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Abstract

Consider finite state space irreducible and absorbing Markov processes. A general spectral criterion
is provided for the absorbing time to be close to an exponential random variable, whatever the starting
point. When exiting points are added to the state space, our criterion also insures that the exit
time and position are almost independent. Since this is valid for any exiting extension of the state
space, it corresponds to an instance of the metastability phenomenon. Simple examples at small
temperature suggest that this new spectral criterion is quite sharp. But the main interest of the
underlying quantitative approach, based on Poisson equations, is that it does not rely on a small
parameter such as temperature, nor on reversibility.
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1 Introduction
The metastability phenomenon occurs when a system relatively quickly reaches an apparent equi-
librium, independent from the initial state, before this stochastic balance vanishes in a somewhat
unpredictable way. This behavior can be found in various domains, such as physics, chemistry, bio-
chemistry, neuroscience, population dynamics, economics, politics or even (personal?) history. The
simplest mathematical model is based on absorbing finite Markov processes, when a quasi-stationary
distribution is (almost) attained before the final absorption. The goal of this paper is to give a
surprising simple spectral characterization of metastability in this Markovian context.

More precisely, consider a sub-Markovian generator L B pLpx, yqqx,yPV on a finite state space
V which contains at least two points (otherwise Theorem 1, Theorem 3 and Corollary 4 are trivially
true with Σ: “ 0). It is a matrix whose off-diagonal entries are non-negative and whose row sums are
non-positive. We assume that L is irreducible, in the sense that for any x ‰ y P V , there exists a
path pxkqkPJ0,lK (where J0, lK B t0, 1, ..., lu) going from x to y: x0 “ x, xl “ y and Lpxk, xk`1q ą 0
for all k P J0, l ´ 1K. For any x P V , Xx B pXxptqqtPr0,τxq will stand for an associated Markov process
starting from x, up to its vanishing time τx.

Consider Λ the multiset of the eigenvalues of ´L counted with their algebraic multiplicities. By
Perron-Frobenius’ theorem, Λ contains an eigenvalue λ0 ě 0 which is strictly smaller than the real
parts of all the other elements of Λ. It is sometimes called the first Dirichlet eigenvalue or the
exponential survival rate of L, see for instance the book [3] of Collet, Martínez and San Martín.
In particular, the algebraic multiplicity of λ0 is 1. To avoid a trivial statement below, we assume that
L is strictly sub-Markovian, in the sense that λ0 ą 0.

Perron-Frobenius’ theorem also insures the existence and uniqueness of a probability ν on V , called
the quasi-stationary distribution, such that

νL “ ´λ0ν (1)

For more details about the eigenmeasure ν, which gives positive weights to all the elements of V , we
refer again to the book of Collet, Martínez and San Martín [3].

To state our main result, we need to introduce another spectral quantity. Consider δV the set of
interior exit points:

δV B

#

ω P V :
ÿ

yPV

Lpω, yq ă 0

+

When a Markov process Xx, x P V , associated to L visits a point of δV , there is a positive
probability that it vanishes at its next attempt to jump. Let us transform this Markov process into
an ergodic one, by requiring that instead of vanishing, a new position is chosen according to ν. It
amounts to replace the sub-Markov generator L by the Markov generator rL defined by

@ x ‰ y P V, rLpx, yq B Lpx, yq `

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPV

Lpx, zq

ˇ

ˇ

ˇ

ˇ

ˇ

νpyq (2)

(the entries of rL on the diagonal are deduced from the fact that the row sums vanish).
For x ‰ y P V , rLpx, yq is different from Lpx, yq if and only if x P δV , in which case the vanishing

rate |
ř

yPV Lpx, yq| is dispatched into the jump rates |
ř

yPV Lpx, yq|νpyq. For ω P δV , denote

V :ω B V ztωu

which is non-empty, due to the hypothesis cardpV q ě 2. Endow V :ω with the sub-Markovian generator
L:ω B pL

:
ωpx, yqqx,yPV :ω

B prLpx, yqq
x,yPV :ω

.
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Consider Λ:ω the multiset of the eigenvalues of ´L:ω counted with their algebraic multiplicities.
Since there is no reason for L:ω to be reversible (even when L is assumed to be reversible), a priori
the elements of Λ:ω are complex numbers whose real part is positive, by strict sub-Markovianity of L:ω,
namely

Λ:ω Ă tz P C : <pzq ą 0u

Since the entries of the matrix L:ω are real-valued, the set Λ:ω is stable by complex conjugation, so
that the following quantity is positive

Σ:ω B
ÿ

λPΛ:ω

1

λ
(3)

Consider the probability ζ defined on δV by

@ ω P δV, ζpωq B

ˇ

ˇ

ˇ

ř

yPV Lpω, yq
ˇ

ˇ

ˇ
νpωq

ř

wPδV |
ř

zPV Lpw, zq| νpwq
(4)

Finally introduce

Σ: B
ÿ

ωPδV

Σ:ω ζpωq (5)

The interest of this quantity comes from the following surprisingly simple bound about metasta-
bility:

Theorem 1 We have

sup
xPV

sup
tě0

|Prτx ą ts ´ expp´λ0tq| ď 4λ0Σ:

The interpretation of this result is as follows. For any ω P δV , the quantity Σ:ω measures how
difficult it is to reach the interior exit boundary point ω for the underlying process. Then Σ: stands
an average over all the ω P δV : it measures the difficulty of “internal mixing”. The quantity 1{λ0

quantifies the difficulty of getting out of the state space. Thus the above result states that when it is
easier to mix than to exit, a metastability phenomenon occurs for the exit time (and the exit position
according to the following bounds) and this principle can be quantified in a very clear and spectral
manner.

With respect to the informal definition of metastability given at the beginning of this introduction,
this theorem does not deal with the fact that an apparent equilibrium has been relatively quickly
reached, but only with its vanishing in an unpredictable way (due to the memoryless property of
the exponential distribution). In the present setting, the apparent equilibrium corresponds to the
quasi-stationary distribution. To quantify the fact it has almost been attained well before the process
vanishes, we can introduce conditioned strong quasi-stationary times: starting from x P V , they
are stopping times ςx ď τx (with respect to the filtration generated by Xx and independent noise) such
that conditioned by ςx on tςx ă τxu, the law of Xςx is the quasi-distribution ν. Taking into account
that on tςx ă τxu, Xςx is independent from ςx and distributed according to ν implies that τx ´ ςx is
conditionally distributed according to an exponential random variable of parameter λ0. In particular,
if λ0Σ: is very small, due to Theorem 1, ςx will have to be negligible with respect to τx on tςx ă τxu.
Thus we would have a spectral characterization through the quantity λ0Σ: of the full metastability
phenomenon if the following result was true:

Conjecture 2 For any x P V , there exists a conditioned strong quasi-stationary time ςx such that

sup
xPV

Prςx “ τxs ď Cλ0Σ:
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where C ą 0 is a universal constant.
˝

When Prςx “ τxs “ 0, ςx is called a strong quasi-stationary times. Such times where con-
structed in [7] for birth and death processes starting from the non-absorbing boundary of their finite
segment state spaces. For more general approaches that can be used for conditioned strong quasi-
stationary times, see Fill [8] and [16]. Conditioned strong quasi-stationary times were formally intro-
duced in Manzo and Scoppola [13] in the context of metastability. We will not investigate further the
notion of conditioned strong quasi-stationary times in this paper. Instead we will study the behavior
of the exit position distribution. The fact that the latter can be almost independent from the starting
point, for any absorbing extension of L, as explained below, should be equivalent to the metastability
of L as mentioned above Conjecture 2. Proposition 23 and Remark 29, valid in the small temperature
framework of Section 5, are strong hints in this direction.

