
HAL Id: hal-02510509
https://hal.science/hal-02510509

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Internal Coalgebras in Cocomplete Categories:
Generalizing the Eilenberg-Watts Theorem

Laurent Poinsot, Hans-E Porst

To cite this version:
Laurent Poinsot, Hans-E Porst. Internal Coalgebras in Cocomplete Categories: Generalizing the
Eilenberg-Watts Theorem. Journal of Algebra and Its Applications, In press. �hal-02510509�

https://hal.science/hal-02510509
https://hal.archives-ouvertes.fr


Internal Coalgebras in Cocomplete Categories:
Generalizing the Eilenberg-Watts-Theorem

Laurent Poinsot
LIPN, UMR CNRS 7030, University Sorbonne Paris North,
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Abstract

The category of internal coalgebras in a cocomplete category C with respect to a variety
V is equivalent to the category of left adjoint functors from V into C. This can be seen
best when considering such coalgebras as finite coproduct preserving functors from T op

V , the
dual of the Lawvere theory of V, into C: coalgebras are restrictions of left adjoints and any
such left adjoint is the left Kan extension of a coalgebra along the embedding of T op

V into
AlgT . Since SMod-coalgebras in the variety RMod for rings R and S are nothing but left S-,
right R-bimodules, the equivalence above generalizes the Eilenberg-Watts Theorem and all
its previous generalizations. Generalizing and strengthening Bergman’s completeness result
for categories of internal coalgebras in varieties we also prove that the category of coalgebras
in a locally presentable category C is locally presentable and comonadic over C and, hence,
complete in particular. We show, moreover, that Freyd’s canonical constructions of internal
coalgebras in a variety define left adjoint functors. Special instances of the respective right
adjoints appear in various algebraic contexts and, in the case where V is a commutative
variety, are coreflectors from the category Coalg(T ,V) into V.

MSC 2010: Primary 18D35, Secondary 08C5
Keywords: Internal coalgebra, Lawvere theory, (commutative) variety, locally presentable
category.

Introduction

The Eilenberg-Watts [14, 29] Theorem states that the only additive and colimit preserving func-
tors L : RMod −→ SMod between the categories of left modules over not necessarily commutative
rings R and S are the functors MR⊗R− for left S-, right R-bimodules SMR. By the (dual of) the
Special Adjoint Functor Theorem this is equivalent to saying that these tensoring functors are the
only additive and left adjoint functors between module categories. Since equivalences between

∗Permanent address: Department of Mathematics, University of Bremen, 28359 Bremen, Germany.
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categories are adjunctions, this result is of importance for describing classical Morita theory of
rings, one of the early reasons for the interest in it.

Decades later is has been felt necessary to generalize this to additive left adjoint functors
L : RMod −→ C for categories C more general than module categories. The most recent general-
ization [23] assumes C to be a cocomplete additive and k-linear category and R the underlying
ring of a k-algebra (for some commutative ring k) in order to prove a non-trivial result about
quasi-coherent sheaves.

The main problem, obviously, then is to replace the concept of bimodule by a more general
one. In [11] and [23] this is achieved by choosing left R-objects in C (see Section 2.1.3 below).
The shortcomings of this approach are that this idea neither can be further generalized to non-
additive categories C as codomains for L nor to varieties other then module categories as domains
of L. Note that the Eilenberg-Watts Theorem can, alternatively, be read as characterizing the
additive right adjoint functors K : SMod −→ RMod as the functors HomS(SM,−) for left S-, right
R-bimodules SMR, and that these the only functors making the following diagram commute:

SMod
HomS(SM,−) //

SMod(SM,−)
((

RMod

|−|
��

Set

(1)

The functors HomS(SM,−), thus, are examples V-representable functors in the sense of Freyd
[16], that is, of functors making the following diagram commute, where C is a category with finite
coproducts and | − | denotes the forgetful functor of a variety V.

C RA //

C(A,−)   

V

|−|
��

Set

(2)

Such functors provide an equivalent way of describing, for any variety V, internal V-coalgebras
in a category C with finite coproducts, that is, internal V-algebras in the dual of a category C
with finite products. The latter notion is essentially obtained by translating the concept of
equationally defined algebras from the language of universal algebra into that of category theory,
where satisfaction of an equational algebra axiom is expressed by commutativity of a diagram.

Consequently, the RMod -coalgebras in SMod are precisely the left S-, right R-bimodules, an
observation Freyd—somewhat surprisingly—did not notice, and this is the appropriate general-
ization of bimodules needed for generalizing the Eilenberg-Watts theorem.

As gradually became clear, the concept of internal coalgebras provides a common perspective
on apparently completely unrelated concepts, constructions and results as, for example, the con-
struction of homotopy groups, the change of rings functors in module theory, the Eilenberg-Watts
theorem as mentioned above, or the group-like and primitive elements functors of Hopf algebra
theory.

Freyd in his paper initiated a systematic study of these structures by what one may call a
semi-categorical approach and introduced canonical ways of constructing coalgebras in a vari-
ety. Somewhat later, without reference to these papers, internal coalgebras in the category of
commutative rings were introduced and applied in [28]. More recently gaps in this theory were
closed and non trivial results added by Bergmann [7]; most notably, he proved that the category
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of V-coalgebras in a variety W is complete and its forgetful functor into W has a right adjoint.
However, his use of algebraic methods only requires a considerable amount of unusual technicali-
ties. So, from its very beginning, the study of internal coalgebras appears as an interplay between
algebraic and category theoretic concepts and methods.

It is the intention of this note to show that a purely categorical approach — besides providing
the appropriate setting for generalizing the Eilenberg-Watts Theorem — simplifies the presen-
tation of the theory of coalgebras and leads to new results, improvements of known ones, and
further applications. For the sake of those readers not too familiar with categorical methods, we
include translations of crucial concepts and results into the language of universal algebra.

We, hence, consider coalgebras in a category C with finite coproducts simply as functors

T op A−→ C from the dual T op of a Lawvere theory into C which preserve finite coproducts. This
approach becomes particularly convincing, when C not only has finite coproducts but even is
cocomplete. Then there results quite obviously an equivalence of coalgebras and left adjoints,
which generalizes the Eilenberg-Watts Theorem and can be expressed conceptually as follows:

Up to natural equivalence, T -coalgebras T op A−→ C are nothing but the restrictions of left adjoints

AlgT L−→ C to T op, considered as a subcategory of AlgT , while the left adjoint LA corresponding
to a coalgebra A is characterized by any of the following universal properties, where the first
one is purely categorical in nature while the second one is in view of Section 1.2.4 below of an
algebraic flavour.

Kan LA is the left Kan extension of A along the embedding T op Y−→ AlgT .

Sift LA is the sifted colimit preserving extension of A.

Concerning improvements of the theory of coalgebras we show for example:

• For every Lawvere theory T the category Coalg(T , C) of T -coalgebras in a locally presentable
category C is again a locally presentable category and, hence, complete in particular. This
generalizes considerably Bergman’s result in [7]. Moreover, its underlying functor into

Coalg(T , C) ||−||−−→ C has a right adjoint (as shown in [7] for C being an arbitrary variety,
while the paper [13] claims to present a proof for corings in the category of rings (see
however its review)), and, moreover, is comonadic (as shown for C = Set by Isbell [18]).
However, not each such comonadic category is of the form Coalg(T , C).

• The canonical constructions of coalgebras in a variety already mentioned by Freyd are
generalized to coalgebras in a locally presentable category. Their existence in the case of
varieties also becomes immediately evident by our categorical approach, as is the fact that
they are left adjoint functors. The respective right adjoints can be viewed as a generalization
of both, the group-like elements and the primitive elements functors, known from Hopf
algebra theory.

In the case of a commutative variety V with Lawvere theory TV the canonical construction
provides a full coreflective embedding of V into Coalg(TV ,V). We show by examples that
these embeddings may or may not be equivalences.

We also show that the theory developed can be of use (besides generalizing the Eilenberg-
Watts Theorem); we show for example how the following, familiar algebraic results are obtained
easily.
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• The General linear group and Special linear group functors GLn, SLn : Ring −→ Grp have
left adjoints.

• For any ring homomorphism φ : R −→ S the Extension of scalars-functor RMod −→ SMod is
left adjoint to the Restriction of scalars-functor SMod −→ RMod and this is left adjoint to
the Coextension of scalars-functor RMod −→ SMod .

• Each symmetric algebra, that is, each free commutative R-algebra Σ∗(M) over an R-module
M , is a Hopf algebra whose set of primitive elements contains M .

• Moreover we show that our results provide a natural setting for Morita equivalence of
arbitrary varieties, generalizing classical Morita theory for module categories.

The paper is organized as follows:
Section 1 is mainly devoted to an introduction to the concept of Lawvere theories. In its

part on varieties we improve Freyd’s approach to the interpretation of terms in a category with
finite products, necessary in this context. What seems to be new is the result that the sifted
colimit preserving extension of a functor T op −→ C is nothing but its left Kan extension along the
embedding T op ↪→ AlgT .

Section 2 deals with the general theory of internal coalgebras. Subsection 2.1 provides the
various possible definitions and proofs of their equivalence, while subsections 2.3 and 2.2 deal
with the properties of the categories of internal coalgebras and provide a first set of examples.

Section 3 develops the theory the categories of coalgebras in varieties. Subsection 3.1 discusses
the canonical construction of coalgebras on free algebras and its adjunction; it closes with an
application of these results in the context of Kan’s construction of cogroups in the category
of groups. Subsection 3.1.2 provides some non-trivial applications. Subsection 3.2 deals with
coalgebras in commutative varieties. We show in particular, that the canonical construction just
mentioned, in this case extends to a full coreflective embedding.

1 Preliminaries

1.1 Some concepts and notations

We next introduce some concepts and notations not every reader may be familiar with.

Semi-additive categories. A category C is called semi-additive, if it has finite biproducts. Every
such category is enriched over cMon. If C even is enriched over Ab it is called additive.

Locally presentable categories. Given a regular cardinal λ, an object P in a category C is called λ-
presentable iff C(P,−) preserves λ-filtered colimits. A category C is called locally presentable,
provided that it is cocomplete and has, for some λ, a set of λ-presentable objects of which
each C-objects is a λ-filtered colimit. Every locally presentable category is complete, well-
powered and cowellpowered, and has certain factorization structures of morphisms (see
[2] for details).

Examples of such categories are all varieties and quasivarieties, the category of partially
ordered sets and, more generally, every universal Horn class, and the category of small
categories. Also, for locally presentable categories C and D, the category Ladj(D, C) of left
adjoint functors D −→ C is locally presentable (see [9]).
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Functor coalgebras. The category CoalgF of F -algebras in C for a functor C F−→ C has as objects all

pairs (C,C
γ−→ FC) and as morphisms (C, γ)

f−→ (C ′, γ′) those C-morphisms C
f−→ C ′ which

satisfy Ff ◦ γ = γ′ ◦ f . The obvious forgetful functor CoalgF −→ C reflects isomorphisms
and creates colimits and those limits which are preserved by F .

