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One of the most used way to tune the parameters of power oscillations damping controllers (like, e.g., the Power System Stabilizers (PSS) of generators) is to provide a phase compensation to 180 degrees of the phase of the residues of the inter-area modes to be damped and, next, to increase the gains of the controllers in order to obtain the desired damping for the aforementioned modes. It is shown here that this way of doing is suboptimal. First, from the physical point of view, there is no a priori reason to compensate the phase to 180 degrees. Next, concerning the damping of the oscillations, when the phase compensation is computed in a coordinated way with the gain of the controller, better results are systematically obtained. This means that, in comparison with the standard way of phase compensation (to 180 degrees), this new tuning strategy provide the same damping level obtained with lower gains for the controllers (i.e., with more robust controllers) or, alternatively, higher damping levels with the same level of gains (i.e., better performances). The optimal parameters of the controllers are solutions of constrained optimization problems for the general case of several controllers tuned to damp several modes. Examples on both academic and real large-scale (the European power system model) cases are given. This result is general and can be applied to any control framework (for classic generators or more advanced (optimal) control, for local, inter-area or other oscillatory modes).

Introduction

The interconnected power-systems have global oscillatory phenomena which involve several distant devices. When mainly classic synchonous generators are involved, these oscillations are of electromechanical nature (i.e., the most participating parts of the system in the oscillation are the turbine rotors of some generators) and are described by the so-called inter-area modes (see, e.g., [START_REF] Rogers | Power Systems Oscillations[END_REF]).

The frequencies of these modes depend on many factors but mainly on the size of the system and the geographic spread of the involved machines. For the European power system, such frequencies actually range between 0.17Hz and 0.4.

The oscillatory modes can be damped using several grid actuators. The most common Damping Controller (DC) are the Power System Stabilizers (PSS) loops of the most participating machines (see, e.g., [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF]), but other solutions like the power modulation of the HVDC links [START_REF] Ruan | Improving power system damping by utilizing VSC-HVDC[END_REF], [START_REF] Guo | Small-signal dynamics and control parameters optimization of hybrid multi-infeed HVDC system[END_REF] or the STATCOMS [START_REF] Haque | Damping improvement by FACTS devices: A comparison between STATCOM and SSSC[END_REF] are also used.

In all cases, the damping principle is to create a swing at the same frequency and in phase opposition with the original oscillation such that the result is a lower damping oscillation (see, e.g., [START_REF] Kundur | Power System Stability and Control[END_REF], [START_REF] Yu | Electric Power System Dynamics[END_REF]). From the physical point of view, variables in which the oscillation is highly observable and, respectively, controllable are chosen as inputs and, respectively, outputs of the DC. When the latter are used on rotating generators, a brake torque has to be created. For HVDCs, a (active and/or reactive) power modulation is done. From the mathematical point of view, the regulator provides a phase lead or lag and an amplification (see, e.g., [START_REF]IEEE Recommended Practice for Excitation System Models for Power System Stability Studies[END_REF]). Indeed, the sensitivity of the eigenvalue related to oscillation against the gain of the regulator is proportional with the residue of the open-loop transfer at this eigenvalue. The lead or lag is usually computed to compensate the phase of this residue to 180 degrees and, next, the gain is computed to reach the desired damping. Several techniques exist to compute the phase compensation and the gain -and this can be a complicated task especially when several modes should be simultaneous damped using several actuators like, e.g., in [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF] -but their great majority are based on the same two-steps principle mentioned above in which the phase is first compensated to 180 degrees.

Advanced robust control has been investigated for this problem [START_REF] Mondal | Robust Control of Inter-area Oscillations in a Multimachine Network Employing LMI Based Wide Area TCSC Controller[END_REF], [START_REF] Vance | A Robust Control Technique for Damping Interarea Oscillations[END_REF], [START_REF] Mekki | Design of Damping Controllers of Inter-Area Oscillations in a Multimachine Network Employing LMI Based Wide Area TCSC Controller[END_REF], [START_REF] Shiau | Power Swing Damping Controller Design Using an Iterative Linear Matrix Inequality Algorithm[END_REF], [START_REF] Taranto | A Robust Frequency Domain Optimization Technique for Tuning Series Compensation Damping Controllers[END_REF]. It generally provides better robustness than the classic and direct phase compensation and gain tuning mentioned above [START_REF] Boukarim | A Comparison of Classical, Robust, and Decentralized Control Designs for Multiple Power System Stabilizers[END_REF]. For this, a more detailed than the residue information is needed about the system for the control model and this is not an easy task when spread inter-area modes are the target. Indeed, such modes involve a large number of generators which are spread over large zones of the grid which results in high-order control models. Moreover, the resulting controller is usually of dimension equal to the one of the control model and its reduction (by reduction methods for dynamic systems) lower closed-loop performances.

