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Finite Time Extinction for the Strongly Damped Nonlinear Schr ödinger Equation in Bounded Domains

We prove the finite time extinction property (u(t) ≡ 0 on Ω for any t T⋆, for some T⋆ > 0) for solutions of the nonlinear Schrödinger problem iut

, a ∈ C with Im(a) > 0 (the damping case) and under the crucial assumptions 0 < m < 1 and the dominating condition 2 √ m Im(a) (1m)|Re(a)|.

We use an energy method as well as several a priori estimates to prove the main conclusion. The presence of the non-Lipschitz nonlinear term in the equation introduces a lack of regularity of the solution requiring a study of the existence and uniqueness of solutions satisfying the equation in some different senses according to the regularity assumed on the data.

Introduction

This paper deals with the finite time extinction property of solutions of the nonlinear Schrödinger problem

           i ∂u ∂t + ∆u + a|u| -(1-m) u = f (t, x), in (0, ∞) × Ω, u(t) |Γ = 0, on (0, ∞) × Γ, u(0) = u 0 , in Ω, (1.1) 
when, roughly speaking, we assume that N 3,

a ∈ C with Im(a) > 0, (1.2) 
and 0 < m < 1.

(

We start by pointing out that this finite time extinction property (u(t) ≡ 0 on Ω for any t T ⋆ , for some T ⋆ > 0) represents, clearly, the most opposite property to the famous Max Born result on the conservation of the mass u(t) L 2 (Ω) = u 0 L 2 (Ω) , for any t 0, which arises (when f = 0) in the linear case (and more generally if Im(a) = 0 : see Proposition 2.3 below) and which allows the probabilistic understanding of the complex wave solution u(t, x) in the context of the applications of the linear Schrödinger equation in Quantum Mechanics. It is well known that the presence of a damping term (1.2) makes the equation irreversible with respect the time.

We also recall that the Schrödinger equation in presence of a nonlinear term in the equation (as, e.g., problem (1.1) when a ∈ C and a = 0) arises in many other different contexts as, e.g., Nonlinear Optics, Hydrodynamics, etc., and that those other contexts, for instance in Nonlinear Optics, the variable t does not represent time but the main scalar spacial variable which appears in the propagation of the waveguide direction (see e.g. Agrawal and Kivshar [START_REF] Agrawal | Optical Solitons: From Fibers to Photonic Crystals[END_REF], Sulem and Sulem [START_REF] Sulem | The nonlinear Schrödinger equation[END_REF],

Shi, Xu, Yang, Yang and Yin [START_REF] Shi | Dissipative nonlinear Schrödinger equation for envelope solitary Rossby waves with dissipation effect in stratified fluids and its solution[END_REF] and its many references).

As a matter of fact, the nonlinear Schrödinger equation under condition (1.2) is referred in the literature as the damped case and it was intensively studied since the middle of the past century under different additional conditions (but most of them for m > 1) (see, e.g., Nelson [START_REF] Nelson | Feynman integrals and the Schrödinger equation[END_REF], Pozzi [START_REF] Pozzi | Problemi di Cauchy e problemi ai limiti per equazioni di evoluzione del tipodi Schroedinger lineari e non lineari. I. L'equazione lineare astratta[END_REF], Bardos and Brezis [START_REF] Bardos | Sur une classe de problèmes d'évolution non linéaires[END_REF], Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], Kato [START_REF] Kato | On some Schrödinger operators with a singular complex potential[END_REF], Brezis and Kato [START_REF] Brezis | Remarks on the Schrödinger operator with singular complex potentials[END_REF], Vladimirov [START_REF] Vladimirov | On the solvability of a mixed problem for a nonlinear equation of Schrödinger type[END_REF], Tsutsumi [START_REF] Tsutsumi | On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations[END_REF], Temam and Miranville [START_REF] Temam | Mathematical modeling in continuum mechanics[END_REF], Kita and Shimomura [START_REF] Kita | Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data[END_REF], Carles and Gallo [START_REF] Carles | Finite time extinction by nonlinear damping for the Schrödinger equation[END_REF], Carles and Ozawa [START_REF] Carles | Finite time extinction for nonlinear Schrödinger equation in 1D and 2D[END_REF] and Hayashi, Li and Naumkin [START_REF] Hayashi | Time decay for nonlinear dissipative Schrödinger equations in optical fields[END_REF], among others).

In our above formulation we assume that a ∈ C and thus a possible, non-dominant non-dissipative nonlinear term may coexists with the damping term (i.e., we allow Re(a) = 0). Nevertheless, our main result on the finite time extinction for |Ω| < ∞ requires the dominating condition We also recall that in most of the papers on the nonlinear equation (1.1) it is assumed that m = 3

(the so called cubic case). Nevertheless there are several applications in which the general case m > 0 is of interest. For instance, it is the case of the so called non-Kerr type equations arising in the study of optical solitons (see, e.g., [START_REF] Agrawal | Optical Solitons: From Fibers to Photonic Crystals[END_REF]). For some other physical details and many references, we refer the reader to the general presentations made in the books [START_REF] Agrawal | Optical Solitons: From Fibers to Photonic Crystals[END_REF] and [START_REF] Sulem | The nonlinear Schrödinger equation[END_REF]. Some other references concerning the case m ∈ (0, 1) are quoted in our previous paper Bégout and Díaz [START_REF] Bégout | Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations[END_REF]. We also mention that the spacial localization phenomenon (solutions with support u(t, . ) being a compact, when Ω is unbounded) requires a different balance between the damping and non-damping components (mainly with Im(a) > 0) of the nonlinear term a|u| m-1 u (see [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF][START_REF] Bégout | Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations[END_REF][START_REF] Bégout | A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity[END_REF]).

In spite of the large amount of papers devoted to the existence and uniqueness results of nonlinear Schrödinger equations with a damping term only very few of them allowed the consideration of a strong damping term (i.e. condition (1.3)). This is the reason why we presented here some new results on the general theory of the existence, uniqueness and regularity of solutions of the strongly damped Schrödinger equation improving several previous papers in the literature (see, e.g. Carles

and Gallo [START_REF] Carles | Finite time extinction by nonlinear damping for the Schrödinger equation[END_REF], Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], Brezis and Cazenave [START_REF] Brezis | Nonlinear evolution equations[END_REF] and Vrabie [START_REF] Vrabie | Compactness methods for nonlinear evolutions[END_REF]) which are needed for the study of the finite time extinction property.

Since the comparison principle does not apply to our problem, the main tool to prove the finite time extinction property is a suitable energy method in the spirit of the collection of energy methods quoted in the monograph Antontsev, Díaz and Shmarev [START_REF] Antontsev | Energy methods for free boundary problems[END_REF]. Nevertheless, the adaptation to the nonlinear Schrödinger equation requires some new estimates and also a sharper study of the ordinary differential inequality satisfied by the mass. We start by giving, in Section 2, a semi-abstract result (which is proved in Section 5) in which the finite time extinction property is derived under a general regularity condition on the solution. The presence of the non-Lipschitz nonlinear term in the equation introduces a lack of regularity of the solution (in contrast to the case in which m 1) and so we shall devote Section 4 to present a separated study of the existence and uniqueness of solutions satisfying the equation in some different sense according to the regularity assumed on the data. To this purpose, we use mainly some monotonicity methods, jointly with suitable regularizations and passing to the limit, improving previous results in the literature. Section 3 concerns the finite time extinction and the asymptotic behavior of the solution. The proofs of the results of Sections 3 and 4 are presented in Sections 7 and 6, respectively. An Appendix, collecting some technical auxiliary results, is also presented for the convenience of the reader.

We point out that in our formulation it may arise a non-homogeneous term (on which we assume a finite time extinction T 0 ) and that, surprisingly enough, under some critical decay to zero of f (t, . ) at t = T 0 , we can conclude that the corresponding solution u also vanishes after the same time t = T 0 (see Theorem 2.1 part 2). Our energy method allows us also to get some large time decay estimates in some cases, always under the presence of a damping term, in which the conditions on the finite time extinction property fails (see Theorems 3.5 and 3.6 below). See Shimomura [START_REF] Shimomura | Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities[END_REF] for a related result with m = 1 + 2 N . We mention that it seems possible to apply the techniques of this paper to the consideration of some other complex-valued nonlinear equations such as the Gross-Pitaevskii equations, the Hartree-Fock equations, and the Ginzburg-Landau equations (see, e.g., Bégout and Díaz [START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF], Antontsev, Dias and Figueira [START_REF] Antontsev | Complex Ginzburg-Landau equation with absorption: existence, uniqueness and localization properties[END_REF], Okazawa and Yokota [START_REF] Okazawa | Monotonicity method applied to the complex Ginzburg-Landau and related equations[END_REF] and its many references).