Kan extensions. Given functors B F−→ C and B Y−→ D on small category B a left Kan extension
of F along Y is a functor LanY F : D −→ C together with a natural transformation α : F ⇒
LanY F ◦Y such that for any other such pair (G : D −→ C, β : F ⇒ G ◦Y ) β factors uniquely
through α. α is a natural isomorphism, if Y is full and faithful; if Y is a full embedding one
even has α = id. LanY F can be constructed with LanY F acting on a D-object D as the

colimit of the diagram Y ↓ D ΦD−−→ B F−→ C where ΦD is the obvious forgetful functor into
B, if these colimits exist in C for each D (see e.g. [22, Chapter X.3]).

In particular, if the Yoneda embedding YBop factors as Bop Y−→ A I
↪→ SetB for some full sub-

category A of SetB and C has Y ↓ A-colimits for each A in A, one has natural isomorphisms

C(LanYF (A), C) ' SetB(A, R̂FC) (3)

where R̂F : C −→ SetB is the functor with R̂FC = B F op

−−→ Cop C
op(C,−)=C(−,C)−−−−−−−−−−−→ Set for each

C-object C. Thus, the Yoneda extension LanYBopF has R̂F as its right adjoint.

Sifted colimits. A small category D is called sifted if finite products in Set commute with colimits
over D. Colimits of diagrams over sifted categories are called sifted colimits. Sifted colimits
in a variety are precisely those colimits which are—like all limits—created by the forgetful
functor. See [4] for more details on this type of colimits.

Equifiers. Given an I-indexed family of pairs of functors F i, Gi : C → Ci and for each i ∈ I a pair
of natural transformations φi, ψi : F i ⇒ Gi, we call (following [2]) the full subcategory of C
spanned by all objects C satisfying φiC = ψiC for all i ∈ I the joint equifier Equ(φi, ψi)i of
the family (φi, ψi).

Some notations. The hom-functors of a category C are denoted by C(C,−). The equalizer of

a parallel pair (f, g) in C is denoted by Eq C(f, g). If (P, (P
πi−→ Xi)i) is a product and

(X
fi−→ Xi)i a family of morphisms in a category C we denote by X

〈(fi)i〉−−−−→ P the unique
C-morphism with πi ◦ 〈(fi)i〉 = fi for each i. The X-fold copower of an object C is denoted

X · C. Dually, given a coproduct (C, (Xi
µi−→ C)i), by C

[(fi)i]−−−−→ X we denote the unique

morphism induced by a family of morphisms (Xi
fi−→ X)i. Functor categories are denoted

by BA or [A,B]. If, for some category C, there is a category A(C) of “structured C-objects”

with forgetful functor A(C) |−|−−→ C we will occasionally, by slight abuse of notation, denote
an object in A(C) with underlying C-object C simply by C.

We use the following notation for some frequently used categories: Set denotes the category
of sets, Grp (Ab), that of (abelian) groups, Mon (cMon), that of (commutative) monoids,
Ring , that of unital rings, RMod (ModR) that of left (right) R-modules, AlgR (cAlgR), that
of (commutative) R-algebras over a commutative ring.

For n ∈ N we often denote an n-element set simply by n.
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1.2 Varieties

1.2.1 Varieties by signatures

A signature is a pair Σ = (Σ̄, Σ̄
ar−→ N) consisting of a set Σ̄ and an arity map Σ̄

ar−→ N. By
(Σn)n we denote the family of preimages of n under ar. In the sequel we usually don’t distinguish

notationally between Σ̄ and Σ. AlgΣ then is the category of Σ-algebras A = (A, (Aarσ
σA

−→ A)σ∈Σ̄)
and T (Σ)n the set of Σ-terms in n variables in the sense of universal algebra. T (Σ), the disjoint
union of all sets T (Σ)n, is the set of Σ-terms.

The interpretation of a term t ∈ T (Σ)n on a Σ-algebra A will be denoted by An
tA−→ A. Since

the familiar definitions of tA are either given element-wise or use freeness of the Σ-algebras of
Σ-terms and none of these methods works for arbitrary internal algebras in a category C with
finite products, Freyd [16] suggested a recursive definition using products, which however has
some shortcomings as already observed in its review. We therefore use the following recursive

definition of the interpretation An
tA−→ A of a Σ-term t ∈ T (Σ)n in a Σ-algebra A, which then

will make sense in any category C with finite products in Section 1.2.5 below, where for the
fundamental terms, that is the “constants” σ ∈ Σ0 and the “variables” x1, . . . , xn, . . . we add a
subscript n to indicate that they are considered as elements of T (Σ)n (and not of some T (Σ)m
with m > n) in order to avoid ambiguity:

1. xAn,j := An
πj−→ A is the jth product projection, for the variables x1, . . . , xn.

2. tA := An
〈(tAi )i〉−−−−→ Aar(τ) τA

−→A, if t = τ(t1, · · · , tar(τ)) with ti ∈ T (Σ)n. In particular

(a) σA
n := An

!−→ 1
σA

−→ A for each t = σ ∈ Σ0, where ! denotes the unique morphism,

(b) σ(x1, . . . , xn)A = An
σA

−→ A for each σ ∈ Σn and n > 0.

Since every homomorphism A
f−→ A′ satisfies tA

′ ◦ fn = f ◦ tA for every t ∈ T (Σ)n, every
such t determines a natural transformation t̃ : | − |n ⇒ | − | with components t̃A = tA, where

AlgΣ
|−|−−→ Set denotes the forgetful functor. By the Yoneda lemma the assignment t 7→ t̃ defines

a bijection between T (Σ)n and the set of natural transformations nat(| − |n, | − |), since | − |n is
represented by the free Σ-algebra on n whose carrier set is T (Σ)n. A set of Σ-equations is a family
E = (En)n with En ⊂ T (Σ)n × T (Σ)n. As usual we denote pairs (s, t) ∈ E by s = t. A Σ-algebra
A is said to satisfy the equation s = t iff tA = sA. Alg(Σ,E) denotes the full subcategory of AlgΣ
of algebras satisfying all equations in E and is called a variety. The pair (Σ,E) is occasionally
called an equational theory.

Writing t = τ(t1, . . . tm) with τ ∈ Σm and ti ∈ T (Σ)k and s = σ(s1, . . . sn) with σ ∈ Σn and
sj ∈ T (Σ)k a Σ-algebra A satisfies s = t if and only if the following diagram commutes.

Ak
〈(tAi )i〉 //

〈(sAj )j〉
��

Am

τA

��
An

σA

// A

(4)
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Satisfaction of an equational axiom s = t, thus, is the requirement for Diagram (4) to commute.
Since the paths of this diagram are the components of the natural transformations t̃ and s̃, the
variety Alg(Σ,E) is, as a subcategory of AlgΣ, the joint equifier Equ(s̃, t̃)s=t∈E.

1.2.2 Varieties by Lawvere theories

The categorification of these notions is due to Lawvere [20], as is well known: Pairs (Σ,E) are
substituted by Lawvere theories T and varieties by the full subcategories AlgT of SetT consisting
of all finite product preserving functors. For the convenience of the reader not already familiar
with the concept of Lawvere theory we add the following remarks.

Definition 1 A Lawvere theory is a category T with a countable set of objects T0, T1, . . . , Tn, . . .
(occasionally written simply as 0, 1, . . . , n, . . .) such that T has finite products and the object T1

allows for each n ∈ N a specified product (Tn, (Tn
πn,i−−→ T1)1≤i≤n). Lawvere theories and finite

product preserving functors constitute the category Lawv .

The category AlgT of T -algebras has its objects all finite product preserving functors T A−→ Set
and its morphisms the natural transformations between those. Evaluation at T1 defines a faithful

functor AlgT |−|−−→ Set .

We recall the following basic facts of this categorification as follows, introducing some notations
used in this note at the same time. For details we refer to [4].

I. The dual of a skeleton of the category of finite sets is a Lawvere theory N . This is the initial
object of Lawv . For any Lawvere theory T we denote by T the unique Lawv -morphism
N −→ T . There is a forgetful functor from Lawv into the category of signatures acting as
T −→ T (n, 1) =: ΣT . This functor has a left adjoint which assigns to a signature Σ the free
theory TΣ over Σ. In particular, ΣTΣ = T (Σ). There is a concrete isomorphism

AlgTΣ ' AlgΣ (5)

given on objects by A 7→ (A(T1), (A(σ(x1, · · · , xarσ)))σ∈Σ).

II. There exists a dual biequivalence between Lawvere theories and varieties. In more detail:

(a) For every variety V = Alg(Σ,E) there exists an essentially unique Lawvere theory TV
such that V is concretely equivalent to AlgTV . TV can be chosen to be the dual of
the full subcategory 〈FVn | n ∈ N〉 of V formed by choosing, for each n ∈ N, a free
V-algebra FVn in such a way that FVn 6= FVm for n 6= m. Equivalently, TV(n, 1) is
the set of natural transformations |− |n ⇒ |−|. In other words, T op

V can be considered
as a full subcategory of AlgTV .

(b) For every Lawvere theory T the category AlgT is concretely equivalent to some variety
V = Alg(Σ,E), equivalently, T is isomorphic to TV for some V.

(c) Every morphism S Φ−→ T of Lawvere theories, that is, a finite product preserving

functor, induces the algebraic functor AlgT Φ∗−−→ AlgS given by (T A−→ Set) 7→ (S Φ−→
T A−→ Set). This is a concrete functor admitting a left adjoint Φ∗. Every concrete

functor V U−→W between varieties has a left adjoint LU and so determines a morphism

in Lawv : Take the dual of the restriction 〈FWn | n ∈ N〉 LU−−→ 〈FVn | n ∈ N〉.
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In particular, for any Lawvere theory T , AlgT T∗−−→ AlgN ' Set is the forgetful functor;
it creates limits and sifted colimits and reflects isomorphisms. Its left adjoint T∗ is the
free algebra functor.

III. Every Lawvere theory T is a regular quotient of a free one. In more detail: If AlgT
is concretely isomorphic to the variety Alg(Σ,E), then there exists a quotient morphism

TΣ
[−]−−→ T in Lawv . This functor identifies terms s and t, whenever (s, t) is deducible from

E, that is, if every algebra in Alg(Σ,E) satisfies the equation (s, t). The functor AlgT [−]∗−−−→
AlgTΣ is a full embedding. In the language of universal algebra this quotient morphism

corresponds to the canonical quotients FΣn
[−]−−→ FVn for each n and, correspondingly, for

each σ ∈ Σn, the T -morphism Tn
[σ]−−→ T1 can, in view of II.(a) above, be identified with the

V-homomorphism FV1
σ̄−→ FVn mapping 1 to [σ(x1, . . . , xn)].