The bound of Theorem 1 extends into a similar result for the exit time and position couple. Denote
V̄ B V \ BV , where BV is a non-empty set not intersecting V . Be careful about the distinction: δV
consists of internal boundary points, while the elements of BV will be external boundary points (even
if it would be sufficient to choose a set BV in bijection with δV , each internal boundary point leading
to exactly one external boundary point). Consider a Markov generator L̄ B pL̄px, yqx,yPV̄ on V̄ which
is an absorbing extension of L:

@ x, y P V̄ , L̄px, yq “

"

Lpx, yq , when x, y P V
0 , when x P BV

The weights pL̄px1, y1qqx1PV, y1PBV enable, for any x P V , to extend Xx into a Markov process
X̄x B pX̄xptqqtě0 taking values in V̄ in the following way: the value X̄xpτxq “ y is chosen with the
probability measure proportional to pL̄pXxpτx´q, yqqyPBV , and afterward we take X̄xptq “ Xxpτxq for
all t ě τx.

Consider the probability measure µ defined on BV by

@ y P BV, µpyq B
1

Z

ÿ

xPV

νpxqL̄px, yq (6)

where Z is the normalizing constant:

Z B
ÿ

xPV, yPBV

νpxqL̄px, yq

which is positive, due to the sub-Markov assumption. Up to removing from BV the points y P BV
such that µpyq “ 0, we can assume that µ gives a positive weight to all points of BV .

Recalling the definitions (3) and (5) we introduce another probability χ on BV :

@ ω P BV, χpωq B 1
ZΣ:

ř

xPδV Σ:xνpxqL̄px, ωq

(one would have noted that for any x P δV ,
ˇ

ˇ

ˇ

ř

yPV Lpx, yq
ˇ

ˇ

ˇ
“

ř

ωPBV L̄px, ωq, so that ZΣ: is indeed

the normalizing constant in the above formula). Since the quantities Σ:x are positive on δV and that
the support of µ is BV , we get that the support of χ is also BV .

The distribution of the exit couple satisfies:

Theorem 3 We have

sup
xPV, yPBV, tě0

ˇ

ˇ

ˇ

ˇ

Prτx ď t, Xxpτxq “ ys ´ p1´ expp´λ0tqqµpyq

χpyq

ˇ

ˇ

ˇ

ˇ

ď 12λ0Σ:
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In practice, V will be a subset of a larger state space and BV will be the set of nearest (outward)
neighbors of V in this bigger space. Theorem 3 and the assumption that λ0Σ: is small will then enable
to replace V by a single point in order to reduce the state space, leading to a controlled clustering
procedure for Markov processes.

Despite numerous investigations of metastability, see e.g. the book of Bovier and den Hollander [1]
or the recent paper of Di Gesù, Lelièvre, Le Peutrec and Nectoux [4], as well as the references therein
(even if these two works are mainly dealing with continuous frameworks), both bounds of Theorem 1
and 3 seem to be new. They are in fact generalizations of some estimates of [15], which was restricted
to the reversible and small temperature setting, and without spectral interpretation of the bounds.

For x P V , let µx be the distribution of the exit position, namely the law of Xxpτxq. It becomes
closer and closer to µ, as λ0Σ: goes to zero, as an immediate consequence of Theorem 3, by letting t
go to infinity and summing over y P V the bound

|Prτx ď t, Xxpτxq “ ys ´ p1´ expp´λ0tqqµpyq| ď 12λ0Σ:χpyq

Recall that the total variation norm between two probability measures γ1, γ on the same finite
space V is given by

›

›γ1 ´ γ
›

›

tv
B

ÿ

yPV

ˇ

ˇγpyq ´ γ1pyq
ˇ

ˇ

Corollary 4 We have

sup
xPV

}µx ´ µ}tv ď 12λ0Σ:

Typically, the above results are to be applied to families of absorbed Markov processes pLpnqqnPN
on respective state spaces pV pnq, qnPN and metastability will occur if

lim
nÑ8

λ
pnq
0 Σpnq: “ 0

Then for large n, the exit time is close to an exponential random variable and the exit time and
position are almost independent.

This behavior is radically opposite to the cut-off phenomenon, see for instance the review by
Diaconis [5]. Or at least to its sub-Markovian version, where the absorbing times are investigated
instead of the more classical mixing or strong stationary times (of course there are relations between
these absorbed and ergodic versions, see for instance Diaconis and Fill [6]). A strong stationary time
is a finite stopping time σ such that σ is independent from the stopped position which is furthermore
distributed according to the stationary distribution. In the cut-off phenomenon for strong stationary
times, they become asymptotically deterministic, while in metastability, the absorbing times become
asymptotically totally impredictable exponential times.

The metastability phenomenon is illustrated in Section 5 by very simple examples on two-point or
three-point state spaces at small temperature. It provides a hint of the sharpness of Corollary 4 and of
the results of next section, while discussing that of Theorem 1. The situation of generalized Metropolis
algorithms will be treated in a future manuscript, including an investigation of quasi-invariant proba-
bility measures at small temperature (which requires some care, see Lemma 30 at the end of the present
paper). The traditional Metropolis algorithms (where an additional reversibility assumption is made)
could be treated with the help of the computations of [15], which served as a distant model for the
present paper. Nevertheless, our motivation here is to go beyond such small temperature settings and
to propose a general spectral criterion for metastability for irreducible finite sub-Markovian processes,
in particular the reversibility is now completely removed, due to the introduction of the important
quantity Σ:, as shown by Theorems 1 and 3.

5



The plan of the paper is as follows. The next section present some estimates on the solutions of
Poisson equations, which are at the heart of our approach. Sections 3 and 4 respectively deal with the
proofs of Theorems 1 and 3. Section 5 is devoted to the explicit treatment of the generic two-point
state space case at small temperature, as well as of some three-point state space examples, which
despite their apparent simplicity, already displays important features of more general cases.

2 Poisson equation
The main ingredient in the proofs of Theorems 1 and 3 is an estimate on the solutions of some Poisson
equations. Let us present them in a general finite framework.

Let rL B prLpx, yqqx,yPV be an irreducible Markov generator on a non-empty finite state space V .
Denote by rπ its unique invariant measure and let us fix a point ω P V . Let ϕ be the unique function
on V solution to the Poisson equation

#

rLrϕs “ 1tωu ´ rπpωq

rπrϕs “ 0
(7)

Our purpose in this section is to give some bounds on }ϕ}8. To do so, we need to introduce the
following objects, similarly to the introduction, except we will not put ω in index of V : and L:, because
ω is fixed in Theorem 5 below. Consider V : B V ztωu and L: the absorbing sub-Markov generator
pL:px, yqqx,yPV : B p

rLpx, yqqx,yPV : . Let Λ: be the multi-set consisting of the spectrum of ´L: with its
algebraic multiplicities. Note that by irreducibility of rL, 0 R Λ:, which enables us to introduce

Σ: B
ÿ

λPΛ:

1

λ

The main result of this section is:

Theorem 5 We have

}ϕ}8 ď 2rπpωqΣ:

The proof of this result will require two steps presented in the next subsections, first a rough bound
that will next be refined.

2.1 A rough estimate
Consider rΛ the multiset consisting of the spectrum of ´rL with its algebraic multiplicities. By Marko-
vianity and irreducibility of rL, 0 P rΛ with multiplicity 1. Denote rΛ˚ B rΛzt0u and

rΣ˚ B
ÿ

λPrΛ˚

1

λ

More generally than (7), we consider for any x P V , the solution ϕx of the Poisson equation
#

rLrϕxs “ 1txu ´ rπpxq

rπrϕxs “ 0
(8)

The interest of these objects is:

6



Proposition 6 We have

}ϕ}8 ď max
xPV

}ϕx}8 ď rΣ˚

in particular the last r.h.s. is real (this can also be seen from the complex conjugation stability of rΛ˚)
and positive (as soon as V is not reduced to a singleton).

