16, 5, 6] and
many more settings.

In addition to approximations of the volume fractions c1 and c2, we also need to construct
approximations of the auxiliary quantities q1 and q2. These will be obtained from the Kantorovich
potentials for the optimal transport of the volume fractions between time steps. In order to ensure
that these potentials are well-defined (up to a global additive constant), we regularize the minimizing
movement scheme by modifying the volume fractions in the previous time step such that both
have full support. This removes the ambiguity in the definition of the Kantorovich potentials, as
explained in Section 2.3.

Throughout this section, let two parameters be fixed: a time step size τ > 0, and a positivity
regularization δ > 0. We assume that τ and δ are related as follows:

δ ≤ τ2. (24)

Recall the definitions of the energy functional E from (10) and of the metric d from (12) on the
space Xmass. Recall further the definition of the averages ρ1 and ρ2 in (11), and introduce the
regularization [c]δ = ([c1]δ, [c2]δ) of a c = (c1, c2) ∈ Xmass by

[ci]δ = δρi + (1− δ)ci. (25)

With these notations at hand, define for given c̄ ∈ Xmass a variational functional in c ∈ Xmass by

Eτ,δ(c; c̄) =
1

2τ
d
(
c, [c̄]δ

)2
+ E(c). (26)

At each instance of discretized time t = nτ , an approximation (cn, qn) of (c(t), q(t)) is constructed
as follows. Starting from the given initial condition c0, each cn is inductively chosen as a global
minimizer of Eτ,δ(·; cn−1), i.e.,

cn ∈ argmin
c∈Xmass

Eτ,δ(c; c
n−1). (27)
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Solvability of that minimization problem is shown in Lemma 1 below.
The accompanying auxiliary quantities qn1 and qn2 are obtained as follows. First, let (ϕn1 , ψ

n
1 )

and (ϕn2 , ψ
n
2 ) be two pairs of Kantorovich potentials for the respective optimal transport of [cn−1

i ]δ
to cni ; since [cn−1

i ]δ ≥ δρi on Ω, these pairs are unique up to addition of global constants. These
constants are normalized by requiringˆ

Ω

[
cn1ψ

n
1

m1
+
cn2ψ

n
2

m2

]
dx = 0,

ˆ
Ω

[
ψn2 − ψn1 − χ

(
c1 −

1

2

)]
ω(cn1 )ω(cn2 ) dx = 0. (28)

From the ψni , define the rescaled pair of potentials µn = (µn1 , µ
n
2 ) via

µn1 :=
ψn1
m1τ

, µn2 :=
ψn2
m2τ

,

and finally qn = (qn1 , q
n
2 ) is given — as indicated in (16) — by

qn1 := ω(cn1 )µn1 , qn2 := ω(cn2 )µn2 .

Lemma 1. Given initial data c0 as in Theorem 1, the minimization problem for cn can be solved
inductively, leading to infinite sequences (cn)n∈N and (qn)n∈N. The cn satisy the constraint

cn1 + cn2 = 1. (29)

Proof. Inductive solvability of the minimization problem follows by the direct methods from the
calculus of variations. Indeed, it suffices to observe the following about the functional Eτ,δ(·; cn−1),
considered as a map from Xmass with the topology of L2(Ω;R2) to the extended non-negative real
numbers:

• It is bounded below (in fact: is non-negative) and is not identically +∞ (e.g., is finite at
cn−1).

• It is coercive: if c̃k is a sequence in Xmass such that Eτ,δ(c̃
k; cn−1) is bounded, then in par-

ticular
´

Ω
|∇f(c̃k1)|2 dx is bounded, i.e., f(c̃k1) is bounded in H1(Ω). Rellich’s compactness

theorem now implies strong convergence of a subsequence f(c̃k
′

1 ) in L2(Ω), and thanks to the

properties of f , also c̃k
′

1 itself converges in L2(Ω). Finally, since finiteness of Eτ,δ(c̃
k; cn−1)

implies that c̃k2 = 1− c̃k1 , convergence of c̃k
′

2 follows as well.

• It is lower semi-continuous. To see this, let c̃k be a sequence in Xmass that converges to c̃∗ in
L2(Ω;R2). Convergence of d(c̃k, cn−1) and of

´
Ω
c̃k1(1−c̃k1) dx towards their respective limits

is immediate. On the other hand, it follows by continuity of f that also f(c̃k1) converges to
f(c̃∗1) in L2(Ω). And so,

lim inf
k→∞

ˆ
Ω

|∇f(c̃k1)|2 dx ≥
ˆ

Ω

|∇f(c̃∗1)|2 dx

is a consequence of the lower semi-continuity of the H1(Ω)-norm on L2(Ω).

The relation (29) holds since each minimizer cn has a finite energy. �

4. A priori estimates on the volume fractions

The ultimate goal is to obtain solutions c and q of the weak formulation (21) as appropriate
limits of the time-discrete quantities cn and qn for τ ↓ 0 and δ ↓ 0. In this and the next section,
we establish the a priori estimates that eventually provide sufficient compactness for performing
the limit. As indicated in the introduction, there are three essential estimates: the first two,
given in Lemma 2 right below, follow almost immediately from the gradient flow structure. These
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two estimates are sufficient to conclude the weak convergence of the volume fractions. The third
estimate, given in Lemma 3, follows from the control (13) on the production rate of the entropy H.
It provides strong convergence of the volume fractions and indirectly — see Section below — also
weak convergence of the auxiliary functions.

Lemma 2. There is a constant K, only depending on the parameters of the problem, such that for
all N = 1, 2, . . .

E(cN ) +
τ

2

N∑
n=1

(
d(cn, [cn−1]δ)

τ

)2

≤ E(c0) +
K

2
Nτ. (30)

Consequently, for all indices n ≤ N and n < n ≤ N ,

‖∇f(cn1 )‖2L2 ≤ 2E(c0) +KNτ, for all n = 1, 2, . . . , N, (31)

d(cn, cn) ≤ 2
(
E(c0) +KNτ

) 1
2
(
τ(n− n)

) 1
2 for 0 ≤ n < n ≤ N, (32)

‖cn − cn‖L2 ≤ 2 4
√
m1

(
E(c0) +KNτ

) 1
2
(
τ(n− n)

) 1
4 . (33)

Proof. By definition of cn as a minimizer, Eτ,δ(c
n; cn−1) ≤ Eτ,δ(c

n−1; cn−1), which amounts to

E(cn) +
τ

2

(
d(cn; [cn−1]δ)

τ

)2

≤ E(cn−1) +
1

2τ
d(cn−1, [cn−1]δ)

2. (34)

The last term is bounded by Kδ/(2τ) ≤ Kτ/2 thanks to Lemma 9 from the appendix, and to our
assumption δ ≤ τ2 from (24). Summation of (34) from n = 1 to n = N yields (30), and (31) is an
immediate consequence from the definition of E. To conclude (32) from here, we use the triangle
inequality for d — which is inherited from W — and Hölder’s inequality for sums,

d(cn, cn) ≤
n∑

n=n+1

d(cn, cn−1) ≤

τ n∑
n=n+1

(
d(cn, cn−1)

τ

)2
 1

2 (
τ(n− n)

) 1
2 .