Mixed approaches [START_REF] Rimorov | Quasi-Steady-State Approach for Analysis of Frequency Oscillations and Damping Controller Design[END_REF] have been proposed to tune the classic lead-lag structure [START_REF]IEEE Recommended Practice for Excitation System Models for Power System Stability Studies[END_REF] integrating notions of robustness, like minimization of H ∞ norms of key sensitivity and complementary sensitivity transfer matrices [START_REF] Skogestad | Multivariable Feedback Control[END_REF]. As the structure of the regulator is a priori fixed, robustness items are taken into account as constraints of an optimization problem which need to be solved by numeric iterations (and for which there is no longer analytical solution as for standard H ∞ problem) with increased computational burden and difficulty.

In this paper the two-steps (phase lead/lag + gain computation of classic PSS structures [START_REF]IEEE Recommended Practice for Excitation System Models for Power System Stability Studies[END_REF]) damping principle is revisited both from the optimal and practical points of view. It is shown that the a priori phase compensation at 180 degrees provides suboptimal gains of the regulators. Optimality is here considered from the perspective of the trade-off performances (damping increase)/robustness (small gain in high frequencies, noise attenuation, highorder dynamics tolerance, ...). The goal is thus to improve the classic tuning of fixed standard structures of PSS without going into advanced robust control (like H ∞ , LMI or the other techniques mentioned above) in order to stay in the simple lead-lag formalism and to use only optimization problems easy to solve for enginnering implementation and interpretation facilities. Moreover, from the practical point of view, it is not necessary to ensure a 180 degrees phase compensation since the precise maintain of the frequency of the oscillation is not a priory an issue. Better results are systematically obtained with a coordinated -phase and gain -optimization which integrates minimal notions of robustness and stays simple, i.e., solvable with standard solvers available in toolboxes (like the ones in Matlab) which do not require high engineering knowledge in robust/advanced control. This new method is thus proposed as a good trade-off between performances and robustness on the one hand and complexity (of minimization/synthesis) and accessibility for engineers on the other hand.

The paper is organized as follows: in Section 2 it is briefly recalled the classic two-steps damping principle on a Single Machine connected to Infinite Bus (SMIB) system. Section 3 put into evidence the lack of optimality and presents a new tuning method. This method it is formally developed in Section 4 to cover all the possible situations. A large-scale example of the European power system is also treated in Section 4.

Classic damping of oscillatory modes

Inter-area oscillations and PSSs

Since the development of interconnection of large electric power systems, there have been spontaneous system oscillations at very low frequencies (see, e.g., [START_REF] Entso-E | Final Report Stability Study[END_REF], [START_REF] Nassar | System analysis of the Turkish power system for interconnection with continental Europe Power Plants and Power Systems Control[END_REF], [START_REF] Pal | Applying a robust control technique to damp low frequency oscillations in the WECC[END_REF]). They are due to the structure of the system (topology, inertia of the machines, ...). Their frequency is in the electromechanical range and mainly depend on the size of the system and the spread of the mode, i.e., the number and distance among the involved machines. In Europe, the slowest interarea mode is around 0.17Hz and involve machines from Turkey which oscillate against machines in the Western part of Europe (Spain, Portugal) [START_REF] Entso-E | Final Report Stability Study[END_REF], [START_REF] Nassar | System analysis of the Turkish power system for interconnection with continental Europe Power Plants and Power Systems Control[END_REF]. If low damped, they can cause generator outages and even system separation. For 

A power system model for the study of inter-area modes

During low-frequency oscillations, all the electric dynamics of the machine (like the current induced in the damper windings, and the d and q natural oscillations) can be neglected, i.e., expressed by algebraic equations in the model.