Finally, we collect here some notations which will be used along with this paper. We let N 0 = N ∪ {0}. Let t ∈ R. Then t + = max{t, 0} is the positive part of t. We denote by z the conjugate of the complex number z, by Re(z) its real part and by Im(z) its imaginary part. For 1 p ∞, p ′ is the conjugate of p defined by 1 p + 1 p ′ = 1. We write Γ the boundary of a subset Ω ⊂ R N . Unless if specified, all functions are complex-valued (H 1 (Ω) = H 1 (Ω; C), etc). The notations L p (Ω)

(p ∈ (0, ∞]), W k,p (Ω), W k,p 0 (Ω), H k (Ω), H k 0 (Ω) (p ∈ [1, ∞], k ∈ N), W -k,p ′ (Ω) and H -k (Ω) (p ∈ [1, ∞), k ∈ N)
refer as the usual well known different Lebesgue, Sobolev and Hilbert spaces and their topological dual. By convention of notation, W 0,p (Ω) = W 0,p 0 (Ω) = L p (Ω). For a Banach space X, we denote by X ⋆ its topological dual and by . , . X ⋆ ,X ∈ R the X ⋆ -X duality product. In particular, for any

T ∈ L p ′ (Ω) and ϕ ∈ L p (Ω) with 1 p < ∞, T, ϕ L p ′ (Ω),L p (Ω) = Re Ω T (x)ϕ(x)dx. The scalar product in L 2 (Ω) between two functions u, v is, (u, v) L 2 (Ω) = Re Ω u(x)v(x)dx. For a Banach space X and p ∈ [1, ∞], u ∈ L p loc [0, ∞); X means that u ∈ L p loc (0, ∞); X and for any T > 0, u |(0,T ) ∈ L p (0, T ); X . In the same way, u ∈ W 1,p loc [0, ∞); X means that u ∈ L p loc [0, ∞); X , u is absolutely continuous over [0, ∞) (so it has a derivative u ′ almost everywhere on (0, ∞)) and u ′ ∈ L p loc [0, ∞); X .
For a real x, [x] denotes its integer part. As usual, we denote by C auxiliary positive constants, and sometimes, for positive parameters a 1 , . . . , a n , write as C(a 1 , . . . , a n ) to indicate that the constant C depends only on a 1 , . . . , a n and that this dependence is continuous (we will use this convention for constants which are not denoted merely by "C").

A semi-abstract result for finite time extinction

We consider the following nonlinear Schrödinger equation.

         i ∂u ∂t + ∆u + a|u| -(1-m) u = f (t, x), in (0, ∞) × Ω, u(t) |Γ = 0, on (0, ∞) × Γ, u(0) = u 0 , in Ω.
(2.1)

(2.2) (2.
3)

The next result proves the finite time extinction of solutions (in some cases even in the same time in which the source f (t, x) vanishes) under suitable "regularity" conditions on the solution (this is the reason why we denote as "semi-abstract" such a framework). In the following sections we shall obtain sufficient conditions implying that such a framework holds.

Theorem 2.1. Let Ω ⊆ R N be an open subset, 0 < m 1, a ∈ C, f ∈ L 1 loc [0, ∞); L 2 (Ω) and u 0 ∈ L 2 (Ω). Assume that u is any strong solution to (2.1)-(2.3) (see Definition 4.1 below) and that, u ∈ L ∞ (0, ∞); H ℓ 0 (Ω) , (2.4 
)

where ℓ = N 2 + 1 (or H ℓ (Ω) instead of H ℓ 0 (Ω),
if Ω is a half-space or if Ω has a bounded C 0,1boundary). Then the following conclusions hold.

1)

If there exists T 0 0 such that, for almost every t > T 0 , f (t) = 0, (2.5) then there exists a finite time T ⋆ T 0 such that,

∀t T ⋆ , u(t) L 2 (Ω) = 0. (2.6) Furthermore, T ⋆ 2 ℓ C GN u N (1-m) 2ℓ L ∞ ((0,∞);H ℓ (Ω)) Im(a)(1 -m)(2ℓ -N ) u(T 0 ) (1-m)(2ℓ-N ) 2ℓ L 2 (Ω) + T 0 , (2.7) 
where C GN = C GN (N, m) is the constant in the inequality (5.6) below.

2) There exist ε ⋆ = ε ⋆ (Im(a), N, m) satisfying the following property. Let T 0 > 0 and let C GN be the constant in (5.6). If,

u 1-m L ∞ ((0,∞);H ℓ (Ω)) Im(a) C -1 GN δ (1 -δ) T 0 , (2.8) 
and if for almost every t > 0,

f (t) 2 L 2 (Ω) ε ⋆ u -2N 2ℓ-N L ∞ ((0,∞);H ℓ (Ω)) T 0 -t 2δ-1 1-δ + , (2.9) 
where δ = (2ℓ+N )+m(2ℓ-N ) 4ℓ ∈ 1 2 , 1 , then (2.6) holds true with

T ⋆ = T 0 . Remark 2.2. Notice that δ (1 -δ) = (2ℓ-N )(1-m)((2ℓ+N )+m(2ℓ-N )) 16ℓ 2 and 2δ-1 1-δ = 2 N (1-m)+2ℓm (2ℓ-N )(1-m) .
The following result collects several very useful a priori estimates and some time differentiability conditions.

Proposition 2.3. Let Ω ⊆ R N be an open subset, 0 < m 1, a ∈ C, f ∈ L 1 loc [0, ∞); L 2
(Ω) and u 0 ∈ L 2 (Ω). Assume that u is any weak solution to (2.1)-(2.3) (see Definition 4.1 below). Then we have the following results.

u ∈ L m+1 loc [0, ∞); L m+1 (Ω) , (2.10) 
                                       1 2 u(t) 2 L 2 (Ω) + Im(a) t s u(σ) m+1 L m+1 (Ω) dσ 1 2 u(s) 2 L 2 (Ω) + Im t s Ω f (σ, x) u(σ, x) dx dσ, if Im(a) 0, 1 2 u(t) 2 L 2 (Ω) + Im(a) t s u(σ) m+1 L m+1 (Ω) dσ 1 2 u(s) 2 L 2 (Ω) + Im t s Ω f (σ, x) u(σ, x) dx dσ, if Im(a) 0, (2.11) 
for any t s 0. Finally, if u satisfies one of the conditions below then the map t -→ u(t) 2 1) Let f satisfies (2.5) and let u be a weak solution (see Definition 4.1 below). By (2.11) we obtain that for any t T 0 ,

   u(t) L 2 (Ω) = u(T 0 ) L 2 (Ω) , if Im(a) = 0, u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) , if Im(a) < 0.
It follows that in those cases the finite time extinction is not reachable. If m = 1 then we have, thanks to Proposition 2.3,

∀t T 0 , u(t) L 2 (Ω) = u(T 0 ) L 2 (Ω) e -Im(a)(t-T0) .
And again, there is no finite time extinction.

2) Let u be a weak solution of (2.1) (see Definition 4.1). It is obvious from the equation and 1) of this remark that if u vanishes at a finite time T ⋆ 0 then necessarily f must satisfy (2.5) (but not necessarily the decay condition (2.9)) and that necessarily Im(a) > 0 and m < 1. If, in addition, |Ω| < ∞ then we have,

T ⋆ u(T 0 1-m L 2 (Ω) (1 -m)Im(a)|Ω| 1-m 2 + T 0 . (2.12)
Indeed, it follows from (2.5), Proposition 2.3 and Hölder's inequality that for almost every t > T 0 ,

1 2 d dt u(t) 2 L 2 (Ω) = -Im(a) u(t) m+1 L m+1 (Ω) -Im(a)|Ω| 1-m 2 u(t) m+1 L 2 (Ω) , that is, y ′ -2Im(a)|Ω| 1-m 2 y m+1 2
, where y( . ) = u( . ) 2 L 2 (Ω) . After integration we get,

y(t) 1-m 2 y(T 0 ) 1-m 2 -(1 -m)Im(a)|Ω| 1-m 2 (t -T 0 ) + ,
for any t T 0 , since y 0. Hence the result.

3) The proof of the finite time extinction of u strongly relies on Gagliardo-Nirenberg's inequality

(Lemma 5.4 below), that is: for any v ∈ H ℓ 0 (Ω) ∩ L m+1 (Ω) (or H ℓ (Ω) instead of H ℓ 0 (Ω), if Ω is a half-space or if Ω has a bounded C 0,1 -boundary), v (2ℓ+N )+m(2ℓ-N ) 2ℓ L 2 (Ω) C GN v m+1 L m+1 (Ω) v N (1-m) 2ℓ H ℓ (Ω) , (2.13) 
to get the ordinary differential inequality (5.11) below:

y ′ (t) + 2 Im(a) C -1 GN u -N (1-m) 2ℓ L ∞ ((0,∞);H ℓ (Ω)) y(t) δ 0, t > T 0 , (2.14) 
where δ = (2ℓ+N )+m(2ℓ-N ) 4ℓ

, y = u( . ) 2 L 2 (Ω) and C GN = C GN (N, m, ℓ). This holds thanks to the non increasing property (2.11) of the mass (we recall that Im(a) > 0 is necessary to have finite time extinction, by 1) of this remark). But this method fails if N 2ℓ. Indeed, first of all, Gagliardo-Nirenberg's inequality imposes that 0 m 1. And as seen in 1) of this remark, finite time extinction is not reachable for m = 1. So, assume that 0 m < 1, (2.5) is fulfilled and u satisfies (2.4), where the integer ℓ has to be chosen later. Then for any ℓ 1, we may apply Lemma 5.4 below, which is (2.13) with v = u(t), and we finally get (2.14). But if N is even and

ℓ = N 2 then δ = 1 and Lemma 5.1 below yield, u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) e -Im(a) C -1 (t-T0) , (2.15) 
for any t T 0 , where

C = C( u L ∞ ((0,∞);H ℓ (Ω))
, N, m). In the same way, if 1 ℓ < N 2 then δ > 1 and Lemma 5.1 below yield,

u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) 1 + Im(a) C -1 (1 -m)(N -2ℓ) u(T 0 ) (1-m)(N -2ℓ) 2ℓ L 2 (Ω) (t -T 0 ) 2ℓ (1-m)(N -2ℓ) , (2.16) for any t T 0 , where C = C( u L ∞ ((0,∞);H ℓ (Ω))
, N, m), and again this estimate does not give necessarily any finite time extinction result.