The expression inside the first pair of brackets is now estimated with the help of (30) above, and
another application of Lemma 9:

τ

n∑
n=n+1

(
d(cn, cn−1)

τ

)2

≤ τ
n∑

n=n+1

[
2

(
d(cn, [cn−1]δ)

τ

)2

+
2Kδ

τ2

]
≤ 4

[
E(c0) +

KT

2

]
+

2Kδ

τ
N.

Substitution of this estimate above and recalling (24) produces (32). Estimate (33) emerges as a
consequence of (31) and (32) via Lemma 10 from the appendix. �

The bound (30) can be formulated as a weighted H1-estimate on the Kantorovich potentials.

Corollary 1. At each n = 1, 2, . . ., we have that

[cn−1
1 ]δ = (id−∇ψn1 )#cn1 , and [cn−1

2 ]δ = (id−∇ψn2 )#cn2 , (35)

and therefore, with the same constant K as in Lemma 2 above, for all N = 1, 2, . . .,

τ

N∑
n=1

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx ≤ 2E(c0) +
KδN

τ
. (36)
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Proof. The relations (35) express the property of the Kanotrovich potential ψni that x 7→ x−∇ψni (x)
is a transport map from cni to [cn−1

i ]δ. In fact, it is the optimal transport map, see Section 2.3, and
hence (22) implies that(

d
(
cn, [cn−1]δ

)
τ

)2

=
W(cn1 , [c

n−1
1 ]δ)

2

m1τ2
+

W(cn2 , [c
n−1
2 ]δ)

2

m2τ2
=

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx.

By non-negativity of E, the desired estimate (36) is now implied by (30). �

The third a priori estimate below is more specific to the system (1), and is also more difficult to
prove.

Lemma 3. There is a constant C, only depending on the parameters of the problem, such that for
all N = 1, 2, . . .:

τ

N∑
n=1

ˆ
Ω

∥∥f(cn1 )
∥∥2

H2 dx ≤ C(1 +Nτ). (37)

Moreover, cn1 and f(cn1 ) satisfy homogeneous Neumann boundary conditions at each n = 1, 2, . . .

Remark 1. If 1/(f ′)2 has a bounded derivative — as is the case for the f from (4) — then one also
obtains the analogous estimate as (37) for c1 itself in place of f(c1). Indeed, with c1 = f−1(f(c1)),

∆c1 =
1

f ′(c1)
∆f(c1)− f ′′(c1)

f ′(c1)3
|∇f(c1)|2,

with bounded factors

1

f ′
and − f ′′

(f ′)3
=

1

2

(
1

(f ′)2

)′
.

Combining this with the interpolation inequality

‖∇f‖2L4 ≤ 3‖f‖L∞‖f‖H2 ,

that is easily derived using integration by parts, shows that ‖∆c1‖2L2 ≤ C‖f(c1)‖2H2 , and therefore,
see (41) below, also ‖c1‖2H2 ≤ C‖f(c1)‖2H2 .

We divide the proof of Lemma 3 into two parts: the first part contains the formal calculations
— for smooth and positive classical solutions to (1) — that lead to (14), the second part is the fully
rigorous justification of (37) as a time-discrete version of (14), using the flow interchange technique
from [18].

Formal calculation leading to (14). Assume that a smooth and classical solution c to (1) with 0 <
c1 < 1 is given. We consider the dissipation of the entropy functional defined in (13). We have,
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thanks to the no-flux and Neumann boundary conditions (2),

− d

dt
H(c) = −

ˆ
Ω

[
log c1
m1

∂tc1 +
log c2
m2

∂tc2

]
dx

=

ˆ
Ω

[
∇c1 · ∇µ1 +∇c2 · µ2] dx

=

ˆ
Ω

∇c1 · ∇[µ1 − µ2] dx

=

ˆ
Ω

f ′(c1)∆c1∆f(c1) dx− χ
ˆ

Ω

|∇c1|2 dx.

(38)

We shall now use various manipulations to obtain a lower bound on

J :=

ˆ
Ω

f ′(c1)∆c1∆f(c1) dx. (39)

On the one hand,

∆f(c1) = f ′(c1)∆c1 + f ′′(c1)|∇c1|2. (40)

And on the other hand, thanks to the homogeneous Neumann boundary conditions from (2b) —
that are inherited from c1 to f(c1) thanks to 0 < c1 < 1 — and the convexity of Ω, we have that
(see e.g., [11, Lemma 5.1]) ˆ

Ω

(
∆f(c1)

)2
dx ≥

ˆ
Ω

‖∇2f(c1)‖2 dx, (41)

where ‖A‖ =
√

tr(ATA) is the Frobenius norm of the square matrix A. Thus, we obtain

J ≥
ˆ

Ω

[
‖∇2f(c1)‖2 − f ′′(c1)

f ′(c1)2
|∇f(c1)|2∆f(c1)

]
dx. (42)

Now introduce f, g : (0, 1)→ R by

g(r) :=
f ′′(r)

f ′(r)2
, h(r) :=

g′(r)

f ′(r)
,

and notice that

∇g(c1) = h(c1)∇f(c1). (43)

In the following, we write shortly f , g and h for f(c1), g(c1) and h(c1). Thanks again to the
homogeneous Neumann boundary conditions and to (43), the divergence theorem implies that

0 =
d

d+ 2

ˆ
Ω

div
(
g|∇f |2∇f

)
dx

=
d

d+ 2

ˆ
Ω

[
g∆f |∇f |2 + 2g∇f · ∇2f∇f + h|∇f |4

]
dx.

Adding the final integral expression to the right-hand side of (42) produces

J ≥
ˆ

Ω

[
‖∇2f‖2 − 2g

d+ 2
∆f |∇f |2 +

2dg

d+ 2
∇f · ∇2f · ∇f +

dh

d+ 2
|∇f |4

]
dx.

Next, introduce the matrix-valued function R : Ω→ Rd×d by

R := ∇2f(c1)− ∆f(c1)

d
1d.
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Then, using that tr1d = d and trR = 0, we obtain that

‖∇2f(c1)‖2 = tr

[(
R+

∆f(c1)

d
1d

)2
]

= ‖R‖2 +
(∆f(c1))

2

d
,

which allows to conclude that

J ≥ 1

d

ˆ
Ω

(∆f)2 dx+

ˆ
Ω

[
‖R‖2 +

2dg

d+ 2
∇f ·R · ∇f +

dh

d+ 2
|∇f |4

]
dx.

The last step is to verify that the expression inside the final integral is pointwise non-negative:

‖R‖2 +
2dg

d+ 2
∇f ·R · ∇f +

dh

d+ 2
|∇f |4 =

∥∥∥∥R+
dg

d+ 2
∇f ∇fT

∥∥∥∥2

+

[
dh

d+ 2
−
(

dg

d+ 2

)2
]
|∇f |4.

