
HAL Id: hal-02510505
https://hal.science/hal-02510505v3

Submitted on 2 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient improper learning for online logistic regression
Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi

To cite this version:
Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi. Efficient improper learning for online logistic regres-
sion. COLT 2020 - 33rd Annual Conference on Learning Theory, Jul 2020, Graz / Virtual, Austria.
�hal-02510505v3�

https://hal.science/hal-02510505v3
https://hal.archives-ouvertes.fr

EFFICIENT IMPROPER LEARNING FOR ONLINE LOGISTIC
REGRESSION

Rémi Jézéquel Pierre Gaillard Alessandro Rudi

INRIA - Département d’Informatique de l’École Normale Supérieure
PSL Research University

Paris, France

ABSTRACT

We consider the setting of online logistic regression and consider the regret with respect to the
`2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has loga-
rithmic regret in the number of samples (denoted n) necessarily suffers an exponential multiplicative
constant in B. In this work, we design an efficient improper algorithm that avoids this exponential
constant while preserving a logarithmic regret.
Indeed, [Foster et al., 2018] showed that the lower bound does not apply to improper algorithms
and proposed a strategy based on exponential weights with prohibitive computational complexity.
Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies
a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d2 + log(n)).

1 Introduction

In online learning, a learner sequentially interacts with an environment and tries to learn based on data observed on the
fly [Cesa-Bianchi and Lugosi, 2006, Hazan et al., 2016]. More formally, at each iteration t > 1, the learner receives
some input xt in some input space X ; makes a prediction ŷt in a decision domain Ŷ and the environment reveals the
output yt ∈ Y . The inputs xt and the outputs yt are sequentially chosen by the environment and can be arbitrary. No
stochastic assumption (except boundedness) on the data sequence (xt, yt)16t6n is made. The accuracy of a prediction
ŷt ∈ Ŷ at instant t > 1 for the outcome yt ∈ Y is measured through a loss function ` : Ŷ × Y → R. The learner aims
at minimizing his cumulative regret

Rn(f) =

n∑
t=1

`
(
ŷt, yt

)
−

n∑
t=1

`
(
f(xt), yt

)
, (1)

uniformly over all functions f in a reference class of functions F . All along this paper, we will consider the more
specific setting of online logistic regression for binary classification. The latter corresponds to binary outputs yt ∈
Y = {−1, 1}, real decisions ŷt ∈ Ŷ = R, the logistic loss function ` : (ŷt, yt) 7→ log(1 + e−ytŷt) and the reference
class F = {x 7→ θ>x; θ ∈ B(Rd, B)} of linear functions in the `2-ball of radius B > 0.

Logistic regression, which dates back to [Berkson, 1944], has been widely studied in the past decades both in the sta-
tistical and online setting. It allows to estimate conditional probabilities and is heavily used in practice for multi-class
and binary classification. Since the statistical literature is abundant, we highlight here only the key existing approaches
for online logistic regression that are relevant for the present work. Using basic properties of the logistic loss, classical
algorithms from Online Convex Optimization can be used to minimize the regret (1). On the one hand, remarking that
the logistic loss is convex and Lipschitz, one may use Online Gradient Descent (OGD) of [Zinkevich, 2003], which
guarantees a regret of order O(B

√
n). On the other hand, using that the logistic loss is e−B-exp concave, one can use

Online Newton Step (ONS) from [Hazan et al., 2007] which achieves a logarithmic regret of order O(deB log(n)).

In view of this results, one could wonder if obtaining a better dependence on the number of samples comes with
an exponential deterioration on the multiplicative constant in B. [Hazan et al., 2014] considered this exact question

and showed that indeed any proper algorithm in the regime n = O(eB) has at least a worst-case regret of order
Ω(B2/3n1/3) for one dimensional inputs. Therefore any bound of the form O(B log(n)) is impossible for proper
algorithms. We recall that an algorithm is called proper if its prediction function f̂t : X → Ŷ is in the reference class
F . In other words, it means that for all t > 1, the prediction is of the form ŷt = f̂t(xt) with ft ∈ F independent of xt
(i.e., the prediction function is linear in xt in our case).

However, it was recently shown that this lower-bound does not apply to improper algorithms [Foster et al., 2018]. In-
deed, based on the simple observation that the logistic loss is 1-mixable (see [Vovk, 1998] for the definition), they
could apply Vovk’s Aggregating Algorithm [Vovk, 1998] which leverages mixability to achieve a regret of order
O(d log(Bn)). In particular, they showed that for online logistic regression improper algorithms can significantly
outperform proper algorithms by proving a doubly-exponential improvement on the constant B. Yet, the complexity
of their algorithm, while being polynomial in d and n is highly prohibitive making the algorithm infeasible in prac-
tice. Vovk’s Aggregating Algorithm is indeed based on a continuous version of the exponentially weighted average
forecaster. To output a prediction one needs to approximate an integral over the d-dimensional ball which requires the
use of MCMC approximations. Using the projected Langevin Monte Carlo sampler from [Bubeck et al., 2018], they
record a computation time of O(B6n12(Bn+ d)12).

This is the starting point of this work. Can we achieve similar performance in online logistic regression with practical
computational complexity? Recently, some works attacked this question for logistic regression in the batch statistical
setting with i.i.d. data only. [Marteau-Ferey et al., 2019] considered the classical regularized empirical risk minimizer
(ERM). Though the latter is proper, using generalized self-concordance properties they could avoid the exponential
constant in B under additional assumptions including a well-specified problem, capacity and source conditions. In
parallel and independently of this work, [Mourtada and Gaïffas, 2019] have also designed a practical improper algo-
rithm in the statistical setting based on ERM with an improper regularization using virtual data. They could provide
an upper-bound on the excess risk in expectation of order O((d + B2)/n). However, they left open the question of
achieving it in an online setting.

Contributions In this paper, we introduce a new practical improper algorithm, that we call AIOLI (Algorith-
mic efficient Improper Online LogIstic regression), for online logistic regression. The latter is based on Fol-
low The Regularized Leader (FTRL) [McMahan, 2011] with surrogate losses. AIOLI takes inspiration from
the Azoury-Warmuth-Vovk forecaster (also named non-linear Ridge regression or AWV) from [Vovk, 2001] and
[Azoury and Warmuth, 2001] which adds a non-proper penalty based on the next input xt and from Online New-
ton Step [Hazan et al., 2007] which leverages the exp-concavity of logistic regression to achieve logarithmic regret.
The per-round space and time complexity of AIOLI is of order (O(nd2 + n log(n)) which is close to the one of ONS
and greatly improves the ones of [Foster et al., 2018].

We provide in Theorem 1 an upper-bound on the regret of AIOLI of the order O(dB log(Bn)). This makes AIOLI
provably better than any proper algorithm in the regime where n = O(eB). To illustrate our results, we provide
simulations on synthetic data generated by the adversarial distribution of [Hazan et al., 2014] that show that, contrary
to classical FTRL, the regret of AIOLI is indeed logarithmic. We summarize in Table 1 the rates and per-round
computational complexities of the key-algorithms for logistic regression.

In addition to introducing AIOLI , we make two technical contributions that we believe to be of their own interests.
Our first technical contribution is based on the simple observation that the logistic function x 7→ log(1 + e−x) is
only e−B-exp concave on [−B,B] when x is close to −B. For the rest of the range (typically x ∈ [0, B]), far better
exp-concavity parameters (that we also refer to as curvature) may be achieved. Therefore, contrary to ONS which uses
the worst-case value for the curvature, we consider quadratic approximations of the logistic loss with data-dependent
curvature parameters. These approximations are used as surrogate losses minimized by AIOLI .