IV. There are essentially one-to-one correspondences T 7→ T between Lawvere theories and
finitary monads on Set , such that AlgT ' SetT, and the functors Φ∗ induced by theory
morphisms and monad morphisms, respectively. The monad T is given by the adjunction
− · F1 a AlgT (F1,−).

We will use below the following elementary construction of Lawvere theories. Let A be an
object in a category C with finite products. Choose, for each n ∈ N, a power An

πi−→ A such
that An 6= Am for n 6= m. Then the full subcategory of C spanned by these powers is a Lawvere
theory, which we will denote by TC [A]. Note that in this notation the theory TV of a variety V as
described in II. (a) above is TVop [F1].

We note moreover that, given an object A in a category C with coproducts, there is the monad
A given by the adjunction − ·A a C(A,−). Though this monad formally is related to the theory
TCop [A] as T is related to TVop [FV1], SetA will not be concretely equivalent to a variety in general.

1.2.3 Characterizing varieties as concrete categories

The characterization of varieties as concrete categories, that is, as categories A equipped with

faithful functor A U−→ Set is essentially due to Linton [21]. A concrete category (V, U) is con-
cretely equivalent to a variety if only if (0) V has coequalizers, (1) U has a left adjoint, (2) U
preserves and reflects regular epimorphisms, (3) U preserves and reflects kernel pairs, and (4) U
preserves directed colimits. Assuming that A even is cocomplete and has kernel pairs and regular
factorizations of morphisms U is a representable functor U ' A(G,−) and one can replace the
above conditions by the following ones: G is (a) a regular generator, (b) regular projective (i.e.,
projective with respect to regular epimorphisms), and (c) finitely presentable (see e.g. [10, Thm
3.9.1] or [25]). We will call such G a varietal generator.

One so obtains that for any varietal generator G in a cocomplete category A with kernel
pairs and regular factorizations of morphisms the variety V with TV = (TAop [G])op admits an

equivalence A RG−−→ V with | − | ◦RG = A(G,−).

1.2.4 A universal property of varieties

Maybe somewhat lesser known than what we recalled in the previous section is the characteriza-
tion of varieties AlgT as free completion of the category T op under sifted colimits (see [3]). This
is in detail: For every functor F : T op −→ C into a category C with sifted colimits there exists
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an essentially unique sifted colimit preserving functor SF : AlgT −→ C extending F such that the
assignment F 7→ SF defines an equivalence between the categories [T op, C] and sift[AlgT , C], the
category of sifted colimit preserving functors from AlgT to C (see [3],[4]).

Since this result will be of importance below we use the opportunity to describe the functor
SF as the left Kan extension LanY (F ) as follows, where Y denotes the embedding T op ↪→ AlgT .

Proposition 2 For every functor F : T op −→ C into a category C with sifted colimits LanY F
exists. If C in addition has finite coproducts, that is, if C is cocomplete the following hold.

1. LanY F coincides with the restriction of the Yoneda extension of F .

2. LanY F coincides with the unique sifted colimit preserving extension SF of F .

3. SF = LanY F has a right adjoint RF , if F preserves finite coproducts.

The proof is based on the following lemma.

Lemma 3 ([4]) AlgT is closed in SetT under sifted colimits. For every T -algebra T A−→ Set the
category ElA of elements of the functor A is sifted and coincides with the comma category Y ↓ A.

Proof (of Proposition 2) The first statement and item 1 are clear by the construction of Kan

extensions. By the lemma above the embedding AlgT I−→ SetT preserves sifted colimits. Since
the Yoneda extension is a left adjoint, LanY F preserves these by item 1 and, hence, coincides

with SF . Concerning item 3 observe first, that the functor T R̂F (C)−−−−→ Set preserves finite products

if F op does; hence, in this case R̂F factors as C RF−−→ AlgT I−→ SetT . By Equation (3) there are
natural isomorphisms C(LanYF (A), C) ' SetT (I(A), R̂FC) ' AlgT (A,RFC); in other words
there is an adjunction LanY F a RF . �

The following diagram illustrates this situation. (Note, that the Yoneda extension LanYT opF
will only exist if C in addition has finite coproducts, that is, if C is cocomplete.) We only include
it in the diagram to indicate that in this case the adjunction LanY F a RF appears as a restriction
of the adjunction of the Yoneda extension).

T op

F

""

YT op

''
Y // AlgT

LanY F

��

� � I // SetT

LanYT opFmmC
R̂F

NN

RF

OO

1.2.5 Internal algebras in a category

Given an arbitrary category C with finite products one defines categories Alg(T , C), Alg(Σ, C) and
Alg((Σ,E), C) of internal algebras in C, equipped with underlying functors | − |C , by replacing
in the definitions of AlgΣ, Alg(Σ,E) and AlgT , respectively, “set” by “C-object” and “map” by
“C-morphism”. For a variety V = Alg(Σ,E) one calls Alg((Σ,E), C) the category of internal
V-algebras in C. A V-algebra in C, thus, is a pair (A, (σA)σ∈Σ) such that for each (s, t) ∈ E
Diagram (4), considered as a diagram in C, commutes. Internal V-algebras in C can alternatively
be described as follows ([22, Chapter III.6],[16]):
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Fact 4 A C-object A is (the underlying object) of an internal V-algebra iff, for each C-object C,
the set C(C,A) is (the underlying set) of a V-algebra.

This is equivalent to saying that V-algebras A in C with underlying object A correspond
essentially one-to-one to functors RA making the following diagram commute.

C RA //

C(−,A)   

V

|−|
��

Set

(6)

The following facts either follow by direct generalization or are obvious.

Fact 5 If TV is the Lawvere theory of a variety V = Alg(Σ,E), then the following hold.

1. The functor Alg(TV , C)
|−|C−−−→ C creates limits and reflects isomorphisms.

For every t ∈ TΣ(n, 1) there is a natural transformation t̃ : |−|nC ⇒ |−|C , whose components
are the C-morphisms A(t) : |A|nC −→ |A|C .

2. Alg(TV , C) is concretely equivalent over C to Alg((Σ,E), C), the full subcategory Equ(s̃, t̃)s=t∈E
of the category Alg(Σ, C).

3. Morphisms S Φ−→ T of Lawvere theories determine functors CΦ
∗ : Alg(T , C) → Alg(S, C)

given by (T A−→ C) 7→ (S Φ−→ T A−→ C).

4. Every product preserving functor C S−→ D between categories with finite products maps

T -algebras to T -algebras, that is, S can be lifted to a functor Alg(T , C)
TS−−→ Alg(T ,D)

by mapping a T -algebra A to S ◦ A. TS preserves all limits which are preserved by S.

In the language of universal algebra, one has a functor Alg(V, C)
VS−−→ Alg(V,D) such that

VS(A) = (S(A), (S(σA))σ∈Σ).

However, unlike to the case of C = Set , neither the forgetful functor Alg(T , C) |−|C−−−→ C nor the
functors CΦ

∗ have left adjoints in general. They do so, if C is a locally finitely presentable category,
and in this case Alg(T , C) is locally finitely presentable (see e.g. [27]).

2 Internal coalgebras

2.1 Descriptions of the category of coalgebras

If C is a category with finite coproducts one calls an internal algebra in Cop an internal coalgebra
in C. This generalizes the terminology used already by Kan [19] as early as 1958 in the special
situation, where C = Mon and V = Grp. In this section we describe various equivalent descriptions
of this concept in some detail.

10



2.1.1 Coalgebras for a variety

Definition 6 Let C be a category with finite coproducts.
For any Lawvere theory T the category of internal T -coalgebras in C is the category

Coalg(T , C) = Alg(T , Cop)op.
For any variety V = Alg(Σ,E) the category internal V-coalgebras in C (or internal (Σ,E)-

coalgebras) is the category Coalg(V, C) = Alg(V, Cop)op.

Facts 7 1. Coalg(T , C) is the category of finite coproduct preserving functors T op −→ C.

2. Coalg(V, C) = Coalg((Σ,E), C) is, by dualization of Facts 5.2, the joint equifier Equ(ŝ, t̂)s=t∈E
in Coalg(Σ, C), where t̂ := t̃op : || − || ⇒ n · || − || is the natural transformation determined
by t ∈ TΣ(n, 1). tA := t̂A : A → n · A is the interpretation of t in an internal Σ-algebra in
Cop, for each such t. Moreover, Coalg(V, C) ' Coalg(TV , C).

Adopting the language of universal algebra, a Σ-coalgebra in C is a pair A = (A, (A
σA−→

n ·A)σ∈Σn), where A is a C-object and A
σA−→ n ·A is a C-morphism, called the n-ary co-operation

determined by σ ∈ Σn. A (Σ,E)-coalgebra in C then is a Σ-coalgebra in C making all Diagrams
(4) in Cop commute. This is often expressed by saying that it satisfies duals of the equational
axioms defining V, which means explicitly that each of the following diagrams commutes in C.

A
σA //

τA

��

n ·A

[((sj)A)j ]

��
m ·A

[((ti)A)i]
// k ·A

The following diagrams from [19], with C
µ−→ C + C the comultiplication, C

ε−→ 0 the counit, and

C
ι−→ the coinversion, displaying the axioms of a cogroup may serve as an illustration.

C
µ //

µ

��

C + C

[µ,idC ]

��
µ+idC

��
C + C

[idC ,µ] //

idC+µ

77C + C + C

0 + C

ν−1
2

��

C

µ

��
µ

��

ν1 //ν2oo C + 0

ν−1
1

��
C C + C

[idC ,ε]
//

[ε,idC ]
oo C

C + C

∇=[idC ,idC ]

��

C + C

[idC ,ι]yy

idC+ιoo C

ε

��

µ //µoo C + C
ι+idC //

[ι,idC ]
%%

C + C

[idC ,idC ]=∇
��

C 0
!

//
!

oo C

Remark 8 It may happen that Coalg(V, C) is the category 1. This is the case for example if
C(C, 0) = ∅ for all C 6= 0 (as in Set) and V has no constants. An example is Coalg(Mon,Set).

It also may happen that Coalg(V, C) is isomorphic to the category C. Examples are the
categories Coalg(Mon, C) and Coalg(cMon, C), if C is a semi-additive category. This is due to
the familiar fact that the (only) comonoids in a cartesian monoidal category C are the triples
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(C,∆C , !C) with C
∆C−−→ C × C the diagonal and C

!C−→ 1 the unique morphism, and that these
are cocommutative.

Other examples are Coalg(Grp, C) and Coalg(Ab, C) if C is additive. In this case, for each
C-object C, the hom-functor C(C,−) can be lifted to a functor C → Ab. In other words, C
carries the structure of an Ab-coalgebra in C. By the above the claim follows and one obtains
equivalences of categories Coalg(Grp, C) ' C ' Coalg(Ab, C).

2.1.2 Coalgebras as representable functors

Definition 9 Given a Lawvere theory T and C a category with finite coproducts. A functor

C RA−−→ AlgT is called T -representable (on C) by A ∈ obC or an AlgT -lift of C(A,−), if C −→
AlgT |−|−−→ Set = C C(A,−)−−−−→ Set for some C-object A, that is, if diagram (6) commutes.