Proof
For y P V , consider rXy B p rXyptqqtě0 be a Markov process starting from y and whose generator is rL.
For x, y P V , define the absorption time

rτxy B inftt ě 0 : rXyptq “ xu

Applying the martingale problem to the function ϕx up to the time rτxy ^ t, with given t ě 0, we
get

ϕxp rXxpt^ rτxy qq “ ϕxpyq `

ż t^rτxy

0

rLrϕxsp rXxpsqq ds`Mt^rτxy

“ ϕxpxq ´ νpxqpt^ rτxy q `Mt^rτxy

where pMtqtě0 is a martingale. Taking expectations, we deduce

Erϕxp rXxpt^ rτxy qqs “ ϕxpyq ´ νpxqErt^ rτxy s

Since V is finite and rL is irreducible, ϕx is bounded and rτxy is a.s. finite, so we can let t go to
infinity in the above formula and obtain

ϕxpxq “ ϕxpyq ´ νpxqErrτxy s

In particular for any x, y P V , we have ϕxpxq ď ϕxpyq. Since νrϕxs “ 0, it follows that

αx B ´ϕxpxq ě 0

For x P V fixed, integrating the relations

@ y P V, ϕxpyq “ ´αx ` νpxqErrτxy s (9)

with respect to νpyq, we get

0 “ νrϕxs

“ ´αx `
ÿ

yPV

Errτxy sνpxqνpyq

namely

αx “
ÿ

yPV

Errτxy sνpxqνpyq (10)

The eigentime identity (for a simple proof see e.g. [17]) asserts that

@ y P V,
ÿ

xPV

Errτxy sνpxq “ rΣ˚

thus summing with respect to x P V , we obtain
ÿ

xPV

αx “ rΣ˚

7



and in particular

@ x P V, αx ď rΣ˚ (11)

Coming back to (9), we deduce

@ x P V, }ϕx}8 ď αx _max
yPV

νpxqErrτxy s

According to the eigentime identity, we have

max
yPV

νpxqErrτxy s ď max
yPV

ÿ

xPV

νpxqErrτxy s

“ rΣ˚

and it remains to take into account (11) to deduce the desired bound.
�

2.2 A refined estimate
To prove Theorem 5, we consider an extension pV B V \tω̄u, where ω̄ R V , endowed with the irreducible
generator pL B ppLpx, yqqx,yPV defined by

@ x ‰ y P pV , pLpx, yq B

$

’

’

&

’

’

%

rLpx, yq , if x, y P V
a , if x “ ω and y “ ω̄
rπpωq , if x “ ω̄ and y “ ω
0 , otherwise

(12)

The invariant measure pπ associated to pL is given by

Lemma 7 We have

pπ “
rπ ` aδω̄
1` a

Proof
Denote µ B rπ ` aδω̄, we have to check that µpL “ 0. We consider three cases.

• For x P V ztωu, we have

µpLpxq “
ÿ

yPpV

µpyqpLpy, xq

“
ÿ

yPV

µpyqrLpy, xq

“
ÿ

yPV

rπpyqrLpy, xq

“ 0

• For ω, we have

µpLpωq “ µppωqpLpω̄, ωq ` µpωqpLpω, ωq `
ÿ

yPV ztωu

µpyqrLpy, ωq

“ arπpωq ` rπpωqprLpω, ωq ´ pLpω, ω̄qq `
ÿ

yPV ztωu

rπpyqrLpy, ωq

“ arπpωq ´ rπpωqa`
ÿ

yPV

µpyqrLpy, ωq

“ 0
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• For ω̄, we have

µpLpω̄q “ µpωqpLpω, ω̄q ` µpω̄qpLpω̄, ω̄q

“ rπpωqa´ arπpωq

“ 0

�

Consider pϕ the unique function solution of the Poisson equation
"

pLrpϕs “ 1tω̄u ´ pπpω̄q

pπrpϕs “ 0
(13)

Since ω̄ is only in relation with ω, it is possible to make a direct link between ϕ and pϕ.

Lemma 8 On V , we have

ϕ “

ˆ

1`
1

a

˙

rπpωqpψ ´ rπrψsq

where ψ is the restriction of pϕ to V .

Proof
Let us compute rLrψs. We consider two cases.

• For x P V ztωu, we have

rLrψspxq “ pLrpϕspxq

“ ´pπpω̄q

“ ´
a

1` a

• For ω, we have

rLrψspωq “ pLrpϕspωq ´ pLpω, ω̄qppϕpω̄q ´ pϕpωqq

“ ´pπpω̄q ´ pLpω, ω̄qppϕpω̄q ´ pϕpωqq

To evaluate the last quantity, note that

1´ pπpω̄q “ pLrpϕspω̄q

“ pLpω̄, ωqppϕpωq ´ pϕpω̄qq

so that

rLrψspωq “ ´pπpω̄q `
pLpω, ω̄q

pLpω̄, ωq
p1´ pπpω̄qq

“ ´
a

1` a
`

a

rπpωq

1

1` a

“
a

p1` aqrπpωq
´

a

1` a

Thus we have

rLrψs “
a

p1` aqrπpωq
1tωu ´

a

1` a

“
a

p1` aqrπpωq
p1tωu ´ rπpωqq

9



It means that rπpωq1`a
a pψ ´ rπrψsq is solution to the Poisson equation (7), which amounts to the

announced result.
�

Consider pΛ the multi-set consisting of the spectrum of ´pL with its algebraic multiplicities. By
irreducibility of pL, 0 P pΛ with multiplicity 1. Denote pΛ˚ B pΛzt0u and

pΣ˚ B
ÿ

λPpΛ˚

1

λ

Applying Proposition 6 to pϕ the solution of the Poisson equation (13), we get that

}pϕ}8 ď pΣ˚ (14)

From Lemma 8, we deduce that

}ϕ}8 ď 2

ˆ

1`
1

a

˙

rπpωqpΣ˚ (15)

Theorem 5 will be a consequence of

Proposition 9 Assume that all the eigenvalues of L: are of (algebraic) multiplicity 1. Then we have

lim
aÑ`8

pΣ˚ “ Σ:

In fact we think this convergence holds without the assumption that the eigenvalues of L: are of
(algebraic) multiplicity 1. The proof of Theorem 5 would then be immediate. Nevertheless the proof
of Proposition 9 without its multiplicity assumption requires more care than is really necessary for our
purpose. Before proving Proposition 9, let us deduce Theorem 5 in general:

Proof of Theorem 5
Let I be the (convex) set of all irreducible generators on V and I0 be the subset of K P I such that
all the eigenvalues of K: B pKpx, yqqx,yPV : are distinct. Let us check that I0 is dense in I. Fix some
K P I and ε ą 0. Consider B the set of matrices rK B p rKpx, yqqx,yPV such that

@ x ‰ y P V, Kpx, yq ă rKpx, yq ă Kpx, yq ` ε

@ x P V, rKpx, xq “ ´
ÿ

yPV ztxu

Kpx, yq

Clearly, B Ă I and to obtain the desired density, it is sufficient to show that pB X I0q
: ‰ H,

where pB X I0q
: is the image of B X I0 by the mapping I Q K ÞÑ K:. Note, on one hand, that

pB X I0q
: “ B: X J , where J is the set of V : ˆ V :-matrices whose eigenvalues are distinct, and on

the other hand, that B: is an open subset in the set of V : ˆ V :-matrices. It is then well-known that
J is dense in the set of all V : ˆ V :-matrices, this ends the proof of the density of I0 in I.