The squared norm is trivially non-negative. For the coefficient of the term |∇f |4 to be non-negative,
it suffices to have h ≥ g2. Since

h− g2 =
1

f ′

(
f ′′

(f ′)2

)′
−
(

f ′′

(f ′)2

)2

=
f ′′′

(f ′)3
− 3

(f ′′)2

(f ′)4
= −1

2

(
1

(f ′)2

)′′
,

the assumed concavity of 1/(f ′)2 is sufficient to guarantee h ≥ g2. In summary,

J ≥ 1

d

ˆ
Ω

∆f(c1)2 dx. (44)

It remains to estimate the other integral. Recall that f is continuous, and that f ′ is positive with
1/(f ′)2 concave, so there is a constant a > 0 such that |f | ≤ a and f ′ ≥ a−1. Since Ω is bounded,
and thanks to the Neumann boundary conditions (2b),

χ

ˆ
Ω

|∇c1|2 dx ≤ a2χ

ˆ
Ω

|∇f(c1)|2 dx = −a2χ

ˆ
Ω

f(c1)∆f(c1) dx

≤ a2χ
(
a2|Ω|

) 1
2
(
dJ
) 1

2 ≤ 1

2
J +

dχ2a4

2
|Ω|.

(45)

Going back to (38), we arrive at (14), or more specifically:

− d

dt
H(c) ≥ 1

2d

ˆ
Ω

(∆f)2 dx− dχ2a4

2
|Ω|. (46)

An integration of this inequality in time providesˆ T

0

ˆ
Ω

(∆f)2 dx ≤ 2d
[
H(c0)−H

(
c(T )

)]
+ d2χ2a4|Ω|T. (47)

Notice that the value of the entropy H(c) is uniformly bounded from above and below for all
c ∈ Xmass. The estimate (37) under consideration is a time-discrete version of (47), using that
the integral over ∆f(c1) on the left hand side yields control on the H2-norm of f(c1) by means of
another application of (41) and interpolation with the trivial L∞(L2)-bound on c1. �

Making the formal calculations rigorous. For each fixed n, we show the following time-step version
of (47):

τ

ˆ
Ω

(
∆f(cn1 )

)2
dx ≤ 2d

[
H(cn−1)−H(cn)

]
+ τ(d2χ2a4|Ω|+K), (48)

where K is independent of τ . With (48) at hand, the estimate (37) follows by summation over
n = 1, 2, . . . , N .
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The starting point for the derivation of (48) is a particular variation of the minimizer cnτ of
Eτ,δ(·; cn−1

τ ): consider the family cs = (cs1, c
s
2) ∈ Xmass, where cs1 and cs2 are the time-s-solutions to

the heat flow on Ω for data cn1 and cn2 , with homogeneous Neumann boundary conditions:

∂sc
s
i = ∆csi for (s, x) ∈ R>0 × Ω, (49a)

n · ∇csi = 0 on R>0 × ∂Ω, (49b)

csi |s=0
= cni in Ω. (49c)

The pair cs = (cs1, c
s
2) has a variety of nice properties that facilitate the further analysis. Thanks

to the smoothing effect of the heat equation, the map (s, x) 7→ csi (x) is a C∞-function on R>0 ×Ω,
and it satisfies both the equation (49a) and the boundary condition (49b) in the classical sense.
Moreover, one has 0 < infx c

s
i (x) ≤ supx c

s
i (x) < 1 for each s > 0, which implies that the map

(s;x) 7→ f(csi (x)) inherits the C∞-smoothness as well as the homogeneous Neumann boundary
conditions,

n · ∇f(csi ) on R>0 × ∂Ω. (50)

Concerning the attainment of the initial condition (49c): it follows from E(cn) < ∞ that f(cni ) ∈
H1(Ω), and hence also cni ∈ H1(Ω) in view of Assumption 1. This implies

csi → cni in H1(Ω) as s ↓ 0. (51)

Note, however, that we cannot conclude f(csi )→ f(cni ) in H1(Ω) from here because of f ′(r)→ +∞
for r ↓ 0 and for r ↑ 1. Finally, the incompressibility constraint is preserved,

cs1 + cs2 = 1. (52)

There are many further possibilities for the perturbation (cs) that would share the aforementioned
properties. Our motivation for the particular choice (49) is that solutions to the heat equation form a

so-called EVI0-flow of the entropy H̃ in the L2-Wasserstein metric [2, Theorem 11.1.4]; we emphasize
that convexity of Ω is essential here. The EVI0-property means that R≥0 3 s 7→ W(csi , [c

n−1
i ]δ)

2

is absolutely continuous — and in particular differentiable at almost every s > 0 — and that its
derivative satisfies

1

2
lim sup
s↓0

d

ds
W(csi , [c

n−1
i ]δ)

2 ≤ H̃([cn−1
i ]δ)− H̃(cni ). (53)

We combine (53) with the fact that Eτ,δ(c
s; cn−1) ≥ Eτ,δ(c

n; cn−1) by definition of cn as a mini-
mizer. The latter can be equivalently formulated as

E(cn)−E(cs) ≤ 1

2τ

[
d(cs, [cn−1]δ)

2 − d(cn, [cn−1]δ)
2
]
.

Plugging in the definition of d, dividing by s > 0, and passing to the limit s ↓ 0 yields in view of
(53):

lim sup
s↓0

E(cn)−E(cs)

s
≤ 1

2τ
lim sup
s↓0

d

ds

(
d(cs, [cn−1]δ)

2
)

≤ 1

2m1τ
lim sup
s↓0

d

ds
W(cs1; [cn−1

1 ]δ)
2 +

1

2m2τ
lim sup
s↓0

d

ds
W(cs2; [cn−1

2 ]δ)
2

≤ H̃([cn−1
1 ]δ)− H̃(cn1 )

m1τ
+

H̃([cn−1
2 ]δ)− H̃(cn2 )

m2τ
=

H([cn−1]δ)−H(cn)

τ
.
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For simplification of the left-hand side above, observe that E(cn)−E(cs) = E1(cn1 )−E1(cs1) thanks
to (52). For further estimation of the right-hand side, we use that H is a non-negative convex
functional, and thus

H([cn−1]δ) ≤ (1− δ)H(cn−1) + δH(ρ) ≤ H(cn−1) +Kδ,

where K = H(ρ) depends only on the parameters of the problem In summary, we have obtained so
far that

lim sup
s↓0

E1(cn1 )−E1(cs1)

s
≤ H(cn−1)−H(cn)

τ
+K

δ

τ
. (54)

The remaining step is to derive a lower bound on the expression on the left-hand side in (54) of
the same form as the right-hand side in (46). Ideally, we would like to express the left-hand side of
(54) by means of the fundamental theorem of calculus as an average of −dE1(cs1)/ds. The technical
difficulty here is that E1(cs1)→ E1(cn1 ) as s ↓ 0 might fail; note that Assumption 1 guarantees lower
— but a priori not upper — semi-continuity of E1 with respect to the H1-convergence (51). To
overcome this, introduce for ε ∈ (0, 1) the following approximations fε : [0, 1]→ R of f :

fε

(
1

2
+ z

)
= (1− ε)−1f

(
1

2
+ (1− ε)z

)
for −1

2
≤ z ≤ 1

2
.