Rep(T , C) denotes the category of T -representable functors on C with all natural transforma-
tions as its morphisms.

Occasionally we will rather talk about V-lifts and V-representable functors, if T = TV for a
variety V.

Remarks 10 1. For any morphism RA
µ⇒ RA′ in Rep(T , C) the natural transformation

C(A,−)
|µ|⇒ C(A′,−) determines by the Yoneda Lemma a C-morphism A′

fµ−→ A between
the representing objects. Rep(T , C)op then is concrete over C by means of the faithful func-

tor {−}T given by (R
µ−→ R′) 7→ (A′

fµ−→ A).

2. For any V-representable functor RA one has for each set X the natural isomorphism

V(FX,RA−) ' V(F1, RA−)X ' C(A,−)X ' C(X ·A,−). (7)

Identifying V(FX,RA−) and C(X · A,−), for each V-homomorphism F1
g−→ FX the nat-

ural transformation V(g,RA−) : V(FX,RA−) ⇒ V(F1, RA−) is a natural transformation

C(X ·A,−)⇒ C(A,−) and so determines by the Yoneda lemma a C-morphism X ·A γ−→ A.

Dualizing Fact 4 one obtains

Lemma 11 For every Lawvere theory T and every category C with finite coproducts the assign-
ment A 7→ RA defines an equivalence, concrete over C,

Coalg(T , C) ' Rep(T , C)op.

In more detail: If T op A−→ C is a coalgebra with A(T1) = A, then the functor C(A,−) has the

T -lift C RA−−→ AlgT given by the assignment C 7→ T Aop

−−→ Cop C(−,C)−−−−→ Set . Conversely, for any

T -representable functor RA one obtains a coalgebra T op A−→ C with AT1 = A by the assignment

F1
g−→ Fn 7→ A

γ−→ n · A defined in item 2. above. For a more conceptual description of this
correspondence see below.

Remark 12 A representable functor C(A,−) may have non-isomorphic AlgT -lifts H,H ′ : C −→
AlgT , equivalently, a C-object may carry more than one structure of a T -coalgebra.

For example there are the functors Φ,Ψ: Ring → Mon mapping a unital ring R to its additive
monoid (R,+, 0) and its multiplicative monoid (R,×, 1), respectively. These are Mon-lifts of the
representable functor Ring(Z[x],−), which is up to equivalence the forgetful functor of Ring . See
Theorem 20 for a complete discussion of this phenomenon.

12



2.1.3 Coalgebras as adjunctions

For every adjunction L a R : AlgT −→ C, where C is a category with finite coproducts, the right
adjoint R is T -representable. In fact, the natural isomorphism C(LF1,−) ' AlgT (F1, R−) is
equivalent to | − | ◦ R ' C(LF1,−). The converse holds, if C is cocomplete. This has been
claimed already, for the case of C being cocomplete, by Freyd (without giving a proof) and is
an immediate consequence of Beck’s lifting theorem for adjunctions along a monadic functor (see
e.g. [10]). For the sake of the reader interested in an algebraically flavoured construction of this
left adjoint we explain below how this argument works in the given situation, correcting at the
same time the proof given in [8].

The resulting correspondences between coalgebras, representable functors and adjunctions can
be seen more conceptually as follows, where Adj(D, C) denotes the category of adjunctions from
D to C as defined in [22]:

Theorem 13 For every Lawvere theory T and every cocomplete category C there are equivalences

Coalg(T , C) ' Rep(T , C)op ' Adj(AlgT , C).

In more detail:

1. The left adjoint corresponding to a T -coalgebra A in C is its left Kan extension LanY A. It
is the sifted colimit preserving extension of A as well.

2. The T -representable functor corresponding to a T -coalgebra A in C is the right adjoint of
LanY A

3. The T -coalgebra A in C corresponding to a left adjoint functor AlgT L−→ C is its restriction
to T op, considered as a subcategory of AlgT .

Indeed, by Proposition 2 there is the adjunction LA = LanY A a RA for every T -coalgebra A in C.
By its definition the functor RA is the T -representable functor represented by A(T1) (see Section
2.1.2). Noting further that the equation SF = LanY F implies that the correspondence of item 3
is an equivalence by the definition of the free cocompletion (see Section 1.2.4), this theorem only
rephrases Proposition 2.

Remarks 14 1. Rep(T , C) is equivalent to the category Radj(C,AlgT ) of right adjoints from
C to AlgT with natural transformations as morphisms, while Adj(AlgT , C) is equivalent
to the category Ladj(AlgT , C) of left adjoints (equivalently, by the Special Adjoint Functor
Theorem, to coc[AlgT , C], the category of cocontinous functors) from AlgT to C with natural
transformations as morphisms. Adj(AlgT , C) becomes concrete over C by assigning to a

morphism L a R 〈σ,ρ〉−−−→ L′ a R′, that is, a pair of conjugate transformations, the C-morphism
L(F1)

σF1−−→ L′(F1), the σ-component at the free T -algebra over a singleton.

2. It is easy to see that for any natural transformation L
σ⇒ L′ the underlying C-morphism of

the right adjoint R of L is {ρ}T , where 〈σ, ρ〉 is a conjugate pair. Thus, the equivalences of
the theorem are concrete over C.

3. Denoting by V the variety corresponding to T , the V-coalgebra A in C corresponding
to an adjunction L a R : V → C then is, in the language of universal algebra, A =

(L(FV1), (σA)σ∈Σ), with co-operations σA = L(FV1)
L(σ̄)−−−→ L(FVn), σ ∈ Σn (see Item III. of

Section 1.2.2).
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The Eilenberg-Watts Theorem.

The theorem above can be seen as the utmost generalization of the Eilenberg-Watts Theorem,
since combining it with Facts 7 we the get the equivalence

Coalg(RMod , SMod) ' Ladj(RMod , SMod).

It thus suffices to show that Coalg(RMod , SMod) is nothing but the category SModR of left S-,
right R-bimodules. We prove something more in order to show how the respective result from
[23] fits into this picture. Let C be a cocomplete and additive category. Then, for every C-
object C the set C(C,C) carries the structure of a ring EndC(C) and the categories Coalg(Ab, C)
and Ab are isomorphic (see Section 2.1.1); hence, Coalg(RMod , C) is isomorphic to the category

of left R-objects in C in the sense of [24], that is, of pairs (C, ρ), where R
ρ−→ EndC(C) is a

ring homomorphism. In particular the category Coalg(RMod , SMod) is nothing but the category

SModR of left S-, right R-bimodules. Note that this argument strengthens the original result in
that the assumption of additivity is not needed. (In fact, it wasn’t needed from the very beginning
since every finite coproduct preserving functor between additive categories is additive.).

An algebraic proof of right adjointness of V-representable functors.

Choose, for any algebra A in a variety V, its canonical presentation by generators and relations

given by the coequalizer diagram F |KA|
rA //
sA
// F |A| εA // A , where εA is the counit of the ad-

junction F a | − |, KA

p //
q
// F |A| εA // A its congruence relation (kernel pair) and (rA, sA) is

the pair of homomorphic extensions of the projections p and q. Denote by ρA and σA the C-
morphisms |A| · R −→ |KA| · R corresponding to rA and sA according to Remarks 10.2. and let

|A| ·R
ρA //
σA
// |KA| ·R

υA // LA be a coequalizer diagram. Since contravariant hom-functors map

coequalizers to equalizers one obtains, for each C in C, the following equalizer diagrams in Set .

V(A,HC)
V(εA,HC)// C(|A| ·R,C)

C(ρA,C)//
C(σA,C)

// C(|KA| ·R,C)

C(LA,C)
C(υA,C) // C(|A| ·R,C)

C(ρA,C)//
C(σA,C)

// C(|KA| ·R,C)

Hence, for each C in C and each A in V, there is a bijection C(LA,C)
αA,C−−−→ V(A,HC)

C(LA,C)

αA,C

��

C(υA,C)// C(|F |A|| ·R,C)

V(A,HC)

V(εA,HC)

77

(8)

The claim now follows by [22, Chapter IV.1, Corollary 2], provided that these bijections are
natural in C. But this is obvious: Since V(εA, H−) and C(υA,−) are natural and V(εA, HC) is
monic, for each C in C, commutativity of Diagram (8) implies that the family (αA,C)C is natural.
It is this naturality condition of which in the proof in [8] is not (and cannot be) taken care of,
due to the fact that there is only chosen an arbitrary presentation by generators and relations of
the algebra A at the beginning.
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2.1.4 Coalgebras for monad

Recall that a C-object A carries the structure of a T -coalgebra in C iff there exists a morphism

of theories T φ−→ TCop [A]. If C is cocomplete, such φ extends to a monad morphism from the free
algebra monad T of AlgT to the monad A given by the adjunction − ·A a C(A,−).

Since monad morphisms T φ−→ A correspond bijectively to functors SetA
φ∗−→ SetT commuting

with the forgetful functors (see e.g. [11, Section 3.6]) we obtain a bijective correspondence between

such pairs A = (A, φ) and T-representable functors C RA−−→ SetT, that is, functors RA such that
UT ◦ RA = C(A,C), for each C in C, and these are nothing but T -representable functors, since
SetT ' AlgT .

Hence, a C-object A carries the structure of a T -coalgebra A in C iff there exists a morphism

of monads T φ−→ A, and the T -representable functor RA corresponding to A is nothing but C KA−−→
SetA

φ∗−→ SetT ' AlgT where KA is the comparison functor of the adjunction − · A a C(A,−).
Thus, the following definition specializes for finitary monads to the case discussed so far and
allows for an obvious generalization of Theorem 13 from finitary monads on Set to arbitrary
ones.

Definition 15 Let C be a category with arbitrary coproducts and T be a monad on Set . A

T-coalgebra in C is a pair A = (A, φ), where A is C-object and T φ−→ A a monad morphism.

A morphism (A, φ)
f−→ (B,ψ) of T-coalgebras is a C-morphism A

f−→ B such that C(f,−) lifts to

a natural transformation RB ⇒ RA, that is, if for each C the map C(B,C)
C(f,C)−−−−→ C(A,C) is a

T-morphism.

It is easy to see that some of the theoretic results below hold, if the assumption T is a Lawvere
theory would be replaced by T is a monad on Set and, correspondingly AlgT by SetT. This applies
in particular for Proposition 16, Theorem 20, and Proposition 22.

2.2 Some examples, counter examples and applications

Cogroups. For historical reasons only we start with the probably first example of cogroups in a
category with finite coproducts C, that is of Grp-coalgebras in C, from homotopy theory
(see [19],[16]). Let C = HTop be the category of pointed topological space as objects
and homotopy classes f of base-point preserving continuous maps f as morphisms. The
coproduct of two pointed space (X,x0) and (Y, y0) in HTop is their wedge sum X ∨ Y , the
topological sum of X and Y with x0 and y0 identified and taken as its base point.