Our second technical contribution is to use an improper regularization that allows us to not pay the worst cur-
vature but only the one for x close to 0. This regularization is inspired from the non-linear Ridge forecaster
of [Azoury and Warmuth, 2001] and [Vovk, 2001]. Typically, when a new input xt is observed by the learner, the
latter can use it to regularize more in the direction of xt. If the learner knew the next output yt a good regularization
would be to add the loss `(f(xt), yt) when computing FTRL. Yet yt is unknown and the learner must use a regular-
ization independent of yt. The non-linear Ridge forecaster consists in replacing yt by 0. Instead, AIOLI regularizes
by adding both `(f(xt), 1) and `(f(xt),−1) to the empirical loss to be minimized. The important phenomena is that
the dominant regularization is `(f(xt), yt) if ytθ̂>t xt � 0, that is when the algorithm makes a large error. It is worth
emphasizing that this regularization depends on the next input xt and thus makes our algorithm improper. We believe
this type of regularization to be new for online logistic regression and have significant interest to inspire future work.

2

Algorithm OGD ONS [Foster et al., 2018] AIOLI

Regret B
√
n deB log(n) d log(Bn) dB log(Bn)

Total complexity nd nd3 B6n12(Bn+ d)12 nd2 + n log(n)

Table 1: Regret bounds and computational complexities (in O(·)) of relevant algorithms

Setting and notation We recall the setting and introduce the main notations that will be used all along the paper.
Our framework is formalized as a sequential game between a learner and an environment. At each forecasting instance
t > 1, the learner is given an input xt ∈ X ⊆ B(Rd, R) for some radius R > 0 and dimension d > 1; chooses a
vector θ̂t ∈ Rd (possibly based on the current input xt and on the past information x1, y1, . . . , xt−1, yt−1); and makes
the prediction ŷt = θ̂>t xt ∈ R. Then, the environment chooses yt ∈ {−1, 1}; reveals it to the learner which incurs the
loss `t(θ̂t) = `(θ̂>t xt, yt) where for all θ ∈ Rd,

`
(
θ>xt, yt

)
= log

(
1 + e−ytθ

>xt
)
.

Moreover, the gradients of the loss functions at the estimator will be denoted as gt = ∇`t(θ̂t) ∈ Rd. We recall that
the goal of the learner is to minimize the cumulative regret

Rn(θ) =

n∑
t=1

`
(
θ̂>t xt, yt

)
−

n∑
t=1

`
(
θ>xt, yt

)
,

uniformly over all θ ∈ B(Rd, B) and all possible sequences (x1, y1), ..., (xn, yn) ∈ X × Y .

2 Main contributions

This section gathers the main contributions of the present paper. Essentially, we introduce in Section 2.1 our new
algorithm for online logistic regression. In Section 2.2, we prove the corresponding upper-bounds on the regret and
we provide an efficient implementation in Section 2.3.

2.1 AIOLI : a new algorithm for online logistic regression

We introduce here and briefly describe a new algorithm AIOLI for online logistic regression. More details on the
underlying ideas are provided in Section 3. AIOLI is based on FTRL which is applied on surrogate quadratic losses
and with an additional improper regularization. It requires the knowledge of three hyper-parameters: a regularization
parameter λ > 0, the diameter of the input space R > 0 and the diameter of the reference class B > 0. At each
forecasting instance t > 1, we first define the following quadratic approximations of the past losses for 1 6 s < t that
are defined by: for all θ ∈ Rd

̂̀
s(θ) = `s(θ̂s) + g>s (θ − θ̂s) +

ηs
2

(θ − θ̂s)>gsg>s (θ − θ̂s) , with ηs =
eysŷs

1 +BR
. (2)

This approximation is discussed more in details in Section 3.1. The main point to be noticed is that the curvature
parameters ηs are adapted to the predictions of the algorithms ŷs in contrast to ONS which uses the worst-case values
e−B for all s > 1.

Then, AIOLI computes the following estimator

θ̂t = argmin
θ∈Rd

{
t−1∑
s=1

̂̀
s(θ) + `(θ>xt, 1) + `(θ>xt,−1) + λ‖θ‖2

}
(3)

and predicts ŷt = θ̂>t xt.

We point out that both regularization terms use the original logistic loss ` and not its approximation ̂̀t. Still, ̂̀t(θ̂t)
equals `(θ̂>t xt, yt). Remark that this algorithm is indeed improper since θ̂t depends on the next input xt which implies
a non-linear prediction ŷt = θ̂>t xt (see Figure 1). We propose in Section 2.3 an efficient scheme to sequentially
compute θ̂t with low computational and storage complexities.

3

Figure 1: Example of prediction functions obtained by FTRL, AIOLI and the algorithm of [Foster et al., 2018].

2.2 Logarithmic upper-bound on the regret without exponential constants

We state now our main theoretical result which is an upper bound on the regret suffered by AIOLI .
Theorem 1. Let λ,R,B > 0 and d, n > 1. Let (x1, y1), ..., (xn, yn) ∈ X × Y be an arbitrary sequence of observa-
tions. AIOLI (as defined in Equation (3)) run with regularization parameter λ > 0 satisfies the following upper-bound
on the regret

Rn(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
,

for all θ ∈ B(Rd, B). In particular, by choosing λ = 1
B2 , it yields for all θ ∈ B(Rd, B)

Rn(θ) 6 d(1 +BR) log

(
1 +

nB2R2

8d(1 +BR)

)
+ 1 . (4)

This theorem is a consequence of the more general theorem 7 which is deferred to Appendix B. We only highlight
below the key ingredients of the proof. Theorem 1 states that the regret of AIOLI is logarithmic in n with a multiplica-
tive constant of order dB which is an exponential improvement in B over the one achieved by proper algorithms such
as ONS [Hazan et al., 2007]. Yet, our regret upper-bound is weaker than the one of [Foster et al., 2018] which is of
order O(d log(Bn)). Their algorithm however requires a prohibitive time complexity of order O(B6n12(Bn+ d)12)
through complex MCMC procedures. We leave for future work the question weather their regret is achievable by our
algorithm or not.

Sketch of proof The proof of the theorem is based on two main steps: 1) we upper-bound the cumulative regret using
the true losses by the cumulative regret using the quadratic surrogate losses; 2) we can then follow (with some adjust-
ments) the analysis for online linear regression with squared loss of [Azoury and Warmuth, 2001] and [Vovk, 2001]
(see also the proof of [Gaillard et al., 2018]). Fix θ ∈ B(Rd, B).

Step 1. The first step (i.e., the upper-bound of the regret with the surrogate regret) uses the key Lemma 5, which
implies that the quadratic surrogate loss are lower-bounds on the logistic losses. That is,

∀t > 1, ̂̀
t(θ) 6 `t(θ).

Using that by definition (see Equation (2)) we also have ̂̀t(θ̂t) = `t(θ̂t) for all t > 1, this entails `t(θ̂t) − `t(θ) 6̂̀
t(θ̂t)− ̂̀t(θ), which implies

Rn(θ) =

n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ) 6
n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θ) = R̂n(θ) .

Step 2. Using that the surrogates losses ̂̀t are quadratic, the second part of the proof follows the one of
[Gaillard et al., 2018] for online least square regression. After technical linear algebra computation, this leads to

R̂n(θ) 6
n∑
t=1

(θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) ,

4

where At = λI +
∑t
s=1

ηs
2 gsg

>
s and we recall that gs = ∇̂̀s(θ̂s) and ηt = eytŷt/(1 + BR). Using the definition of

θ̂t, after some computations, we can upper-bound

(θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) 6 −
1

2
g>t A

−1
t g−ytt .

Note that either gt or g−ytt is small. More precisely, if ηt is exponentially small then this is also the case for g−ytt which
is key to avoid the exponential constant. It should be put in comparison with the bound g>t A

−1
t gt that one would have

obtained with the FTRL algorithm. More precisely, we have the following relation g−ytt = −(1 + BR)ηtgt which
leads to

R̂n(θ) 6 (1 +BR)

n∑
t=1

ηt
2
g>t A

−1
t gt.

This leaves us with a telescoping sum that finally provides the final regret upper-bound of the theorem.

�

2.3 Efficient Implementation

In this section, we show how to compute incrementally the proposed forecaster θ̂t, defined in (3). First, we defined the
sufficient statistics used by AIOLI as

At = λI +
1

2

t∑
s=1

ηs gsg
>
s , bt =

1

2

t∑
s=1

(ηsg
>
s θ̂s − 1)gs. (5)

In the next lemma we characterize also θ̂t in terms At−1, bt−1, xt.