Finite time extinction and asymptotic behavior of solutions

Most of the results in this paper hold under the structural assumptions below.

Assumption 3.1. We assume that Ω ⊆ R N is a nonempty subset, 0 < m 1 and a ∈ C with Im(a) > 0. If m < 1 then we assume further that, 2 √ m Im(a) (1 -m)|Re(a)|, (3.1) 
|Ω| < ∞. (3.2) Theorem 3.2. Let Assumption 3.1 be fulfilled with N ∈ {1, 2, 3} and m < 1. Let f ∈ W 1,1 loc [0, ∞); L 2 (Ω) , u 0 ∈ H 1 0 (Ω)
and assume that one of the following hypotheses holds.

1) N = 1 and f ∈ W 1,1 loc [0, ∞); H 1 0 (Ω) . 2) N ∈ {1, 2, 3}, Ω is bounded with a C 1,1 -boundary and u 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω).
Let u be the unique strong solution of (2.1)-(2.3) (see Definition 4.1, Theorems 4.4 and 4.5 and Remark 4.6 below). Finally, assume that there exists T 0 0 such that, for almost every t > T 0 , f (t) = 0.

Then we have the following results.

a) There exists a finite time T ⋆ T 0 such that,

∀t T ⋆ , u(t) L 2 (Ω) = 0. (3.3)
Furthermore, T ⋆ satisfies the estimates (2.7) and (2.12).

b) There exists ε ⋆ = ε ⋆ (|a|, |Ω|, N, m) satisfying the following property. Let δ be given in Property 2)

of Theorem 2.1. If f ∈ W 1,1 (0, ∞); H 1 0 (Ω) ,      u 0 H 1 0 (Ω) + f L 1 ((0,∞);H 1 0 (Ω)) 1-m ε ⋆ min 1, T 0 , if N = 1, u 0 m H 2 (Ω) + f m W 1,1 ((0,∞);H 1 0 (Ω)) 1-m ε ⋆ min 1, T 0 , if N ∈ {2, 3},
and if for almost every t > 0,

f (t) 2 L 2 (Ω) ε ⋆ T 0 -t 2δ-1 1-δ + , then (3.3) holds with T ⋆ = T 0 . Remark 3.3. Notice that 2δ-1 1-δ = 2 1+m 1-m , if N ∈ {1, 2} and 2δ-1 1-δ = 2 3+m 1-m , if N = 3.
Remark 3.4. Theorem 3.2 is an extension of the main result of Carles and Gallo [START_REF] Carles | Finite time extinction by nonlinear damping for the Schrödinger equation[END_REF] in the sense that they obtain the same conclusion as in a) but under the additional conditions Re(a) = 0, f = 0 and without the lower bound for T ⋆ . As far as we know, the result in b) is new.

The following result gives some asymptotic decay estimates, for large time, for the case of higher dimensions N 4.

Theorem 3.5. Let Assumption 3.1 be fulfilled with N 4 and m < 1.

Let f ∈ W 1,1 loc [0, ∞); L 2 (Ω) and let u 0 ∈ H 1 0 (Ω). Assume further that f ∈ W 1,1 loc [0, ∞); H 1 0 (Ω) or u 0 ∈ H 2 (Ω)
and that Ω is bounded with a C 1,1 -boundary. Let u be the unique strong solution of (2.1)-(2.3) (see Definition 4.1, Theorems 4.4 and 4.5 and Remark 4.6 below). Finally, assume that there exists T 0 0 such that for almost every t > T 0 , f (t) = 0.

Then we have for any

t T 0 , u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) e -Im(a) C -1 (t-T0) ,
if N = 4 and u 0 ∈ H 2 (Ω), and,

u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) 1 + Im(a) C -1 (1 -m)(N -2ℓ) u(T 0 ) (1-m)(N -2ℓ) 2ℓ L 2 (Ω) (t -T 0 ) 2ℓ (1-m)(N -2ℓ) , if N 5 or u 0 ∈ H 1 0 (Ω), where C = C( u L ∞ ((0,∞);H ℓ (Ω)) , N, m).
Theorem 3.6. Let Assumption 3.1 be fulfilled, let f ∈ L 1 loc [0, ∞); L 2 (Ω) , let u 0 ∈ L 2 (Ω) and let u be the unique weak solution of (2.1)-(2.3) (see Definition 4.1 and Theorem 4.3 below). If

f ∈ L 1 (0, ∞); L 2 (Ω) , then, lim tր∞ u(t) L p (Ω) = 0, for any p ∈ (0, 2] (with p = 2, if m = 1 and |Ω| = ∞).
Remark 3.7. Note that for m = 1 in Theorem 3.6, if the stronger assumption (2.5) holds then we have,

∀t T 0 , u(t) L 2 (Ω) = u(T 0 ) L 2 (Ω) e -Im(a)(t-T0) .
See 1) of Remark 2.4.

Existence and uniqueness of solutions

Here and after, we shall always identify L 2 (Ω) with its topological dual. Let Ω ⊆ R N be an open subset, let 0 < m 1 and let X = H ∩ L m+1 (Ω), where H = L 2 (Ω) or H = H 1 0 (Ω). It follows from Lemma A.2 and 2) of Lemma A.4 below that,

X ⋆ = H ⋆ + L m+1 m (Ω), L m+1 loc [0, ∞); X ∩ W 1, m+1 m loc [0, ∞); X ⋆ ֒→ C [0, ∞); L 2 (Ω) .
This justifies the notion of solution below (and it explains the sense in which the initial condition is satisfied).

Definition 4.1. Let Ω ⊆ R N be an open subset, 0 < m 1, a ∈ C, f ∈ L 1 loc [0, ∞); L 2 (Ω) and u 0 ∈ L 2 (Ω). Let us consider the following assertions. 1) u ∈ L m+1 loc [0, ∞); H 1 0 (Ω) ∩ L m+1 (Ω) ∩ W 1, m+1 m loc [0, ∞); H ⋆ + L m+1 m (Ω) .
2) For almost every t > 0, ∆u(t) ∈ H ⋆ .

3

) u satisfies (2.1) in D ′ (0, ∞) × Ω . 4) u(0) = u 0 .
We shall say that u is a strong solution if u is a H 2 -solution or a H 1 0 -solution. We shall say that u is a H 2 -solution of (2.1)-(2.3) respectively, a H 1 0 -solution of (2.1)-(2.3) , if u satisfies the Assertions 1)-4) with H = L 2 (Ω) respectively, with H = H 1 0 (Ω) . We shall say that u is a L 2 -solution or simply a weak solution of (2.1)-(2.3) is there exists a pair,

(f n , u n ) n∈N ⊂ L 1 loc [0, ∞); L 2 (Ω) × C [0, ∞); L 2 (Ω) , (4.1) 
such that for any n ∈ N, u n is a H 2 -solution of (2.1)-(2.2) where the right-hand side member of (2.1) is f n , and if

f n L 1 ((0,T );L 2 (Ω)) ----------→ n→∞ f and u n C([0,T ];L 2 (Ω)) ---------→ n→∞ u, (4.2) 
for any T > 0. In particular, if |Ω| < ∞ or if m = 1 then H 1 0 (Ω) ֒→ L 2 (Ω) ֒→ L m+1 (Ω) with dense embedding and thus, L m+1 m (Ω) ֒→ L 2 (Ω) ֒→ H -1 (Ω). We then obtain,

g ∈ C L 2 (Ω); L 2 (Ω) ∩ C H 1 0 (Ω); H -1 (Ω)
and g is bounded on bounded sets, (

and Assertion 1) becomes, where X = H ∩ L m+1 (Ω). It follows that,

u ∈ L m+1 loc [0, ∞); H 1 0 (Ω) ∩ W 1, m+1 m loc [0, ∞); H ⋆ . ( 4 
L m+1 m (Ω) ֒→ X ⋆ ֒→ D ′ (Ω). (4.7)
This gives with (4.3), g ∈ C(X, X ⋆ ) and g is bounded on bounded sets. (

It follows from (4.3) and (4.6)-(4.8) that,

g(u), v X ⋆ ,X = g(u), v L m+1 m (Ω),L m+1 (Ω) = Re Ω g(u)vdx, (4.9) 
for any u, v ∈ X. Now, let us make some comments about Definition 4.1.

1) As seen at the beginning of this section, any strong or weak solution belongs to C [0, ∞); L 2 (Ω)

and Assertion 4) makes sense in L 2 (Ω).