By definition the nth homotopy group πn(X,x0) of a pointed space (X,x0) has as its un-

derlying set the hom-set HTop((Sn, s0), (X,x0)). Thus, the functor HTop
πn−−→ Grp is a

Grp-representable functor with representing object Sn. The corresponding cogroup struc-
ture is described as follows:

When collapsing an equator through s0 of a pointed n-sphere (Sn, s0) to s0, the quotient

is Sn
µ−→ Sn ∨ Sn. The multiplication of πn(X,x0) is given by f ? g = [f, g] ◦ µ, the unit

is 1 = x0 with x0 the constant map with value x0, and the inversion is given by f 7→ f ◦ ι
where ι is a change of orientation of Sn. Then proving that these data define a group
is equivalent to proving that (Sn, s0) is a cogroup in HTop with comultiplication µ and
inversion ι.
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Modules. Let V be the variety ModR for a commutative ring and M an R-module. The internal
hom-functor [M,−] : ModR −→ ModR is V-representable with representing object M and has
a left adjointM⊗−. The corresponding coalgebra has as its underlying object the moduleM

and the co-operations M
+−→M+M and M

rM−−→M for each r ∈ R, which are by Theorem 13

the homomorphismsM 'M⊗R M⊗+−−−−→M⊗R2 'M2 andM 'M⊗R M⊗r·−−−−−−→M⊗R 'M ,
respectively. Thus, the coalgebra structure on M is trivial in that it only “adds” the
diagonal.

Group algebras. Consider the varieties V = AlgR, cV = cAlgR, W = Grp, cW = Ab, M =
Mon, cM = cMon and U = ModR. The following diagram displays the (obvious) forgetful
functors, where Φ∗(A) is the additive group of an algebra A, while Ψ∗(A) is its multiplicative
monoid, and the functor (−)× assigns to a (commutative) monoid its (abelian) group of
invertible elements.

ModR

Ξ∗

��

Alg
Φ∗

zz

Ψ∗ //Σ∗oo Mon
(−)× // Grp

R[−]
||

Ab cAlgR
cΨ
∗
//?�

OO

cMon
?�

OO

c(−)× // Ab
?�

OO (9)

Being algebraic all forgetful functors have a left adjoint; the functors (−)× and c(−)× are
right adjoints of the respective embeddings Λ∗ and cΛ

∗. The left adjoint of (−)× ◦ Ψ∗

is the group algebra functor R[−] (note that R[−] = Ψ∗ ◦ E where E is the embedding
Grp ↪→ Mon). The adjunction R[−] a (−)× ◦Ψ∗ : Grp −→ AlgR hence determines a cogroup
in AlgR. In the sequel we will omit the subscript c at functors if no confusion is possible.

Hopf structures. Since the monoidal structure of cAlgR coincides with the cocartesian structure,
that is, ⊗ = + in cAlgR, the comonoids in cAlgR are the commutative bialgebras over R,
that is, Coalg(Mon, cAlgR) ' cBialgR, and Coalg(cMon, cAlgR) ' biBialgR, the category
of bi-commutative bialgebras. Similarly, the cogroups in cAlgR are the commutative Hopf
algebras over R, that is, Coalg(Grp, cAlgR) = cHopfR, while Coalg(Ab, cAlgR) ' biHopfR,
the category of bi-commutative Hopf algebras over R.

Denoting by Ab
Λ∗−−→ cMon the forgetful functor, the embedding biHopfR ↪→ biBialgR is

given by the functor biHopfR ' Coalg(Ab, cAlgR)
cAlgRΛ−−−−→ Coalg(cMon, cAlgR) ' biBialgR

and, thus, has a right adjoint by Proposition 16 below. This improves a result of [26], where
this fact has been shown for the case of absolutely flat rings only.

Obviously the adjunctionR[−] a (−)×◦Ψ∗ of the previous example restricts to an adjunction
AbR[−] a (−)

× ◦ Ψ∗ : Ab −→ cAlgR and so determines a bicommutative Hopf algebra. The
familiar Hopf algebra structure on a commutative group algebra R[G] then is given by

evaluation of the functor Coalg(Ab,Ab)
AbR[−]−−−−→ Coalg(Ab, cAlgR) ' biHopf at the abelian

group G, since Coalg(Ab,Ab) ' Ab by the Eckmann-Hilton argument.

A counter example. The full subcategory Tor of Ab spanned by all commutative torsion groups
is a coreflective subcategory of (hence a comonadic category over) Ab but it is not of the
form Coalg(T ,Ab).

Assume Tor = Coalg(T ,Ab) for some Lawvere theory T . Representing T as a regular
quotient of some TΣ, we can consider Coalg(T ,Ab) as an equifier in the functor category
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CoalgQΣ for the functor QΣX =
∏
n∈N(n · X)|Σn| =

∏
n∈NX

|nΣn| according to Fact 7.

Since Ab has biproducts the functor Ab
QΣ−−→ Ab preserves products, such that the forgetful

functor CoalgQΣ −→ Ab creates products and the equifier corresponding to Coalg(T ,Ab) is
closed under products. But Tor fails to be closed under products in Ab.

2.3 Some properties of Coalg(T , C)
Proposition 16 The following hold for any cocomplete category C and any Lawvere theory T .

1. Coalg(T , C) has all colimits which exist in C and these are created by || − ||.

2. Every hom-functor Coalg(T , C) −→ Set has a left adjoint.

3. For every S Φ−→ T the functor CΦ := Coalg(T , C) CΦ∗op−−−−→ Coalg(S, C) has a right adjoint CΦ.

4. The functor Coalg(T , C)
TS−−→ Coalg(T ,D) with respect to a finite coproduct preserving func-

tor C S−→ D defined as in Facts5.4 has a right adjoint T S, provided that S preserves colimits.

Proof Item 1 follows by dualization of Fact 5.1 and, hence Item 2 follows trivially. The right
adjoint of Items 3 can be constructed by (the dual of) the familiar lifting theorem of adjunctions
(see e.g [10, Chapter 4.5]). In particular, the unit of the adjunction TS a T S (occasionally we
denote this adjunction by VS a VS if T is the theory of the variety V) is point wise an equalizer.
The same holds for the adjunction CΦ a ΦC . �

Bergman[7] studied further categorical properties of Coalg(T ,V) for varieties V using highly
technical arguments; he showed in particular that Coalg(T ,V) is a complete category and its
underlying functor into V has a right adjoint. In this section we improve these results by the use
of standard arguments from the theory of locally presentable categories. Hence, for the rest of
this section the base category C in which T -coalgebras are formed is assumed to be to be a locally
presentable category.

Theorem 17 For any Lawvere theory T and any locally presentable category C the category

Coalg(T , C) is locally presentable. Its forgetful functor Coalg(T , C) ||−||−−→ C has a right adjoint
CT,C and, moreover, is comonadic.

Proof The claim follows from the equivalence Coalg(T , C) ' Ladj(AlgT , C), since for locally
presentable categories C and D the category Ladj(C,D) is locally presentable (see Section 1.1).

The existence of a right adjoint now follows from Item 1 of the preceding proposition by (the
dual of) the Special Adjoint Functor Theorem because their domains are locally presentable.
Comonadicity follows by the Beck-Paré-Theorem: the category Coalg(T , C), considered as a sub-
category of the (comonadic) category CoalgQΣ (see the counter example of Section 2.2 for the
definition of QΣ), is closed under absolute equalizers. �

Example 18 The cofree functor CT,C can occasionally be constructed. As an example consider
the case where C = SMod and T is the theory of RMod , hence, Coalg(T , C) is the category SModR
of bimodules. Since this is a variety V, the functor CT,C needs to be a V-representable functor,
whose representing S-module has, somehow, to encode the ring R. A natural choice, thus, is the

S-module F |R|, where RMod
|−|−−→ Ab denotes the forgetful functor and Ab

F−→ SMod the “free”
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functor, that is, the left adjoint of the forgetful functor Mod −→ Ab, by abuse of notation also
denoted by |−|. By the natural equivalence SMod(F |R|, N) ' Ab(|R|, |N |) it suffices to show that
Ab(|R|, |N |) belongs to SModR, for every S-module N . But this obvious with (s·f)(r) := s·(f(r))
and (f · r)(r′) := f(rr′).

We note that, since SModR is also equivalent to Alg(ModR, SMod), by Fact 5 the functor ||− ||
also has a left adjoint. As easily seen this is given by M 7→ |M | ⊗Z R, where the abelian group
|M | ⊗Z R inherits a left S-action from that of M , given by s · (y ⊗ z) := (s · y) ⊗ z, and a right
R-action from multiplication in R, (x⊗ y) · r := x⊗ (yr).

Kan already had constructed comonoids in groups on each free group [19], while Freyd has
shown that every free algebra in a variety V carries the structure of a W-algebra, provided there
exists an algebraic functor V −→ W [16]. We now describe this construction in greater generality

as follows, where C F−→ Alg(T , C) is the free algebra functor which exists by Fact 5.

Proposition 19 Let C be a locally presentable category and T a Lawvere theory. Then there

exists a functor C T−→ Coalg(T ,Alg(T , C)) such that C T−→ Coalg(T ,Alg(T , C)) ||−||−−→ Alg(T , C) =

C F−→ Alg(T , C). T has a right adjoint.

Proof By the dual of Lemma 11 the functor C(−, A) factors as C −→ AlgT |−|−−→ Set iff A = |A| for
a (essentially) unique T -algebra A or, in other words, for each C-object C the set C(C,A) is the un-
derlying set of a (essentially) unique T -algebra AC . From the natural bijection Alg(T , C)(FC,A) '
C(C, |A|C) one now concludes that for each T -algebra A in C the set Alg(T , C)(FC,A) is the under-

lying set of the T -algebra AC , such that the assignment A 7→ AC defines a functor Alg(T , C)
RC−−→

AlgT which is a T -lift of Alg(T , C)(FC,−). Define T by C 7→ RC .
Since F preserves and || − || creates colimits, the functor T preserves them. Thus, the final

statement follows by the Special Adjoint Functor Theorem whose assumptions on the category C
are satisfied by every locally presentable category. �

3 Coalgebras in varieties

As from now we assume the base category C in which T -coalgebras are formed to be a variety.
T -coalgebras in AlgS are occasionally called T-S-bimodels or T-S-bialgebras with the category
of those denoted by [T ,S]. (T- T -bialgebras will in the sequel simply called T -bialgebras.)

These categories can be used to define a bicategory having as objects all Lawvere theories, the

categories [T ,S] as categories of 1-cells with horizontal composition defined by (S B⇒ R)� (T A⇒
S) := T op A−→ AlgS LB−−→ AlgR and the embeddings 1T := Y T : T op ↪→ AlgT as units, and with
natural transformations as 2-cells (see [4, Chapter 15]). Note that the “product” B � A can be
seen, equivalently, as the T-R-bialgebra representing the composition RA◦RB of the representable
functors RA and RB, represented by A and B, respectively. This construction is a straightforward
generalization of the familiar bicategory RING , having as objects all unital rings (equivalently,
all theories of module categories), as categories of 1-cells [R,S] the categories RModS of R-S-
bimodules with ⊗ as horizontal composition, and as 2-cells the bimodule homomorphisms.

