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Abstract

One of the most used way to tune the parameters of power oscillations damping

controllers (like, e.g., the Power System Stabilizers (PSS) of generators) is to

provide a phase compensation to 180 degrees of the phase of the residues of the

inter-area modes to be damped and, next, to increase the gains of the controllers

in order to obtain the desired damping for the aforementioned modes. It is shown

here that this way of doing is suboptimal. First, from the physical point of

view, there is no a priori reason to compensate the phase to 180 degrees. Next,

concerning the damping of the oscillations, when the phase compensation is

computed in a coordinated way with the gain of the controller, better results are

systematically obtained. This means that, in comparison with the standard way

of phase compensation (to 180 degrees), this new tuning strategy provide the

same damping level obtained with lower gains for the controllers (i.e., with more

robust controllers) or, alternatively, higher damping levels with the same level

of gains (i.e., better performances). The optimal parameters of the controllers

are solutions of constrained optimization problems for the general case of several

controllers tuned to damp several modes. Examples on both academic and real

large-scale (the European power system model) cases are given. This result

is general and can be applied to any control framework (for classic generators

or more advanced (optimal) control, for local, inter-area or other oscillatory

modes).
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1. Introduction

The interconnected power-systems have global oscillatory phenomena which

involve several distant devices. When mainly classic synchonous generators are

involved, these oscillations are of electromechanical nature (i.e., the most par-

ticipating parts of the system in the oscillation are the turbine rotors of some

generators) and are described by the so-called inter-area modes (see, e.g., [22]).

The frequencies of these modes depend on many factors but mainly on the size

of the system and the geographic spread of the involved machines. For the Eu-

ropean power system, such frequencies actually range between 0.17Hz and 0.4.

The oscillatory modes can be damped using several grid actuators. The most

common Damping Controller (DC) are the Power System Stabilizers (PSS) loops

of the most participating machines (see, e.g., [24]), but other solutions like the

power modulation of the HVDC links [25], [7] or the STATCOMS [17] are also

used.

In all cases, the damping principle is to create a swing at the same frequency

and in phase opposition with the original oscillation such that the result is a

lower damping oscillation (see, e.g., [11], [30]). From the physical point of view,

variables in which the oscillation is highly observable and, respectively, control-

lable are chosen as inputs and, respectively, outputs of the DC. When the latter

are used on rotating generators, a brake torque has to be created. For HVDCs,

a (active and/or reactive) power modulation is done. From the mathematical

point of view, the regulator provides a phase lead or lag and an amplification

(see, e.g., [31]). Indeed, the sensitivity of the eigenvalue related to oscillation

against the gain of the regulator is proportional with the residue of the open-loop

transfer at this eigenvalue. The lead or lag is usually computed to compensate

the phase of this residue to 180 degrees and, next, the gain is computed to reach

the desired damping. Several techniques exist to compute the phase compensa-

tion and the gain - and this can be a complicated task especially when several
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modes should be simultaneous damped using several actuators like, e.g., in [24]

- but their great majority are based on the same two-steps principle mentioned

above in which the phase is first compensated to 180 degrees.

Advanced robust control has been investigated for this problem [15], [29],

[16], [26], [28]. It generally provides better robustness than the classic and di-

rect phase compensation and gain tuning mentioned above [4]. For this, a more

detailed than the residue information is needed about the system for the control

model and this is not an easy task when spread inter-area modes are the target.

Indeed, such modes involve a large number of generators which are spread over

large zones of the grid which results in high-order control models. Moreover, the

resulting controller is usually of dimension equal to the one of the control model

and its reduction (by reduction methods for dynamic systems) lower closed-loop

performances.

Mixed approaches [21] have been proposed to tune the classic lead-lag struc-

ture [31] integrating notions of robustness, like minimization of H∞ norms of key

sensitivity and complementary sensitivity transfer matrices [27]. As the struc-

ture of the regulator is a priori fixed, robustness items are taken into account

as constraints of an optimization problem which need to be solved by numeric

iterations (and for which there is no longer analytical solution as for standard

H∞ problem) with increased computational burden and difficulty.