Let rL P I be fixed as in Theorem 5 and consider prLpnqqnPN be a sequence of elements of I0

converging toward rL. We denote by prπpnqqnPN and pϕpnqqnPN the corresponding sequences of invariant
probability measures and solutions to the Poisson equation (7). Resorting, for all n P N, to the explicit
tree description of rπpnq in terms of rLpnq (see e.g. Lemma 3.1 of Chapter 6 of Freidlin and Wentzell [9]),
we get

lim
nÑ8

rπpnq “ rπ

Taking into account the uniqueness of the solution of (7), it easily follows that

lim
nÑ8

ϕpnq “ ϕ

10



and in particular

lim
nÑ8

›

›

›
ϕpnq

›

›

›

8
“ }ϕ}8

From (15) and Proposition 9, we have for any n P N,
›

›

›
ϕpnq

›

›

›

8
ď 2rπpnqpωqΣpnq: (16)

where Σpnq: is the trace of the inverse of the matrix ´rLpnq:. Taking the inverse of a matrix is a
continuous operation (among invertible matrices), so we deduce that

lim
nÑ8

Σpnq: “ Σ:

Finally passing to the limit in (16), we get the desired bound.
�

The phenomenon behind the convergence of Proposition 9 is that for a ą 0 large, |V |´1 eigenvalues
from pΛ˚ converge toward the eigenvalues of Λ: and the remaining eigenvalue from pΛ˚ diverges toward
`8.

First, let us give a non-linear characterization of the spectrum of pΛ˚.

Lemma 10 A complex number z P Cztrπpωqu is an eigenvalue of ´pL if and only if there exists a
function f ‰ 0 on V such that

rLrf s “ ´zf ´
az

rπpωq ´ z
fpωq1tωu (17)

The number rπpωq is an eigenvalue of ´pL if and only if it is also an eigenvalue of ´L:.

Proof
Consider an eigenvalue pλ P Cztrπpωqu of ´pL and pf a corresponding eigenfunction. Denote f the
restriction of pf to V . Applying the relation pLr pf s “ ´pλ pf at ω̄, we get

rπpωqpfpωq ´ pfpω̄qq “ ´pλ pfpω̄q (18)

namely

fpωq “

˜

1´
pλ

rπpωq

¸

pfpω̄q (19)

and since pλ ‰ rπpωq, we deduce that

fpωq ´ pfpω̄q “ ´
pλ

rπpωq ´ pλ
fpωq (20)

From

pL pfpωq “ ´pλ pfpωq

we deduce

rLrf spωq ` ap pfpω̄q ´ fpωqq “ ´pλfpωq

11



i.e., taking into account (20),

rLrf spωq “ ´pλfpωq ´
apλ

rπpωq ´ pλ
fpωq

For x P V :, we have rLrf spxq “ pLr pf spxq “ ´pλfpxq, so that (17) is satisfied on V . Note that if
f “ 0, then from (19) we would get pfpω̄q “ 0 (recall that pλ ‰ rπpωq) and by consequence pf “ 0, which
is not allowed.

Conversely, consider z P Cztrπpωqu and a function f ‰ 0 on V such that (17) is satisfied. Defining
pf via

@ x P pV , pfpxq B

$

&

%

fpxq , if x P V
rπpωqfpωq
rπpωq´z , if x “ ω̄

and reversing the above computations, we get that pf is an eigenvector of pL associated to the eigenvalue
´z.

Next assume that rπpωq is an eigenvalue of ´pL, let pf be an associated eigenvalue and denote f
the restriction of pf to V . From (18), we deduce that fpωq “ 0. Furthermore, we have for x P V :,
L:rf spxq “ rLrf spxq “ pLr pf spxq “ ´rπpωqfpxq. It follows that f is an eigenfunction of L: associated to
the eigenvalue ´rπpωq. Conversely, if rπpωq is an eigenvalue of ´L: with associated eigenvector f , it is
sufficient to consider the function pf defined by

@ x P pV , pfpxq B

#

fpxq , if x P V :

0 , if x P tω, ω̄u

to get that pLr pf s “ ´rπpωq pf .
�

There is probably an extension of Lemma 10 concerning the Jordan blocs of pL, but such a result
will not be useful for us, due to the multiplicity assumption in Proposition 9. Under this hypothesis,
we will see below that for a ą 0 large enough, all the eigenvalues of pL are distinct. The following
result is the crucial step in this direction.

Lemma 11 Consider η ą 0 and λ ‰ 0 an eigenvalue of ´L:. Under the assumption of Proposition 9,
there exists A ą 0 large enough such that for all a ą A, there exists an eigenvalue of ´pL in the complex
disk of center λ and radius η.

Proof
If λ “ rπpωq, according to Lemma 10, λ is also an eigenvalue of ´pL for all a ą 0. From now on, assume
that λ ‰ rπpωq. There is another situation where the result is obvious. Denote µ the (non-negative)
measure on V : given by prLpω, xqqxPV : . Let ξ be an eigenvector of ´L: associated to λ. If µrξs “ 0,
then λ is also an eigenvalue of ´pL for all a ą 0. Indeed, note that (17) applied at ω amounts to

µrf s ` rLpω, ωqfpωq “ ´

ˆ

z `
az

rπpωq ´ z

˙

fpωq (21)

(recall that rLpω, ωq “ ´
ř

xPV :
rLpω, xq).

Thus considering f defined by

@ x P V, fpxq “

"

ξpxq , if x P V :

0 , if x “ ω

12



we get that (21) is satisfied.
Since fpωq “ 0, (17) is just asking for L:rf spxq “ ´zfpxq for x P V :, and this is true with z “ λ.
Let us now consider the situation where µrξs ‰ 0. Up to normalizing ξ, we furthermore assume

that µrξs “ 1. We are looking for a solution pz, fq of (17) equally normalized by µrf s “ 1.
Let us change the notations, defining ε B 1{a, r B afpωq and g B pgpxqqxPV : B pfpxqqxPV : . The

condition µrf s “ 1 translates into µrgs “ 1 and (17) with µrf s “ 1 is equivalent to the system
$

’

&

’

%

L:rgspxq ` εrLpx, ωqr ` zgpxq “ 0, @ x P V :

1`
´

z
rπpωq´z ` εpz `

rLpω, ωqq
¯

r “ 0

µrgs “ 1

(22)

Consider

D B

"

pε, z, gq P r0,`8q ˆ pCztrπpωquq ˆ RV
:

:
z

rπpωq ´ z
` εpz ` rLpω, ωqq ‰ 0

*

and define the mapping F B pFxpε, z, gqqxPV : D Ñ RV via

@ x P V, @ pε, z, gq P D,

Fxpε, z, gq B

#

L:rgspxq ´ εrLpx, ωq rπpωq´z

z`εpz`rLpω,ωqqprπpωq´zq
` zgpxq , when x P V :

µrgs , when x “ ω

With this notation, the system (22) can written

F pε, z, gq “

ˆ

0
1

˙

where the 1 corresponds to the ω coordinate (and 0 is the null vector in RV :).
Note that

F p0, λ, ξq “

ˆ

0
1

˙

thus the implicit function theorem enables us to deduce the desired theorem as soon as we will have
shown that the Jacobian matrix ∇F B pBzF, p∇gpxqF qxPV :q is non degenerate at the point p0, λ, ξq.
We compute that

BzF p0, λ, ξq “

ˆ

ξ
0

˙

@ x P V :, ∇gpxqF p0, λ, ξq “

ˆ

L:p¨, xq ` λδx
µpxq

˙

To check that ∇F p0, λ, ξq is invertible, consider ps, hq P Rˆ RV : such that

∇F p0, λ, ξq ¨ ps, hq “ 0

According to the above computations, this equation can be written under the following system:
"

L:rhspxq ` λhpxq ` sξpxq “ 0, @ x P V :

µrhs “ 0
(23)

Under the assumption of Proposition 9, the equation

L:rhs ` λh “ ´sξ

13



implies that h belongs to the vector space generated by ξ. To see it, just decompose h into a basis of
RV : consisting of eigenvectors of L: and take into account that the multiplicity of ´λ is one. It follows
that L:rhs `λh “ 0 and thus s “ 0. Let b P R be such that h “ bξ. We deduce that µrhs “ bµrξs “ b,
so the second equation of (23) implies that b “ 0 and finally h “ 0. Thus we have ps, hq “ p0, 0q and
∇F p0, λ, ξq is non degenerate, as desired.