If, moreover, the excitation system is omitted, the so-called classic model of the generator [START_REF] Kundur | Power System Stability and Control[END_REF] which consists only in the torque differential equation is obtained. For the SMIB system in Fig. 1, the analytic model is in this case

d∆δ dt = ∆ω R d∆ω R dt = 1 2H (∆P m -∆P e -D∆ω R ) ∆P e = K∆δ (1)
where δ, ω R , P e , P m , H are, respectively, the angle, speed, electrical power, mechanical power and inertia of the machine. K is a constant which depends mainly on the reactance of the line (K = V0 X cosδ 0 ) and D an exogeneous damping factor which mimics the effect of the damping control as explained below.

Frequency analysis

First, one can easily extract from (1) the transfer function

H(s) = ∆δ(s) ∆P m (s) = 1 2Hs 2 + Ds + K (2)
of which poles are 

λ 1,2 = -D ± j √ 8HK -D 2 4H (3) 
ξ = D 2H K . (4) 
(3) gives the only inter-area mode of the system which corresponds to the swing of the generator against the infinite bus (see, e.g., [START_REF] Kundur | Power System Stability and Control[END_REF] or [START_REF] Rogers | Power Systems Oscillations[END_REF]). The term in (1) which depends on D provides a brake torque if D > 0. From (4) follows

Fact 1: If a brake torque proportional to ∆ω R can be physically produced, this will damp the mode (3).

Fact 1 inspired the control structure in Fig. 2 to damp the mode in which a supplementary PSS loop with input the speed of the machine is added to the already existing AVR.

The frequency of the mode (3), i.e., its imaginary part, is ω

= K 2H -D 2 16H 2
and thus ω = K 2H when D = 0. Notice also that, even when

D = 0, ω ∼ = K 2H since D 2 is neglectable in comparison to 16H 2 .

This leads to

Fact 2: Factor D improves the damping of the inter-area mode (3) without changing (a lot) its frequency.

Modal analysis

The swing mechanism of the inter-area oscillations can be more deeply analyzed using few basic modal tools which are briefly recalled here.

Let

ẋ = Ax + Bu (5) 
be a minimal state representation of the open-loop transfer H(s) mentioned above, where x is the state vector of length n, i.e.,

H(s) = C(sI -A) -1 B. (6) 
Equation

det(λI -A) = 0 (7) 
is referred to as the characteristic equation [START_REF] Rogers | Power Systems Oscillations[END_REF] of matrix A and its solutions are the eigenvalues of matrix A and the poles of H(s). For any eigenvalue λ i , the n-column vector which satisfies

Aφ i = λ i φ i (8) 
is called the right eigenvector of A associated with the eigenvalue λ i and, similarly, the n-row vector which satisfies

ψ i A = λ i ψ i (9) 
is called the left eigenvector of A associated with the eigenvalue λ i . The eigenvectors should be normalized and orthogonal:

ψ i φ j = 1 if i = j and ψ i φ j = 0 if i = j. ( 10 
)
The participation factors measure the relative participation of the kth state variable in the ith mode:

p ki = ψ ik φ ki . (11) 
In view of the eigenvector normalization [START_REF] Kamwa | Robust Design and Coordination of Multiple Damping Controllers Using Nonlinear Constraints Optimization[END_REF], the sum of the participation factors associated with any mode i ( n i=1 p ki ) or with any state variable x i ( n k=1 p ki ) is equal to 1. In case of distinct eigenvalues, H(s) can also be expanded in partial fractions as

H(s) = n k=1 r k s -λ k + r k s -λ k , ( 12 
)
where r k is the residue of H(s) at pole λ k and α denotes the complex conjugate of α.

Remark 1:

Notice that, in the case of a real power system, H(s) in Fig. 2 must contain not only the dynamics of the machine itself, but also, the relevant dynamics of the overall power system, i.e., the inter-area modes which are concerned. The extraction of this transfer function and the computation of the modal analysis indexes presented above is a difficult task in large-scale and has been studied, for example, in [START_REF] Kamwa | Low-Order Black-Box Models for Control System Design in Large Power Systems[END_REF] and [START_REF] Marinescu | Three-level coordination in power system stabilization[END_REF].

Proposition 1 [START_REF] Pagola | On Sensitivities, Residues and Participations: Applications to Oscillatory Stability Analy-sis and Control[END_REF], [START_REF] Arriaga | Developments in Selective Modal Analysis of Small-signal Stability in Electric Power Systems[END_REF]: The sensitivity of a pole λ of the closed-loop in Fig. 2 with respect to a parameter q of the transfer function H P SS (s, q) of the regulator PSS is

∂λ ∂q = r λ ∂H P SS (s, q) ∂q | s=λ (13) 
where r λ is the residue of the closed-loop transfer function at pole λ.