Lemma 2 (Characterizing θ̂t given At−1, bt−1, θt, xt). Using the notation above define

Wt = L−1t−1(bt−1, xt) ∈ Rd×2 ,

where Lt−1 is the Cholesky decomposition of At−1, i.e. the lower triangular matrix satisfying At−1 = Lt−1L
>
t−1 and

ωt ∈ R2 is the solution of the following problem

ωt = argmin
ω∈Rpt

Ωt(ω), Ωt(ω) = ‖ω‖2 − 2u>t ω + log(1 + e−v
>
t ω) + log(1 + ev

>
t ω), (6)

where pt ∈ {1, 2} is the rank of the matrix Wt, ut = Σ
1/2
t U>e1, vt = Σ

1/2
t U>e2 with {Ut,Σt} corresponding to the

economic eigenvalue decomposition1 of W>t Wt and e1 = (1, 0), e2 = (0, 1). Then

θ̂t = L−>t−1WtUtΣ
−1/2
t ωt. (7)

Computing θ̂t given At−1, bt−1, xt therefore boils down to solving the two dimensional optimization problem in (6),
for which we can use gradient descent, since Ωt is smooth strongly convex with a small condition number depending
only on R2/λ, as proven in the next lemma.
Lemma 3. Let ε, γ > 0, T ∈ N, let ωt be the solution of (6) and let ωTt be defined recursively as

ωit = ωi−1t − γ∇Ωt(ω
i−1
t), ∀i ∈ {1, . . . , T}.

Then ‖ωTt − ωt‖ 6 ε, when ω0
t = 0 and γ, T are chosen as follows

γ =
λ

4λ+R2
, T >

(
4 +

R2

λ

)
log

Rt

ε
√
λ
.

The efficient sequential implementation of θ̂t reported in (1) is obtained by combining the different steps given by: the
characterization θ̂t (Lemma 2); the efficient solution of (6) (Lemma 3); and the fact that Lt can efficiently be updated
online by doing a Cholesky rank 1 update. More details on the algorithm are provided in Algorithm 2 in Appendix D.
The total computational cost is of order O(nd2 + n log n) as proven in the next theorem. The proof relies on the facts
that rank 1 Cholesky updates cost O(d2) and that the cost of w = L−1v with L ∈ Rd×d triangular invertible and
v, w ∈ Rd (i.e. the solution of a triangular linear system Lw = v) is O(d2) [Golub and Van Loan, 2012].

1I.e., W>t Wt = UtΣtU
>
t with Ut ∈ R2×pt with pt the rank of W>t Wt, such that U>t Ut = I and Σt ∈ Rpt×pt is diagonal

and positive.

5

Parameters λ, T, n, constants B,R
initialize L0 = λ1/2I, b0 = 0, θ0 = 0
for t = 1, ..., n do

receive xt
compute Wt, Ut,Σt, ut, vt using Lt−1, bt−1, xt, θt, as specified in Lemma 2
compute ωTt using T steps of gradient descent using ut, vt as specified in Lemma 3
compute θ̃t = L−>t WtUtΣ

−1/2
t ωTt and predicts ŷt = θ̃>t xt

receive yt
compute gt using θ̃t, yt, xt
compute Lt via rank 1 Cholesky update of Lt−1 with vector

√
ηt/2gt

compute bt = bt−1 + (ηtg
>
t θ̃t − 1)gt

end
Algorithm 1: AIOLI descriptive version (see Algorithm 2, Appendix D for a detailed version)

Theorem 4 (Efficient implementation). Let T, n ∈ N and θ̃t be the solution of Algorithm 2 at step t, with hyperpa-
rameter T . Choosing T =

⌈
(4 + R2

λ) log
(

3n2R2

λ (nR
2

8λ +B)
)⌉

leads to a regret R̃n(θ) for the forecaster (θ̃t)
n
t=1

bounded by

R̃n(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
+ 1.

Moreover, Algorithm 2 has a total computational complexity

O

(
nd2 + n

R2

λ
log

[
Rn

λ
+B

])
.

To conclude, note that, when λ = 1
B2 , the total computational complexity of Algorithm 2 is O(nd2 + n log n).

3 Key ideas of the analysis

In this section, we present more in details the two main ideas of our analysis. We believe that they might be of
independent technical interest for future work.

3.1 Quadratic approximations with adaptive curvature

The main historical approach to prove logarithmic regret for online logistic regression is based on the observation
that the logistic losses `t : θ 7→ `(θ>xt, yt) are α-exp-concave for some fixed exp-concavity parameter α > 0. In
other words, for all t > 1, the functions θ 7→ exp

(
− α`t(θ)

)
are convex. From [Hazan et al., 2016, Lemma 4.2],

α-exp-concavity implies in particular that for all θ, θ̂t ∈ B(Rd, B)

`t(θ) > `t(θ̂t) +∇`t(θ̂t)>(θ − θ̂t) +
η

2
(θ − θ̂t)>∇`t(θ̂t)∇`t(θ̂t)>(θ − θ̂t) (8)

where η 6 1
2 min{ 1

4GB , α}, whereG is an upper-bound of the `2-norm of the gradients. We refer to η as the curvature
constant. The above inequality provides a quadratic lower approximation of the logistic loss. It plays a crucial role in
the analysis of ONS [Hazan et al., 2007] to provide a logarithmic regret upper-bound of order O(1

ηd log(n)). We can
note that in this inequality, η is fixed for all t > 1 and independent of θ and θ̂t. However, for the logistic loss, the best
exp-concavity constant α > 0 is of order e−BR which leads to an undesirable exponential multiplicative constant.

Our idea is to replace the worst-case fixed η > 0 with a data adaptive constant ηt. To do so, we first remark that at
time t > 1, the curvature constant is bad (i.e., of order e−BR) when the prediction ŷt = θ̂>t xt of the algorithm was
significantly wrong. That is, when ytŷt ≈ −BR. In contrast, if the algorithm predicted well the sign of the next
outcome, i.e., if ytŷt > 0 then Inequality (8) holds with a much larger curvature constant greater than (1 + BR)−1.
Based on this high-level idea, we could prove Inequality (8) by replacing the fixed curvature η > 0 with

ηt =
eytŷt

1 +BR
. (9)

6

The latter inequality yielded to our choice of surrogate quadratic approximations ̂̀t defined in Equation (2). This
adaptive quadratic lower-approximation of the logistic loss is a direct consequence of the following technical lemma
applied with a = ytθ

>xt, b = ytŷt, and C = BR.
Lemma 5. Let C > 0 and f : x ∈ R 7→ log(1 + e−x). Then, for all a ∈ [−C,C] and b ∈ R,

f(a) > f(b) + f ′(b)(a− b) +
eb

2(1 + C)
f ′(b)2(a− b)2 .

The proof is postponed to the supplementary material (see Appendix C).

3.2 Improper regularization

The other key ingredient of our analysis is to ensure that only the rounds where the curvature ηt (9) are large matter in
the analysis. This is the role of our new improper regularization added in the definition (3) of θ̂t. The underlying idea
is to add the possible next losses `(θ>xt, 1) and `(θ>xt,−1) to the minimization problem solved by AIOLI (see (3)).

We explain now the high-level idea why this regularization helps when ηt is small. We need to distinguish two cases.
On the one hand, if the prediction is good, i.e., ŷt and yt have same signs. Then, ηt ∝ exp(ytŷt) is large and since
the prediction is already good. Thus, the regularization does not hurt much. On the other hand, when ŷt and yt have
opposite signs, the curvature parameter may be exponentially small. But, then the addition of `t(θ>xt, yt) greatly
improves the predictions of the algorithm in these cases, because the data point (xt, yt) was already included in the
history when optimizing θ̂t in (1). Moreover, the addition of the the wrong output −yt does not impact much the
prediction since in ŷt we have

`(ŷt,−yt) = log
(
1 + eytŷt

)
= log

(
1 + (1 +BR)ηt

)
which is small whenever ηt is small.