In this paper the two-steps (phase lead/lag + gain computation of clas-

sic PSS structures [31]) damping principle is revisited both from the optimal

and practical points of view. It is shown that the a priori phase compensa-

tion at 180 degrees provides suboptimal gains of the regulators. Optimality is

here considered from the perspective of the trade-off performances (damping

increase)/robustness (small gain in high frequencies, noise attenuation, high-

order dynamics tolerance, ...). The goal is thus to improve the classic tuning

of fixed standard structures of PSS without going into advanced robust control

(like H∞, LMI or the other techniques mentioned above) in order to stay in
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the simple lead-lag formalism and to use only optimization problems easy to

solve for enginnering implementation and interpretation facilities. Moreover,

from the practical point of view, it is not necessary to ensure a 180 degrees

phase compensation since the precise maintain of the frequency of the oscilla-

tion is not a priory an issue. Better results are systematically obtained with a

coordinated - phase and gain - optimization which integrates minimal notions

of robustness and stays simple, i.e., solvable with standard solvers available in

toolboxes (like the ones in Matlab) which do not require high engineering knowl-

edge in robust/advanced control. This new method is thus proposed as a good

trade-off between performances and robustness on the one hand and complex-

ity (of minimization/synthesis) and accessibility for engineers on the other hand.

The paper is organized as follows: in Section 2 it is briefly recalled the

classic two-steps damping principle on a Single Machine connected to Infinite

Bus (SMIB) system. Section 3 put into evidence the lack of optimality and

presents a new tuning method. This method it is formally developed in Section

4 to cover all the possible situations. A large-scale example of the European

power system is also treated in Section 4.

2. Classic damping of oscillatory modes

2.1. Inter-area oscillations and PSSs

Since the development of interconnection of large electric power systems,

there have been spontaneous system oscillations at very low frequencies (see,

e.g., [32], [20], [19]). They are due to the structure of the system (topology,

inertia of the machines, ...). Their frequency is in the electromechanical range

and mainly depend on the size of the system and the spread of the mode, i.e., the

number and distance among the involved machines. In Europe, the slowest inter-

area mode is around 0.17Hz and involve machines from Turkey which oscillate

against machines in the Western part of Europe (Spain, Portugal) [32], [20]. If

low damped, they can cause generator outages and even system separation. For
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Figure 1: Machine connected to an infinite bus

this reason, damping solutions are in prevention proposed. They are explained

using the special modeling presented in the next section.

2.2. A power system model for the study of inter-area modes

During low-frequency oscillations, all the electric dynamics of the machine

(like the current induced in the damper windings, and the d and q natural

oscillations) can be neglected, i.e., expressed by algebraic equations in the model.

If, moreover, the excitation system is omitted, the so-called classic model of the

generator [11] which consists only in the torque differential equation is obtained.

For the SMIB system in Fig. 1, the analytic model is in this case

d∆δ
dt = ∆ωR
d∆ωR

dt = 1
2H (∆Pm −∆Pe −D∆ωR)

∆Pe = K∆δ

(1)

where δ, ωR, Pe, Pm, H are, respectively, the angle, speed, electrical power,

mechanical power and inertia of the machine. K is a constant which depends

mainly on the reactance of the line (K = V0

X cosδ0) and D an exogeneous damp-

ing factor which mimics the effect of the damping control as explained below.

2.3. Frequency analysis

First, one can easily extract from (1) the transfer function

H(s) =
∆δ(s)

∆Pm(s)
=

1

2Hs2 +Ds+K
(2)

of which poles are

λ1,2 =
−D ± j

√
8HK −D2

4H
(3)
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Figure 2: PSS closed-loop

and thus of damping

ξ = D

√
2H

K
. (4)

(3) gives the only inter-area mode of the system which corresponds to the swing

of the generator against the infinite bus (see, e.g., [11] or [22]). The term in (1)

which depends on D provides a brake torque if D > 0. From (4) follows

Fact 1: If a brake torque proportional to ∆ωR can be physically produced,

this will damp the mode (3).

Fact 1 inspired the control structure in Fig. 2 to damp the mode in which

a supplementary PSS loop with input the speed of the machine is added to the

already existing AVR.