Notice that sensitivity ( 13) is evaluated for a given value q 0 . The residue r λ and the pole λ are also computed for this value of the parameter, i.e., for the loop closed with H P SS (s, q 0 ). If q 0 is such that H P SS (s, q 0 ) = 0 (i. Only ξ * is specified at the engineering level, so λ * has to be found. The usual procedure for this uses Proposition 1 in two steps:

• first, a phase compensation -lead or lag according to the situation-is computed from φ to 180 degrees, where φ is the phase of the residu r λ of H(s) in λ. In the case of Fig. 3, this leads to the phase lead φ l1 . To achieve this compensation, H P SS (s) should have a lead/lag block of the form

1 + T 1 s 1 + T 2 s p , p ∈ N (14) 
• next, a gain K S is computed for the PSS to bring λ in the closed-loop to ξ * damping. In the case of Fig. 3 this corresponds to shift from point A to point B. Thus

σ * = -ωξ * 1 -ξ * 2 (15) 
and ( 13) along with the phase compensation ( 14) computed for 180 degrees lead to

K S = |r λ |(σ * -σ). (16) 
The resulting structure of the PSS is

H P SS (s) = K S 1 + T 1 s 1 + T 2 s p ( 17 
)
which is the standard IEEE one [START_REF]IEEE Recommended Practice for Excitation System Models for Power System Stability Studies[END_REF] which can be enriched by wash-out and torsional filters as shown in [START_REF]IEEE Recommended Practice for Excitation System Models for Power System Stability Studies[END_REF].

Fact 3: The PSS structure [START_REF] Haque | Damping improvement by FACTS devices: A comparison between STATCOM and SSSC[END_REF] tuned with the 2-steps procedure above provides the desired damping ξ * for the inter-area mode λ.

Fact 4: The shift of the eigenvalue from λ to λ * does not change the mode frequency ω.

Optimality analysis

The 2-steps method provided above for the tuning of the PSS parameters can be seen as a practical way to introduce a damping factor D into the swing equation of the generator (1) (Facts 1 and 2). Indeed, in both cases, the damping of the mode is increased to a desired (specified) value without changing the frequency of the mode (Facts 2 and 4). Notice that this is a sufficient way of doing but not necessary. Indeed, any shift of the eigenvalue λ to the left, i.e., towards the ξ * axis, in the complex plane can be envisaged. From the physical point of view, there is no need to preserve the frequency of the oscillatory mode.

The important thing is to achieve the desired damping for this mode. From the mathematical point of view, the horizontal shift does not provide an optimal trade-off between damping improvement and control effort. Indeed, from Section 2, the gain of the regulator is proportional to the length of the shift segment in the complex plane. Under the constraint of constant frequency of the mode (i.e., the shift of λ to λ * ), this segment is AB in Fig. 3 which is obviously longer than, for example, AC. The shift of the pole to λ instead of λ * provides the same damping ξ * but at a lower frequency ω < ω.

One can thus ask for the optimal eigenvalue shift in the complex plane. For this, the gain and the time constants of the regulator should be simultaneously computed by solving an optimization problem. If the same objectives as before are kept, i.e., to achieve the desired damping ξ * with a minimal control effort, and supplementary robustness requirements are added (see, e.g., [START_REF] Skogestad | Multivariable Feedback Control[END_REF] for basics of robust control), the idea of the minimum distance criterion given as an example above on Fig. 3 can be used to enhace the framework to the following optimization problem to compute the optimal parameters of the PSS:

{K S * , T * 1 , T * 2 } = argmin K S T 1 T 2 p , (18) 
subject to the following constraints

ξ ≥ ξ * 0 ≤ K S ≤ K max 0 < T 1 , T 2 ≤ T max . (19) 
Notice that K S ( T1 T2 ) p is the high frequency gain of the PSS [START_REF] Haque | Damping improvement by FACTS devices: A comparison between STATCOM and SSSC[END_REF] and thus related to the open-loop high-gain. The latter should be low in order to improve measurement noise filtering and robustness against neglected dynamics of the power system captured in the transfer model H(s) (see [START_REF] Skogestad | Multivariable Feedback Control[END_REF]). It is chosen in [START_REF] Pagola | On Sensitivities, Residues and Participations: Applications to Oscillatory Stability Analy-sis and Control[END_REF] for the cases where large phase lead (T 1 > T 2 ) are needed. This point is treated in more detail in Section 4.