4 Extensions

4.1 Non-parametric setting

For the sake of simplicity, the analysis of the present paper was only carried out for finite dimensional logis-
tic regression in Rd. Yet, most of the results remain valid for Reproducing Kernel Hilbert Spaces (RKHS) H
(see [Aronszajn, 1950] for details on RKHS). Then, Theorem 1 holds by replacing the finite dimension d > 1 with the
effective dimension

deff(λ) = Tr(Knn(Knn + λI)−1) ,

where the input matrix Knn is defined as (Knn)i,j = x>i xj . The regret is then of order O(Bdeff(Bλ) + λB2). Note
that the effective dimension is always upper-bounded by deff(λ) 6 n/λ, providing in the worst case, the regret upper-
bound of order O(B

√
n) for well-chosen λ. Under the capacity condition, which is a classical assumption for kernels

(see [Marteau-Ferey et al., 2019] for instance), better bounds on the effective dimension are provided which yield to
faster regret rates.

In the case of RKHS, using standard kernel trick, the total computational complexity of the algorithm is then O(n3).
The latter might be however prohibitive in large dimension. An interesting research direction is to investigate whether
we can apply standard approximation techniques such as random features or Nyström projection similarly to what
[Calandriello et al., 2017] and [Jézéquel et al., 2019] did for exp-concave and square loss respectively. In particular,
what is the trade-off between computational complexity and regret and what is the lowest complexity that still allows
optimal regret?

4.2 Online-to-batch conversion

Even in the batch statistical setting, the lower-bound of [Hazan et al., 2014] holds for proper algorithms and few
improper algorithms where introduced to avoid the statistical constantO(eB). Using the standard online-to-batch con-
version [Helmbold and Warmuth, 1995], similarly to the algorithm of [Foster et al., 2018], our algorithm also provides
an estimator with bounded excess risk in expectation. To do so, one can sample an index τ uniformly in {1, . . . , n}
and define the estimator f̄n defined for all x ∈ X by

f̄n(x) = f̂τ (x) with f̂t(x) = θ̂t(x)>x, 1 6 t 6 T , (10)

7

where θ̂t(x) is the solution of the minimization problem (3) by substituting xt with the new input x ∈ X . It is worth
pointing out that f̄n(x) 6= θ̂>t x is a non-linear function in x and is thus improper. The following corollary controls the
excess-risk of f̄t in expectation. Its proof is standard but short and we recall it for the sake of completeness.
Corollary 6 (Online-to-batch conversion). Let n, d > 1 and B,R > 0. Let ν be an unknown distribution over
B(Rd, R) × {−1, 1} and Dn =

{
(xi, yi)

}
16i6n

be i.i.d. sampled from ν. Then, the estimator f̄n defined in Equa-
tion (10) with λ = 1/B2 satisfies

E
[
`(f̄n(X), Y)

]
− inf
θ∈B(Rd,B)

E
[
`(f(X), Y)

]
6

1

n

[
d(1 +BR) log

(
1 +

nB2R2

8d(1 +BR)

)
+ 1

]
,

where (X,Y) ∼ ν and the expectations are taken over (X,Y), Dn and τ .

Proof Let us denote by Rbn the upper-bound on the regret in the right-hand side of Equation (4). Then,

E
[
`(f̄n(X), Y)

]
= E

[
`(f̂τ (X), Y)

]
= E

[1

n

n∑
t=1

`(f̂t(X), Y)
]

(∗)
= E

[1

n

n∑
t=1

`
(
f̂t(xt), yt

)]
6 E

[
1

n

n∑
t=1

`(θ>xt, yt)
]

+
Rbn
n

(∗)
= E

[
1

n

n∑
t=1

`(θ>X,Y)

]
+
Rbn
n
,

where the equalities (∗) are because (X,Y) and (xt, yt) follow the same distribution and because f̂t and θ are inde-
pendent of (xt, yt) by definition. �

Apart from [Foster et al., 2018], which is non-practical and also based on an online-to-batch conversion, we are
only aware of the works of [Mourtada and Gaïffas, 2019] and [Marteau-Ferey et al., 2019] that improve the expo-
nential constant O(eB) in the statistical setting. [Marteau-Ferey et al., 2019] make additional assumptions on the data
distribution (self-concordance, well-specified model, capacity and source conditions). Their framework is hardly
comparable to ours with constants that may be arbitrarily large in our setting. In contrast, the recent work of
[Mourtada and Gaïffas, 2019] do provide an improper estimator that satisfies a result very similar to Corollary 6 with
an expected bound on the excess risk of order O(d + B2R2). Our upper-bound is slightly worse with an additional
multiplicative factor BR log(BRn). The log n is due to the online setting in which it is optimal, see for instance
the lower-bound of [Vovk, 2001]. Their estimator is based on an empirical regularized risk minimization (with the
original losses) with an additional improper regularization using virtual data. They do not analyze the computational
complexity but we believe it to be similar to ours. To conclude the comparison, note that in contrast to ours, their
analysis relies on the self-concordance property of the logistic loss in contrast to ours.

5 Simulations

This section illustrates our theoretical results with synthetic experiments and compare the performance of three algo-
rithms: FTRL with `2-regularization and λ = 1, AIOLI , and the one of [Foster et al., 2018]. We sample the data
points (xt, yt) ∈ R× {−1, 1} according to the adversarial distributions designed by [Hazan et al., 2014] to prove the
exponential lower bound for proper algorithms. We consider only the case d = 1 because the lower bound for proper
algorithms already applies and the algorithm of [Foster et al., 2018] is practical in this case. Let n > 1, B = log(n),
χ ∈ {−1, 1} and ε = 0.01, the data (xt, yt)16t6n are i.i.d. generated according to

(xt, yt) =

{
(1−

√
ε

2B , 1) w.p.
√
ε

2B + χ ε
B

(
√
ε
B ,−1) otherwise

.

The experiment is averaged over 10 simulations for χ = −1 and 10 others for χ = 1. We plot in Figure 2 the
worst of these two average regrets obtained by each algorithm according to the value of n. The lower-bound of
[Hazan et al., 2014] ensures that any proper algorithm has at least a regret of order Ω(n1/3) for these data. As expected,
the regret of FTRL is polynomial in n (linear slope in log-log scale) while the ones of AIOLI and the algorithm of
[Foster et al., 2018] are poly-logarithmic.

6 Conclusion and future work

To sum up, we designed a new efficient improper algorithm for online logistic regression. The latter only suffers
logarithmic regret with much improved complexity compared to other existing methods. Some interesting questions
are still remaining and left for future work.

8

Figure 2: Regret of each algorithm according to number of sample n in log-log scale.

Our online-to-batch procedure only provides upper-bounds in expectation. Obtaining high-probability bounds is more
challenging and universal conversion methods such as the one of [Mehta, 2016] may not work for improper procedures.

Another interesting direction for future research is the extension to multi-class classification. Our analysis strongly
relies on binary outputs to produce the improper regularization and the extension to multi-class is not straightforward.
The next step would then be to extend the results to other settings considered by [Foster et al., 2018] such as bandit
multi-class learning or online multi-class boosting. More generally, it would be interesting to study what are the class
of functions where adaptive curvature parameters and improper learning yield to improved guarantees.

Finally, as shown in Section 4.1, AIOLI may be applied to nonparametric logistic regression in RKHS. However, with-
out any approximation schemes, the computational complexity may become prohibitive of order O(n3). Therefore, a
possible line of research would be to study how much the performance of our algorithm would be affected by standard
approximations techniques as Nyström projections or random features.

Acknowledgements

This work was funded in part by the French government under management of Agence Nationale de la Recherche as
part of the "Investissements d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

References

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337–404.

[Azoury and Warmuth, 2001] Azoury, K. S. and Warmuth, M. K. (2001). Relative loss bounds for on-line density
estimation with the exponential family of distributions. Machine Learning, 43(3):211–246.

[Berkson, 1944] Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American
statistical association, 39(227):357–365.

[Bubeck et al., 2018] Bubeck, S., Eldan, R., and Lehec, J. (2018). Sampling from a log-concave distribution with
projected langevin monte carlo. Discrete & Computational Geometry, 59(4):757–783.