2) It is obvious that a H 2 -solution is also a H 1 0 -solution and a weak solution. But it is not clear that a H 1 0 -solution is a weak solution, without assuming a continuous dependence of the solution with respect to the initial data. Such a result will be established with the additional assumption (3.1) on a (see Lemma 6.5 below).

3) If |Ω| < ∞ or if m = 1 then it follows from (4.4), (4.5) and Assertion 2) that any H 2 -solution (respectively, any H 1 0 -solution) satisfies (2.1) in L 2 (Ω) respectively, in H -1 (Ω) , for almost every t > 0. Note also that Assertion 2) of Definition 4.1 is not an additional assumption for the H 1 0solutions. such that for any n ∈ N, u n is a H 2 -solution of (2.1)-(2.2) where the right-hand side of (2.1) is f n . Applying (6.4)-(6.5) below, we deduce that for any T > 0,

∆u n C([0,T ];H -2 (Ω)) -----------→ n→∞ ∆u, g(u n ) C([0,T ];L 2 (Ω)) ---------→ n→∞ g(u), if |Ω| < ∞, g(u n ) C([0,T ];L 2 m (Ω)) ----------→ n→∞ g(u). Now, we set: Y = H 2 0 (Ω) ∩ L 2 2-m (Ω)
. By Lemma A.2 below, we have,

Y ⋆ = H -2 (Ω) + L 2 m (Ω), D(Ω) ֒→ Y ֒→ H 2 0 (Ω), L 2 (Ω), L 2 
2-m (Ω) with dense embedding,

H -2 (Ω), L 2 (Ω), L 2 m (Ω) ֒→ Y ⋆ ֒→ D ′ (Ω).
Using the above uniform convergences and (4.2), we deduce that,

∞ 0 i ∂u ∂t + ∆u + ag(u), ϕ Y ⋆ ,Y ψ(t) dt = ∞ 0 f (t), ϕ Y ⋆ ,Y ψ(t)dt.
for any ϕ ∈ Y and ψ ∈ D (0, ∞); R .

As a conclusion, if u is a weak solution then u ∈ W 1,1 loc [0, ∞); Y ⋆ and it solves (2.1) in Y ⋆ , for almost every t > 0. In particular, u satisfies (2.1) in D ′ (0, ∞) × Ω . If, in addition, |Ω| < ∞ or if m = 1 then we deduce from the above that u ∈ W 1,1 loc [0, ∞); H -2 (Ω) and u solves (2.1) in H -2 (Ω), for almost every t > 0.

6) When m < 1 then except for Theorem 2.1 and Proposition 2.3, all the results of the following Sections 2-4 will be stated with |Ω| < ∞.

7)

Notice that the boundary condition u(t) |Γ = 0 is included in the assumption u(t) ∈ H 1 0 (Ω).

Theorem 4.3 (Existence and uniqueness of L 2 -solutions). Let Assumption 3.1 be fulfilled and

let f ∈ L 1 loc [0, ∞); L 2 (Ω) .
Then for any u 0 ∈ L 2 (Ω), there exists a unique weak solution u to (2.1)-(2.3). In addition, we have the following properties.

1) The map t -→ u(t) 2 L 2 (Ω) belongs to W 1,1 loc [0, ∞); R and we have,

1 2 d dt u(t) 2 L 2 (Ω) + Im(a) u(t) m+1 L m+1 (Ω) = Im Ω f (t, x) u(t, x) dx, (4.10) 
for almost every t > 0.

2) If v is another weak solution of (2.1)

-(2.2) with v(0) = v 0 ∈ L 2 (Ω) and h ∈ L 1 loc ([0, ∞); L 2 (Ω)), instead of f in (2.1) then, u(t) -v(t) L 2 (Ω) u(s) -v(s) L 2 (Ω) + t s f (σ) -h(σ) L 2 (Ω) dσ, (4.11) 
for any t s 0.

Theorem 4.4 (Existence and uniqueness of H 1 0 -solutions). Let Assumption 3.1 be fulfilled and let f ∈ W 1,1 loc [0, ∞); H 1 0 (Ω) . Then for any u 0 ∈ H 1 0 (Ω), there exists a unique H 1 0 -solution u to (2.1)-(2.3). Furthermore, u is also a weak solution and satisfies the following properties.

1) u ∈ C [0, ∞); L 2 (Ω) ∩ C 1 [0, ∞); H -2 (Ω) and u satisfies (2.1) in H -2 (Ω), for any t 0. 2) u ∈ C w [0, ∞); H 1 0 (Ω) ∩ W 1,∞ loc [0, ∞); H -1 (Ω) and,      u(t) -u(s) L 2 (Ω) M |t -s| 1 2 , ∇u(t) L 2 (Ω) ∇u 0 L 2 (Ω) + t 0 ∇f (s) L 2 (Ω) ds, (4.12) (4.13) 
for any t s 0, where

M 2 = 2 u L ∞ ((s,t);H 1 0 (Ω)) u t L ∞ ((s,t);H -1 (Ω)) .
3) The map t -→ u(t) 2 L 2 (Ω) belongs to C 1 [0, ∞); R and (4.10) holds for any t 0.

4)

If f ∈ W 1,1 (0, ∞); H 1 0 (Ω) then we have, u ∈ L ∞ (0, ∞); H 1 0 (Ω) ∩ W 1,∞ (0, ∞); H -1 (Ω) ∩ C 1 b [0, ∞); H -2 (Ω) .
Theorem 4.5 (Existence and uniqueness of H 2 -solutions). Let Assumption 3.1 be fulfilled and

let f ∈ W 1,1 loc [0, ∞); L 2 (Ω)
. Then for any u 0 ∈ H 1 0 (Ω) with ∆u 0 ∈ L 2 (Ω), there exists a unique H 2 -solution u to (2.1)-(2.3). Furthermore, u satisfies the following properties. for any t s 0, where

1) u ∈ C [0, ∞); H 1 0 (Ω) ∩ C 1 [0, ∞); H -1 (Ω) , u satisfies (2.1) in H -1 (Ω), for any t 0. 2) u ∈ W 1,∞ loc [0, ∞); L 2 (Ω) , ∆u ∈ L ∞ loc [0, ∞); L 2 (Ω) and,            u(t) -u(s) L 2 (Ω) u t L ∞ ((s,t);L 2 (Ω)) |t -s|, ∇u(t) -∇u(s) L 2 (Ω) M |t -s| 1 2 , u t L ∞ ((0,t);L 2 (Ω)) ∆u 0 + a|u 0 | m-1 u 0 -f (0) L 2 (Ω) + t 0 f ′ (σ) L 2 (Ω) dσ, (4.14) 
M 2 = 2 u t L ∞ ((s,t);L 2 (Ω)) ∆u L ∞ ((s,t);L 2 (Ω)) .
3) The map t -→ u(t) 2 L 2 (Ω) belongs to C 1 [0, ∞); R and (4.10) holds for any t 0.

4) If f ∈ W 1,1 (0, ∞); L 2 (Ω) then we have, u ∈ C b [0, ∞); H 1 0 (Ω) ∩ C 1 b [0, ∞); H -1 (Ω) ∩ W 1,∞ (0, ∞); L 2 (Ω) , ∆u ∈ L ∞ (0, ∞); L 2 (Ω) . Remark 4.6. Let E = u ∈ H 1 0 (Ω); ∆u ∈ L 2 (Ω) with u 2 E = u 2 L 2 (Ω) + ∆u 2 L 2 (Ω)
. We recall that E ⊂ H 2 loc (Ω) (Theorem 8.8, p.183-184, in Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). If Ω = R N then E = H 2 (R N ) with equivalent norms (by the Fourier transform and Plancherel's formula), while if Ω is bounded and

Γ is of class C 1,1 then E = H 2 (Ω) ∩ H 1 0 (Ω)
with equivalent norms (Theorem 8.12, p.186, in Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and Corollary 2.5.2.2, p.131, in Grisvard [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]). Note that for the equivalence of the norms, we may use the inequalities,

∇u 2 L 2 (Ω) u L 2 (Ω) ∆u L 2 (Ω) u 2 L 2 (Ω) + ∆u 2 L 2 (Ω) , (4.17) 
which hold for any subset Ω ⊆ R N and any u ∈ H 2 (Ω) ∩ H 1 0 (Ω). (2.9) may be replaced with,

u 0 H 1 0 (Ω) + f L 1 ((0,∞);H 1 0 (Ω)) 1-m ε ⋆ min 1, T ⋆ , f (t) 2 L 2 (Ω) ε ⋆ T ⋆ -t 2δ-1 1-δ + , (4.18) 
for almost every t > 0, where ε ⋆ = ε ⋆ (Im(a), N, m). In the same way, it follows from (4.11), (4.13), (4.16), Remark 4.6 and (2.1) that if N 3 and Ω is bounded with a C 1,1 -boundary then (2.8) may be replaced with,

u 0 m H 2 (Ω) + f m W 1,1 ((0,∞);H 1 0 (Ω)) 1-m ε ⋆ min 1, T ⋆ ,
and (2.9) with (4.18), where

ε ⋆ = ε ⋆ (|a|, |Ω|, N, m).