Remark 2:

As in the tuning proposed above the frequency of the mode changes, the settling time will be modified (as it depends on the product of damping and frequency: T s = -δ ξω , where δ is the settling purcentage). However, the settling time can be easily included in the specifications if needed as a constraint in [START_REF] Pal | Applying a robust control technique to damp low frequency oscillations in the WECC[END_REF] (more specifically, modifying the first constraint of (19) which involves only the damping). The first constraint in [START_REF] Pal | Applying a robust control technique to damp low frequency oscillations in the WECC[END_REF] is evaluated by a first-order approximation of the shift of the mode deduced from Proposition 1:

∆λ = s K S K S + s T1 T 1 + s T2 T 2 , (20) 
where

s K S = ∂H P SS (s) ∂K = r λ 1+λT1 1+λT2 p s T1 = ∂H P SS (s) ∂T1 = pK S r λ λ (1+λT1) p-1 (1+λT2) p s T2 = ∂H P SS (s) ∂T2 = -pK S r λ λ (1+λT1) p (1+λT2) p+1 , (21) 
and H P SS (s) is given by [START_REF] Haque | Damping improvement by FACTS devices: A comparison between STATCOM and SSSC[END_REF]. The other constraints in [START_REF] Pal | Applying a robust control technique to damp low frequency oscillations in the WECC[END_REF] are of usual technological nature.

At this stage, let us apply this new strategy to the power system in Fig. 4 of which parameters are given in Appendix A. Full models (nonlinear-7th order, with detailed voltage and frequency regulations) were used for the control and tests for both studied examples (the medium-scale system in this section and the large-scale one in the next section). It has an inter-area mode at 0.93Hz and with damping ξ = 7.27% related to the swing of generator GENC against the three machines in the bottom part of the on-line diagram of the system. The modal analysis of this case as well as the large-scale one presented in the next section was done with the SMAS3 package [START_REF] Rouco | A computer Package for Analysis of Small Signal Stability in Large Electric Power Systems[END_REF]. This mode can be observed in the response in dashed line in Fig. 5 which shows the speed responses of machine GENC to a short-circuit at bus NHVCEQ. The latter simulations as well as the dynamic ones presented in the next section were carried out with the full nonlinear model of the power system in the Eurostag framework [START_REF] Meyer | Eurostag, a Single Tool for Power System Simulation[END_REF].

The target damping is ξ * = 10%. The results of ( 18) with p = 2 applied to tune the PSS of generator GENA1 are given in the first entries of Table 1 in comparison with the parameters obtained with the classic tuning presented in Section 2 (second entries). It can be seen (for example, in the nonlinear simulations in Fig. 5) that the same damping objective is fulfilled with a lower gain K S of the PSS when the new tuning method is used (solid line). In both cases a lead phase compensation is obtained (column 4 of Table 1) but the gain is lower with the new approach especially in the high frequencies as shown in the Bode plots of the regulators, i.e., of H P SS [START_REF] Haque | Damping improvement by FACTS devices: A comparison between STATCOM and SSSC[END_REF], in Fig. 6 and in the last column of Table 1. 

K S * [pu] T * 1 [s] T * 2 [s] φ l [deg]
K HF [pu] 0.0024 / 0.3 10 / 1.58 0.13 / 0.09 108.7/118.5 13.2/92.4

The nonlinear simulations reported in Fig. 5 confirm the results of the tuning of the PSS parameters.

Notice also the frequency of the damped mode given in Table 2.

Remark 3:

Sensitivities ( 21) are part of the linear model used and are computed around 

Optimal coordinated tuning for large-scale systems

The ideas introduced in the previous section are now formalized into an algorithm valid for the general case of large-scale power systems. Several ad- First, in the case of a realistic power-system, one spread inter-area mode cannot be damped, in general, with only one PSS. Moreover, in most cases, several inter-area modes have to be damped simultaneously. Thus, the following multivariable form is proposed for equation ( 20)

∆λ j = m i=1 (s K S i K Si + s T i 1 T i 1 + s T i 2 T i 2 ), j = 1, ..., l, (22) 
where l is the number of modes to be damped and m the number of PSSs to be tuned for this and the same kind of sensitivities [START_REF] Marinescu | Three-level coordination in power system stabilization[END_REF] and constraints [START_REF] Pal | Applying a robust control technique to damp low frequency oscillations in the WECC[END_REF] are used.