�

Remark 12 It is the nonlinearity of (17) that leads to the above technical arguments. Had a
traditional linear eigenproblem been considered, we could have directly resorted to the results of Kato
[12]. Note nevertheless that for ε “ 0, ∇F has the same form as if we had been treating a usual linear
eigenproblem.

˝

We can now come to the

Proof of Proposition 9
Define

ε B mint|λ| ^ |λ´ λ1| : λ ‰ λ1 P Λ:u

which is a positive quantity according to the assumption on the multiplicity of the elements of Λ: and
to the fact that 0 R Λ:. Considering η B ε{2 in Lemma 11, we deduce that there exists A ą 0 such that
for any a ą A and any λ P Λ:, there exists an eigenvalue of ´pL in the disk centered at λ of radius η.
By definition of η, this eigenvalue is not null and all these eigenvalues are distinct for different λ P Λ:.
This gives us cardpV :q “ cardpV q ´ 1 distinct elements from pΛ˚. To see that the missing element is
going to infinity as a goes to infinity, it sufficient to consider the trace of ´pL, which is equal to

trp´pLq “ a` rπpωq ` trp´rLq “ a` rπpωq ´
ÿ

xPV

rLpx, xq

These observations imply the convergence stated in Proposition 9, as well as the fact that for a ą 0
large enough, all the eigenvalues of pL are distinct.

�

3 Exit time
Our main goal here is to prove Theorem 1 via manipulations of Poisson equations and taking into
account the estimate of Theorem 5.

Instead of working with the vanishing Xx, for x P V , it is often more convenient to resort to
conservative Markov processes, obtained by adding a cemetery point to the state space. So let be
given 8 R V and associate to it an ergodic Markov generator L̆ B pL̆px, yqqx,yPV̆ on V̆ B V \ t8u via

@ x ‰ y P V̆ , L̆px, yq B

$

’

&

’

%

Lpx, yq , if x, y P V
´

´

Lpx, xq `
ř

yPV ztxu Lpx, yq
¯

, if x P V and y “ 8
aνpyq , if x “ 8

where a ą 0 is fixed for the moment being. This “extension” of the absorbed Markov generator L
into an ergodic Markov generator L̆ is completely different to the passage from rL to pL in the previous
section. In some sense, the former is global while the latter was local.

For x P V , let X̆x B pX̆xptqqtě0 be a Markov process starting from x and whose generator is L̆,
and consider the absorption time

τ̆x B inftt ě 0 : X̆xptq “ 8u

14



Note that the stopped processes pXxpt^ τ
xqqtě0 and pX̆xpt^ τ̆

xqqtě0 have the same law and in
particular τx and τ̆x have the same distribution.

The interest of L over L̆ is that we can consider ψ̆ the function on V̆ solution of the Poisson
equation

#

L̆rψ̆s “ 1t8u ´ π̆p8q

π̆rψ̆s “ 0

where π̆ is the invariant probability of L̆ and 1t8u is the indicator function of 8.
Let us apply to ψ̆ the martingale problem associated with L̆. We have for any x P V̆ and t ě 0,

ψ̆pX̆xptqq “ ψ̆pX̆xp0qq `

ż t

0
L̆rψ̆spX̆xpsqq ds` M̆t

“ ψ̆pxq `

ż t

0
1t8upX̆xpsqq ´ π̆p8q ds` M̆t

where pM̆tqtě0 is a martingale. Replace t by t^ τ̆x, to get

ψ̆pX̆xpt^ τ̆xqq “ ψ̆pxq `

ż t^τ̆x

0
1t8upX̆xpsqq ´ π̆p8q ds` M̆t^τ̆x

“ ψ̆pxq ´ π̆p8qpt^ τ̆xq ` M̆t^τ̆x

Taking expectations, we obtain

Erψ̆pX̆xpt^ τ̆xqqs “ ψ̆pxq ´ π̆p8qErt^ τ̆xs (24)

Before going further, let us explain heuristically how (24) can be exploited. The underlying principle
is that under appropriate conditions, ψ̆ is close to ´p1´ π̆p8qqa´11t8u. So if carelessly we replace ψ̆
by ´p1´ π̆p8qqa´11t8u in (24), we get for any x P V ,

@ t ě 0, Er1t8upX̆xpt^ τ̆xqqs « 1t8upxq `
aπ̆p8q

1´ π̆p8q
Ert^ τ̆xs

namely

@ t ě 0, Prτ̆x ď ts «
aπ̆p8q

1´ π̆p8q
Ert^ τ̆xs (25)

A true identity in (25) would imply that τ̆x is a exponential random variable of parameter aπ̆p8q{p1´
π̆p8qq (see e.g. [15]). These approximative considerations also suggest an identification of aπ̆p8q{p1´
π̆p8qq with λ0. Indeed, consider X̆ B pX̆ptqqtě0 a Markov process whose initial law is ν and whose
generator is L̆. One property of the quasi-stationary distribution ν is that the first hitting time τ̆ of
8 by X̆ is distributed as an exponential random variable of parameter λ0 and thus

@ t ě 0, Prτ̆ ď ts “ λ0Ert^ τ̆ s

Comparing with (25), which is also “valid” when X̆x is replaced by X̆, we get aπ̆p8q{p1´ π̆p8qq « λ0.
It would follow that τ̆x is almost an exponential random variable of parameter λ0 for all x P V .

We now come to more rigorous computations. We begin by computing π̆ in terms of λ0 and ν:

Lemma 13 We have

π̆ “
ν ` pλ0{aqδ8

1` λ0{a
ÿ

xPV

νpxqL̆px,8q “ λ0
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Proof
It is sufficient to show that π̌L̆ “ 0, where π̌ B ν ` pλ0{aqδ8. We begin by showing that

νL̆ “ ´λ0ν ` λ0δ8 (26)

where ν is extended as a probability on V̆ giving the mass 0 to 8. Indeed, note that for x P V , we
have

νL̆pxq “
ÿ

yPV

νpyqL̆py, xq

“
ÿ

yPV

νpyqLpy, xq

“ νLpxq

“ ´λ0νpxq

It follows that there exists a number α P R such that νL̆ “ ´λ0ν ` αδ8. To compute α, note that
L̆r1V̆ s “ 0, so that νrL̆r1V̆ ss “ 0 and α “ λ0, proving (26).

As a consequence, we get that

• for y ‰ 8,
ÿ

xPV̆

π̌pxqL̆px, yq “ pλ0{aqL̆p8, yq `
ÿ

xPV

νpxqL̆px, yq

“ λ0νpyq ` pνL̆qpyq

“ λ0νpyq ´ λ0νpyq

“ 0

• for 8,
ÿ

xPV̆

π̌pxqL̆px,8q “ pλ0{aqL̆p8,8q `
ÿ

xPV

νpxqL̆px,8q

“ ´λ0 ` pνL̆qp8q

“ ´λ0 ` λ0

“ 0

The previous computation also shows the last equality of the above lemma.
�

As suggested by the heuristic presented before Lemma 13, the function

φ̆ B ψ̆ `
1´ π̆p8q

a
1t8u

should play an important role. Note that according to Lemma 13, we have

a
π̆p8q

1´ π̆p8q
“ a

λ0

a
“ λ0

in concordance with the “arguments” preceding Lemma 13.