The frequency of the mode (3), i.e., its imaginary part, is ω =
√

K
2H −

D2

16H2

and thus ω =
√

K
2H when D = 0. Notice also that, even when D 6= 0, ω ∼=

√
K
2H

since D2 is neglectable in comparison to 16H2. This leads to

Fact 2: Factor D improves the damping of the inter-area mode (3) without

changing (a lot) its frequency.
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2.4. Modal analysis

The swing mechanism of the inter-area oscillations can be more deeply an-

alyzed using few basic modal tools which are briefly recalled here.

Let

ẋ = Ax+Bu (5)

be a minimal state representation of the open-loop transfer H(s) mentioned

above, where x is the state vector of length n, i.e.,

H(s) = C(sI −A)−1B. (6)

Equation

det(λI −A) = 0 (7)

is referred to as the characteristic equation [22] of matrix A and its solutions

are the eigenvalues of matrix A and the poles of H(s). For any eigenvalue λi,

the n-column vector which satisfies

Aφi = λiφi (8)

is called the right eigenvector of A associated with the eigenvalue λi and,

similarly, the n-row vector which satisfies

ψiA = λiψi (9)

is called the left eigenvector of A associated with the eigenvalue λi. The

eigenvectors should be normalized and orthogonal:

ψiφj = 1 if i = j and ψiφj = 0 if i 6= j. (10)

The participation factors measure the relative participation of the kth state

variable in the ith mode:

pki = ψikφki. (11)
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In view of the eigenvector normalization (10), the sum of the participation

factors associated with any mode i (
∑n
i=1 pki) or with any state variable xi

(
∑n
k=1 pki) is equal to 1. In case of distinct eigenvalues, H(s) can also be

expanded in partial fractions as

H(s) =

n∑
k=1

rk
s− λk

+
rk

s− λk
, (12)

where rk is the residue of H(s) at pole λk and α denotes the complex con-

jugate of α.

Remark 1:

Notice that, in the case of a real power system, H(s) in Fig. 2 must contain

not only the dynamics of the machine itself, but also, the relevant dynamics of

the overall power system, i.e., the inter-area modes which are concerned. The

extraction of this transfer function and the computation of the modal analysis

indexes presented above is a difficult task in large-scale and has been studied,

for example, in [8] and [13].

Proposition 1 [18], [2]: The sensitivity of a pole λ of the closed-loop in

Fig. 2 with respect to a parameter q of the transfer function HPSS(s, q) of the

regulator PSS is

∂λ

∂q
= rλ

∂HPSS(s, q)

∂q
|s=λ (13)

where rλ is the residue of the closed-loop transfer function at pole λ.

Notice that sensitivity (13) is evaluated for a given value q0. The residue rλ

and the pole λ are also computed for this value of the parameter, i.e., for the

loop closed with HPSS(s, q0). If q0 is such that HPSS(s, q0) = 0 (i.e., for open-

loop H(s)), one can directly use Proposition 1 and the open-loop residue as an

indicator of the pole shift to achieve the desired damping. More specifically, the

situation is as in Fig. 3 where λ = σ + jω is the eigenvalue associated with the

inter-area mode which has a damping ξ in open-loop (i.e., Fig. 2 without the

8



Figure 3: Pole shift

PSS block) and should be shifted to another value λ∗ with desired damping ξ∗.

Only ξ∗ is specified at the engineering level, so λ∗ has to be found. The usual

procedure for this uses Proposition 1 in two steps:

• first, a phase compensation - lead or lag according to the situation- is

computed from φ to 180 degrees, where φ is the phase of the residu rλ

of H(s) in λ. In the case of Fig. 3, this leads to the phase lead φl1. To

achieve this compensation, HPSS(s) should have a lead/lag block of the

form

(
1 + T1s

1 + T2s

)p
, p ∈ N (14)

• next, a gain KS is computed for the PSS to bring λ in the closed-loop to

ξ∗ damping. In the case of Fig. 3 this corresponds to shift from point A

to point B. Thus

σ∗ =
−ωξ∗√
1− ξ∗2

(15)

and (13) along with the phase compensation (14) computed for 180 degrees

lead to

KS = |rλ|(σ∗ − σ). (16)
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The resulting structure of the PSS is

HPSS(s) = KS

(
1 + T1s

1 + T2s

)p
(17)

which is the standard IEEE one [31] which can be enriched by wash-out and

torsional filters as shown in [31].