Proof of the semi-abstract result on the finite time extinction

The proof of Theorem 2.1 relies on the three following lemmas.

Lemma 5.1. Let y ∈ W 1,1 loc [0, ∞); R with y 0 over (0, ∞), δ ∈ R, α > 0 and T 0 0. If y ′ + 2αy δ 0, Remark 5.3. Let us explain how we found y ⋆ and x ⋆ in Lemma 5.2. We look for a solution of the ordinary differential inequality (5.4). Set for any x 0,

∀x 0, f (x) = (1 -δ) -1 T -1 1-δ 0 x δ α(1 -δ)T 0 -x 1-δ , ∀t ∈ [0, T 0 ], z(t) = xT -1 1-δ 0 (T 0 -t) 1 1-δ + .
We want z(0) = x y(0) to apply our proof. A straightforward calculation yields,

z ′ (t) + αz(t) δ = f (x) (T 0 -t) δ 1-δ .
We compute, argmax x 0 f (x) = x ⋆ , where x ⋆ is given by (5.2), and f (x ⋆ ) = y ⋆ , where y ⋆ is given by (5.1). We then choose x = x ⋆ in the definition of z and we obtain the condition (5.3). 

v ∈ H ℓ 0 (Ω) ∩ L m+1 (Ω), v (2ℓ+N )+m(2ℓ-N ) 2ℓ L 2 (Ω) C v m+1 L m+1 (Ω) v N (1-m) 2ℓ H ℓ (Ω) , (5.6) 
where

C = C(m, ℓ, N ).
If Ω is a half-space or if Ω has a bounded C 0,1 -boundary then (5.6) holds for any v ∈ H ℓ (Ω).

Proof. See, for instance, Friedman [START_REF] Friedman | Partial differential equations[END_REF], Theorem 9.3, p.24, for v ∈ D(R N ) and so, by extension and

density, for v ∈ H ℓ 0 (Ω) ∩ L m+1 (Ω).
If Ω is a half-space or if Ω has a bounded C 0,1 -boundary then there exists a linear extension operator E such that for any k ∈ N 0 and p ∈ [1, ∞],

E ∈ L W k,p (Ω); W k,p (R N ) ,
and Eu = u, almost everywhere in Ω (Stein [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF], Theorem 5 and §3.2, p.181 and §3.3, p.189; Adams [START_REF] Adams | Sobolev spaces[END_REF], Theorem 4.26, p.84; see also Grisvard [21], Theorem 1.4.3.1, p.25).

Proof of Proposition 2.3. Let the assumptions of the theorem be fulfilled. We first assume that u is a strong solution. Let H be as in Definition 4.1 and let X = H ∩ L m+1 (Ω). By Definition 4.1, we have (2.10) and by 3) and 4) of Remark 4.2, we can take the X ⋆ -X duality product with iu. Estimate (2.11) with equality then follows from (4.9) and 1) of Lemma A.5. Now, assume that u is a weak solution. Let (f n ) n∈N and (u n ) n∈N be as in Definition 4.1. According to the above, it follows from Hölder's inequality that f u ∈ L 1 loc [0, ∞); L 1 (Ω) and, 

f n u n L 1 loc ([0,∞);L 1 (Ω)) -----------→ n→∞ f u, (5.7) 1 2 u n (t) 2 L 2 (Ω) + Im(a) t s u n (σ) m+1 L m+1 (Ω) dσ = 1 2 u n (s) 2 L 2 (Ω) + Im t s Ω f n (σ, x) u n (σ, x) dx dσ, ( 5 
1 2 u n (t) 2 L 2 (Ω) + Im(a) t s u n (σ) m+1 L m+1 (Ω∩B(0,R)) dσ 1 2 u n (s) 2 L 2 (Ω) + Im t s Ω f n (σ, x) u n (σ, x) dx dσ,
for any t > s > 0, R > 0 and n ∈ N. Passing to the limit in n first and then in R then, we obtain (2.10) and (2.11) with the help of the monotone convergence Theorem and (5.7). We proceed in the same way if |Ω| = ∞, m < 1 and Im(a) 0.

Proof of Theorem 2.1. By (5.6) and Proposition 2.3, we have for almost every t > 0,

u(t) (2ℓ+N )+m(2ℓ-N ) 2ℓ L 2 (Ω) C GN u N (1-m) 2ℓ L ∞ ((0,∞);H ℓ (Ω)) u(t) m+1 L m+1 (Ω) , d dt u(t) 2 L 2 (Ω) + 2Im(a) u(t) m+1 L m+1 (Ω) = 2Im Ω f (t, x)u(t, x)dx.
It follows that,

d dt u(t) 2 L 2 (Ω) + 2α u(t) 2δ L 2 (Ω) 2 Ω |f (t, x)||u(t, x)|dx, (5.9) 
for almost every t > 0, where α = Im(a)C -1 GN u

-N (1-m) 2ℓ L ∞ ((0,∞);H ℓ (Ω)) and δ = (2ℓ+N )+m(2ℓ-N ) 4ℓ . Since 0 < m < 1 and ℓ = N 2 + 1, we have 1 2 < δ < 1. Using the Young inequality, xy ε -p ′ p ′ x p ′ + ε p p y p , with x = f (t) L 2 (Ω) , y = u(t) L 2 (Ω) , p = 2δ and ε = (αδ) 1 2δ
, one obtains with Cauchy-Schwarz's inequality,

2 Ω |f (t, x)||u(t, x)|dx 2δ -1 δ (αδ) -1 2δ-1 f (t) 2δ 2δ-1 L 2 (Ω) + α u(t) 2δ L 2 (Ω) . (5.10) 
Finally, set for any t 0, y(t) = u(t) 2 L 2 (Ω) and let us prove Property 1). If f satisfies (2.5) then (5.9) may be rewritten as, y ′ (t) + 2αy(t) δ 0, (5.11) for almost every t > T 0 . We then conclude with the help of Lemma 5.1. Now assume that (2.8)-(2.9) hold where the constant ε ⋆ has to be determined later. We then have,

y(0) 1-δ α δ (1 -δ) T 0 , (5.12) 
f (t) 2 L 2 (Ω) ε ⋆ u - N (1-m) 2ℓ 1 1-δ L ∞ ((0,∞);H ℓ (Ω)) T 0 -t 2δ-1 1-δ + , (5.13) 
where (5.12) is a consequence of (2.8) and (5.13) is nothing else but (2.9). Gathering together (5.9),

(5.10) and (5.13), one gets

y ′ (t) + αy(t) δ 2δ -1 δ (Im(a)C -1 GN δ) -1 2δ-1 ε δ 2δ-1 ⋆ u -N (1-m) 2ℓ 1 1-δ L ∞ ((0,∞);H ℓ (Ω)) T 0 -t δ 1-δ + . Choosing ε ⋆ = (2δ -1) -2δ-1 δ (Im(a)C -1 GN δ) 1 1-δ (1 -δ) 2δ-1 δ(1-δ) , one obtains, y ′ (t) + αy(t) δ y ⋆ T 0 -t δ 1-δ + .
for almost every t > 0, where y ⋆ is given by (5.1). Notice that (5.12) is nothing else but (5.3). We infer by Lemma 5.2 that y(t) = 0, for any t T 0 .

6 Proofs of the existence and uniqueness theorems Lemma 6.1. Let Assumption 3.1 be fulfilled. Let us define the following (nonlinear) operator on

L 2 (Ω).    D(A) = u ∈ H 1 0 (Ω); ∆u ∈ L 2 (Ω) , ∀u ∈ D(A), Au = -i∆u -ia|u| -(1-m) u, (6.1) 
Then A is a maximal monotone operator on L 2 (Ω) (and so m-accretive) with dense domain.

The proof relies on the following lemmas.

Lemma 6.2 ([26]

). Let 0 < m 1. Set for any z ∈ C, g(z) = |z| -(1-m) z (g(0) = 0). Then for any

(z 1 , z 2 ) ∈ C × C, 2 √ m Im g(z 1 ) -g(z 2 ) z 1 -z 2 (1 -m)Re g(z 1 ) -g(z 2 ) z 1 -z 2 , (6.2) 
|g(z 1 ) -g(z 2 )| 3|z 1 -z 2 | m . (6.3) 
Let Ω ⊆ R N be an open subset. We define the mapping for any measurable function u : Ω -→ C, which we still denote by g, by g(u)(x) = g(u(x)). Then for any p ∈ [1, ∞),

g ∈ C L p (Ω); L p m ( 
Ω) and g is bounded on bounded sets, (6.4)

g ∈ C L 2 (Ω); L 2 (Ω) and g is bounded on bounded sets, if |Ω| < ∞. (6.5) Finally, let a ∈ C with Im(a) > 0 satisfying (3.1). If g(u) -g(v) (u -v) ∈ L 1 (Ω) then, Re   -i a Ω (g(u) -g(v))(u -v)dx   0. (6.6) 
We may choose, for instance, u, v ∈ L 2 (Ω), if |Ω| < ∞, or u, v ∈ L m+1 (Ω), in the general case.