This situation is illustrated on a realistic large-scale representation of the interconnected European power system. More precisely, this is a representation of the European power system before the interconnection with zone 2 (Romania and Bulgaria) and Turkey. It consists of about 2000 buses, 2400 lines and 810 transformers. The generators with power greater than 100MW (about 400 machines) are represented by detailed dynamic models along with the detailed models of their regulations. The rest of the generation is considered as static injection at the load-flow stage. A winter peak load scenario is considered.

The resulting linear model is described by about 8000 state variables. It is wellknown that this system exhibits a low damped inter-area oscillation around 0.22

Hz in which the generators of the eastern part of the grid are oscillating against the generators of the western part [START_REF] Breulmann | Analysis and Damping of Inter-area Oscillations in the UCTE-CENTREL Power-System[END_REF]. This phenomenon is represented by the first two modes of the linearized full model of which dampings are given in the first line of Table 4. They are studied in this paper along with the one in the third column of the same table which is of different nature; it is an inter-area mode of the Spanish system at a slightly higher frequency (0.9 Hz) than the first two ones. It is chosen here along with the slow ones ( 1 and 2) in order to put into evidence the coordination needed in the tuning for damping inter-area modes in different frequency ranges. Thus, the target is to simultaneously ensure a 10% damping for the three modes in Table 4. This objective is interpreted as follows: mode #1 is poorly damped and ξ 1 should thus be increased, but the damping actions should be chosen in order to not degrade the damping of the other two modes, one directly concerned by the East-West oscillation and the other one local to the Spanish system. Next, the objective function in [START_REF] Pagola | On Sensitivities, Residues and Participations: Applications to Oscillatory Stability Analy-sis and Control[END_REF] should be enriched to cover all the situations. Indeed, in Section 3 only the situation when a phase lead is needed for the PSS was considered. As a matter of fact, the optimal computation of T 1 and T 2 can lead to a lag of phase if T 1 < T 2 . Notice that, in the classic tuning method recalled in Section 2, this is encountered when the residue of the eigenvalue to be shift is of negative phase. In this case, the high frequency gain of the PSS is not an issue for robustness which led us to the following optimisation problem in the general case

{K * Si , T * 1i , T * 2i } i=1,...,m = argmin{J(K Si , T 1i , T 2i )} (23) 
where

J(K Si , T 1i , T 2i ) = j K Sj + k K S k T 1 k T 2 k p (24) 
with j ∈ {1, ..., m} such that T 1j ≤ T 2j and k ∈ {1, ..., m} such that

T 1 k > T 2 k .
Notice that [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF] is the transposition of the robustness loop-shaping concepts to our particular fixed structure PSS tuning problem. In case of need for phase lead, T 1 and T 2 should respect high-frequency gain specification. In case of phase lag, they are free which leads to phase margin improvement.

For the European test system presented above, the Spanish machines Almaraz, Cofrentes and PGR were chosen to damp the modes selected in Table 1 since they have high participation in these modes and they are not already equipped with PSSs. The dampings achieved with the two-phases multivariable coordinated tuning method [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF] based on a 180 degrees phase compensation (the latter coordinated tuning method is briefly recalled in Appendix B) for the three inter-area modes are given in row 3 of Table 4. Notice that the target damping ξ * = 10% it is not achieved for all 3 modes. This is mainly due to the fact that the number of PSSs chosen for the tuning it is not sufficient to achieve such a level of damping. In practice, the desired level could be achieved if more PSSs are used. Here, as we are interested only in comparing the performance level of the two tuning methods, we adopt as target damping of the new proposed optimal tuning method the results of the classic tuning mentioned above, i.e., the values in the row 3 of Table 4. First, these performance objectives are feasible (as satisfied with the classic controller). Next, if achieved with the new control, one could directly compare robustness level and implementation facts for the two controllers (which ensure the same level of performance). The parameters tuned with [START_REF] Rouco | A computer Package for Analysis of Small Signal Stability in Large Electric Power Systems[END_REF] for this target are given in the first entries of Table 5 in comparison with the ones in the second entries obtained with [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF]. Indeed, the damping target is fulfilled (row 4 of Table 4). Also, only 2 PSS (instead of 3 with the calssic tuning) are needed to provide the same damping level (the gain K S obtained for PGR is zero).