Fact 3: The PSS structure (17) tuned with the 2-steps procedure above

provides the desired damping ξ∗ for the inter-area mode λ.

Fact 4: The shift of the eigenvalue from λ to λ∗ does not change the mode

frequency ω.

3. Optimality analysis

The 2-steps method provided above for the tuning of the PSS parameters

can be seen as a practical way to introduce a damping factor D into the swing

equation of the generator (1) (Facts 1 and 2). Indeed, in both cases, the damp-

ing of the mode is increased to a desired (specified) value without changing the

frequency of the mode (Facts 2 and 4). Notice that this is a sufficient way of

doing but not necessary. Indeed, any shift of the eigenvalue λ to the left, i.e.,

towards the ξ∗ axis, in the complex plane can be envisaged. From the physical

point of view, there is no need to preserve the frequency of the oscillatory mode.

The important thing is to achieve the desired damping for this mode. From the

mathematical point of view, the horizontal shift does not provide an optimal

trade-off between damping improvement and control effort. Indeed, from Sec-

tion 2, the gain of the regulator is proportional to the length of the shift segment

in the complex plane. Under the constraint of constant frequency of the mode

(i.e., the shift of λ to λ∗), this segment is AB in Fig. 3 which is obviously longer

than, for example, AC. The shift of the pole to λ
′

instead of λ∗ provides the

same damping ξ∗ but at a lower frequency ω
′
< ω.
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One can thus ask for the optimal eigenvalue shift in the complex plane. For

this, the gain and the time constants of the regulator should be simultaneously

computed by solving an optimization problem. If the same objectives as before

are kept, i.e., to achieve the desired damping ξ∗ with a minimal control effort,

and supplementary robustness requirements are added (see, e.g., [27] for basics

of robust control), the idea of the minimum distance criterion given as an ex-

ample above on Fig. 3 can be used to enhace the framework to the following

optimization problem to compute the optimal parameters of the PSS:

{KS
∗, T ∗1 , T

∗
2 } = argmin

{
KS

(
T1

T2

)p}
, (18)

subject to the following constraints

ξ ≥ ξ∗

0 ≤ KS ≤ Kmax

0 < T1, T2 ≤ Tmax.

(19)

Notice that KS(T1

T2
)p is the high frequency gain of the PSS (17) and thus

related to the open-loop high-gain. The latter should be low in order to improve

measurement noise filtering and robustness against neglected dynamics of the

power system captured in the transfer model H(s) (see [27]). It is chosen in

(18) for the cases where large phase lead (T1 > T2) are needed. This point is

treated in more detail in Section 4.

Remark 2:

As in the tuning proposed above the frequency of the mode changes, the

settling time will be modified (as it depends on the product of damping and

frequency: Ts = − δ
ξω , where δ is the settling purcentage). However, the settling

time can be easily included in the specifications if needed as a constraint in (19)

(more specifically, modifying the first constraint of (19) which involves only the

damping).
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Figure 4: Medium-scale test system

The first constraint in (19) is evaluated by a first-order approximation of the

shift of the mode deduced from Proposition 1:

∆λ = sKS
KS + sT1T1 + sT2T2, (20)

where

sKS
= ∂HPSS(s)

∂K = rλ

(
1+λT1

1+λT2

)p
sT1 = ∂HPSS(s)

∂T1
= pKSrλλ

(1+λT1)p−1

(1+λT2)p

sT2 = ∂HPSS(s)
∂T2

= −pKSrλλ
(1+λT1)p

(1+λT2)p+1 ,

(21)

and HPSS(s) is given by (17). The other constraints in (19) are of usual

technological nature.

At this stage, let us apply this new strategy to the power system in Fig. 4

of which parameters are given in Appendix A. Full models (nonlinear-7th order,

with detailed voltage and frequency regulations) were used for the control and

tests for both studied examples (the medium-scale system in this section and
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the large-scale one in the next section). It has an inter-area mode at 0.93Hz and

with damping ξ = 7.27% related to the swing of generator GENC against the

three machines in the bottom part of the on-line diagram of the system. The

modal analysis of this case as well as the large-scale one presented in the next

section was done with the SMAS3 package [23]. This mode can be observed

in the response in dashed line in Fig. 5 which shows the speed responses of

machine GENC to a short-circuit at bus NHVCEQ. The latter simulations as

well as the dynamic ones presented in the next section were carried out with

the full nonlinear model of the power system in the Eurostag framework [14].