Lemma 14 We have

L̆rφ̆s “
p1´ π̆p8qq

a

ÿ

xPV

L̆px,8q1txu ´ π̆p8q1V

16



Proof
Note that

L̆r1t8us “
ÿ

xPV

L̆px,8q1txu ´ a1t8u

Indeed, we compute that

L̆r1t8usp8q “ L̆p8,8q

“ ´
ÿ

yPV

L̆p8, yq

“ ´a
ÿ

yPV

νpyq

“ ´a

and we clearly have for any x P V , L̆r1t8uspxq “ L̆px,8q.
Taking into account that by definition

L̆rψ̆s “ p1´ π̆p8qq1t8u ´ π̆p8q1V

we deduce that

L̆rφ̆s “ L̆rψ̆s `
1´ π̆p8q

a
L̆r1t8us

“
p1´ π̆p8qq

a

ÿ

xPV

L̆px,8q1txu ´ π̆p8q1V

�

It follows that L̆rφ̆sp8q “ 0, namely

φ̆p8q “ νrφ̆s (27)

This observation leads us to introduce a new generator rL on V . Denote FpV q the set of real functions
defined on V . Any f P FpV q is extended into a function rf on V̆ by imposing

rfp8q B νrf s

We consider the generator rL given by

@ f P FpV q, @ x P V, rLrf spxq B L̆r rf spxq

The generator rL is the Steklov operator associated to L̆ and to the “boundary” V of V̆ , since rf
can be seen as the “harmonic extension” of f (for more details about this point of view, see [10]). It
follows that the invariant probability measure of rL is the normalization of the restriction of π̆ to V ,
namely ν. More explicitly, rL is described by (2).

Denote φ the restriction of φ̆ on V . Due to (27), rφ coincides with φ̆, so by definition of rL, we get
on V :

rLrφs “
p1´ π̆p8qq

a

ÿ

xPV

L̆px,8q1txu ´ π̆p8q1V

or equivalently

rLrφs “
1

a` λ0

ÿ

xPV

L̆px,8qp1txu ´ νpxqq (28)
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As in (8), for any x P V , consider the solution ϕx of the Poisson equation
"

rLrϕxs “ 1txu ´ νpxq

νrϕxs “ 0
(29)

so that (28) implies that

φ “ νrφs `
1

a` λ0

ÿ

xPV

L̆px,8qϕx (30)

Indeed, we get

rL

«

φ´
1

a` λ0

ÿ

xPV

L̆px,8qϕx

ff

“ 0

thus by irreducibility of rL, φ and 1
a`λ0

ř

xPV L̆px,8qϕ
x coincide up to an additive constant, which is

necessarily νrφs.
The next result shows that φ can be completely expressed in terms of pϕxqxPV .

Lemma 15 We have

φ “
λ0

pa` λ0q
2
`

1

a` λ0

ÿ

xPV

L̆px,8qϕx

Proof
It follows from Lemma 13 and (27) that

π̆rφ̆s “
aνrφs ` λ0φ̆p8q

a` λ0

“ νrφs

By definition of φ̆, we also have

π̆rφ̆s “ π̆rψ̆s `
1´ π̆p8q

a
π̆p8q

“
1´ π̆p8q

a
π̆p8q

“
λ0{a

p1` λ0{aq2
1

a

“
λ0

pa` λ0q
2

so we get

νrφs “
λ0

pa` λ0q
2

and finally the announced result.
�

Lemma 15 shows that to estimate φ (and by consequence the crucial φ̆), we just need to investigate
the solutions ϕx of the Poisson equation (29), for x P V such that Lpx,8q ą 0, namely for x P δV .

With the notation of the introduction and from Theorem 5, we have

@ ω P δV, }ϕω}8 ď 2νpωqΣ:ω (31)

Putting together the above computations, we get:
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Corollary 16 We have
›

›

›
φ̆
›

›

›

8
ď

λ0

pa` λ0q
2
`

2λ0

a` λ0
Σ:

Proof
By definition of φ, we have

›

›

›
φ̆
›

›

›

8
“ }φ}8 _

ˇ

ˇ

ˇ
φ̆p8q

ˇ

ˇ

ˇ

“ }φ}8 _ |νrφs|

“ }φ}8

It follows from Lemma 15 and (31) that

}φ}8 ď
λ0

pa` λ0q
2
`

1

a` λ0

ÿ

ωPδV

L̆pω,8q }ϕω}8

“
λ0

pa` λ0q
2
`

2

a` λ0

ÿ

ωPδV

νpωqL̆pω,8qΣ:ω

ď
λ0

pa` λ0q
2
`

2λ0

a` λ0

ÿ

ωPδV

Σ:ω ζpωq

“
λ0

pa` λ0q
2
`

2λ0

a` λ0
Σ:

where the last identity of Lemma 13, as well as (4) and (5), were taken into account.
�

Coming back to (24), we deduce that for any x P V and any t ě 0,
ˇ

ˇ

ˇ

ˇ

Er18pX̆xpt^ τ̆xqqs ´ 18pxq ´
aπ̆p8q

1´ π̆p8q
Ert^ τ̆xs

ˇ

ˇ

ˇ

ˇ

ď 2
a

1´ π̆p8q

›

›

›
φ̆
›

›

›

8

namely

|Prτ̆x ď ts ´ λ0Ert^ τ̆xs| ď
2a

1´ π̆p8q

ˆ

λ0

pa` λ0q
2
`

2λ0

a` λ0
Σ:

˙

“ 2pa` λ0q

ˆ

λ0

pa` λ0q
2
`

2λ0

a` λ0
Σ:

˙

“
2λ0

pa` λ0q
` 4λ0Σ:

Remark that the l.h.s., λ0 and Σ: do not depend on the choice of a, so we can let a go to infinity
to get

|Prτ̆x ď ts ´ λ0Ert^ τ̆xs| ď 4λ0Σ: (32)

which is the desired bound of Theorem 1.

Instead of Theorem 5, we could have used Proposition 6 in the proof of Corollary 16. Then we end
up with

›

›

›
φ̆
›

›

›

8
ď

λ0

pa` λ0q
2
`

rΣ˚
a` λ0

ÿ

ωPδV

L̆pω,8q (33)
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where, as in Subsection 2.1,

rΣ˚ B
ÿ

λPrΛ˚

1

λ

rΛ˚ B rΛzt0u

and rΛ is the multiset consisting of the spectrum of ´rL with its algebraic multiplicities (which contains
0 with multiplicity 1, by Markovianity and irreducibility).

From (33), we deduce as above, that for any x P V ,

|Prτ̆x ď ts ´ λ0Ert^ τ̆xs| ď
2λ0

pa` λ0q
` 2rΣ˚

ÿ

ωPV

L̆pω,8q

Letting a go to infinity, we get an alternative bound to Theorem 1:

|Prτx ď ts ´ λ0Ert^ τxs| ď 2rΣ˚
ÿ

ωPδV

˜

|Lpω, ωq| ´
ÿ

yPV

Lpω, yq

¸

(34)

Let us give an alternative description of rΣ˚. Consider Λ the multiset consisting of the spectrum of
´L with its algebraic multiplicities. By irreducibility of L, λ0 P Λ with multiplicity 1, but 0 does not
belong to Λ, because L is a strictly sub-Markovian generator. Denote Λ˚ B Λztλ0u and

Σ˚ B
ÿ

λPΛ˚

1

λ
(35)

We have

Σ˚ “ rΣ˚

This result is an immediate consequence the following result, which is interesting in itself.

Proposition 17 We have rΛ˚ “ Λ˚.

Proof
Consider λ P Λ˚ and let f be an eigenvector associated to λ for ´L: we have Lrf s “ ´λf . Extend
f into f̆ , the function on V̆ coinciding with f on V and such that f̆p8q “ 0. Then on V , we have
Lrf s “ L̆rf̆ s. It follows from (1) that

νrf s “ ´
1

λ
νrLrf ss (36)

“
λ0

λ
νrf s

Since λ ‰ λ0, we deduce that νrf s “ 0, namely rf “ f̆ and Lrf s “ rLrf s. Thus λ P rΛ and since
λ ‰ 0, we get λ P rΛ˚.

A similar reasoning is also valid if we consider a multiplicity of λ coming from a Jordan block of
´L. Indeed, it is sufficient to see that if Lrf s “ ´λf ` g, with νrgs “ 0, then νrf s “ 0. This is true,
since (36) still holds.