[Bubeck et al., 2015] Bubeck, S. et al. (2015). Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357.

[Calandriello et al., 2017] Calandriello, D., Lazaric, A., and Valko, M. (2017). Efficient second-order online kernel
learning with adaptive embedding. In Neural Information Processing Systems.

[Cesa-Bianchi and Lugosi, 2006] Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cam-
bridge university press.

[Foster et al., 2018] Foster, D. J., Kale, S., Luo, H., Mohri, M., and Sridharan, K. (2018). Logistic regression: The
importance of being improper. arXiv preprint arXiv:1803.09349.

[Gaillard et al., 2018] Gaillard, P., Gerchinovitz, S., Huard, M., and Stoltz, G. (2018). Uniform regret bounds over
Rd for the sequential linear regression problem with the square loss. arXiv preprint arXiv:1805.11386.

9

[Golub and Van Loan, 2012] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU press.
[Hazan et al., 2007] Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex

optimization. Machine Learning, 69(2-3):169–192.
[Hazan et al., 2016] Hazan, E. et al. (2016). Introduction to online convex optimization. Foundations and Trends® in

Optimization, 2(3-4):157–325.
[Hazan et al., 2014] Hazan, E., Koren, T., and Levy, K. Y. (2014). Logistic regression: Tight bounds for stochastic

and online optimization. In Conference on Learning Theory, pages 197–209.
[Helmbold and Warmuth, 1995] Helmbold, D. P. and Warmuth, M. K. (1995). On weak learning. Journal of Computer

and System Sciences, 50(3):551–573.
[Jézéquel et al., 2019] Jézéquel, R., Gaillard, P., and Rudi, A. (2019). Efficient online learning with kernels for

adversarial large scale problems. In Advances in Neural Information Processing Systems, pages 9427–9436.
[Marteau-Ferey et al., 2019] Marteau-Ferey, U., Ostrovskii, D., Bach, F., and Rudi, A. (2019). Beyond least-squares:

Fast rates for regularized empirical risk minimization through self-concordance. arXiv preprint arXiv:1902.03046.
[McMahan, 2011] McMahan, H. B. (2011). Follow-the-regularized-leader and mirror descent: Equivalence theorems

and l1 regularization. Journal of Machine Learning Research.
[Mehta, 2016] Mehta, N. A. (2016). Fast rates with high probability in exp-concave statistical learning. arXiv preprint

arXiv:1605.01288.
[Mourtada and Gaïffas, 2019] Mourtada, J. and Gaïffas, S. (2019). An improper estimator with optimal excess risk in

misspecified density estimation and logistic regression. arXiv preprint arXiv:1912.10784.
[Vovk, 1998] Vovk, V. (1998). A game of prediction with expert advice. Journal of Computer and System Sciences,

56(2):153–173.
[Vovk, 2001] Vovk, V. (2001). Competitive on-line statistics. International Statistical Review, 69(2):213–248.
[Zinkevich, 2003] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.

In Proceedings of the 20th international conference on machine learning (icml-03), pages 928–936.

10

A Notation

In this section, we recall and define useful notations that will be used all along the proofs. At each round t > 1, we
recall that the forecaster is given an input xt ∈ X ⊂ B(Rd, R); chooses a prediction θ̂t ∈ Rd; forms the prediction
ŷt = θ̂>t xt; and observes the outcome yt ∈ {−1, 1}. The loss of a parameter θ ∈ Rd at time t > 1 is measured by
`t(θ) = `(θ>xt, yt) = log(1 + e−ytθ

>xt).

We also define for all t > 1, all θ ∈ Rd and y ∈ {−1, 1}:

- the loss suffered by θ if the outcome was y: `yt (θ) = log(1 + e−yθ
>xt)

- the gradient of the loss in θ̂t if the outcome was y: gyt = ∇`yt (θ̂t)

- the curvature if the outcome was y: ηyt = eyθ̂
>
t xt

1+BR

- the quadratic surrogate losses if the outcome was y:̂̀y
t (θ) = `yt (θ̂t) + gy>t (θ − θ̂t) +

ηyt
2 (θ − θ̂t)>gyt g

y>
t (θ − θ̂t)

- the corresponding loss, surrogate loss, gradient, and curvature for the true outcome ŷt:
`t = `ytt , ̂̀

t = ̂̀yt
t , gt = gytt , ηt = ηytt

- the regularized cumulative loss and cumulative surrogate loss respectively:

Lt(θ) =
t∑

s=1
`s(θ) + λ‖θ‖2, L̂t(θ) =

t∑
s=1

̂̀
s(θ) + λ‖θ‖2

With these notations, we defined θt and θ̄t as:

θt = argmin
θ∈Rd

L̂t−1(θ) , and θ̄t = argmin
θ∈Rd

{
L̂t−1(θ) + `1t (θ) + `−1t (θ)

}
. (11)

B Proof of the main theorem

Theorem 7. Let ε, λ,R > 0 and d, n > 1. Let (x1, y1), ..., (xn, yn) ∈ X×Y be an arbitrary sequence of observations.
Define θ̄t for t > 1 as in Equation (11) with regularization parameter λ > 0. Then, any estimator θ̂t which verifies for
all t > 1, ‖θ̂t − θ̄t‖ 6 ε satisfies the following upper-bound on the regret

Rn(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
+ 3nR

(
nR2

8λ
+B

)
ε .

Proof Let θ ∈ B(Rd, B). Let us first upper-bound the regret Rn(θ) by the regret using the surrogate losses. Applying
Lemma 5 with a = ytθ

>xt ∈ [−BR,BR] and b ∈ ytθ̂>t xt ∈ R, we have for all t > 1:

`t(θ) > ̂̀t(θ).
Together with `t(θ̂t) = ̂̀

t(θ̂t), it yields that the regret on the true loss is upper-bounded by the regret on the quadratic
approximations

Rn(θ) =

n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ) 6
n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θ) = R̂n(θ) . (12)

Now, we are left with analyzing a quadratic problem. We can thus follow in the main lines the proof of
[Gaillard et al., 2018] for online least squares. By definition of θn+1 = argminθ∈Rd L̂n(θ), L̂n(θn+1) 6 L̂n(θ),
which can be written as

n∑
t=1

̂̀
t(θn+1)−

n∑
t=1

̂̀
t(θ) 6 λ‖θ‖2 − λ‖θn+1‖2 .

Now, the regret can be upper-bounded as

R̂n(θ) 6 λ‖θ‖2 +

n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θn+1)− λ‖θn+1‖2

= λ‖θ‖2 +

n∑
t=1

[̂̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1)

]
. (13)

11

With a little bit of abuse, we call the terms inside the sum on the right the instant regrets. Grouping the terms of same
degrees in the quadratic approximation,̂̀

t(θ) = `t(θ̂t) + g>t (θ − θ̂t) +
ηt
2

(θ − θ̂t)gtg>t (θ − θ̂t)

= `t(θ̂t)− g>t θ̂t +
ηt
2
θ̂>t gtg

>
t θ̂t + g>t θ − ηtθ>gtg>t θ̂t +

ηt
2
θ>gtg

>
t θ

= c∗t − 2b∗>t θ +
ηt
2
θ>gtg

>
t θ

with c∗t = `t(θ̂t)− g>t θ̂t + ηt
2 θ̂
>
t gtg

>
t θ̂t and b∗t = 1

2

(
− gt + ηt(θ̂

>
t gt)gt

)
. Similarly, we can write the cumulative loss

as

L̂t(θ) =

t∑
s=1

c∗s︸ ︷︷ ︸
ct

−2

(t∑
s=1

b∗s︸ ︷︷ ︸
bt

)>
θ + θ>

(
λI +

t∑
s=1

ηs
2
gsg
>
s︸ ︷︷ ︸

At

)
θ . (14)

The minimum of this quadratic, reached in θt+1 = A−1t bt, is

L̂t(θt+1) = ct − 2 b>t A
−1
t︸ ︷︷ ︸

θt+1

Atθt+1 + θ>t+1Atθt+1 = ct − θ>t+1Atθt+1 .