The target damping is ξ∗ = 10%. The results of (18) with p = 2 applied

to tune the PSS of generator GENA1 are given in the first entries of Table 1

in comparison with the parameters obtained with the classic tuning presented

in Section 2 (second entries). It can be seen (for example, in the nonlinear

simulations in Fig. 5) that the same damping objective is fulfilled with a lower

gain KS of the PSS when the new tuning method is used (solid line). In both

cases a lead phase compensation is obtained (column 4 of Table 1) but the gain

is lower with the new approach especially in the high frequencies as shown in

the Bode plots of the regulators, i.e., of HPSS (17), in Fig. 6 and in the last

column of Table 1.

Table 1: Comparison of the stabilizer parameters of GENA1 achieved with robust tuning and

with standard tuning for the 4-machines case

KS
∗[pu] T ∗1 [s] T ∗2 [s] φl[deg] KHF [pu]

0.0024 / 0.3 10 / 1.58 0.13 / 0.09 108.7/118.5 13.2/92.4

The nonlinear simulations reported in Fig. 5 confirm the results of the tuning

of the PSS parameters.

Notice also the frequency of the damped mode given in Table 2.

Remark 3:

Sensitivities (21) are part of the linear model used and are computed around
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Figure 5: Short-circuit responses of the 4-machines case: solid lines, the optimal tuning ;

dash-dotted lines the classic tuning
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Figure 6: Bode plots of the regulators for the 4-machines case: solid lines, the optimal tuning

; dash-dotted lines the classic tuning

Table 2: Comparison of the frequencies of the mode to be damped

open-loop classic control proposed control

frequency [Hz] 0.93 0.93 0.94

the equilibrium point obtained in open-loop (i.e., without PSS). Table 3 com-

pares these values with the ones obtained with the loop closed by the obtained

PSS regulator. For higher precision, sensitivities might be updated during the

iterations but this would also complicate the optimization problem. However,

notice that closed-loop sensitivities are much lower (close to zero) that the open-

loop ones which means that the obtained solution is not far from the optimum

and the use of the open-loop sensitivities is an acceptable approximation (trade-

off between simplicity of the optimization and accuracy).

4. Optimal coordinated tuning for large-scale systems

The ideas introduced in the previous section are now formalized into an

algorithm valid for the general case of large-scale power systems. Several ad-
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Table 3: Comparison of the sensitivities for the 4-machines case

open-loop closed-loop

sKS
-33.7796+j3.1204 1.1695+j6.4657

sT1
-0.0161+j0.0012 -0.0006+j0.0031

sT2
0.5036+j0.5805 0.1416-j0.0512

justments are thus needed.

First, in the case of a realistic power-system, one spread inter-area mode

cannot be damped, in general, with only one PSS. Moreover, in most cases,

several inter-area modes have to be damped simultaneously. Thus, the following

multivariable form is proposed for equation (20)

∆λj =

m∑
i=1

(sKSi
KSi + sT i

1
T i1 + sT i

2
T i2), j = 1, ..., l, (22)

where l is the number of modes to be damped and m the number of PSSs

to be tuned for this and the same kind of sensitivities (13) and constraints (19)

are used.

This situation is illustrated on a realistic large-scale representation of the

interconnected European power system. More precisely, this is a representation

of the European power system before the interconnection with zone 2 (Romania

and Bulgaria) and Turkey. It consists of about 2000 buses, 2400 lines and

810 transformers. The generators with power greater than 100MW (about 400

machines) are represented by detailed dynamic models along with the detailed

models of their regulations. The rest of the generation is considered as static

injection at the load-flow stage. A winter peak load scenario is considered.