Thanks to Assumption 1, f ′ε is positive, 1/(f ′ε)
2 is concave, and fε(1−r) = −fε(r). Moreover, since

f ′( 1
2 + z) is non-decreasing for z > 0 and non-increasing for z < 0 thanks to concavity of 1/(f ′)2

and symmetry of f ′(r) about r = 1
2 , it follows with f ′ε(

1
2 + z) = f ′( 1

2 + (1− ε)z) for all z ∈ [− 1
2 ,

1
2 ]

that

0 < f ′ε(r) ≤ f ′(r) for all r ∈ [0, 1]. (55)

Observe further that fε : [0, 1]→ R is smooth up to the boundary, and in particular, f ′ε is bounded.
Therefore, the desired continuity, i.e., fε(c

s
1)→ fε(c

n
1 ) in H1(Ω) as s ↓ 0, follows directly from (51).

From the smoothness of cs1 for s > 0 it follows in particular that fε(c
s
1) is a smooth curve in

H1(Ω) for s > 0 with ∂sfε(c
s
1) = f ′ε(c

s
i )∆c

s
1. Observing further that fε(c

s
1) satisfies homogeneous

Neumann boundary conditions since cs1 does, the fundamental theorem of calculus now implies for
any s̄ > 0 that

1

2

ˆ
Ω

|∇fε(cn1 )|2 dx− 1

2

ˆ
Ω

|∇fε(cs̄1)|2 dx = −
ˆ s̄

0

ˆ
Ω

∇fε(cs1) · ∇∂sfε(cs1) dxds

=

ˆ s̄

0

ˆ
Ω

f ′ε(c
s
1)∆cs1∆fε(c

s
1) dxds.

The integrand for the s-integral is of the form J in (39). Since in the derivation of (44), no property
of f other than smoothness, positivity of f ′, and concavity of 1/(f ′)2 was used, the estimate (44)
also holds with fε in place of f , i.e.,ˆ

Ω

f ′ε(c
s
1)∆cs1∆fε(c

s
1) dx ≥ 1

d

ˆ
Ω

[
∆fε(c

s
1)
]2

dx

for each s > 0; the technical hypotheses for the derivation of (44) — smoothness of cs1, the bounds
0 < cs1 < 1, and the homogeneous Neumann boundary conditions for f(cs1) — are guaranteed by
the properties of the heat flow.

Now we pass to the limit ε ↓ 0. On the one hand, we can directly estimate
´

Ω
|∇fε(cn1 )|2 dx ≤´

Ω
|∇f(cn1 )|2 dx thanks to (55). On the other hand, using that fε(c

s
1) → f(cs1) uniformly as well
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as the lower semi-continuity of the H1- and the H2-semi-norms with respect to convergence in
measure, we finally arrive at

1

2

ˆ
Ω

|∇f(cn1 )|2 dx− 1

2

ˆ
Ω

|∇f(cs̄1)|2 dx ≥ 1

d

ˆ s̄

0

ˆ
Ω

[
∆f(cs1)

]2
dxds. (56)

Another — this time completely straight-forward — application of the fundamental theorem of
calculus provides

χ

2

ˆ
Ω

cn1 (1− cn1 ) dx− χ

2

ˆ
Ω

cs1(1− cs̄1) dx = −χ
2

ˆ s̄

0

ˆ
Ω

(1− 2cs1)∂sc
s
1 dxds

= χ

ˆ s̄

0

ˆ
Ω

|∇cs1|2 dxds ≥ −
ˆ s̄

0

(
1

2d

ˆ
Ω

[
∆f(cs1)

]2
dx+

dχ2a4|Ω|
2

)
ds,

(57)

where we have derived the last estimate in analogy to (45), with a > 0 defined there. Summation
of (56) and (57) yieldsˆ s̄

0

(
1

2d

ˆ
Ω

[
∆f(cn1 )

]2
dx− dχ2a4|Ω|

2

)
ds ≤ E1(cn1 )−E1(cs̄1). (58)

We substitute this estimate into (54) and obtain, using again the lower semi-continuity of the
H2-semi-norm,

1

2d

ˆ
Ω

[
∆f(cs1)

]2
dx− dχ2a2|Ω|4

2
≤ H(cn−1)−H(cn)

τ
+K

δ

τ
.

Recalling (24), this is (48).
Concerning the boundary condition: the estimate (56) implies in particular that there is a

sequence (sk) of sk > 0 with sk ↓ 0 such that ∆f(csk1 ) is bounded in L2(Ω). This implies weak

convergence of a further subsequence f(c
s′k
1 ) to f(cn1 ) in H2(Ω), and this is sufficient to conclude

that the normal trace n · ∇f(c
s′k
1 ) converges weakly in L2(∂Ω) to n · ∇f(cn1 ). In particular, f(c

s′k
1 )’s

homogeneous Neumann boundary condition is inherited by f(cn1 ), and by Assumption 1, also cn1
itself satisfies homogeneous Neumann conditions. �

Corollary 2. There is a constant C, only depending on the parameters of the problem, such that,
for all N = 1, 2, . . .,

τ

N∑
n=1

∥∥F[cn1 ]
∥∥2

L2 ≤ C(1 +Nτ). (59)

Proof. This follows immediately from (37), since

‖F[cn1 ]‖L2 ≤
∥∥∆f(cn1 )

∥∥
L2 + χ‖ω‖2C0

∥∥∥∥cn1 − 1

2

∥∥∥∥
L2

≤
∥∥f(cn1 )

∥∥
H2 +M,

where M only depends on the parameters of the problem. �

5. A priori estimates on the auxiliary potentials

The aim of the current section is to derive — on the basis of the estimates on cn — a priori
estimates on the discrete approximation of the auxiliary functions qn. We start by showing that
thanks to our construction of cn and qn, the constitutive equation (18) holds with cn in place of
the true solution c. Recall the definition of F given there.
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Proposition 1. At each n ≥ 1,

ω(cn1 )qn2 − ω(cn2 )qn1 = F[cn1 ]. (60)

Proof. Thanks to the continuity of cn — recall that H2(Ω) ⊂ C(Ω) since d ≤ 3 — the set P =
{x ∈ Ω | 0 < cn1 (x) < 1} is open. Let η ∈ C∞c (Ω) with support in P , and of vanishing mean, i.e.,´

Ω
η(x) dx = 0. Define c̃h = (c̃h1 , c̃

h
2 ) with c̃h1 := cn1 + hη and c̃h2 := cn2 − hη for all h > 0 sufficiently

small such that c̃h ∈ Xmass. Then Eτ,δ(c̃
h; cn−1) ≥ Eτ,δ(c

n; cn−1) by definition of cn as a global
minimizer.