We prefer to work with the following 2-category LAWV , which is in view of Theorem 13
biequivalent to the bicategory just described, and where the categories of 1-cells can, alternatively,
be chosen as Rep(AlgT ,AlgS)op.
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1. objects are all Lawvere theories,

2. the categories of 1-cells are the categories Ladj(AlgT ,AlgS) with composition of functors as
horizontal composition and identities as units,

3. and 2-cells are natural transformations.

3.1 Coalgebras in arbitrary varieties

3.1.1 Canonical constructions

As follows from Proposition 19 every free algebra FVX in a variety V carries the structure of a
V-coalgebra. Obviously, one then obtains a W-coalgebra on FVX as well, if there is an algebraic

functor V Φ∗−−→W. We now will describe these structures explicitly.

Since every algebraic functor Φ∗ induced by a morphism of Lawvere theories TW
Φ−→ TV

commutes with the underlying functors, it is W-representable with representing object FV1, the
free V-algebra on one generator. We denote this W-coalgebra in V by VΦ(1). With notations
as in item 3 of Section 2.2 and item 2 of Section 2.3 one has VΦ(1) = VΦ(Vid(1)). Considered
as an adjunction VΦ(1) is nothing but Φ∗ a Φ∗. These are the only W-coalgebras on FV1.
Since Coalg(W,V) has coproducts we can form the coalgebra VΦ(X) = X · VΦ(1) for each set
X. Considered as an adjunction this is X · Φ∗ a Φ∗X with the W-representable functor Φ∗X ,

represented by FVX. This construction is functorial since every map X
f−→ Y determines a

natural transformation Φ∗
Y

= V(FVY,−) ⇒ V(FVX,−) = Φ∗
X

, which is by the Yoneda lemma,
that FV(f) is a coalgebra morphism VΦ(X) −→ VΦ(Y ). We so have got the following result, where
the first statement is already contained in [16], and the last one follows trivially from the definition
of VΦ as the X-fold copower of Vφ(1) in Coalg(W,V).

Theorem 20 There is an essentially one-to-one correspondence between morphism of Lawvere

theories TW
Φ−→ TV and TW -coalgebra VΦ(1) on FV1; moreover

1. the assignment X 7→ X ·VΦ(1) defines a functor VΦ : Set −→ Coalg(W,V) with ||−||◦VΦ = FV ,

2. VΦ has the functor GΦ := hom(VΦ(1),−) as its right adjoint.

Remarks 21 1. With V := Vid the following equivalences then are obvious.

VΦ ◦ V ' VΦ ' WΦ∗ ◦W (10)

2. The co-operations of VΦ(X) are the V-homomorphisms FVX
X·Φ(σ)−−−−−→ X ·FVn ' n ·FVX for

all σ ∈ T (n, 1) =W(FW1, FWn) and n ∈ N. These co-operations act on the free generators

x ∈ X of FVX as X
ηX−−→ FVX

〈νk〉−−−→ (FV(n ·X))n
Φ(σ)FV (n·X)

−−−−−−−−→ FV(n ·X) ' n · FVX, where
ηX is the insertion of generators and 〈νk〉 is the homomorphism whose coordinates are the

coproduct injections FVX
νk−→ n · FVX. In other words,

σVΦ(X) ◦ ηX = Φ(σ)FV(n·X) ◦ 〈νk〉 ◦ ηX (11)
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This situation is illustrated by the following diagram, where the unlabelled arrows are the
forgetful functors. Here all cells obviously commute, while commutativity of the outer frame
represents Equation (10).

Coalg(TV ,V)
VΦ //

&&

Coalg(TW ,V)

ww

Coalg(TW ,W)
WΦ∗oo

wwV WΦ∗oo

Set
FV

gg

V

WW

W

FF

FW

77

A concrete description of the right adjoint of VΦ is obtained as follows where, for τ ∈ TW(n, 1),
we denote by τA the underlying map of the V-homomorphism Aτ , by Φ(τ)n·A the interpretation
of Φτ in the V-algebra n ·A, and by ν1, . . . , νn : A −→ n ·A in V the coproduct injections.

Proposition 22 For every TW -coalgebra A in V the set GΦ(A) is the subset

GΦA =
⋂

t∈TW(n,1),n∈N

Eq Set(tA, (Φ(t))n·A ◦ 〈νk〉) (12)

of |||A||| and the embeddings eA form are a natural transformation e : GΦ ⇒ | − | ◦ || − ||.

Proof Identifying Coalg(TW ,V) and Adj(AlgTW ,V), the hom-set hom(VΦ(1),A) is nat(Φ∗, LA),
the set of natural transformations from Φ∗ into the left adjoint LA of A corresponding to A, for
each TW -coalgebra A. Given a natural transformation µ : Φ∗ ⇒ LA, one has ||µ|| = µ1 : Φ∗(FW1) =
FV1 −→ LAFW1 = A(1) = |A|; hence, the assignment µ 7→ µ1(1) defines an injective map

GΦ(A)
eA−→ |||A||| and these maps form a natural transformation, trivially.

Equation (12) is equivalent to the following statement: For every V-homomorphisms FV1
f−→

A = A(1) the family (n · f)n is a natural transformation Φ∗ ⇒ LA if and only if f(1) ∈ GΦA. But
this is evident by the following diagram, using Equation (11).

1
η1 //

η1

��

F1
tVΦ(1) //

〈ιk〉
��

n · F1

id
��

n·f

~~

F1
〈ιk〉 //

f

��

(Fn)n

(n·f)n

��

Φ(t)Fn // Fn

n·f
��

A

tA

<<〈νk〉
// (n ·A)n

Φ(t)n·A
// n ·A

�

Remarks 23 The following facts are easy to verify.

1. GΦA contains all V-constants in A.

2. By Equation (11) for every set X the following holds: X ⊂ GΦVΦ(X) ⊂ |FVX|. In other
words the set GΦVΦ(X) generates the V-algebra ||VΦ(X)||. In general this is not the case
for arbitrary coalgebras and this implies that GΦ in general fails to be faithful.
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3. If TΣ
[−]−−→ TW is a regular quotient, then

GΦA =
⋂

σ∈Σn,n∈N
EqSet(σA, (Φσ)n·A ◦ 〈νk〉).

4. Writing GV instead of GidV commutativity of Diagram (3.1.1) implies by composition of
adjunctions

(a) The forgetful functor W |−|−−→ Set factors as W
CTW ,W−−−−−→ Coalg(TW ,W)

GW−−→ Set and

(b) Coalg(TW ,V)
GΦ−−→ Set factors as Coalg(TW ,V)

TWΦ∗−−−−→ Coalg(TW ,W)
GW−−→ Set and as

Coalg(TW ,V)
VΦ−−→ Coalg(TV ,V)

GV−−→ Set .

Lemma 24 Given a factorization Φ = TW
Ξ−→ TU

Σ−→ TV in Lawv, the following diagrams com-
mute.

Coalg(TW ,U)
WΣ∗ // Coalg(TW ,V)

Set
UΞ

gg

VΦ

77
Coalg(TW ,U)

GΞ ''

Coalg(TW ,V)
WΣ∗oo

GΦww
Set

Example 25 With notations as in Diagram (9) Coalg(Mon, cAlgR) is equivalent to the category

cBialgR of all commutative unital and counital R-bialgebras, while Coalg(Ab, cAlgR) is equivalent
to the category biHopfR of all bicommutative R-Hopf algebras.
By Equation (12) one gets, for any commutative bialgebra A = (A,m, e,∆, ε),

GΦ(A) = { a ∈ A | ∆(a) = a⊗ 1 + 1⊗ a}

that is, GΦ(A) is the usual set of primitive elements of A, while for any bicommutative bialgebra

GΨ(A) = { a ∈ A | ∆(a) = a⊗ a, ε(a) = e(1) }

is the usual set of group-like elements of A.
For RModR ' Coalg(RMod ,RMod), the category of R-bimodules, and any bimodule M

G(M) = {m ∈M | rm = mr ∀r ∈ R}

is the space of R-invariants of M in the sense of [5].

Remark 26 (Comonoids in the category of groups) With V = Grp, W = Mon and the
forgetful functor Φ∗ : V −→ W the following has been shown by Kan (see [19]): Every comonoid
in Grp has as its underlying group a free group FX and every free group carries precisely one
comonoid structure ([19, Thm. 3.10]). This theorem states in our terminology (with XA :=
GΦA \ {1}): For every comonoid A in Grp there is an isomorphism A ' VΦ(XA).

A then is an internal cogroup in Grp ([19, Ex. 6.5]), which is in our terminology V (XA);
this is clear by Remarks 21: the co-inversion of any cogroup V (X) is the homomorphic extension

FX
ι−→ FX of the map X −→ FX with x 7→ x−1, where x−1 denotes the inverse of x in the free

group FX.
This result implies that the embedding Φ∗ is the only algebraic functor from Grp to Mon

and the identity is the only algebraic functor on Grp. Combining Kan’s result with the methods
developed above we can give concrete descriptions of the following constructions of which we so
far only know (see Theorem 17) that they exist (cp. [7, pp 399-400]):
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1. A right adjoint of the forgetful functor Coalg(Grp,Grp)
||−||−−→ Grp is given by the func-

tor Grp
|−|−−→ Set

V−→ Coalg(Grp,Grp). In fact, the counit of the free group adjunction

||V (|A|)|| = F |A| εA−→ A is the required counit: For any group homomorphism ||B|| =

||V (XB)|| = F (XB)
f−→ A the homomorphism FXB

F (f)−−−→ F |A| is the only homomorphism
f∗ with ε|A| ◦ f∗ = f and coincides with ||V (|f |)||.

2. Products in Coalg(Grp,Grp) can be constructed as follows, since Coalg(Grp,Grp)
G−→ Set

is a right adjoint of V and, hence, preserves products (while V preserves coproducts):

Let A and B be cogroups in Grp. Writing A = V (XA) and B = V (XB) we have XA×B =
GV(A× B)− 1 = GVA×GVB− 1 = (XA + 1)× (XB + 1)− 1 and, thus,

A× B = V (XA ×XB +XA +XB) = V (XA ×XB) + A + B.

Kan’s result is a rather special property of the variety Grp and its embedding into Mon. As
follows from Remark 12 and the discussion of linear groups in Section 3.1.2 below, in general
there exist coalgebras on non-free algebras as well, and free algebras may allow for more than one
coalgebra structure. The examples mentioned in Example 31 below share with Grp the property
that the coalgebras V (X) in V are the only V-coalgebras in V; as the argument above shows also
in these cases || − || is left adjoint to V ◦ | − |. In view of Item 2 of Remarks 23 they provide
however the other extreme case of the possible sizes of the sets GVV (X): while for V = Grp the
set GVV (X) is the smallest possible one, in those cases it is the largest.