The resulting linear model is described by about 8000 state variables. It is well-

known that this system exhibits a low damped inter-area oscillation around 0.22

Hz in which the generators of the eastern part of the grid are oscillating against

the generators of the western part [3]. This phenomenon is represented by the
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first two modes of the linearized full model of which dampings are given in the

first line of Table 4. They are studied in this paper along with the one in the

third column of the same table which is of different nature; it is an inter-area

mode of the Spanish system at a slightly higher frequency (0.9 Hz) than the

first two ones. It is chosen here along with the slow ones (]1 and ]2) in order to

put into evidence the coordination needed in the tuning for damping inter-area

modes in different frequency ranges. Thus, the target is to simultaneously ensure

a 10% damping for the three modes in Table 4. This objective is interpreted as

follows: mode #1 is poorly damped and ξ1 should thus be increased, but the

damping actions should be chosen in order to not degrade the damping of the

other two modes, one directly concerned by the East-West oscillation and the

other one local to the Spanish system.

Table 4: Damping ξ[%] of the East-West modes of the European system

mode ]1 0.23Hz mode ]2 0.24Hz mode ]3 0.91Hz

without PSSs 3.8 11.7 6.2

conv. PSSs 12 9.1 7.8

optim. PSSs 12 9.1 7.8

Next, the objective function in (18) should be enriched to cover all the

situations. Indeed, in Section 3 only the situation when a phase lead is needed

for the PSS was considered. As a matter of fact, the optimal computation of

T1 and T2 can lead to a lag of phase if T1 < T2. Notice that, in the classic

tuning method recalled in Section 2, this is encountered when the residue of

the eigenvalue to be shift is of negative phase. In this case, the high frequency

gain of the PSS is not an issue for robustness which led us to the following

optimisation problem in the general case

{K∗Si
, T ∗1i

, T ∗2i
}i=1,...,m = argmin{J(KSi , T1i , T2i)} (23)
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where

J(KSi
, T1i

, T2i
) =

∑
j

KSj
+
∑
k

KSk

(
T1k

T2k

)p
(24)

with j ∈ {1, ...,m} such that T1j ≤ T2j and k ∈ {1, ...,m} such that T1k
>

T2k
.

Notice that (24) is the transposition of the robustness loop-shaping concepts

to our particular fixed structure PSS tuning problem. In case of need for phase

lead, T1 and T2 should respect high-frequency gain specification. In case of

phase lag, they are free which leads to phase margin improvement.

For the European test system presented above, the Spanish machines Al-

maraz, Cofrentes and PGR were chosen to damp the modes selected in Table

1 since they have high participation in these modes and they are not already

equipped with PSSs.

Table 5: Comparison of the stabilizer parameters achieved with robust coordinated tuning and

with classic coordinated tuning for damping of 3 modes using 3 machines of the European

system

KS
∗[pu] T ∗1 [s] T ∗2 [s] KHF [pu]

Almaraz 0.12 / 2.43 10 / 0.21 1.43 / 0.02 6.17 / 243

Cofrentes 0.0055 / 5.74 10 / 0.58 0.1 / 0.05 47.88 / 574

PGR 0 / 0.54 / 0.6 / 0.06 0 / 54

The dampings achieved with the two-phases multivariable coordinated tun-

ing method [24] based on a 180 degrees phase compensation (the latter coordi-

nated tuning method is briefly recalled in Appendix B) for the three inter-area

modes are given in row 3 of Table 4. Notice that the target damping ξ∗ = 10%

it is not achieved for all 3 modes. This is mainly due to the fact that the num-

ber of PSSs chosen for the tuning it is not sufficient to achieve such a level

of damping. In practice, the desired level could be achieved if more PSSs are
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used. Here, as we are interested only in comparing the performance level of the

two tuning methods, we adopt as target damping of the new proposed optimal

tuning method the results of the classic tuning mentioned above, i.e., the values

in the row 3 of Table 4. First, these performance objectives are feasible (as

satisfied with the classic controller). Next, if achieved with the new control, one

could directly compare robustness level and implementation facts for the two

controllers (which ensure the same level of performance). The parameters tuned

with (23) for this target are given in the first entries of Table 5 in comparison

with the ones in the second entries obtained with [24]. Indeed, the damping tar-

get is fulfilled (row 4 of Table 4). Also, only 2 PSS (instead of 3 with the calssic

tuning) are needed to provide the same damping level (the gain KS obtained

for PGR is zero).

Next, as lead phase is obtained for all the controllers, a measure of the

robustness is the high frequency gain for the tuned PSSs given in the last column

in Table 5 or their total (sum) which is 54.05 with the new proposed tuning

method and 871 with the classic one, thus sensibly lower with the new method.