Proof. Estimate (6.2) is Lemma 2.2 of Liskevich and Perel ′ muter [START_REF] Liskevich | Analyticity of sub-Markovian semigroups[END_REF] while (6.3) comes from Lemma A.1, implying (6.4) and (6.5). Finally, by (6.4), (6.5) and Hölder's inequality, we have

g(u) -g(v) (u -v) ∈ L 1 (Ω)
, for any u, v as in the statement of the lemma and by (6.2),

Re   -i a Ω g(u) -g(v) (u -v)dx   = Im(a)Re Ω g(u) -g(v) u -v dx + Re(a)Im Ω g(u) -g(v) u -v dx Im(a) -|Re(a)| 1 -m 2 √ m Re Ω g(u) -g(v) u -v dx 0.
This ends the proof.

Proof of Lemma 6.1. The density of the domain of the operator is obvious. Let g be as in Lemma 6.2. It is well known that (-i∆, D(A)) is a maximal monotone operator on L 2 (Ω) (Proposition 2.6.12, p.31, in Cazenave and Haraux [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF]). In addition, if we define B on L 2 (Ω) by Bu = -iag(u), it follows from (6.4)-(6.6) that B ∈ C(L 2 (Ω); L 2 (Ω)) and

(Bu -Bv, u -v) L 2 (Ω) = Re   -i a Ω (g(u) -g(v))(u -v)dx   0,
for any u, v ∈ L 2 (Ω). We then infer that A = -i∆ + B is a maximal monotone operator (Brezis [11],

Corollary 2.5, p.33 and Corollary 2.7, p.36).

To obtain (4.13), we need to regularize the nonlinearity in order to apply the ∇ operator. We then establish the next lemma. and let ε ∈ (0, 1). Let for any u ∈ L 2 (Ω), g ε (u) = (|u| 2 + ε) -1-m 2 u. Finally, let g be as in Lemma 6.2

and let D(A) be defined by (6.1). Then, In other words, one directly obtains (6.9).

g ε ∈ C L 2 (Ω); L 2 (Ω) ∩ C H 1 0 (Ω); H 1 0 (Ω) , (6.7 
Proof of Lemma 6.3. A straightforward calculation shows that for any ε ∈ (0, 1),

|g ε (u) -g ε (v)| Cε -1 |u -v|, |∇g ε (u)| Cε -1 |∇u|.
It follows that if u ∈ H 1 0 (Ω) then g ε (u) ∈ H 1 0 (Ω) and (6.7) comes from the above estimates and the partial converse of the dominated convergence Theorem (see, for instance, Brezis [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], Theorem 4.9, p.94). Let us turn out to the proof of (6.8). Let u ∈ D(A). It follows from (6.7) that we can take the scalar product in L 2 between iag ε (u) and ∆u. We then obtain,

Re   ia Ω g ε (u)∆udx   = (iag ε (u), ∆u) L 2 (Ω) = -(ia∇g ε (u), ∇u) L 2 (Ω) = Re   -ia Ω |∇u| 2 (|u| 2 + ε) -(1 -m)Re(u∇u).u∇u (|u| 2 + ε) 3-m 2 dx   = Im(a) Ω |∇u| 2 (|u| 2 + ε) -(1 -m)|Re(u∇u)| 2 (|u| 2 + ε) 3-m 2 dx -Re(a)
Ω (1m)Re(u∇u).Im(u∇u)

(|u| 2 + ε) 3-m 2 dx = ε Im(a) Ω |∇u| 2 (|u| 2 + ε) 3-m 2 dx + Im(a) Ω m|Re(u∇u)| 2 + |Im(u∇u)| 2 (|u| 2 + ε) 3-m 2 dx -Re(a) Ω (1 -m)Re(u∇u).Im(u∇u) (|u| 2 + ε) 3-m 2 dx,
where we used in the last equality the fact that, |g(u)|, for any ε > 0, (6.9) is a consequence of (6.8) and the dominated convergence Theorem.

Concerning the continuous dependence with respect to the data we have: 

Let X = L 2 (Ω) ∩ L m+1 (Ω) or X = H 1 0 (Ω) ∩ L m+1 (Ω). Finally, let f 1 , f 2 ∈ L 1 loc ([0, ∞); L 2 (Ω)) and let u, v ∈ L p loc [0, ∞); X ∩ W 1,p ′ loc [0, ∞); X ⋆ ,
for some 1 < p < ∞. If,

iu t + ∆u + a|u| -(1-m) u = f 1 , iv t + ∆v + a|v| -(1-m) v = f 2 , in D ′ (0, ∞) × Ω , then u, v ∈ C [0, ∞); L 2 (Ω) and u(t) -v(t) L 2 (Ω) u(s) -v(s) L 2 (Ω) + t s f 1 (σ) -f 2 (σ) L 2 (Ω) dσ, (6.11) 
for any t s 0.

Proof. By Lemma A.2 and the dense embedding X ֒→ L 2 (Ω), we have L 2 (Ω) ֒→ X ⋆ ֒→ D ′ Ω) and for any (x, y) ∈ L 2 (Ω) × X,

(x, y) L 2 (Ω) = x, y L 2 (Ω),L 2 (Ω) = x, y X ⋆ ,X . (6.12) 
It follows from above and (4.8) that the equations in the lemma make sense in X ⋆ and we then have,

i(u -v) t + ∆(u -v) + ag(u) -ag(v) = f 1 -f 2 , in X ⋆ ,
almost everywhere on (0, ∞), where g is as in Lemma 6.2. Taking the X ⋆ -X duality product of the above equation with i(uv), it follows from 2) of Lemma A.4, 1) of Lemma A.5 and (6.12) that

u, v ∈ C [0, ∞); L 2 (Ω) , the mapping t -→ u(t) -v(t) 2 L 2 (Ω) belongs to W 1,1 loc [0, ∞); R and, 1 2 d dt u( . ) -v( . ) 2 L 2 (Ω) + ag(u) -ag(v), i(u -v) X ⋆ ,X = f 1 -f 2 , i(u -v) L 2 (Ω) ,
almost everywhere on (0, ∞). Applying (4.9), (6.6) and Cauchy-Schwarz's inequality to the above, one infers

1 2 d dt u( . ) -v( . ) 2 L 2 (Ω) f 1 -f 2 L 2 (Ω) u -v L 2 (Ω) ,
almost everywhere on (0, ∞). Integrating over (s, t), one obtains (6.11).

Proof of Theorem 4.5. By Lemma 6.1 and Vrabie [START_REF] Vrabie | Compactness methods for nonlinear evolutions[END_REF] (Theorem 1.7.1, p.23), there exists a unique

u ∈ W 1,∞ loc [0, ∞); L 2 (Ω) satisfying u(t) ∈ H 1 0 (Ω), ∆u(t) ∈ L 2 ( 
Ω) and (2.1) in L 2 (Ω), for almost every t > 0, u(0) = u 0 and (4.16). Then (4.14) comes from (4.16). It follows from 1) of Lemma A.4, (6.4)-(6.5), (4.16), (4.17) and (2.1) that,

f ∈ C [0, ∞); L 2 (Ω) , (6.13) 
|u| 

-(1-m) u ∈ C [0, ∞); L 2 (Ω) , (6.14 
) ∆u ∈ L ∞ loc [0, ∞); L 2 (Ω) , (6.15) 
u ∈ L ∞ loc [0, ∞); H 1 0 (Ω) , so that u is a H 2 -solution and u ∈ C [0, ∞); H 1 0 (Ω) (by 3) of Lemma A.4). So, ∆u ∈ C [0, ∞); H -1 (Ω) . ( 6 
(Ω) × W 1,1 loc ([0, ∞); L 2 (Ω)) in L 2 (Ω) × L 1 loc ([0, ∞); L 2 (Ω)
), Theorem 4.5, (6.11) and completeness of C [0, T ]; L 2 (Ω) , for any T > 0. Property 1) comes from Proposition 2.3. Estimate (4.11) being stable by passing to the limit in C [0, T ]; L 2 (Ω) × L 1 (0, T ); L 2 (Ω) , for any T > 0, it is sufficient to establish it for the H 2 -solutions. This then comes from Lemma 6.5 and the uniqueness conclusion of the theorem follows. Finally, Property 1) comes from Proposition 2.3.