Next, as lead phase is obtained for all the controllers, a measure of the robustness is the high frequency gain for the tuned PSSs given in the last column in Table 5 or their total (sum) which is 54.05 with the new proposed tuning method and 871 with the classic one, thus sensibly lower with the new method.

The global frequency profile of the three PSSs are given in Figs. 7,8 for both controls (solid lines for the new controllers, dash-dotted ones for the classical ones).

Figs. 9 and 10 show the nonlinear time-responses to a short-circuit which excites one of the east-west inter-area modes. They confirm the results of the linear analysis above. Notice also that, even if the linear estimated a posteriori damping level is the same with the two tuning methods (this was the scope in order to make possible the comparison of the performances and robustness), the effective damping achieved in full nonlinear simulation in Figs. 9 and 10 with the new method is higher with the new method.

Remark 4:

The optimization problem [START_REF] Rouco | A computer Package for Analysis of Small Signal Stability in Large Electric Power Systems[END_REF] has been solved with standard Matlab routines of the Optimization toolbox at this stage. For further applications to more complex cases, algorithms with better performances may be used. Indeed, the optimization methodologies have been the subject of ongoing enhancements over the years (see, e.g., [START_REF] Shakarami | Wide-area power system stabilizer design based on Grey Wolf Optimization algorithm considering the time delay[END_REF]), [START_REF] Bomfim | Simultaneous Tuning of Power System Damping Controllers Using Genetic Algorithms[END_REF]).

Robustness

Unstructured robustness and disturbance rejection

Consider disturbances d 1 and d 2 on the closed-loop in Fig. 2. From a technological point of view, the input disturbance d 1 corresponds to inherent actuator faults (offset, failure, parasitic signal, ...). The output disturbance d 2 can be due to meter disfunction (failure or bias) and/or measurement noise. From a system point of view, these signals may capture exogeneous dynamics not taken into account in the nominal control model. This is classic for robust control [START_REF] Skogestad | Multivariable Feedback Control[END_REF]. For the case of the interconnected power systems, d 1 may account for voltage/electric dynamics whereas d 2 stands for all speed/frequency disturbance (coming from load/production imbalance, oscillatory phenomena of other nature than inter-area modes, like, e.g., subsyncronous oscillations, higher order harmonics, ...). As the control model is low frequency (focused on inter-area modes), such neglected dynamics are of higher frequency. Here, they are considered at 10rad/sec, generated as a step response of a second-order element tuned to this frequency. In other words,

d i = ω 2 s 2 + 2ξωs + ω 2 u i , i ∈ {1, 2}, (25) 
where ω = 10rad/sec, ξ = 0.0025, u 1 is a step of magnitude 0.1pu and u 2 a step of magnitude 0.01pu. 12. In both cases, the loop closed with the proposed regulators better rejects the disturbances. This difference is even more pregnant for higher frequencies (like for noises). The test is run here with such quite low frequency to account not only for noises and high-order harmonics but also for other electric (unmodeled) dynamics as mentioned before.

Structured robustness

Such robustness concerns variations of the parameters of the control model.

In our case, these may be due to load/generation evolution or tripping of grid elements. Fig. 13 shows the responses of the same first example in 2 cases of line tripping: line NHVC1-NHVA1 for the left subfigure and line NHVC1-NHVD1

for the right subfigure. Both lines are in the direct path of the oscillation of the inter-area mode to be damped. It is well known (see, e.g., [START_REF] Bomfim | Simultaneous Tuning of Power System Damping Controllers Using Genetic Algorithms[END_REF]) that topological modification of such corridor alter the inter-area mode and it is thus a good robustness test. In both situations, better responses are obtained with the proposed controller in comparison to the classic one (Fig. 13).