It follows that apart from their respective eigenvalues 0 and λ0, rL and L have the same spectral
structure, namely rΛ˚ “ Λ˚.

�
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Thus (34) can be rewritten under the form

|Prτ̆x ď ts ´ λ0Ert^ τ̆xs| ď 2Σ˚
ÿ

ωPδV

˜

|Lpω, ωq| ´
ÿ

yPV

Lpω, yq

¸

(37)

This bound is more explicit in terms of L, since it only uses its spectrum (and not the spectra
of the L:ω for ω P δV ) and is generically as good as Theorem 1 on two-point state spaces at small
temperature, see Remark 25 of Section 5. But in Remark 29, we will check on an example that this is
no longer true for larger state spaces.

Remark 18 The partial equality of spectra presented in Proposition 17 suggests that there could
exist an intertwining between L and rL, namely we could find a Markov kernel K from V to V such
that either

rLK “ KL (38)

or

LK “ KrL (39)

Nevertheless this is wrong: for (38), multiply on the left by ν, the invariant probability of rL, to
get νKL “ 0, meaning that the probability νK is invariant for L. But there is no such invariant
probability, since L is strictly sub-Markovian. Concerning (39), multiply on the left by the quasi-
stationary measure ν to obtain ´λ0νK “ νKrL. Since νK is a probability distribution, it is not 0,
so that it is an eigenvector of rL associated to the eigenvalue ´λ0. It follows that λ0 P rΣ˚, namely
λ0 P Σ˚, a contradiction.

Yet there exists an intertwining relation from L̆ to rL, i.e. a Markov kernel K (also called a link)
from V̆ to V such that L̆K “ KrL. Furthermore there is such a relation with K of rank |V | ´ 1.
Indeed, note that the spectrum Λ̆ of ´L̆ is equal to Λ\ t0u as multisets: 0 P Λ̆ by Markovianity and
the eigenvectors of L are extended into eigenvectors of L̆ by imposing they vanish at 8 (the same is
true for the vectors associated to Jordan blocks). Following the arguments of [18], a link K of rank
|V |´1 can be constructed by perturbing the Markov kernel from V̆ to V whose lines are all equal to ν.
As shown in general by Diaconis and Fill [6], an intertwining relation from an absorbed process to an
ergodic process can be used to construct strong stationary times from absorption times. Here this is
quite simple: from a Markov process X̆ associated to L̆, construct a Markov process rX associated to rL
by redistributing the position according to ν instead of hitting 8. It appears then that the absorption
time for X̆ (i.e. the hitting time of 8) is a strong stationary time for rX.

˝

4 Exit position
Here we prove Theorem 3. The arguments follow those of the previous section, with similar notations,
that coincide should we have BV “ t8u. We preferred to separate the treatment of the exit time and
of the exit position for the sack of clarity for the former.

As in Section 3, we begin by transforming L̄ into an ergodic Markov generator L̆ B pL̆px, yqqx,yPV̄ .
Let be given a positive number a ą 0. We define L̆ by only modifying the rows indexed by BV :

@ x ‰ y P V̄ , L̆px, yq B

"

Lpx, yq , if x P V and y P V̄
aνpyq , if x P BV and y P V̄

where we recall that ν is the quasi-stationary measure of the sub-Markovian generator L.
By irreducibility, L̆ admits a unique invariant probability π̆. Let us compute it in terms of ν and

µ:
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Lemma 19 We have

π̆ “
aν ` λ0

ř

ωPBV µpωqδω
a` λ0

Proof
Define

@ ω P BV, αω B
1

a

ÿ

xPV

νpxqL̄px, ωq

We begin by showing that π̌L̆ “ 0, where π̌ B ν `
ř

ωPBV αωδω.

• For any ω0 P BV , we have

π̌L̆pω0q “
ÿ

xPV

νpxqL̆px, ω0q `
ÿ

ωPBV

αωLpω, ω0q

“
ÿ

xPV

νpxqL̄px, ω0q ` αω0Lpω0, ω0q

“ aαω0 ´ αω0a

“ 0

• For any x0 P V , we have

π̌L̆px0q “
ÿ

xPV

νpxqL̆px, x0q `
ÿ

ωPBV

αωLpω, x0q

“
ÿ

xPV

νpxqLpx, x0q `
ÿ

ωPBV

αωaνpx0q

“ ´λ0νpx0q ` νpx0q
ÿ

ωPBV

αωa

“

˜

ÿ

ωPBV

αωa´ λ0

¸

νpx0q

To conclude that π̌L̆px0q “ 0, it remains to see that
ÿ

ωPBV

aαω “ λ0 (40)

By definition, we have
ÿ

ωPBV

aαω “
ÿ

ωPBV

ÿ

xPV

νpxqL̄px, ωq

“
ÿ

xPV

νpxq
ÿ

ωPBV

L̄px, ωq

“ ´
ÿ

xPV

νpxq
ÿ

yPV

L̄px, yq

“ ´
ÿ

xPV

νpxq
ÿ

yPV

Lpx, yq

“ ´
ÿ

x,yPV

νpxqLpx, yq

“ λ0

ÿ

yPV

νpyq

“ λ0
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Recalling the definition of µ in (6), note that

@ ω P BV, αω “
Zµpωq

a

From (40), we deduce that Z “ λ0, so that π̌ “ ν` λ0
a

ř

ωPBV µpωqδω and the desired result follows
by normalization.

�

For any ω P BV , consider the solution ψ̆ω of the Poisson equation:
#

L̆rψ̆ωs “ 1tωu ´ π̆pωq

π̆rψ̆ωs “ 0

As in the previous section, the idea is that ψω is close to ´ 1
ap1ω ´ π̆pωq1BV q, when λ0Σ: is small.

Let us first heuristically deduce Theorem 3 from this belief.
For x P V , let X̆x B pX̆xptqqtě0 be a Markov process associated to the generator L̆ and starting

from x. Let τ̆x be its hitting time of BV . From the martingale problem satisfied by X̆x, there exists a
martingale pM̆tqtě0 such that for any t ě 0,

ψ̆ωpX̆xpt^ τ̆xqq “ ψ̆ωpX̆xp0qq `

ż t^τ̆x

0
L̆rψ̆ωspX̆xpsqq ds` M̆t^τ̆x

“ ψ̆ωpxq `

ż t^τ̆x

0
1tωupX̆xpsqq ´ π̆pωq ds` M̆t^τ̆x

“ ψ̆ωpxq ´ π̆pωqpt^ τ̆xq ` M̆t^τ̆x

Taking expectation, we get

Erψ̆ωpX̆xpt^ τ̆xqqs “ ψ̆ωpxq ´ π̆pωqErt^ τ̆xs (41)

According to the expected behavior of ψω, we should have

@ t ě 0, Er1tωupX̆xpt^ τ̆xqq ´ π̆pωq1BV pX̆xpt^ τ̆xqqs « 1tωupxq ´ π̆pωq1BV pxq ` aπ̆pωqErt^ τ̆xs

namely

@ t ě 0, PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ π̆pωqPrτ̆x ď ts « aπ̆pωqErt^ τ̆xs

According to Section 3, we also have

Ert^ τ̆xs «
Prτ̆x ď ts

λ0

so that

@ ω P BV, @ t ě 0, PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ π̆pωqPrτ̆x ď ts «
aπ̆pωq

λ0
Prτ̆x ď ts

i.e.

@ ω P BV, @ t ě 0, PrX̆xpτ̆xq “ ω, τ̆x ď ts «
λ0 ` a

a
π̆pωqPrτ̆x ď ts

It would mean that X̆xpτ̆xq and τ̆x are almost independent and the distribution of the former is
given by

@ ω P BV, PrX̆xpτ̆xq “ ωs «
λ0 ` a

a
π̆pωq

“ µpωq
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where Lemma 19 was taken into account.