Proof of Theorem 4.4. The uniqueness of solutions comes from Lemma 6.5. Let

f ∈ W 1,1 loc ([0, ∞); H 1 0 (Ω)) and let u 0 ∈ H 1 0 (Ω). Let (ϕ n ) n∈N ⊂ H 2 0 (Ω) be such that ϕ n H 1 0 (Ω)
----→ n→∞ u 0 . Finally, let g be defined as in Lemma 6.2 and for each n ∈ N, let u n be the unique H 2 -solution of (2.1)-(2.2) such that u n (0) = ϕ n ,

given by Theorem 4.5. By Lemma 6.5, we have for any T > 0 and n, p ∈ N,

u n C([0,T ];L 2 (Ω)) ϕ n L 2 (Ω) + T 0 f (t) L 2 (Ω) dt, (6.17) 
u n -u p L ∞ ((0,∞);L 2 (Ω)) ϕ n -ϕ p L 2 (Ω) ,
It follows that for any T > 0, (u n ) n∈N is a Cauchy sequence in C [0, T ]; L 2 (Ω) . As a consequence, and with (6.4)-(6.5), there exists u ∈ C [0, ∞); L 2 (Ω) such that for any T > 0,

u n C([0,T ];L 2 (Ω)) ---------→ n→∞ u, (6.18) 
g(u) ∈ C [0, T ]; L 2 (Ω) , (6.19 
)

g(u n ) C([0,T ];L 2 (Ω)) ---------→ n→∞ g(u). (6.20) 
By definition, it follows from (6.18) that u is a weak solution of (2.1)-(2.3) (take f n = f, for any n ∈ N). By 3) of Remark 4.2, we can take the L 2 -scalar product of (2.1) with -i∆u n and it follows from (A.4) that for any n ∈ N and almost every s > 0,

1 2 d dt ∇u n (s) 2 L 2 (Ω) + Re   ia Ω g(u n (s))∆u n (s)dx   = ∇f (s), i∇u n (s) L 2 (Ω) ,
which gives with (6.9), Remark 6.4 and Cauchy-Schwarz's inequality,

1 2 d dt ∇u n (s) 2 L 2 (Ω) ∇f n (s) L 2 (Ω) ∇u n (s) L 2 (Ω) .
By integration, we obtain for any t > 0 and any n ∈ N,

∇u n (t) L 2 (Ω) ∇ϕ n L 2 (Ω) + t 0 ∇f (s) L 2 (Ω) ds. ( 6 

.21)

By the Sobolev embedding 1) of Lemma A.4,

W 1,1 loc [0, ∞); L 2 (Ω) ֒→ C [0, ∞); L 2 (Ω) , (6.22) 
(6.17), (6.20), (6.21) and (2.1), we infer that,

(u n ) n∈N is bounded in L ∞ (0, T ); H 1 0 (Ω) ∩ W 1,∞ (0, T ); H -1 (Ω) , (6.23) 
for any t > T 0 . It follows that ℓ 0 = 0. Now, assume that m < 1 and suppose, by contradiction, that ℓ 0 = 0. Let q ∈ (2, ∞) with (N -2)q < 2N. By Hölder's inequality and Sobolev's embedding H 1 0 (Ω) ֒→ L q (Ω), there exists θ ∈ (0, 1) such that, 0 < ℓ 0 u(t) L 2 (Ω) u(t) θ L m+1 (Ω) u(t) 1-θ L q (Ω)

C u(t) θ L m+1 (Ω) u 1-θ L ∞ ((0,∞);H 1 0 (Ω)) , for any t > T 0 . We infer that, inf Letting n ր ∞, we obtain lim tր∞ u(t) L 2 (Ω) = 0. Finally, the general case comes from the embedding L 2 (Ω) ֒→ L p (Ω), which holds for any p ∈ (0, 2], as soon as |Ω| < ∞. This concludes the proof.

A Appendix

In this appendix, we recall some useful estimates and results about Sobolev spaces.

Lemma A.1. Let 0 < m 1. Then we have for any (z 1 , z 2 ) ∈ C × C,

|z 1 | -(1-m) z 1 -|z 2 | -(1-m) z 2 3|z 1 -z 2 | m , (A.1)
where |z| -(1-m) z = 0, if z = 0.

Proof. Let 0 < m < 1 (the case m = 1 being obvious). We proceed to the proof in four steps.

Step 1: ∀t, s 0, |t ms m | |t -s| m .

Let for x 1, f (x) = (x -1) m -(x m -1). Then f ′ > 0 on (1, ∞) and so f t s f (1) = 0, for any t s > 0. Hence Step 1.

Step 2: ∀a 0, ∀θ ∈ R, a ma m e iθ 2 1-m aae iθ m .

We have for any θ ∈ R, 1e iθ 1-m 2 1-m , implying 1e iθ 2 1-m 1e iθ m , therefore Step 2.

Step 3:

∀(z 1 , z 2 ) ∈ C \ {0} × C, |z 2 | -z1 |z1| z 2 m 2 m |z 1 -z 2 | m .
We have,

|z 2 | - z 1 |z 1 | z 2 = |z 2 | - z 1 |z 1 | z 1 + z 1 |z 1 | z 1 - z 1 |z 1 | z 2 = |z 2 | -|z 1 | + z 1 |z 1 | z 1 - z 1 |z 1 | z 2 |z 2 | -|z 1 | + |z 1 -z 2 | 2|z 1 -z 2 |.
Hence Step 3.

Step 4: Conclusion.

Let (z 1 , z 2 ) ∈ C × C with z 1 z 2 = 0, otherwise there is nothing to prove.

|z 1 | -(1-m) z 1 -|z 2 | -(1-m) z 2 = |z 1 | -(1-m) z 1 z 1 |z 1 | -|z 2 | -(1-m) z 2 z 1 |z 1 | = |z 1 | m -|z 2 | m + |z 2 | m -|z 2 | m z 1 |z 1 | z 2 |z 2 |
Steps 1 and 2

|z 1 -z 2 | m + 2 1-m |z 2 | -|z 2 | z 1 |z 1 | z 2 |z 2 | m = |z 1 -z 2 | m + 2 1-m |z 2 | - z 1 |z 1 | z 2 m Steps 3 3|z 1 -z 2 | m .
The lemma is proved.

The four next lemmas are, more or less, a repetition of some similar results contained in the unpublished book by Brezis and Cazenave [START_REF] Brezis | Nonlinear evolution equations[END_REF].

Lemma A.2. Let Ω ⊆ R N be a nonempty open subset, let k, m ∈ N 0 and let 1 p, q < ∞. Then D(Ω) ֒→ W k,p 0 (Ω) ∩ W m,q 0 (Ω) with dense embedding. In addition, W k,p 0 (Ω) ∩ W m,q 0 (Ω) is separable and, W k,p 0 (Ω) ∩ W m,q 0 (Ω) ⋆ = W -k,p ′ (Ω) + W -m,q ′ (Ω) ֒→ D ′ (Ω). (A.2)

Finally, if p, q > 1 then W k,p 0 (Ω) ∩ W m,q 0 (Ω) and W -k,p ′ (Ω) + W -m,q ′ (Ω) are reflexive and separable.

Proof. Set X = W k,p 0 (Ω) ∩ W m,q 0 (Ω). Without loss of generality, we may assume that p q. It is clear that D(Ω) ֒→ X. The equality in (A.2) comes from the density of D(Ω) in the spaces W j,r 0 (Ω) and Bergh and Löfström [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] (Lemma 2.3.1, p.24-25, and Theorem 2.7.1, p.32). Since for any j ∈ N 0 and r ∈ [1, ∞), W -j,r ′ (Ω) ֒→ D ′ (Ω), we have by the equality in (A.2), X ⋆ = T ∈ D ′ (Ω); T = T 1 + T 2 , (T 1 , T 2 ) ∈ W -k,p ′ (Ω) × W -m,q ′ (Ω) .

Let T ∈ X ⋆ be such that T, ϕ X ⋆ ,X = 0, for any ϕ ∈ D(Ω). It follows from above that for any ϕ ∈ D(Ω), T, ϕ D ′ (Ω),D(Ω) = T, ϕ X ⋆ ,X = 0. Then T = 0 in D ′ (Ω), hence in X ⋆ . We deduce that

2 √m

 2 Im(a) (1m)|Re(a)|, as well as the assumption (1.3) on a strong damping.

L 2 Remark 2 . 4 .

 224 (Ω) belongs to W 1,1 loc [0, ∞); R and we have equality in (2.11). a) u is a strong solution (see Definition 4.1 below), b) |Ω| < ∞, c) m = 1, d) Im(a) = 0. Here are some comments about Theorem 2.1.

Remark 4 . 2 .

 42 Before making some comments on the above definition, it is useful to analyze some peculiar properties which arise when Ω is unbounded. Let 0 < m 1. Set for any z ∈ C, g(z) = |z| -(1-m) z (g(0) = 0) and let us define the mapping for any measurable function u : Ω -→ C, which we still denote by g, by g(u)(x) = g(u(x)). Let H = L 2 (Ω) or H = H 1 0 (Ω). It follows from (6.4) below that, g ∈ C L m+1 (Ω); L m+1 m (Ω) and g is bounded on bounded sets. (4.3)

. 5 )

 5 But if |Ω| = ∞ and m < 1 then the regularity (4.4) is not anymore valid. By Lemma A.2 below, we have, D(Ω) ֒→ X ֒→ L m+1 (Ω) with both dense embeddings,(4.6) 

4 )

 4 If |Ω| = ∞ and if m < 1 then it follows from (4.8) and Assertions 1) and 2) that any H 2 -solution (respectively, any H 1 0 -solution) satisfies (2.1) in L 2 (Ω) + L m+1 m (Ω) respectively, in H -1 (Ω) + L m+1 m (Ω) , for almost every t > 0. 5) Assume that u is a weak solution. By Definition 4.1, there exists (f n , u n ) n∈N satisfying (4.1)-(4.2)

Remark 4 . 7 .Remark 4 . 8 .