We can write now the instant regret at t aŝ̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = ̂̀

t(θ̂t)− c∗t + θ>t+1Atθt+1 − θ>t At−1θt
= g>t θ̂t −

ηt
2
θ̂>t gtg

>
t θ̂t + θ>t+1Atθt+1 − θ>t At−1θt

= g>t θ̂t − θ̂>t (At −At−1)θ̂t + θ>t+1Atθt+1 − θ>t At−1θt . (15)

The oracle θt+1 minimizes the quadratic function L̂t with Hessian 2At. Thus, performing one newton step from θ̂t
gives

θt+1 = θ̂t −
1

2
A−1t ∇L̂t(θ̂t)

= θ̂t −
1

2
A−1t

[
∇L̂t−1(θ̂t) + gt

]
= θ̂t +

1

2
A−1t g−ytt − 1

2
A−1t

[
∇L̂t−1(θ̂t) + gt + g−ytt

]
(16)

Similarly, we have

θt = θ̂t −
1

2
A−1t−1∇L̂t−1(θ̂t)

= θ̂t +
1

2
A−1t−1(gt + g−ytt)− 1

2
A−1t−1

[
∇L̂t−1(θ̂t) + gt + g−ytt

]
. (17)

Reorganizing the terms in the two previous equations leads to

gt = 2
[
Atθ̂t −Atθt+1 −At−1θ̂t +At−1θt

]
.

Substituting in the instant regret (15), this entailŝ̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = 2θ̂>t Atθ̂t − 2θ>t+1Atθ̂t − 2θ̂>t At−1θ̂t + 2θ>t At−1θ̂t

− θ̂>t Atθ̂t + θ̂>t At−1θ̂t + θ>t+1Atθt+1 − θ>t At−1θt
= θ>t+1Atθt+1 − 2θ>t+1Atθ̂t + θ̂>t Atθ̂t − θ>t At−1θt + 2θ>t At−1θ̂t − θ̂>t At−1θ̂t
= (θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) (18)

Rewriting equations (16) and (17), we have

2At(θt+1 − θ̂t) = g−ytt − δt
2At−1(θt − θ̂t) = g−ytt + gt − δt

12

with δt = ∇L̂t−1(θ̂t) + gt + g−ytt .
Subtracting the first equation to the second, we can write the instant regret as a variance term and an optimization error
term, ̂̀

t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = Zt + Ωt (19)

where

Zt =
1

4
g−yt>t A−1t g−ytt − 1

4
(gt + g−ytt)A−1t−1(gt + g−ytt)

and

Ωt =
1

4

[
−2g−ytt A−1t δt + δtA

−1
t δt + 2(gt + g−ytt)A−1t−1δt − δtA

−1
t−1δt

]
.

B.1 Upper-bound of the variance term Zt

Let us focus on bounding the term Zt. Developing the terms and using the fact that At−1 6 At, we have

Zt =
1

4
(gt + g−ytt − gt)>A−1t (gt + g−ytt − gt)−

1

4
(gt + g−ytt)>A−1t−1(gt + g−ytt)

=
1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t (gt + g−ytt) +

1

4
(gt + g−ytt)>A−1t (gt + g−ytt)

− 1

4
(gt + g−ytt)>A−1t−1(gt + g−ytt)

6
1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t (gt + g−ytt)

= −1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t g−ytt

6 −1

2
g>t A

−1
t g−ytt .

Using the definition of the logistic function, we can relate gt and g−ytt ,

g−ytt =
ytxt

1 + e−ytθ̂
>
t xt

= eytθ̂
>
t xt

ytxt

1 + eytθ̂
>
t xt

= −(1 +BR)ηtgt , (20)

which implies,

Zt 6 (1 +BR)
ηt
2
g>t A

−1
t gt .

Summing over t = 1, . . . , n, the sum telescopes thanks to Lemma 10, we obtain

n∑
t=1

Zt 6 (1 +BR)

d∑
k=1

log

(
1 +

λk(Cn)

λ

)
, (21)

where Cn = 1
2

∑n
t=1 ηtgtg

>
t and λk(Cn) is the k largest eigenvalue of Cn.

Now to upper-bound the right-hand side we need to upper-bound the trace of Cn, which we do now. Recalling that
gt = −ytxt/

(
1 + exp(ytθ̂

>
t xt)

)
, we have

ηt
2
gtg
>
t =

1

2(1 +BR)

eyθ̂
>
t xt

(1 + eytθ̂
>
t xt)2

xtx
>
t 6

1

8(1 +BR)
xtx
>
t ,

where for the inequality, we used that x/(1 + x)2 6 1/4 for x > 0. Therefore, Tr(Cn) =
∑d
k=1 λk(Cn) 6

nR2/(8(1+BR)) for all k > 1. Now remark that the right-hand side of equation 21 is maximized under the constraint∑d
k=1 λk(Cn) 6 nR2/(8(1 + BR)) when all the eigenvalues are equals i.e.,λk(Cn) = nR2/(8d(1 + BR)) for all

1 6 k 6 d which leads to
n∑
t=1

Zt 6 d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
(22)

13

B.2 Upper-bound on the optimization error Ωt

It remains to bound the the approximation term Ωt.

Ωt =
1

4
[2(gt + g−ytt)A−1t−1δt − 2g−ytt A−1t δt + δtA

−1
t δt − δtA−1t−1δt︸ ︷︷ ︸

60

]

6
1

2λ

[
2‖g−ytt ‖+ ‖gt‖

]
‖δt‖

6
3R

2λ
‖δt‖ .

The last inequality is due to ‖gyt ‖ 6 R for all ‖xt‖ 6 R and y ∈ {−1, 1}. By definition of θ̄t ∈
argminθ∈Rd

{
L̂t−1(θ) + `t(θ) + `−ytt (θ)

}
, we have ∇L̂t−1(θ̄t) + ∇`t(θ̄t) + ∇`−ytt (θ̄t) = 0. Note also that

gyt = ∇`yt (θ̂t) for all y ∈ {−1, 1}. So δt may be rewriten as

δt = ∇L̂t−1(θ̂t) +∇`t(θ̂t) +∇`−ytt (θ̂t)−∇L̂t−1(θ̄t)−∇`t(θ̄t)−∇`−ytt (θ̄t)

Using that ∇`t and ∇̂̀t are R2/4-Lipschitz (for∇̂̀t remark that ‖∇2 ̂̀
t(θ)‖ = ‖ηtgtg>t ‖ 6 R2/4)), we have

‖δt‖ 6
[

(t+ 1)R2

4
+ 2λB

]
‖θ̂t − θ̂t‖ . (23)

Summing over t leads to
n∑
t=1

Ωt 6 3nR

(
nR2

8λ
+B

)
ε . (24)

B.3 Conculsion of the proof

Using inequalities (12), (13) and (19), we have

Rn(θ) 6 R̂n(θ) 6 λ‖θ‖2 +

n∑
t=1

Zt +

n∑
t=1

Ωt

Finally, inequalities (21) and (24) concludes the proof. �

C Lemmas

Proof of Lemma 5. Let C > 0. First, note that for all x ∈ R, f ′(x) = −(1 + exp(x))−1. To prove Lemma 5, we
need to show that for α = (1 + C)−1, we have for all a ∈ [−C,C] and b ∈ R

log(1 + e−a) > log(1 + e−b)− 1

1 + eb
(a− b) +

α

2

eb

(1 + eb)2
(a− b)2 .

To do so, we fix b ∈ R and we define the function ξ as

ξ(a) = log(1 + e−a)− log(1 + e−b) +
1

1 + eb
(a− b)− α

2

eb

(1 + eb)2
(a− b)2, −C 6 a 6 C

It remains to show that ξ is non-negative on [−C,C]. Because ξ(b) = 0, it suffices to prove

ξ′(a)

{
6 0 for a 6 b
> 0 for a > b

(25)

First, after some computation, differentiating ξ leads to

ξ′(a) = − 1

1 + ea
+

1

1 + eb
− αeb

(1 + eb)2
(a− b) ,

which can also be rewritten as

ξ′(a) =
ea − eb

(1 + ea)(1 + eb)
− α eb

(1 + eb)2
(a− b) .