3.1.2 Some applications

Change of rings. Consider a ring homomorphism R
φ−→ S (equivalently, a morphism of Lawvere

theories Φ: T
RMod −→ TSMod).

The algebraic functor Φ∗ : V = SMod −→ RMod is the RMod -representable functor Shom(S,−),
known as the restriction of scalars-functor.

The corresponding S-left, R-right bimodule structure on S is VΦ(1). By the above its left
adjoint Φ∗ is the functor VΦ(1)⊗R −, known as the extension of scalars-functor.

Since the forgetful functors from module categories into Ab create colimits, the functor
Φ∗, being a concrete functor over Ab, preserves them. Consequently, the restriction of Φ∗

to the dual of the theory of SMod is an SMod -coalgebra in RMod and Φ∗ is its left Kan
extension extension along the embedding T

SMod
op ↪→ SMod , hence a left adjoint, its right

adjoint G being the SMod -lift of R hom(Φ∗S,−). In other words, G is the coextension of
scalars-functor.

We so have obtained, without any calculations, the familiar adjunctions
extension of scalars a restriction of scalars a coextension of scalars.

Morita theory. Lawvere theories T and S are called Morita equivalent if the categories AlgT and
AlgS are equivalent (not necessarily concretely so). Since an equivalence L is a left and a
right adjoint of its equivalence inverse R one concludes from Theorem 13 that the following
are equivalent, where the respective coalgebras A and B are related by the property LA ' RB

and LB ' RA.

i. AlgT L−→ AlgS is an equivalence with equivalence inverse AlgS R−→ AlgT .
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ii. There exists a T -coalgebra A in AlgS with L ' LA and R ' RA.

iii. There exists a S-coalgebra B in AlgT with R ' LB and L ' RB.

Thus, Lawvere theories T and S are Morita equivalent, if they are equivalent in the 2-
category LAWV .

The coalgebras A and B above can in view of Section 1.2.3 equivalently be described as
follows: A(1) is a varietal generator in AlgS such that T ' (T(AlgS)op [A(1)]) and B(1) is
a varietal generator in AlgT such that S ' (T(AlgT )op [B(1)]). This follows from the facts
that A(1) = L(FAlgT 1) is a varietal generator in AlgS since FAlgT 1 is a varietal generator
in AlgT and equivalences clearly preserve varietal generators, and A, being a restriction of
the equivalence LA, is full and faithful (analogously for B).

As is well known every variety equivalent to a variety RMod is necessarily of the form

SMod since module categories can be characterized as those varieties which are Abelian
categories and this property is preserved by equivalences. (Algebraically one may argue as
follows: since every (varietal) generator G in RMod is a R-S-bimodule for S = End(G), the
endomorphism ring of G (see e.g. [6, Theorem 17.8]), every variety V, which is equivalent to

RMod is concretely equivalent to SMod .) Hence, one can restrict the above to the bicategory
RING of rings with bimodules as 1-cells and so obtains the classical Morita theory as an
immediate consequence. The varietal generators in RMod are the so-called progenerators.

General and special linear groups. Assigning to a commutative unital ring R the monoid M(n,R)
of n × n-matrices over R, the general linear group GL(n,R) or the special linear group
SL(n,R) defines functors Mn : Ring −→ Mon, GLn : Ring −→ Grp, and SLn : Ring → Grp,
respectively. These functors are Mon- and Grp-representable, respectively and, hence, all
have a left adjoint. They do not arise from the canonical constructions.

Since N is the free monoid over a singleton {?} it suffices to find a Mn-universal monoid

homomorphism N u−→M(n,An). Choose An to be Z[Xi,j ; 1 ≤ i, j ≤ n], the free commutative
ring Fn2 over n2 and u the monoid morphism mapping 1 to the n × n identity matrix
En = (δij) over An. For every M ∈ M(n,R) we have the unique ring homomorphism
ψ : Z[Xi,j ] −→ R with δij 7→ mij . Then Mn(ψ) = M and ψ is unique with this property.
Thus, Mn is Mon-representable with representing object Fn2.

Since GLn = Ring
Mn−−→ Mon

(−)×−−−→ Grp and (−)× is right adjoint to the forgetful functor
Grp −→ Mon the functor GLn is Grp-representable with representing object Fn2.

Concerning SLn one proceeds analogously. One needs to find a SLn-universal group ho-

momorphism Z u−→ SL(n,An). Consider the coequalizer F (n2)
q−→ An of the ring homomor-

phisms det], 1] : F1 −→ Fn2 given by det and the constant 1, considered as n2-ary derived
operations (hence elements of Fn2) in the theory of commutative rings. It then is easy to
see that the group homomorphism u mapping 1 ∈ Z to the n× n identity matrix (δij) over
An does the job.

In fact Theorem 13 more generally implies that every affine group scheme, that is, every
Grp-representable functor on cAlgR, for a commutative ring R, has a left adjoint.

The primitive Hopf structure on polynomial algebras. It is well known that, for every commutative
ring R, the polynomial algebras in cAlgR, that is, the free algebras in cAlgR, carry the
structure of an R-Hopf algebra in which the variables, that is, the free generators, are prim-
itive elements (see e.g. [1, p. 92]). Recalling that the category biHopfR of bicommutative
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Hopf algebras over R is essentially nothing but Coalg(Ab, cAlgR) (see Section 2.2), one gets

the functor Set
VΦ−−→ biHopfR determined by the algebraic functor cAlgR

Φ∗−−→ Ab, assigning
to a set the respective polynomial algebra.

Thus, item 2 of Remarks 23 explains the result mentioned at the beginning of this exam-
ple, since GΦH is the set of primitive elements of a bicommutative Hopf algebra H (see
Example 25).

Adjoint monads induced by bialgebras. Any T -bialgebra A, that is, any 1-cell in LAWV may, as

in any bicategory, allow for the structure of a monad A = (A, Y T
η−→ A,A � A

µ−→ A).
Such monad is the same as a monoid in the monoidal category ([T , T ],�, Y T ) obtaining its
monoidal structure from the monoidal structure of (Ladj(AlgT ,AlgT ), ◦, id) by the equiv-
alence of Theorem 13. The monad A, considered as a monad in (Ladj(AlgT ,AlgT ), ◦, id),

is a usual monad (LA, LA ◦ LA
µ−→ LA, idAlgT

η−→ LA) on AlgT (not to be confused with the
monad A on Set of Section 2.1.4) and so determines its Eilenberg-Moore category (AlgT )A.
It is not difficult to see that the composition of forgetful functors (AlgT )A −→ AlgT −→ Set is
a finitary monadic functor such that one can identify the category (AlgT )A with AlgTA for
some Lawvere theory TA (see e.g. [4, A.21]). The forgetful functor of AlgTA −→ Set factors as

AlgTA ' (AlgT )A −→ AlgT |−|−−→ Set , where the functor AlgTA
UA−−→ AlgT is finitary monadic;

since UA commutes with the forgetful functors it is an algebraic functor and so determines

a theory morphism T Φ−→ TA. Categories of the form AlgTA first appeared in [28] with T
the category of commutative rings; here also applications of this construction are given.

Recall from [15]: If F a U be an adjunction from C to D, whose induced monad on C is A,
then the following conditions are equivalent,

1. There exists an adjunction U a G, inducing a comonad C on C.
2. There exists an adjunction T := UF a C := UG.

and imply that the (co)Eilenberg-Moore categories CA and CC coincide up to a concrete
isomorphism over C and, hence, U is monadic and comonadic.

Applying this to the above, with C = AlgT , UA = Φ∗, and F = Φ∗ we see, since LA = UAF =
Φ∗ ◦ Φ∗ has the right adjoint RA, that the functor UA = Φ∗ is monadic and comonadic.
We so obtain the following characterization of theory morphisms, whose induced algebraic
functor has a right adjoint where the equivalence of 1. and 2. is well known.

Equivalent are, for any theory morphisms T Φ−→ S,

1. Φ∗ has a right adjoint R.

2. Φ∗ is monadic and comonadic.

3. The T -bialgebra A corresponding to the left adjoint functor L := Φ∗ ◦Φ∗ (equivalently,
representing the right adjoint R◦Φ∗) carries a monad A such that S ' TA and Φ∗ = UA.

The following equivalence, for any T -bialgebra A, characterizes the monad structures on
left adjoint endofunctors of varieties in terms of their right adjoints.

LA carries the structure of a monad A ⇐⇒ The functor RA has a right adjoint
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We illustrate the above by the following simple example: Consider the functors Mon
(−)×−−−→

Grp
Λ∗−−→ Mon of Diagram (9). Here Λ∗ has (−)× as its right adjoint. (−)× is the Grp-lift

of the functor Mon((Z,+, 0),−) and Λ∗ ◦ (−)× is the Mon-lift of Mon((Z,+, 0),−).

Grp not only is concretely equivalent to the category MonT for the monad T given by
the adjunction Λ∗ a Λ∗, but also to MonA for the comonad A given by the adjunction
(−)× ` Λ∗: a monoid M carries a (unique) group structure iff M ' Λ∗(M×) that is, in
other words, groups are the coalgebras of the comonad A, since the counit of the adjunction
(−)× ` Λ∗ is an isomorphism.

3.2 Coalgebras in commutative varieties

A Lawvere theory T is called commutative, if for all σ ∈ T (n, 1), τ ∈ T (m, 1) the following
diagram commutes.

n×m τn //

σm

��

n

σ��
m

τ
// 1

Varieties V whose Lawvere theory TV is commutative are known under various names as, e.g.,
entropic varieties, distribute varieties or commutative varieties (see [12] for the respective refer-
ences). Though the first option seems to be the more popular choice amongst universal algebraists,
we will use the second one because of its match with the notion of a commutative theory. We
notice that for a commutative theory T the categories Alg(T ,AlgT ) and AlgT are equivalent.

Since limits in functor categories are computed point wise one immediately gets from this
definition, that for any commutative Lawvere theory T and for every internal T -algebra A in a
category C with finite products the A interpretation Aτ of any m-ary operation τ ∈ T (m, 1) is
a morphism Am −→ A in Alg(T , C), that is, for every σ ∈ T (n, 1) and every n ∈ N the following
diagram commutes in V, where A := A1.

An×m
(τA)n //

σ(Am)=(σA)m

��

An

σA

��
Am

τA

// A

By dualization we obtain

Proposition 27 Let T be a commutative Lawvere theory. Then for every variety V the category

Coalg(T ,V) is cocommutative, that is, for every T -algebra T A−→ Vop and every τ ∈ T (m, 1) the

V-homomorphism Aτ = A
τA−→ m ·A is a morphism in Coalg(T ,V).

3.2.1 Canonical coalgebras

Since for a commutative variety V we have the equivalence Alg(TV ,V) ' V, the functor T of
Proposition 19 is an equivalence and, hence the functor T is a coreflective embedding. Again, in
this situation a simpler description of this fact can be given as follows.