Recall that the (ϕni , ψ
n
i ) are the (uniquely determined since [cn−1

i ]δ > 0) pairs of Kantorovich

potentials for the optimal transport from [cn−1
i ]δ to cni normalized by (28). Analogously, let (ϕ̃hi , ψ̃

h
i )

be the (still uniquely determined) pair of potentials for the optimal transport from [cn−1
i ]δ to c̃hi ,

normalized such that ϕhi (x̄) = ϕni (x̄) for all h > 0 at some arbitrarily chosen x̄ ∈ Ω. By the stability

of optimal pairs, see e.g. [22, Theorem 1.52], it follows that ϕ̃hi → ϕni and ψ̃hi → ψni uniformly on
Ω as h→ 0.

Using the dual characterization (23) of the Wasserstein distance, we obtain:ˆ
Ω

(
ψ̃h1 c

n
1 + ϕ̃h1 [cn−1

1 ]δ + ψ̃h2 c
n
2 + ϕ̃h2 [cn−1

2 ]δ
)

dx+ E1(cn1 )

≤
ˆ

Ω

[
ψn1 c

n
1 + ϕn1 [cn−1

1 ]δ + ψn2 c
n
2 + ϕn2 [cn−1

2 ]δ
]

dx+ E1(cn1 )

= Eτ,δ(c
n; cn−1)

≤ Eτ,δ(c̃
h; cn−1)

=

ˆ
Ω

(
ψ̃h1 c̃

h
1 + ϕ̃h1 [cn−1

1 ]δ + ψ̃h2 c̃
h
2 + ϕ̃h2 [cn−1

2 ]δ
)

dx+ E1(c̃h1 ).

Subtracting the first line from the ultimate one, and dividing by h > 0 yields:

0 ≤ 1

h

ˆ
Ω

(
ψ̃h1 (c̃h1 − cn1 ) + ψ̃h2 (c̃h2 − cn2 )

)
dx+

E1(c̃h1 )−E1(cn1 )

h

=

ˆ
Ω

(ψ̃h1 − ψ̃h2 )η dx+

ˆ
Ω

|∇f(c̃h1 )|2 − |∇f(cn1 )|2

2h
dx+ χ

ˆ
Ω

c̃h1 c̃
h
2 − cn1 cn2

2h
dx.

(61)

On the one hand, it follows immediately by boundedness of η thatˆ
Ω

c̃h1 c̃
h
2 − cn1 cn2

2h
dx =

ˆ
Ω

h(cn2 − cn1 )η − h2η2

2h
dx→ 1

2

ˆ
Ω

(cn2 − cn1 )η dx as h ↓ 0. (62)

On the other hand, thanks to the elementary inequality |a|2−|b|2 ≤ 2a ·(a−b) for vectors a, b ∈ Rd,
and by the homogeneous Neumann boundary conditions satisfied by f(cn1 ) and hence also by f(c̃h1 ),
we have that ˆ

Ω

|∇f(c̃h1 )|2 − |∇f(cn1 )|2

2h
dx ≤

ˆ
Ω

∇f(c̃h1 ) · ∇
[
f(c̃h1 )− f(cn1 )

h

]
dx

= −
ˆ

Ω

∆f(c̃h1 )
f(c̃h1 )− f(cn1 )

h
dx.

On the compact support K ⊂ P of η, we have κ ≤ cn1 ≤ 1 − κ for a suitable constant κ > 0. We
further have κ/2 ≤ c̃h1 ≤ 1−κ/2 for all sufficiently small h > 0. By smoothness of f on [κ/2, 1−κ/2]
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thanks to Assumption 1, it follows that

f(c̃h1 )− f(cn1 )

h
→ f ′(cn1 )η uniformly as h ↓ 0. (63)

And it further follows that also

∆f(c̃h1 )→ ∆f(cn1 ) strongly in L2(Ω) as h ↓ 0 (64)

because of the following. We know from Lemma 3 that f(cn1 ) lies inH2(Ω), i.e., has square integrable
first and second order derivatives. Again thanks to Assumption 1, f has a smooth inverse f−1 on
[f(κ), f(1−κ)]. By the chain rule for the concatenation of Sobolev functions with smooth maps, it
follows that cn1 = f−1(f(cn1 )) has square integrable first and second order weak derivatives on K.
By smoothness of η, the first and second order derivatives of cn1 are uniformly approximated by the
respective ones of c̃h1 on K. Using again the smoothness of f on [κ/2, 1−κ/2], we conclude uniform
approximation of ∆f(cn1 ) by ∆f(c̃h1 ) as h ↓ 0. Now (64) follows since c̃h1 = cn1 in Ω \K. Plugging
(62), (63) and (64) into (61), we obtain in the limit h ↓ 0 that

0 ≤
ˆ

Ω

[
ψn1 − ψn2 − f ′(cn1 )∆f(cn1 )− χ

(
cn1 − 1

2

)]
η dx.

The same inequality is true also for −η in place of η, and thus is an equality. Since η was an
arbitrary test function with support in P of zero average, there is a constant A such that

ψn1 − ψn2 +A = f ′(cn1 )∆f(cn1 ) + χ
(
cn1 − 1

2

)
holds a.e. on P . Multiplication by 1/f ′(cn1 ) = ω(cn1 )ω(cn2 ) leads to

ω(cn1 )ω(cn2 )[ψn1 − ψn2 +A] = ∆f(cn1 ) + χ
(
cn1 − 1

2

)
ω(cn1 )ω(cn2 ). (65)

On the complement Ω \P , where either cn1 = 0 or cn2 = 0, the left-hand side of (65) above vanishes
a.e. because of ω(0) = 0, and for the same reason, the second term on the right-hand side vanishes
as well. Also ∆f(cn1 ) vanishes a.e., because f(cn1 ) ∈ H2(Ω), and so all of its first and second order
weak partial derivatives are zero a.e. on the level sets [23]. That is, the validity of (65) extends
from P to all of Ω.

Now integrate (65) on Ω to obtain:ˆ
Ω

ψn1 − ψn2 + χ
(
cn1 − 1

2

)
+A

f ′(cn1 )
dx =

ˆ
Ω

∆f(cn1 ) dx = 0,

where we have used that f(cn1 ) satisfies homogeneous Neumann boundary conditions. In view of
the normalization (28), it follows that A = 0. Finally, recalling the definition (16) of q1 and q2, the
claim of the lemma now follows from (65). �

With the consitutive relation (60) at hand, we can now make the idea outlined in Section 1.4 of
the introduction rigorous and prove τ -uniform integrability of the qni . In the following, let

pd :=
d

d− 1
=

{
2 if d = 2,

3/2 if d = 3.
(66)

Lemma 4. There is a constant C, only depending on the parameters of the problem, such that, for
all N = 1, 2, . . .,

τ

N∑
n=1

(
‖qn1 ‖2Lpd + ‖qn2 ‖2Lpd

)
≤ C(1 +Nτ). (67)
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Proof. We introduce the quantity

µ̄n :=
cn1ψ

n
1

m1τ
+
cn2ψ

n
2

m2τ
= α(cn1 )qn1 + α(cn2 )qn2 , (68)

where the equality follows by definition (16) of the qni , and since α(r)ω(r) = r. We notice further
that, by the normalization (28), ˆ

Ω

µ̄n dx = 0. (69)

Next, we recall that

F[cn1 ] = ω(cn2 )qn1 − ω(cn1 )qn2 (70)

by Proposition 1. Multiply (68) by ω(cn1 ) and (70) by α(cn2 ), then the sum amounts to

ω(cn1 )µ̄n + α(cn2 )F[cn1 ] = (cn1 + cn2 )qn1 = qn1 .