 4748 Since f ∈ C [0, ∞); L 2 (Ω) (by 1) of Lemma A.4), estimate (4.16) with f (0) makes sense. It follows from (4.11) and (4.13) that if N = 1 then the decay assumptions (2.8) and

Lemma 5 . 4 (

 54 Gagliardo-Nirenberg's inequality). Let N ∈ N, let Ω ⊆ R N be an open subset, let 0 m 1 and let ℓ ∈ N. Then for any

. 8 )

 8 for any n ∈ N and ts 0. If |Ω| < ∞ or if m = 1 then for any T > 0, C([0, T ]; L 2 (Ω)) ֒→ C([0, T ]; L m+1 (Ω)) and then we are allowed to pass to the limit in (5.8) under the integral symbol.We then get with (5.7) the desired result under the hypotheses b), c) or d). If |Ω| = ∞, m < 1 and Im(a) 0 then for any T > 0, C([0, T ]; L 2 (Ω)) ֒→ C([0, T ]; L m+1 loc (Ω)). By (5.8),

Lemma 6 . 3 .

 63 Let Ω ⊆ R N be an open subset, let 0 < m < 1, let a ∈ C with Im(a) > 0 satisfying (3.1)

8 )Remark 6 . 4 . 2 L 2

 86422 ∀u ∈ D(A) such that u m ∆u ∈ L 1 (Ω), Re If Ω ⊆ R N is arbitrary, m = 1and Im(a) > 0 then for any u ∈ D(A), Re ia Ω g(u)∆udx = Im(a) ∇u

|∇u| 2 |u| 2 =

 2 |Re(u∇u)| 2 + |Im(u∇u)| 2 . To conclude, it remains to show that, (1m)|Re(a)| |Re(u∇u)| |Im(u∇u)| Im(a) m|Re(u∇u)| 2 + |Im(u∇u)| 2 . (6.10) Using our assumption on a and the following Young inequality, 2|xy| δx 2 + y 2 δ , with x = |Re(u∇u)|, y = |Im(u∇u)| and δ = √ m, we obtain, (1m)|Re(a)| |Re(u∇u)| |Im(u∇u)| 2 √ m Im(a)|Re(u∇u)| |Im(u∇u)| √ m Im(a) √ m|Re(u∇u)| 2 + |Im(u∇u)| 2 √ m Im(a) m|Re(u∇u)| 2 + |Im(u∇u)| 2 , which is (6.10). Finally, since we have g ε (u) a.e. on Ω ------→ εց0 g(u) and |g ε (u)| a.e.

Lemma 6 . 5 .

 65 Let Ω ⊆ R N be an open subset, 0 < m 1 and a ∈ C with Im(a) > 0 satisfying (3.1).

t>T0u

  (t) L m+1 (Ω) > 0, which implies with (4m+1 L m+1 (Ω) < 0, for any t > T 0 . As a consequence, limtր∞ u(t) L 2 (Ω) = -∞, a contradiction.Step 2. Conclusion.Let (ϕ n ) n∈N ⊂ H 2 0 (Ω) and (f n ) n∈N ⊂ D [0, ∞); L 2 (Ω) be such that, ϕ n L 2 (Ω) ----→ n→∞ u 0 and f n L 1 ((0,∞);L 2 (Ω)) -----------→ n→∞ f. For each n ∈ N, let u n the H 2 -solution to (2.1)-(2.2), with f n instead of f, be such that u n (0) = ϕ n ,given by Theorem 4.5. Let n ∈ N. It follows from (4.11) that,u(t) L 2 (Ω) uu n L ∞ ((0,∞);L 2 (Ω)) + u n (t) L 2 (Ω) u 0ϕ n L 2 (Ω) + ff n L 1 ((0,∞);L 2 (Ω)) + u n (t) L 2 (Ω) ,for any t > 0. We get from Step 1, lim sup tր∞ u(t) L 2 (Ω) u 0ϕ n L 2 (Ω) + ff n L 1 ((0,∞);L 2 (Ω)) .
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almost everywhere on (T 0 , ∞), then we have,

y(T 0 )e -2α(t-T0) , if δ = 1, y(T 0 )

1 + 2α(δ -1)y(T 0 ) δ-1 (t -T 0 )

for any t T 0 . In particular, if δ < 1 then for any t T ⋆ , y(t) = 0 where,

Proof. The result follows by integration of the ordinary differential inequality over (T 0 , t).

The following lemma improves a similar result contained in Antontsev, Díaz and Shmarev [START_REF] Antontsev | Energy methods for free boundary problems[END_REF] (Proposition 1.1, p.77, and its proof, p.75-77).

Lemma 5.2. Let y ∈ W 1,1 loc [0, ∞); R with y 0 over [0, ∞), δ ∈ (0, 1), α, T 0 > 0 and,

If,

and if for almost every t > 0,

then for any t T 0 , y(t) = 0.

We have for almost every t ∈ (0, T 0 ),

(5.5)

We claim that for any t ∈ [0, T 0 ], y(t) z(t). If not, since by (5.3) z(0) y(0) and y and z are continuous over [0, T 0 ] (by 1) of Lemma A.4), there exist t ⋆ ∈ [0, T 0 ) and ε ∈ (0, T 0t ⋆ ) such that 

∆u ∈ C [0, ∞); H -2 (Ω) , (6.25)

for any t 0. Since u is a weak solution, u solves (2.1) in H -2 (Ω), for almost every t > 0 (Property 5)

of Remark 4.2). As a consequence, and with help of (6.19), (6.22) and (6.25), we have that

(Ω) and u satisfies (2.1) in H -2 (Ω), for any t 0. We then infer with (6.24) that u is a H 1 0 -solution and Property 1) holds. Still by (6.24), we have for any t s 0,

which is (4.12). By (6.26), the weak lower semicontinuity of the norm and (6.21), one obtains (4.13)

and Property 2) is proved. Property 3) follows easily from Proposition 2.3 and the fact that u, f ∈ 

We then obtain the finite time extinction result and the upper bound on T ⋆ . The lower bound on T ⋆ comes from 2) of Remark 2.4. Property b) comes from Remark 4.8.

Proof of Theorem 3.5. By Theorems 4.4, 4.5 and Remark 4.6, u ∈ L ∞ (0, ∞); H ℓ (Ω) , where

The result then comes from 3) of Remark 2.4.

Proof of Theorem 3.6. Let the assumptions of the theorem be fulfilled. We proceed to the proof in two steps.

Step 1. Assume further that f ∈ D [0, ∞); L 2 (Ω) and u 0 ∈ H 2 0 (Ω). Then, lim

It follows from uniqueness and Theorem 4.5 that u is a H 2 -solution and u ∈ L ∞ (0, ∞);

0, for any t > T 0 . It follows that lim

for some ℓ 0 ∈ [0, ∞). If m = 1 then we have, one more time by (4.10), d dt u(t) 2

-2Im(a)ℓ 2 0 , D(Ω) ֒→ X is dense (Brezis [12], Corollary 1.8, p.8) and so X ⋆ ֒→ D ′ (Ω). Now, let n > k + m be large enough to have W n,p 0 (Ω) ֒→ X. Since this embedding is dense and W n,p 0 (Ω) is separable, we infer that X is separable. Finally, separability and reflexivity of the last part of the lemma present no difficulty and follow easily from reflexivity and separability of the spaces W j,r 0 (Ω), (A.2) and Eberlein-Šmulian's Theorem (Brezis [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], Theorem 3.19, p.70, and Corollary 3.27, p.73).

Lemma A.3 ([13]

). Let I ⊆ R be an open interval, let 1 p, q < ∞ and let X ֒→ Y be two Banach spaces. Then D(I; X) is dense in L p (I; X) ∩ W 1,q (I; Y ). Moreover, if Z is a Banach space such that Z ֒→ X with dense embedding then D(I; Z) is dense in L p (I; X) ∩ W 1,q (I; Y ).

Proof. We first construct a linear extension operator to bring back to the case I = R. The first statement then follows from the standard procedure of truncation and regularization, while the second statement comes from the density of D(R; Z) in C 1 c (R; X), for the norm of C 1 b (R; X).

Lemma A.4. Let Ω ⊆ R N be an open subset. Consider the Hilbert space given by D(A) with,

for any u ∈ D(A). Moreover, let X be a Banach space, let I be an open interval and let 1 < p < ∞.

We have the following results.

1) W 1,1 I; X ֒→ C b,u I; X .

2) L p (I; X) ∩ W 1,p ′ (I; X ⋆ ) ֒→ C b I; L 2 (Ω) , if X ֒→ L 2 (Ω) with dense embedding.

3) 

Let D(A) the Hilbert space be defined in Lemma A.4 and let X ֒→ L 2 (Ω) be a Banach space with dense embedding. We then have the following results.

for almost every t ∈ I.

2) If u ∈ L p (I; D(A)) ∩ W 1,p ′ (I; L 2 (Ω)) then E ∈ W 1,1 (I; R) and,

for almost every t ∈ I.

Proof of Lemmas A.4 and A.5. The proof of the embedding W 1,1 I; X ֒→ C b,u I; X is very standard and we omit its proof. Now, assume that X ֒→ L 2 (Ω) with dense embedding. We infer that

We then note that M ∈ C 1 (I; R), E ∈ C 1 (I; R) and,

for any t, s ∈ I, as soon as u ∈ D(I; X), for (A.5) and u ∈ D(I; D(A)), for (A.6). Applying Hölder's inequality in time and Young's inequality, one obtains,