The global frequency profile of the three PSSs are given in Figs. 7, 8 for both

controls (solid lines for the new controllers, dash-dotted ones for the classical

ones).

Figs. 9 and 10 show the nonlinear time-responses to a short-circuit which

excites one of the east-west inter-area modes. They confirm the results of the

linear analysis above. Notice also that, even if the linear estimated a posteriori

damping level is the same with the two tuning methods (this was the scope in

order to make possible the comparison of the performances and robustness), the

effective damping achieved in full nonlinear simulation in Figs. 9 and 10 with

the new method is higher with the new method.

Remark 4:

The optimization problem (23) has been solved with standard Matlab routines

of the Optimization toolbox at this stage. For further applications to more
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Figure 7: Almaraz Bode plots of the regulators for the European case: solid lines, the optimal

tuning ; dash-dotted lines the classic tuning

Figure 8: Cofrentes Bode plots of the European case
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Figure 9: Short-circuit responses for coordinated PSS Cofrentes
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Figure 10: Zoom of short-circuit responses Bode plots for coordinated PSS Cofrentes
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complex cases, algorithms with better performances may be used. Indeed, the

optimization methodologies have been the subject of ongoing enhancements over

the years (see, e.g., [6]), [5]).

5. Robustness

5.1. Unstructured robustness and disturbance rejection

Consider disturbances d1 and d2 on the closed-loop in Fig. 2. From a techno-

logical point of view, the input disturbance d1 corresponds to inherent actuator

faults (offset, failure, parasitic signal, ...). The output disturbance d2 can be

due to meter disfunction (failure or bias) and/or measurement noise. From a

system point of view, these signals may capture exogeneous dynamics not taken

into account in the nominal control model. This is classic for robust control

[27]. For the case of the interconnected power systems, d1 may account for volt-

age/electric dynamics whereas d2 stands for all speed/frequency disturbance

(coming from load/production imbalance, oscillatory phenomena of other na-

ture than inter-area modes, like, e.g., subsyncronous oscillations, higher order

harmonics, ...). As the control model is low frequency (focused on inter-area

modes), such neglected dynamics are of higher frequency. Here, they are con-

sidered at 10rad/sec, generated as a step response of a second-order element

tuned to this frequency. In other words,

di =
ω2

s2 + 2ξωs+ ω2
ui, i ∈ {1, 2}, (25)

where ω = 10rad/sec, ξ = 0.0025, u1 is a step of magnitude 0.1pu and u2 a

step of magnitude 0.01pu.

Fig. 11 shows speed responses of the generator equipped with the PSS with

classic (dotted line) and proposed regulator (solid lines) closed-loops of the first

example (Fig. 4) to such an input disturbance. The effect of d2 is shown in Fig.

12. In both cases, the loop closed with the proposed regulators better rejects the

disturbances. This difference is even more pregnant for higher frequencies (like
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Figure 11: Input disturbance rejection

for noises). The test is run here with such quite low frequency to account not

only for noises and high-order harmonics but also for other electric (unmodeled)

dynamics as mentioned before.

5.2. Structured robustness

Such robustness concerns variations of the parameters of the control model.

In our case, these may be due to load/generation evolution or tripping of grid

elements. Fig. 13 shows the responses of the same first example in 2 cases of line

tripping: line NHVC1-NHVA1 for the left subfigure and line NHVC1-NHVD1

for the right subfigure. Both lines are in the direct path of the oscillation of the
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Figure 12: Output disturbance rejection
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Figure 13: Line trip

inter-area mode to be damped. It is well known (see, e.g., [5]) that topological

modification of such corridor alter the inter-area mode and it is thus a good

robustness test. In both situations, better responses are obtained with the

proposed controller in comparison to the classic one (Fig. 13).