Similarly, we obtain for qn2 :

ω(cn2 )µ̄n − α(cn1 )F[cn1 ] = (cn1 + cn2 )qn2 = qn2 .

Below, we show that

τ

N∑
n=1

∥∥µ̄n∥∥2

Lpd
≤ C(1 +Nτ), (71)

which in combination with the bound (59) on F[cn1 ], and the fact that α and ω are bounded functions,
yields (67).

To obtain (71), we estimate the gradient of µ̄ in L2(0, T ;L1(Ω)). From the definition of µ̄n in
(68) and the fact that ∇cn2 = −∇cn1 , it follows that

∇µ̄n = ∇cn1
(
ψn1
m1τ

− ψn2
m2τ

)
+
cn1
m1

∇ψn1
τ

+
cn1
m2

∇ψn2
τ

. (72)

We treat the two groups of terms on the right hand side separately. For estimation of the first
term, we observe that ω(cn1 )ω(cn2 )∇f(cn1 ) = ∇cn1 , since ω(cn1 )ω(cn2 )f ′(cn1 ) = 1 on the positivity
set P := {0 < cn1 < 1}, and both sides vanish a.e. on the complement Ω \ P . Therefore, also
recalling (70) again,

∇cn1
(
ψn1
m1τ

− ψn2
m2τ

)
= ∇f(cn1 )

[
ω(cn2 )qn1 − ω(cn1 )qn2

]
= ∇f(cn1 )F[cn1 ],

hence it follows that ˆ
Ω

∣∣∣∣∇cn1 ( ψn1
m1τ

− ψn2
m2τ

)∣∣∣∣ dx ≤ ‖∇f(cn1 )‖L2‖F[cn1 ]‖L2 .

The second group of terms on the right hand-side of (72) is estimated by means of Hölder’s in-
equality,

ˆ
Ω

∣∣∣∣ cn1m1

∇ψn1
τ

+
cn1
m2

∇ψn2
τ

∣∣∣∣ dx ≤ K

[ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx

]1/2

,
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with a K that only depends on the parameters of the problem. Thanks to the normalization (69),
it follows by means of the Poincare-Wirtinger inequality that

τ

N∑
n=1

∥∥µ̄n∥∥2

Lpd
≤ Cτ

N∑
n=1

[ˆ
Ω

|∇µ̄n|dx
]2

dt

≤ C sup
n
‖∇f(cn1 )‖2L2τ

N∑
n=1

‖F[c1]‖2L2

+ CK2τ

N∑
n=1

ˆ
Ω

(
cn1
m1

∣∣∣∣∇ψn1τ
∣∣∣∣2 +

cn2
m2

∣∣∣∣∇ψn2τ
∣∣∣∣2
)

dx,

with a constant C that only depends on the geometry of Ω. And so, recalling the estimates (31) on
∇f(cn1 ) in L2, (59) on F[cn1 ] in L2, and (36) on the ψni in a weighted H1-norm, we arrive at (71). �

6. Convergence and conclusion of the proof of Theorem 1

In this final secion, we show that the time-discrete approximations (cnτ ) and (qnτ ) converge to
a weak solutions of the initial boundary value problem (1)–(3) in the sense of Theorem 1. First,
introduce the usual piecewise constant interpolations in time c̄τ = (c̄τ1 , c̄

τ
2) and q̄τ = (q̄τ1 , q̄

τ
2 ) with

c̄τi ∈ L∞(ΩT ) and q̄τi ∈ Lpd(ΩT ) by

c̄τi (t; ·) = cni , q̄τi (t; ·) = qni for all t with (n− 1)τ < t ≤ nτ.

Recall that d = 2 or d = 3, and the definition (66) of pd.

Lemma 5. There are functions c1, c2 ∈ L∞loc(R≥0;H1(Ω)) with f(c1), f(c2) ∈ L2
loc(R≥0;H2(Ω)),

and q1, q2 ∈ Lpd(R≥0 × Ω) such that, for each T > 0, in the limit τ ↓ 0, at least along a suitable
sequence,

q̄τi ⇀ qi weakly in Lpd(ΩT ), (73)

c̄τi → ci strongly in Lr(ΩT ), for each 1 ≤ r <∞, (74)

∇f(c̄τi )→ ∇f(ci) strongly in L24/7(ΩT ), (75)

f(c̄τi ) ⇀ f(ci) weakly in L2(0, T ;H2(Ω)). (76)

Moreover, the limits ci are Hölder continuous as curves in L2(Ω).

Proof. Ad (73): recall that (67) provides a τ -uniform bound on q̄τi in Lpd(ΩT ). Since this space is
reflexive, there exist subsequences with respective weak limits.

Ad (74): from (31) and the fact that f ′(r) ≥ f ′(1/2) > 0 thanks to Assumption 1, it follows for
i = 1, 2, and for any T > 0 that

‖c̄τi ‖2L∞(0,T ;H1(Ω)) dt ≤ K (77)

with a bound K that might depend on T , but is independent of τ . Moreover, (33) shows that the
same sequences satisfy a uniform quasi-Hölder estimate in time,

sup
0<s<t<T

∥∥c̄τi (s)− c̄τi (t)
∥∥
L2(Ω)

≤ C
(
τ + |t− s|

)1/4
. (78)

We can thus invoke the generalized version of the Aubin-Lions compactness lemma from [21, The-
orem 2]. There, we choose L2(Ω) as the base space. The role of the coercive integrand is played by
the H1(Ω)-norm — whose sublevels are clearly compact in L2(Ω) by Rellich’s theorem — so that



20 CLÉMENT CANCÈS AND DANIEL MATTHES

(77) amounts to the required integral bound. Moreover, almost-continuity in time is guaranteed by
(78). We thus conclude strong convergence of the c̄τi to respective limits ci in L2(ΩT ). And thanks
to the uniform bound 0 ≤ c̄τi ≤ 1, this implies strong convergence in any Lr(ΩT ) with r < ∞.
Moreover, these limits belong to L∞(0, T ;H1(Ω)) by lower semi-continuity of the H1-norm, and
are Hölder continuous curves with respect to L2(Ω), again thanks to (77) and (78) above.