Conclusion

It has been shown that the 180 degrees phase compensation usually used in the tuning of the parameters of power oscillations damping controller is sub-

Figure 1 :

 1 Figure 1: Machine connected to an infinite bus

Figure 2 :

 2 Figure 2: PSS closed-loop

  e., for openloop H(s)), one can directly use Proposition 1 and the open-loop residue as an indicator of the pole shift to achieve the desired damping. More specifically, the situation is as in Fig. 3 where λ = σ + jω is the eigenvalue associated with the inter-area mode which has a damping ξ in open-loop (i.e., Fig. 2 without the

Figure 3 :

 3 Figure 3: Pole shift

Figure 4 :

 4 Figure 4: Medium-scale test system

Figure 5 : 14 Figure 6 :

 5146 Figure 5: Short-circuit responses of the 4-machines case: solid lines, the optimal tuning ; dash-dotted lines the classic tuning

Figure 7 :

 7 Figure 7: Almaraz Bode plots of the regulators for the European case: solid lines, the optimal tuning ; dash-dotted lines the classic tuning

Figure 8 :Figure 10 :

 810 Figure 8: Cofrentes Bode plots of the European case

Fig. 11 shows

 11 Fig. 11 shows speed responses of the generator equipped with the PSS with classic (dotted line) and proposed regulator (solid lines) closed-loops of the first example (Fig. 4) to such an input disturbance. The effect of d 2 is shown in Fig.

Figure 11 :

 11 Figure 11: Input disturbance rejection

Figure 12 :

 12 Figure 12: Output disturbance rejection

  

  

  

  

Table 1 :

 1 Comparison of the stabilizer parameters of GENA1 achieved with robust tuning and with standard tuning for the 4-machines case

Table 3 :

 3 Comparison of the sensitivities for the 4-machines case

		open-loop	closed-loop
	s K S -33.7796+j3.1204 1.1695+j6.4657
	s T1	-0.0161+j0.0012 -0.0006+j0.0031
	s T2	0.5036+j0.5805	0.1416-j0.0512
	justments are thus needed.	

Table 4 :

 4 Damping ξ[%] of the East-West modes of the European system

		mode 1 0.23Hz mode 2 0.24Hz mode 3 0.91Hz
	without PSSs	3.8	11.7	6.2
	conv. PSSs	12	9.1	7.8
	optim. PSSs	12	9.1	7.8

Table 5 :

 5 Comparison of the stabilizer parameters achieved with robust coordinated tuning and

	with classic coordinated tuning for damping of 3 modes using 3 machines of the European
	system				
		K S	* [pu]	T * 1 [s]	T * 2 [s]	K HF [pu]
	Almaraz	0.12 / 2.43	10 / 0.21 1.43 / 0.02 6.17 / 243
	Cofrentes 0.0055 / 5.74 10 / 0.58 0.1 / 0.05 47.88 / 574
	PGR	0 / 0.54	/ 0.6	/ 0.06	0 / 54
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optimal. If the phase compensation is computed in conjunction with the gains via a coordinated optimization problem, better results are obtained. For the case of several controllers tuned to damp several modes, even with the phase compensation constrained to 180 degrees, an optimization is needed for the computation of the gains in a coordinated manner (see, e.g., [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF]). The methodology proposed here needs thus no extra effort for the implementation. It was tested for the tuning of PSS loops of classic synchronous generators but it is valid for the tuning of any structure of regulator for any damping actuator (for example, the power modulation of HVDC links or other FACTS). A new optimization criterion which integrates some basic robustness principles has been proposed to illustrate the advantages against the constraint on the phase compensation to 180 degrees. This approach can be applied for any oscillatory modes: inter-area, local, intraplant or electrical coupling ones [1]. The robustness demand can be further improved by several means like in, e.g., [START_REF] Kamwa | Optimization-Based Tuning and Coordination of Flexible Damping Controllers for Bulk Power Systems[END_REF], [START_REF] Kamwa | Robust Design and Coordination of Multiple Damping Controllers Using Nonlinear Constraints Optimization[END_REF], [START_REF] Marinescu | Robust Coordinated tuning of Parameteres of Standard Power Systems Stabilizers for Local and Global Grid Objectives[END_REF].

Appendix A. Data of the medium-scale test system (Fig. 4 AVR of each machine:

Coordinated tuning method with phase compensation to 180 degrees [START_REF] Rouco | Coordinated Design of Multiple Controllers for Damping Power System Oscillations[END_REF] The design is carried out in two consecutive steps:

-first, the phase compensation of each PSS is computed such that the phase of the eigenvalues sensitivities becomes as closer as possible to 180 degrees. If a filtering ratio α i =