6. Conclusion

It has been shown that the 180 degrees phase compensation usually used in

the tuning of the parameters of power oscillations damping controller is sub-
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optimal. If the phase compensation is computed in conjunction with the gains

via a coordinated optimization problem, better results are obtained. For the

case of several controllers tuned to damp several modes, even with the phase

compensation constrained to 180 degrees, an optimization is needed for the com-

putation of the gains in a coordinated manner (see, e.g., [24]). The methodology

proposed here needs thus no extra effort for the implementation. It was tested

for the tuning of PSS loops of classic synchronous generators but it is valid for

the tuning of any structure of regulator for any damping actuator (for example,

the power modulation of HVDC links or other FACTS). A new optimization

criterion which integrates some basic robustness principles has been proposed

to illustrate the advantages against the constraint on the phase compensation to

180 degrees. This approach can be applied for any oscillatory modes: inter-area,

local, intraplant or electrical coupling ones [1]. The robustness demand can be

further improved by several means like in, e.g., [9], [10], [12].

Appendix A. Data of the medium-scale test system (Fig. 4)

generators’ parameters (no load pu):

stator resistance 0.005pu, stator leakage 0.219pu, direct reactance 2.57pu, direct

transient reactance 0.422pu, direct sub-transient reactance 0.3pu, direct tran-

sient time constant 7.695s, direct sub-transient time constant 0.061s, quadra-

ture reactance 2.57pu, quadrature transient reactance 0.662pu, quadrature sub-

transient reactance 0.301pu, quadrature transient time constant 0.643s, quadra-

ture sub-transient time constant 0.095s, inertia 4MWs/MVA

step-up transformers: 24kV/380kV, rate=1.1pu, X=0.00769pu for GENA1,

X=0.02251pu for GENB1, X=0.09pu for GENB2, X=0.00769pu for GENC

(base 24kV)

regulators:

AVR of each machine: EFD = KV
Ke

1+sTe
(Vref − Vt) with Ke=1pu; KV =
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40pu;Te=0.1s for GENA1 and GENB1 and K=30pu; Te=1s for GENB2 and

GENC

GOVERNOR for all the machines: Tm = 1
1+0.1s

1
1+0.5s

1+3s
1+10s (1− ω)

standard PSS of machine GENC: KS = 1.07pu, T1 = 3.11s, T2 = 0.73s

optimal PSS of machine GENC: KS = 4.32pu, T1 = 3.09s, T2 = 1.67s

generation and load:

NGENA1: P=900MW, Q=300MVAR, V=24kV

NGENB1: P=400MW, Q=190MVAR, V=24kV

NGENB2: P=900MW, Q=300MVAR, V=24kV

NGENC: P=2504MW, Q=1500MVAR, V=24kV

NHVA1: P=-1000MW, Q=-100MVAR

NHVB1: P=-1000MW, Q=-300MVAR

NHVC1: P=-500MW, Q=-100MVAR

NHVC2: P=-600MW, Q=-200MVAR

NHVCEQ:P=-700MW, Q=-150MVAR

line reactances [pu](Sbase=100MVA and Vbase=380kV):

NHVC1-NHVA1: 0.490 NHVC2-NHVB1: 0.5

NHVD1-NHVC1: 0.500 NHVC1-NHVC2: 0.011

NHVD1-NHVB1: 0.011 NHVCEQ-NHVC1 and 2: 0.22

NHVA3-NHVD1: 0.011 NHVA3-NHVA1: 0.02
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Appendix B. Coordinated tuning method with phase compensation

to 180 degrees [24]

The design is carried out in two consecutive steps:

- first, the phase compensation of each PSS is computed such that the phase

of the eigenvalues sensitivities becomes as closer as possible to 180 degrees. If

a filtering ratio αi =
T1i

T2i
is assumed for each PSS i, the following problem is

solved

{T ∗1i
}i=1,...,m = argmin{

∑p
j=1 βijcos[arg(Sj(T1i

)]}

T ∗2i
=

T∗1i
αi
,

(B.1)

where βij =
|rij |∑p

k=1|rkj | , Sj(T1i) =
∂HPSSi

(s)

∂KSi

|s=λj and HPSSi(s) is of form

(17) for each PSS i.

- next, the gains of the controllers are determined to shift the eigenvalues up

to the desired damping. The gains of the controllers are determined by solving

another programming problem of which objective function is to minimize the

control action. The latter is expressed as the sum of the gains weighted by the

sensitivities:

{K∗Si
} = argmin{

m∑
j=1

γjKSj
}, (B.2)

where γj =
∑n
k=1 |

∂λk

∂KSj
|.
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