Ad (75): since f : [0, 1] → R is a continuous function, we conclude that also f(c̄τi ) converges to
the respective f(ci) in any Lq(ΩT ) with q <∞. Further, observe that (37) implies that

‖f(c̄τi )‖2L2(0,T ;H2(Ω)) ≤ K (79)

with a constant K that might depend on T , but not on τ . Thanks to lower semi-continuity of the
H2-norm, it follows that f(ci) ∈ L2(0, T ;H2(Ω)) satisfies the same bound (79). We are now going to
show that this implies convergence of ∇f(c̄τi ) to ∇f(ci) in L24/7(ΩT ). By the Gagliardo-Nirenberg
and Hölder’s inequality, we have (independently of the dimension d):

∥∥∇[f(c̄τi )− f(ci)
]∥∥24/7

L24/7(ΩT )
=

ˆ T

0

∥∥∇[f(c̄τi )− f(ci)
]∥∥24/7

L24/7(Ω)
dt

≤ C
ˆ T

0

(
‖f(c̄τi )‖H2(Ω) + ‖f(ci)‖H2(Ω)

)12/7‖f(c̄τi )− f(ci)‖12/7
L12(Ω) dt

≤ C

(ˆ T

0

[
‖f(c̄τi )‖2H2(Ω) + ‖f(ci)‖2H2(Ω)

]
dt

)6/7(ˆ T

0

‖f(c̄τi )− f(ci)‖12
L12(Ω) dt

)1/7

≤ C(2K)6/7‖f(c̄τi )− f(ci)‖12/7
L12(ΩT ),

where K is the bound from (79). Therefore, convergence of f(cτi ) carries over to convergence of
∇f(cτi ). �

Having proven the existence of limits c and q, we shall now verify that these satisfy the equations
(21a) and (21c). The proof of (21a) is divided into two steps: in Lemma 6 below, we derive a
discrete-in-time version of the continuity equation (21a), and in the subsequent Lemma 7, we pass
to the limit τ ↓ 0.

Lemma 6. Let ζ ∈ C∞(Ω) satisfy homogeneous Neumann boundary conditions. Then

ˆ
Ω

ζ
cn1 − cn−1

1

τ
dx = −m1

ˆ
Ω

qn1
[
α(cn1 )∆ζ + ω(1− cn1 )∇f(cn1 ) · ∇ζ

]
dx+ τεn[ζ], (80)

where the error term satisfies

|εn[ζ]| ≤ 1

2
‖ζ‖C2

ˆ
Ω

cn1

∣∣∣∣∇ψn1τ
∣∣∣∣2 dx+ ‖ζ‖C0 |Ω|. (81)
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Proof. Recalling the representation (35) of cn−1
1 as push-foward of cn1 , we obtain

ˆ
Ω

ζ
cn1 − cn−1

1

τ
dx =

ˆ
Ω

ζ
cn1 − [cn−1

1 ]δ
τ

dx+

ˆ
Ω

ζ
[cn−1

1 ]δ − cn−1
1

τ
dx

=
1

τ

ˆ
Ω

[
ζ − ζ ◦ (id−∇ψn1 )

]
cn1 dx+

δ

τ

ˆ
Ω

ζ(ρ1 − cn−1
1 ) dx

=

ˆ
Ω

[
∇ζ ·

(
∇ψn1
τ

)
+
τ

2

(
∇ψn1
τ

)T
· ∇̂2ζ ·

(
∇ψn1
τ

)]
cn1 dx+

δ

τ

ˆ
Ω

ζ(ρ1 − cn−1
1 ) dx

=

ˆ
Ω

∇ζ ·
(
∇ψn1
τ

)
cn1 dx+ τεn[ζ].

Above, ∇̂2ζ is the average of the Hessian∇2ζ along the straight line segment joining x to x−∇ψn1 (x).
Consequently, also using that |cn−1

1 − ρ1| ≤ 1 and that δ ≤ τ2 by (24), we obtain the estimate (81)
on εn[ζ]. Now integrate by parts in the final integral above,

ˆ
Ω

∇ζ ·
(
∇ψn1
τ

)
cn1 dx = −

ˆ
Ω

[
ψn1
τ
cn1 ∆ζn +

(
ψn1
τ
∇cn1

)
· ∇ζ

]
dx. (82)

We rewrite the integral on the right-hand side. First, observe that

cn1ψ
n
1 = m1τα(cn1 )qn1 , (83)

using on {cn1 > 0} that qn1 = ω(cn1 )ψn1 /(m1τ) by definition, and on {cn1 = 0} that both sides are
zero, thanks to α(0) = 0. And second, observe that

∇cn1 ψn1 = m1τω(cn2 )∇f(cn1 ) qn1 , (84)

since∇cn1 = ω(cn1 )ω(cn2 )∇f(cn1 ) on the positivity set P = {0 < cn1 < 1} by the fact that f ′(r)ω(r)ω(1−
r) for 0 < r < 1, and on the complement Ω \ P by the fact that both ∇cn1 and ∇f(cn1 ) vanish a.e.
Substitution of (83)&(84) in (82) yields (80). �

Lemma 7. For all test functions ξ ∈ C∞c,n(R>0 × Ω),

ˆ ∞
0

ˆ
Ω

[−∂tξ c1 +m1 (∆ξ α(c1)q1 +∇ξ · ∇f(c1)ω(1− c1)q1)] dx dt = 0. (85)

Proof. Introduce ζn(x) := ξ(nτ ;x) for n = 1, 2, . . ., and the following piecewise constant and

piecewise linear in time approximations ξτ and ξ̂τ of ξ, respectively, by:

ξ̄τ (t; ·) = ζn and ξ̂τ (t; ·) =
t− (n− 1)τ

τ
ζn+1 +

nτ − t
τ

ζn for all t ∈ ((n− 1)τ, nτ ].

Use ζn for ζ in (80), sum over n:

τ
∑
n

εn[ζn] = τ
∑
n

ˆ
Ω

[
cn1
ζn − ζn+1

τ
+ ∆ζnα(cn1 )qn1 +∇ζn · ∇f(cn1 )ω(1− cn1 )qn1

]
dx

=

ˆ ∞
0

ˆ
Ω

[
c̄τ1∂tξ̂

τ + ∆ξ̄τα(c̄τ1)q̄τ1 +∇ξ̄τ · ∇f(c̄τ1)ω(1− c̄τ1)q̄τ1

]
dxdt.
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We pass to the limit τ ↓ 0 on both sides. On the left-hand side, we have thanks to (81) and (30),

τ

N∑
n=1

∣∣εn[ζn]
∣∣ ≤ m1‖ξ‖C2

2
τ

N∑
n=1

ˆ
Ω

∣∣∣∣∇ψn1τ
∣∣∣∣ cn1m1

dx+ τ(Nτ)|Ω|‖ξ‖C0

≤ 2m1‖ξ‖C2E(c0) τ + τ |ΩT |
(
m1 + ‖ξ‖C0

)
,

which converges to zero as τ → 0. On the right-hand side, we use that ∂tξ̂
τ → ∂tξ as well as

∇ξ̄τ → ∇ξ and ∆ξ̄τ → ∆ξ uniformly. Moreover, by (74), and since α, ω : [0, 1]→ R are continuous,
we have in particular that

α(c̄τ1)→ α(c1) and ω(1− c̄τ1)→ ω(1− c1)

in L24(ΩT ). In view of (73) and (75),

q̄τ1∇f(c̄τ1) ⇀ q1∇f(c1) in L24/23(ΩT ).