14

Reorganizing the terms gives the following equation

(1 + ea)(1 + eb)e−bξ′(a) = ea−b − 1− α1 + ea

1 + eb
(a− b) .

Therefore, (25) holds true as soon as

α 6
ea−b − 1

a− b
1 + eb

1 + ea
,

with the convention (e0 − 1)/0 = 1. The latter is satisfied by Lemma 8, because α = (1 + C)−1 6 (1 + |a|)−1 for
all a ∈ [−C,C]. �

Lemma 8. For all a, b ∈ R,
1

1 + |a|
6
ea−b − 1

a− b
1 + eb

1 + ea
.

Proof Define the function h : R2 7→ R that corresponds to the right-hand side of the inequality

h(a, b) =
ea−b − 1

a− b
1 + eb

1 + ea
, (a, b) ∈ R2 .

It is worth pointing out that even h is normally not defined for a = b, setting h(a, a) = 1 makes it well defined and
infinitely differentiable on R2.

Let a > b. Then (1 + eb)/(1 + ea) > eb−a, which implies

h(a, b) >
(ea−b − 1)eb−a

(a− b)
>
eb−a − 1

b− a
>

1

1 + a− b
,

where the last inequality is because (ex − 1)/x > (1− x)−1 for all x 6 0.

Otherwise, let a 6 b. Then (1 + eb)/(1 + ea) > 1, which entails

h(a, b) >
ea−b − 1

(a− b)
>

1

1 + b− a

Combining the two cases a 6 b and a > b together, we get

h(a, b) >
1

1 + |a− b|
. (26)

Now we show that argminb∈R h(a, b) contains a value between 0 and a, i.e., in [0, a] if a > 0 or in [a, 0] otherwise.
Rewriting the function h as follows,

h(a, b) =
1

1 + ea
ea−b − 1

a− b
+

1

1 + e−a
eb−a − 1

b− a
, (27)

it is clear that h(a, b) = h(−a,−b). We can therefore suppose without loss of generality that a is non-negative.
Indeed, if b∗(a) ∈ argminb h(a, b) then −b∗(a) ∈ argminb h(−a, b). A further look at Equation (27) shows also that
h is convex in its second argument by convexity of the function x 7→ (ex − 1)/x and stability of convex functions by
composition with affine transformations and non-negative weighted sum.

To finish the proof, we will show that the derivative of ∂h(a, b)/∂b is non-negative for b → a and non-positive for
b = 0. Convexity of h in its second argument will then conclude. Using a > 0, some computations (omitted here)
lead to

∂

∂b
h(a, b) =

(b− a+ 1)ea−b − 1 + (b− a− 1)eb + ea

(a− b)2(1 + ea)
.

Develloping the first terms of the exponential series gives

(b− a+ 1)ea−b − 1 + (b− a− 1)eb + ea =
1

2
(ea − 1)(a− b)2 + ob→a((a− b)2) .

15

Therefore,

lim
b→a

∂

∂b
h(a, b) =

1

2

ea − 1

ea + 1
> 0 .

We note also that if a = 0 then ∂
∂bh(0, 0) = 0. Now, if a > 0, using (2− x)ex 6 2 + x for all x > 0, we have

∂

∂b
h(a, 0) = (2− a)ea − (a+ 2) 6 0

By convexity of the function b 7→ h(a, b), we conclude that argminb∈R h(a, b) ∈ [0, a]. Combined with Inequality (26)
concludes the proof of the lemma. �

The following Lemma is a standard result of online matrix theory (Lemma 11.11 of [Cesa-Bianchi and Lugosi, 2006]).
Lemma 9. Let V ∈ Rd×d be an invertible matrix, u ∈ Rd and U = V − uu>. Then,

u>V −1u = 1− det(U)

det(V)
.

Lemma 10. If Cn =
n∑
t=1

ηt
2 gtg

>
t and An = Cn + λI then

n∑
t=1

ηt
2
g>t A

−1
t gt 6

d∑
k=1

log

(
1 +

λk(Cn)

λ

)
where λk(Cn) is the k largest eigenvalue of Cn.

Proof Remarking that At = At−1 + ηt
2 gtg

>
t and applying lemma 9 we have

ηt
2
g>t A

−1
t gt = 1− det(At−1/λ)

det(At/λ)

We use now that 1− u 6 log(1/u) for u > 0 which yields

ηt
2
g>t A

−1
t gt 6 log

det(At/λ)

det(At−1/λ)

Summing over t = 1, ..., n, using A0 = λI and An = Cn + λI with Cn =
n∑
t=1

ηt
2 gtg

>
t , we get

n∑
t=1

ηt
2
g>t A

−1
t gt 6 log

(
det

(
I +

Cn
λ

))

=

d∑
k=1

log

(
1 +

λk(Cn)

λ

)

�

D Efficient implementation of AIOLI

Proof of Lemma 2 Given the definition of θ̂t, in (3), using the notation in Appendix A and Eq. (14)

θ̂t = argmin
θ∈Rd

L̂t−1(θ) + log(1 + e−θ
>
t xt) + log(1 + eθ

>xt)

= argmin
θ∈Rd

θ>At−1θ − 2θ>bt−1 + log(1 + cosh(θ>xt)).

Since At−1 is invertible by construction and At−1 = Lt−1L
>
t−1, where Lt−1 is lower triangular and the unique

Cholesky decomposition of At−1 [Golub and Van Loan, 2012], we can define the following equivalent problem, by
the substitution r = L>t−1θ

rt = argmin
r∈Rd

r>r − 2r>ũt + log(1 + cosh(r>ṽt)), ũt = L−1t−1bt−1, ṽt = L−1t−1xt,

16

L0 = λ−1/2I, b̃0 = 0, θ̃0 = 0
for t = 1, ..., n do

receives xt
Wt = L−1t (bt−1, xt), {Ut,Σt} = eigen-dec(W>t Wt), ut = Σ

1/2
t U>t e1, vt = Σ

1/2
t U>t e2

ω0
t = 0

for i = 1, ..., T do
ωit = ωi−1t − λ

4λ+R2

[
2ωi−1t − 2ut − (1 + ev

>
t ω

i−1
t)−1vt + (1 + e−v

>
t ω

i−1
t)−1vt

]
end
θ̃t = L−>t (Wt(UtΣ

−1/2
t ωTt))

predict ŷt = θ̃>t xt
receives yt
gt = −(1 + eytθ̃

>
t xt)−1ytxt, ηt = eytθ̂

>
t xt

1+BR

Lt = chol-update(Lt−1,
√
ηt/2gt), bt = bt−1 + (ηtg

>
t θ̃t − 1)gt

end
Algorithm 2: AIOLI detailed version. Here eigen-dec corresponds to economic-eigendecomposition of a sym-
metric matrix and chol-update to the rank 1 Cholesky update [Golub and Van Loan, 2012]

and in particular rt = L>t θ̂t. Now note that any r ∈ Rd can be always written as r = Wtq + µ with Wt = (ũt, ṽt) ∈
Rd×2 for some q ∈ R2 and µ ∈ (spanWt)

⊥, then rt = Wtqt + µt for qt, µt defined as

(qt, µt) = argmin
q∈R2,µ∈(spanWt)⊥

‖Wtq + µ‖2 − 2ũ>t (Wtq + µ) + log(1 + cosh(ṽ>t (Wtq + µ)))

= argmin
q∈R2,µ∈(spanWt)⊥

‖Wtq‖2 + ‖µ‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)),

where in the last inequality we use the fact that ũt = Wte1, ṽt = Wte2 and W>t µ = 0, by construction. Now the
solution of the problem above is given by µt = 0 and qt as

qt = argmin
q∈R2

‖Wtq‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)).

Now that in the problem above q is always applied to Wt, so in the case that Wt is not full rank then all the solutions
of the form qt = q0t + ζ with ζ ∈ (spanW>t Wt)

⊥ are admissible and leading to the same rt. Then we can restrict the
problem above as

qt = argmin
q∈spanW>t Wt

‖Wtq‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)).