In a commutative variety V the hom-sets V(A,B) form subalgebras [A,B] of the products BA.
V then is a monoidal closed category with internal hom-functor [−,−] so defined (see [12], [10]). In
particular, for each V-algebra A one has an adjunction A⊗− a [A,−] on V and, thus, a canonical

25



TV -coalgebra NA with underlying V-algebra A. Equivalently, NA is the TV -coalgebra in V with

corresponding TV -representable functor RNA = V [A,−]−−−→ V. The co-operation A
σNA−−−→ n · A of

NA corresponding to σ ∈ TV(n, 1) is (use Equation (11) and the fact that operations in V are
homomorphisms and Theorem 13, respectively)

A
σNA−−−→ n ·A = (A ' A⊗ FV1

A⊗σ−−−→ A⊗ FVn ' n ·A) = A
〈ν1,...,νn〉−−−−−−→ (n ·A)n

σn·A−−−→ n ·A
This defines a full embedding N : V −→ Coalg(TV ,V) with ||−||◦N = idV . Though N occasionally
is an equivalence, that is, up to isomorphism V only admits canonical TV -coalgebras, this is not
the case general (see Examples 31 below). Slightly more general we have the following results.

Theorem 28 Let Φ: T −→ TV be a theory morphism into a commutative theory TV . Then the
following hold, with notation as above:

1. The functor NΦ = V N−→ Coalg(TV ,V)
VΦ−−→ Coalg(T ,V) is full and faithful.

2. NΦ(FVX) = VΦ(X) and || − || ◦NΦ = idV .

3. The assignment Φ 7→ NΦ defines an essentially bijective correspondence between morphisms
of Lawvere theories Φ: T −→ TV and functors S : V −→ Coalg(T ,V) with || − || ◦ S = idV .

4. The T -representable functor corresponding to NΦA is RNΦA = V [A,−]−−−→ V Φ∗−−→ AlgT , for
any V-algebra A. The co-operation σNΦA corresponding to σ ∈ T (n, 1) is explicitly given by
σNΦA = Φ(σ)n·A ◦ 〈ν1, · · · , νn〉.

Proof Considering coalgebras as representable functors NΦ acts as A 7→ Φ∗ ◦ [A,−] and

NΦf : Φ∗[B,−] ⇒ Φ∗[A,−] is the natural transformation with components Φ∗[B,C]
Φ∗[f,C]−−−−−→

Φ∗[A,C], for any V-morphism A
f−→ B. Now the natural transformations |NΦf | : |Φ∗[B,−]| =

V(B,−)⇒ V(A,−) = |Φ∗[A,−]| correspond one-to-one to V-morphisms A
f−→ B, which proves 1.

The first identity of item 2 follows from Equation (11) since V is commutative, hence all operations
are homomorphisms; the second one is obvious, as is item 4.

For every functor S : V −→ Coalg(T ,V) with || − || ◦ S = idV there exists by Proposition 20 the
algebraic functor RSFV1 : V −→ AlgT . Let ΦS : T −→ TV be the morphism of Lawvere theories with
ΦS
∗ = RSFV1. The assignment S 7→ ΦS is essentially injective: indeed, for each V-homomorphism

FV1
f−→ A the T -coalgebra morphism Sf has f as its underlying morphism in V and this satisfies,

for each each σ ∈ T (n, 1), the equation FV1
f−→ A

σSA−−−→ n · A = FV1
σSFV1−−−−→ A

n·f−−→ n · A. This

proves that S is determined by SFV1 since the family (FV1
f−→ A)f∈V(FV1,A) is jointly epimorphic.

Items 2. and 3. of Theorem 28 imply RNΦFV1 ' Φ∗ for each Φ. In other words, the assignment
S 7→ ΦS is essentially bijective. �

Theorem 29 Let Φ: T −→ TV be a theory morphism into a commutative theory TV . Then the
following hold.

1. For every T -coalgebra A in V the set GΦ(A) is the underlying set of a V-subalgebra of

||A||, such that the functor GΦ factors as Coalg(T ,V)
ḠΦ−−→ V |−|−−→ Set and the natural

transformation e lifts to a natural transformation ē : ḠΦ ⇒ || − ||. The lifted functor ḠΦ

satisfies the equations ḠΦNΦ = idV and ḠΦVΦ(X) = FVX for each set X.
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2. NΦ is left adjoint to ḠΦ; hence V is (equivalent to) a full coreflective subcategory of
Coalg(T ,V).

Proof Concerning item 1 observe first that GΦ(A) is the underlying set of a V-subalgebra of A by
Equation (12), since the maps Φ(τ)n·A are homomorphisms in V. In particular, GΦ factors over

V. The lifted functor Coalg(T ,V)
ḠΦ−−→ V obviously satisfies the equation ḠΦNΦ = idV . Finally,

item 1 implies, again by the lifting theorem of adjunctions, that the functor ḠΦ has a left adjoint
L, which then satisfies the equation L(FVX) = VΦ(X). Now NΦ(FV1) = L(FV1) follows by item
2 of Theorem 28, and this implies L = NΦ by item 4 of Theorem 28. �

Remark 30 For any theory morphism Φ: T −→ TV into a commutative theory TV the following
are equivalent:

1. NΦ is an equivalence with equivalence inverse ḠΦ.

2. GΦ ' | − | ◦ || − ||.

3. NΦ ' CT ,V .

The following examples show that the functors NΦ may or may not be equivalences.

Examples 31 1. If V is a commutative variety all of whose algebras are free, then N is an
equivalence as is easily seen. By [17] there are essentially four such varieties: Set , the
variety of pointed sets Set∗, Vectk and Aff k, the varieties of vector spaces and affine spaces,
respectively, over a field k. Thus, if V is any of these varieties, then every TV -coalgebra in
V is of the form V(X) as it is the case for the variety of groups (see Remark 26).

2. By the last example in Section 2.2 there are the equivalences Coalg(Ab,ModR) ' ModR '
Coalg(Grp,ModR) and Coalg(cMon,ModR) ' ModR ' Coalg(Mon,ModR), which we will
use below. The forgetful functors coincide with ḠΦ and are equivalences, concrete over

cMon and Ab, respectively, having the functors NΦ as their inverses.

3. Let V = cSem be the variety of commutative semigroups, and Φ∗ : Ab → cSem the forgetful
functor. Note that cSem is commutative but fails to be semi-additive.

The coproduct S+T in V is given as (S0×T 0)\{ (0, 0) } with the component-wise addition,
where S0 (respectively T 0) denotes the unitarization of S (resp. T ), and with coproduct
injections ν1(a) := (a, 0), a ∈ S, and ν2(b) := (0, b), b ∈ T . Then N(S) is an internal T

cSem -
coalgebra in cSem with comultiplication µNS = µ2·S ◦〈ν1, ν2〉, i.e., µNS(a) = (a, 0)+(0, a) =
(a, a), a ∈ S.

(a) Let S be a commutative semigroup that contains an idempotent element e (e.g. the
underlying semigroup of a commutative monoid). Let Ee : S → S+S be the semigroup
homomorphism given by Ee(a) := (e, e), a ∈ S. This endows S with a structure of
an internal TcSem -coalgebra in cSem not isomorphic to that obtained by applying N
when S is not reduced to e. This shows that N cannot be an equivalence between

cSem and Coalg(T
cSem , cSem).

(b) The comultiplication in NΦ(A), for an abelian group A, thus, is given by a 7→ (a, a).
But A carries also a trivial internal TcSem -coalgebra structure, namely, ZA(a) :=
(0, 0). This clearly implies that NΦ is not an equivalence of the categories Ab and
Coalg(T

cSem ,Ab).
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3.2.2 Further applications

Lemma 32 Let Φ = TW
Ξ−→ TU

Σ−→ TV be a factorization of a morphism of Lawvere theories over
a commutative theory TU . Then the following diagram commutes

Coalg(TW ,V)

GΦ ((

WΣ∗ // Coalg(TW ,U)
ḠΞ //

GΞ

��

U

|−|xx
Ξ∗

��
Set W

|−|
oo

and, moreover,

1. ḠΞ(WΣ∗A) is a U-subalgebra of ḠΞ(WΣ∗(CTW ,V(||A||))) = ḠΞ(CTW ,U (Σ∗(||A||))) for every
TW -algebra A in V,

2. ḠΞ(WΣ∗A) is a U-subalgebra of ḠΞ((Σ∗(||A||))), if ḠΞ is an isomorphism.

Proof The first statement is obvious (see Lemma 24). Concerning the second one note that, with

A
ηA−→ ||CTW,V || the adjunction unit, the injective map |||ηA||| ◦ eA factors as eCTW ,V(||A||) ◦ GΦ(ηA)

by naturality (see Equation (12)). This implies that ḠΞ(WΣ∗(ηA) is a U-monomorphism. Item 3.
follows trivially (see also Remark 30). �

In the discussion of the following applications we use notations as in Diagram (9).

More on primitive elements. 1. The primitive element functor cBialgR
GΦ−−→ Set has by Lemma

32 the following factorization where, by Examples 31.2, ḠΞ is an isomorphism with
inverse NΞ and, thus, can be identified with the functor || − ||.

Coalg(Mon, cAlgR) M
Σ∗−−−→ Coalg(Mon,ModR)

ḠΞ−−→ ModR
|−|−−→ Set .

We so obtain the following familiar result. For each commutative Hopf algebra A the
set GΦ(A) of primitive elements of A is a submodule of the the carrier algebra Σ∗(A).

2. Recall that each symmetric algebra, that is, each free commutative R-algebra Σ∗(M)

over an R-module M , carries the structure of a Hopf algebra S(M), where ModR
Ξ∗−−→

Ab is the forgetful functor. This construction is given by the functor

S = ModR
NΞ−−→ Coalg(Ab,ModR)

WΣ∗−−−→ Coalg(Ab, cAlgR) ' biHopfR

S is left adjoint to GΞ ◦ WΣ∗ by Proposition 16; since NΞ has GΞ as its inverse (see
Examples 31), this adjunction is essentially the adjunction WΣ∗ a WΣ∗. Since the
unit of this adjunction is point-wise monomorphic (see the proof of Proposition 16),
we obtain the familiar result that the set of primitive elements of S(M) contains M .

More on group-like elements. Since Coalg(Mon, cMon) = Coalg(cMon, cMon) (see Examples 31.2),

the group-like element functor cBialgR
GΨ−−→ Set factors by Lemma 32 as

Coalg(Mon, cAlgR)
TM cΨ∗−−−−−→ Coalg(Mon, cMon)

ḠcM−−−→ cMon
|−|−−→ Set .

where the functor Ḡ
cM is an isomorphism. We so obtain the fact that the set of group-

like elements of a commutative bialgebra (hence, in particular, of any commutative Hopf
algebra) A is a submonoid of the multiplicative monoid of the underlying algebra of A.
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