Therefore, the integral converges. �

The purpose of the next and final lemma is to derive the constitutive equations (21b) and (21c).

Lemma 8. Let ci and qi be as in Lemma 5, then c1 + c2 = 1 and

ω(c1) q2 − ω(c2) q1 = ∆f(c1) + χ
(
c1 − 1

2

)
ω(c1)ω(c2). (86)

Proof. Because of (29), we have c̄τ1 + c̄τ2 = 1, which clearly yields c1 + c2 = 1 in the limit, using the
strong convergence from (74).

Next, recall that (60) is precisely (86), with c̄τ in place of c, and with q̄τ in place of q, i.e.,

ω(c̄τ1) q̄τ2 − ω(c̄τ2) q̄τ1 = ∆f(c̄τ1) + χ
(
c̄τ1 − 1

2

)
ω(c̄τ1)ω(c̄τ2). (87)

By the strong convergence (74) of c̄τi and thanks to the continuity of ω, it follows that ω(c̄τi )
converges to ω(ci) strongly in, say, L3(ΩT ). In combination with the weak convergence (73) of the
q̄τi , we obtain weak convergence of the products,

ω(c̄τ1) q̄τ2 ⇀ ω(c1)q2 and ω(c̄τ2) q̄τ1 ⇀ ω(c2)q1

in L1(Ω). Trivially, also (
c̄τ1 − 1

2

)
ω(c̄τ1)ω(c̄τ2)→

(
c1 − 1

2

)
ω(c1)ω(c2)

strongly in L1(ΩT ). Finally, weak convergence ∆f(c̄τ1) ⇀ ∆f(c̄1) in L2(ΩT ) is implied by (76). We
thus obtain (86) as limit of (87). �

The proof of Theorem 1 is a conclusion of Lemma 7 and Lemma 8.

Appendix A.

Lemma 9. There is a constant K, expressible in terms of ρ1/m1, ρ2/m2, and geometric properties
of Ω, such that for all c ∈ Xmass:

d(c, [c]δ)
2 ≤ Kδ. (88)

Consequently, for any c, c̄ ∈ Xmass:

d(c, c̄)2 ≤ 2d
(
c, [c̄]δ

)2
+ 2Kδ. (89)
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Proof. Define a (sub-optimal) transport plan γ from ci to [ci]δ = (1− δ)ci + δρi as follows:

γ = (1− δ)(id, id)#(ciLΩ) +
δ

|Ω|
(ciLΩ)⊗ LΩ.

The marginals are as desired, i.e., for any ξ, η ∈ C(Ω), we have that¨
Ω×Ω

ξ(x) dγ(x, y) = (1− δ)
ˆ

Ω

ξ(x)ci(x) dx+ δ

ˆ
Ω

ξ(x)ci(x) dx

 
Ω

dy =

ˆ
Ω

ξ(x)η(x) dx,

¨
Ω×Ω

η(y) dγ(x, y) = (1− δ)
ˆ

Ω

η(y)ci(y) dx+ δ

 
Ω

ci(x) dx

ˆ
Ω

η(y) dy =

ˆ
Ω

η(y)
[
(1− δ)ci(y) + δρi

]
dy.

And the corresponding costs amount to¨
Ω×Ω

|x− y|2 dγ(x, y) =
δ

|Ω|

¨
Ω×Ω

|x− y|2ci(x) dxdy

≤ δ diam(Ω)2

|Ω|

ˆ
Ω

ci(x) dx

ˆ
Ω

dy = δ diam(Ω)2|Ω|ρi.

In summary,

d(c, [c]δ)
2 =

W(c1, [c1]δ)
2

m1
+

W(c2, [c2]δ)
2

m2
≤ δ diam(Ω)2

(
|Ω|ρ1

m1
+
|Ω|ρ2

m2

)
.

The inequality (89) now follows from the triangle inequality, that is inherited from W to d,

d(c, c̄)2 ≤ 2d
(
c, [c̄]δ

)2
+ 2d

(
c̄, [c̄]δ

)2
,

in combination with (88). �

Lemma 10. For all c, c′ ∈ Xmass with ci, c
′
i ∈ H1(Ω) and c1 + c2 ≡ 1 ≡ c′1 + c′2,

‖c′ − c‖2L2 ≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)
d(c′, c). (90)

Proof. Let (ϕ1, ψ1) be a pair of Kantorovich potentials for the optimal transport from c1 to c′1. For
each s ∈ [0, 1], define Ts : Ω→ Ω by Ts(x) = x− s∇ϕ1(x). For any test function ζ ∈ C1(Ω),ˆ

Ω

[c′1 − c1]ζ dx =

ˆ
Ω

[
ζ ◦ T1 − ζ

]
c1 dx

=

ˆ
Ω

[ˆ 1

0

∇ζ ◦ Ts · ∇ϕds

]
c1 dx

≤
ˆ 1

0

(ˆ
Ω

|∇ζ|2 ◦ Ts c1 dx

)1/2(ˆ
Ω

|∇ϕ1|2c1 dx

)1/2

ds

=

ˆ 1

0

(ˆ
Ω

|∇ζ|2Ts#c1 dx

)1/2

dsW(c1, c
′
1).

Using the fact that

sup
Ω
Ts#c1 ≤ max

(
sup

Ω
c1, sup

Ω
c′1

)
= 1,

it follows that ˆ
Ω

∣∣[c′1 − c1]ζ
∣∣dx ≤ ‖∇ζ‖L2W(c1, c

′
1),
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and consequently — using for ζ approximations of c′1 − c1 in C1 —

‖c′1 − c1‖2L2 ≤ ‖∇(c′1 − c1)‖L2W(c1, c
′
1) ≤

(
‖∇c′1‖L2 + ‖∇c1‖L2

)
W(c1, c

′
1).

By hypothesis, c1 − c′1 = c′2 − c2. Thus, recalling the definition of d, we obtain

‖c′ − c‖2L2 = 2‖c′1 − c1‖2L2

≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)2(W(c′1, c1)2

m1

)1/2

≤ 2
√
m1

(
‖∇c1‖L2 + ‖∇c′1‖L2

)
d(c′, c).

�
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Zentrum für Mathematik, Technische Universität München, 85747 Garching, Germany (matthes@ma.tum.de)

mailto:clement.cances@inria.fr
mailto:matthes@ma.tum.de

	1. Introduction
	1.1. Local versus non-local dynamics
	1.2. Gradient flow structure
	1.3. Estimates
	1.4. Reformulation of the equations
	1.5. Main result
	1.6. Plan of the paper
	1.7. Notation

	2. Preliminaries from the theory of optimal transportation
	2.1. Monge characterization
	2.2. Kantorovich characterization
	2.3. Dual characterization

	3. Time-discrete approximation via minimizing movement scheme
	4. A priori estimates on the volume fractions
	5. A priori estimates on the auxiliary potentials
	6. Convergence and conclusion of the proof of Theorem 1
	Appendix A. 
	References