To conclude, take the economic eigenvalue decomposition of W>t Wt, i.e., W>t Wt = UtΣtU
>
t with Ut ∈ R2×pt with

pt the rank of W>t Wt, such that U>t Ut = I and Σt ∈ Rpt×pt is diagonal and positive [Golub and Van Loan, 2012].
Now we consider the substitution ω = Σ

1/2
t U>t q, whose inverse is q = UtΣ

−1/2
t ω since q ∈ spanW>t Wt and UtU>t

is the projection matrix whose span is exactly spanW>t Wt, i. e. UtU>t q = q for any q ∈ spanW>t Wt, which leads
to the equivalent problem

ωt = argmin
ω∈Rpt

ω>ω − 2u>t ω + log(1 + cosh(v>t ω)),

where

ut = Σ
−1/2
t U>t W

>
t ũt = Σ

−1/2
t U>t W

>
t Wte1 = Σ

1/2
t U>t e1,

vt = Σ
−1/2
t U>t W

>
t ṽt = Σ

−1/2
t U>t W

>
t Wte2 = Σ

1/2
t U>t e2.

Note that in particular ωt = Σ
1/2
t Utqt and qt = UtΣ

−1/2
t ωt. Then

θ̂t = L−>t−1rt = L−>t−1Wtqt = L−>t−1WtUtΣ
−1/2
t ωt.

�

Proof of Lemma 3 Since Ωt is smooth and strongly convex, we can apply standard results on gradient descent (see
for example Theorem 3.10 of [Bubeck et al., 2015]), obtaining

‖ωTt − ωt‖ 6 e−T/(2κt)‖ω0
t − ωt‖,

17

when gradient descent is used with step-size γ = 1/βt and where κt = βt/αt with αt a lower bound of the strong
convexity constant of Ωt and βt an upper bound the Lipschitz constant of ∇Ωt. Note indeed that if Ωt is α-strongly
convex for some α, it will be also α′-strongly convex, for any 0 < α′ 6 α; moreover if ∇Ωt is β-Lipschitz for some
β, it will be also β′-Lipschitz, for any β′ > β; for more details see Chapter 3.4 of [Bubeck et al., 2015]. Now, by
construction αt = 1, indeed Ωt(ω)−‖ω‖2 is still a convex problem. Moreover, for any ω, ω′ ∈ R2, by the mean value
theorem applied to the function g : [0, 1]→ R2 defined as g(r) = ∇Ω(ω+ r(ω′−ω)), there exists a q ∈ R2 such that

∇Ωt(ω)−∇Ωt(ω
′) = ∇2Ωt(q)(ω

′ − ω).

This implies that ‖∇Ωt(ω) − ∇Ωt(ω
′)‖ 6 supq ‖∇2Ωt(q)‖‖ω′ − ω‖ so the Lipschitz constant of ∇Ωt is upper

bounded by βt = supq ‖∇2Ωt(q)‖. The Hessian of Ωt is defined as

∇2Ωt(ω) = 2I +
1

1 + cosh(v>t ω)
vtv
>
t ,

then

sup
q
‖∇2Ωt(q)‖ 6 2 + ‖vt‖2 sup

w

1

1 + cosh(v>t w)
6 2 +

‖vt‖2

2
.

To conclude, note that vt in Thm. 2 is defined as vt = (W>t Wt)
1/2e2 with e2 = (0, 1), Wt = L−1t−1(bt−1, xt), Lt−1

the lower triangular Cholesky decomposition of At−1 (i.e. At−1 = Lt−1L
>
t−1) and At−1, bt−1 defined in Eq. (5).

Then
‖vt‖2 = v>t vt = e2UtΣtU

>
t e
>
2 = e2W

>
t Wte2 = x>t L

−>
t−1L

−1
t−1xt = x>t A

−1
t−1xt.

So ‖vt‖2 6 ‖xt‖2‖At−1‖−1 6 R2/λ, since ‖xt‖ 6 R by assumption and At−1 � λI by construction. Finally
βt = 2 + ‖vt‖2/2 6 2 +R2/(2λ) and αt = 1, then κt 6 2 +R2/(2λ) and γt = 1/(2 +R2/(2λ)). We have

‖ωTt − ωt‖ 6 exp(−T/(2κt) + log ‖) 6 exp(−T/(4 +R2/λ) + log ‖ω0
t − ωt‖).

To quantify ‖ω0
t − ωt‖ we need a bound for ‖ωt‖. Note that, since Ωt is smooth and convex, ωt is characterized by

∇Ωt(ωt) = 0, i.e. 2ωt − 2ut − (1 + ev
>
t ωt)−1vt + (1 + e−v

>
t ωt)−1vt = 0, from which

‖ωt‖ 6 ‖ut‖+ sup
q

∣∣∣(1 + e−v
>
t q)−1 − (1 + ev

>
t q)−1

∣∣∣ ‖vt‖/2 6 ‖ut‖+ ‖vt‖/2.

Analogously to the case of vt, by definition of ut, we have ‖ut‖2 = e1W
>
t Wte1 = bt−1A

−1
t−1bt−1, then ‖ut‖2 6

‖bt−1‖2‖A−1t−1‖ 6 ‖bt−1‖2/λ. Now we need a bound for bt−1. Note that for any s ∈ {1, . . . , t − 1}, we have
gs = ∇`s(θ̂s) = −(1 + eysθ̂

>
s xs)−1ysxs, moreover ηs = eysθ̂

>
s xs/(1 +BR) and

(ηsg
>
s θ̂s − 1)gs =

ysx
>
s θ̂s

2 + 2 cosh(ysx>s θ̂s)
(1 +BR)−1ysxs +

1

1 + eysx
>
s θ̂s

ysxs.

Since supz |z/(2 + 2 cosh(z))| 6 1, ys ∈ {−1, 1} and ‖xs‖ 6 R by assumption, we have ‖(ηsg>s θ̂s − 1)gs‖ 6
((1 +BR)−1 + 1)R 6 2R, then

‖bt−1‖ =
1

2

t−1∑
s=1

‖(ηsg>s θ̂s − 1)gs‖ 6 (t− 1)R. (28)

To conclude, ‖ut‖ 6 Rλ−1/2(t − 1), ‖ωt‖ 6 ‖ut‖ + ‖vt‖/2 6 Rλ−1/2t. By choosing ω0
t = 0, then Pt = ‖ωt‖ 6

Rλ−1/2t and so ‖ωTt − ωt‖ 6 ε, when choosing T > (4 +R2/λ) log(Rλ−1/2t/ε). �

Proof of Theorem 4 We first analyze the cost of one iteration of Algorithm 1 (which is detailed in Algorithm 2
presented above). Note that at each step t, the cost of the gradient descent algorithm performed to compute ωTt is the
number of iterations T , since we are solving a pt-dimensional problem, with pt ∈ {1, 2}. The two most expensive
operation performed at step t (excluding gradient descent) are the solution of triangular linear systems of dimensions
d × d when computing L−1t−1v or L−>t−1v for some vector v ∈ Rd, which costs O(d2) (this operation is performed 4
times). The other expensive operation is the rank 1 Cholesky update of Lt−1 with the vector

√
ηt/2gt, which costs

O(d2) [Golub and Van Loan, 2012], indeed the eigendecomposition is performed on the matrixW>t Wt which is 2×2.
By repeating such operation for n steps, we obtain a total cost of

O(nd2 + nT).

18

The upper-bound on the regret is a direct consequence of Theorem 7 and Lemma 3, with T chosen according to the
lemma and ε =

√
λ

3nR
(
nR2

8λ +B
) , since ‖L−1t−1‖2 = ‖A−1t−1‖ 6 λ−1 and WtUtΣ

−1/2
t is a partial isometry, we have

‖θ̂t − θ̃t‖ 6 ‖L−1t−1‖‖WtUtΣ
−1/2
t ‖‖ωt − ωTt ‖ 6 λ−1/2ε 6

1

3nR
(
nR2

8λ +B
) , (29)

that plugged in the result of Theorem 7 gives the desired result.

�

19