Let us now come to more rigorous computations. As suggested by the above heuristic, for any
fixed ω P BV , we should investigate the function

φ̆ω B ψ̆ω `
1

a
p1tωu ´ π̆pωq1BV q

Lemma 20 We have

L̆rφ̆ωs “
1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qq1txu ´ π̆pωq1V

where L̄px, BV q “
ř

wPBV L̄px,wq.

Proof
Note that

L̆r1tωu ´ π̆pωq1BV s “
ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qq1txu ´ ap1tωu ´ π̆pωq1BV q (42)

Indeed, we compute that for any w P BV ,

L̆r1tωuspwq “ L̆pw,ωq

“ 1tωupwqL̆pω, ωq

“ ´1tωupwq
ÿ

yPV

L̆pω, yq

“ ´a1tωupwq
ÿ

yPV

νpyq

“ ´a1tωupwq

and similarly, for any w P BV ,

L̆r1BV spwq “
ÿ

w1PBV

L̆pw,w1q

“ L̆pw,wq

“ ´a

Furthermore, we clearly have for any x P V , L̆r1tωu ´ π̆pωq1BV spxq “ L̄px, ωq ´ π̆pωqL̄px, BV q and
(42) follows.

Taking into account that by definition

L̆rψ̆ωs “ 1tωu ´ π̆pωq1BV ´ π̆pωq1V

we deduce that

L̆rφ̆ωs “ L̆rψ̆ωs `
1

a
L̆r1tωu ´ π̆pωq1BV s

“
1

a

ÿ

xPV

pL̄px, ωq ´ L̄px, BV qq1txu ´ π̆pωq1V

�

It follows that L̆rφ̆ωspwq “ 0 for any w P BV , namely

@ w P BV, φ̆ωpwq “ νrφ̆ωs (43)
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This observation leads us to introduce a new generator rL on V . Any f P FpV q is extended into a
function rf on V̄ by imposing

@ w P BV, rfpwq B νrf s

We consider the generator rL given by

@ f P FpV q, @ x P V, rLrf spxq B L̆r rf spxq

Again, the generator rL is the Steklov operator associated to L̆ and to the “boundary” V of V̄ . It
follows that the invariant probability measure of rL is the normalization of the restriction of π̆ to V ,
namely ν. As in Section 3, rL is described by (2).

Denote φω the restriction of φ̆ω on V . Due to (43), rφω coincides with φ̆ω, so by definition of rL, we
get on V :

rLrφωs “
1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qq1txu ´ π̆pωq1V

or equivalently, using that νrrLrφωss “ 0,

rLrφωs “
1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qqp1txu ´ νpxqq (44)

Recalling that for any x P V , ϕx is the solution of the Poisson equation (29), (44) implies that

φω “ νrφωs `
1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qqϕx

Indeed, we get

rL

«

φω ´
1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qqϕx

ff

“ 0

thus by irreducibility of rL, φω and 1
a

ř

xPV pL̄px, ωq ´ π̆pωqL̄px, BV qqϕx coincide up to an additive
constant, which is necessarily νrφωs.

The next result shows that φω can be completely expressed in terms of pϕxqxPV .

Lemma 21 We have

φω “
1

a` λ0
π̆pωq `

1

a

ÿ

xPV

pL̄px, ωq ´ π̆pωqL̄px, BV qqϕx

Proof
It follows from Lemma 19 and (43) that

π̆rφ̆ωs “
aνrφωs ` λ0

ř

wPBV µpwqφωpwq

a` λ0

“ νrφωs

By definition of φ̆ω, we also have

π̆rφ̆ωs “ π̆rψ̆ωs `
1

a
pπ̆pωq ´ π̆pωqπ̆pBV qq

“
π̆pV q

a
π̆pωq

“
π̆pωq

a` λ0
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so we get

νrφωs “
1

a` λ0
π̆pωq

and finally the announced result.
�

With the notation of the introduction and from Theorem 5, we have
#

@ x R δV, L̄px, ωq ´ π̆pωqL̄px, BV q “ 0

@ x P δV, }ϕx}8 ď 2νpxqΣ:x
(45)

so putting together the above computations, we get:

Corollary 22 We have

›

›

›
φ̆ω

›

›

›

8
ď

ˆ

λ0

pa` λ0q
2
`

2a` 4λ0

apa` λ0q
Σ:λ0

˙

µpωq

Proof
By definition of φω, we have

›

›

›
φ̆ω

›

›

›

8
“ }φω}8 _max

!
ˇ

ˇ

ˇ
φ̆ωpwq

ˇ

ˇ

ˇ
: w P BV

)

“ }φω}8 _ |νrφωs|

“ }φω}8

It follows from Lemma 21 and (45) that

}φω}8 ď
1

a` λ0
π̆pωq `

1

a

ÿ

xPV

ˇ

ˇL̄px, ωq ´ π̆pωqL̄px, BV q
ˇ

ˇ }ϕx}8

ď
1

a` λ0
π̆pωq `

2

a

ÿ

xPδV

νpxqpL̄px, ωq ` π̆pωqL̄px, BV qqΣ:x

“
1

a` λ0
π̆pωq `

2

a
ZΣ:pχpωq ` π̆pωqq

“
λ0

pa` λ0q
2
µpωq `

2

a
λ0Σ:

ˆ

χpωq `
λ0

a` λ0
µpωq

˙

where in the fourth line, we used that λ0 “ Z, as seen at the end of the proof of Lemma 19.
�

Coming back to (41), we deduce that for any ω P BV , x P V and t ě 0,
ˇ

ˇ

ˇ
Er1ωpX̆xpt^ τ̆xqq ´ π̆pωq1BV pX̆xpt^ τ̆xqqs ´ aπ̆pωqErt^ τ̆xs

ˇ

ˇ

ˇ
ď 2a

›

›

›
φ̆ω

›

›

›

8

namely
ˇ

ˇ

ˇ
PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ π̆pωqPrτ̆x ď ts ´ aπ̆pωqErt^ τ̆xs

ˇ

ˇ

ˇ

ď 2

ˆ

aλ0

pa` λ0q
2
µpωq ` 2λ0Σ:

ˆ

χpωq `
λ0

a` λ0
µpωq

˙˙

(46)
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In this bound, the term π̆pωq depends on a ą 0, as we have

π̆pωq “
λ0µpωq

a` λ0

Thus, letting a go to infinity in (46), we get
ˇ

ˇ

ˇ
PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ λ0µpωqErt^ τ̆xs

ˇ

ˇ

ˇ
ď 4Σ:λ0χpωq (47)

Taking (32) into account, we obtain
ˇ

ˇ

ˇ
PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ µpωqPrτ̆x ď ts

ˇ

ˇ

ˇ
ď 8Σ:λ0χpωq (48)

which shows that the exit time and position are almost independent when Σ:λ0 is small. To end up
with the desired bound of Theorem 3, it remains to use Theorem 1.

As in Corollary 16, instead of Theorem 5, we could have used Proposition 6 in the proof of
Corollary 22. It leads to

ˇ

ˇ

ˇ
PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ λ0µpωqErt^ τ̆xs

ˇ

ˇ

ˇ
ď 2Σ˚

ÿ

yPδV

L̄py, ωq

and taking (34) into account,
ˇ

ˇ

ˇ
PrX̆xpτ̆xq “ ω, τ̆x ď ts ´ µpωqPrτ̆x ď ts

ˇ

ˇ

ˇ
ď 2Σ˚pL̄pδV, ωq ` µpωqL̄pδV, BV qq

where for any disjoint A,B Ă V̄ , L̄pA,Bq B
ř

yPA,zPB L̄py, zq.
For the reason presented in Section 3, these bounds seem less interesting than (47) and (48)

respectively.

5 Simple examples at small temperature
Here we illustrate the metastability phenomenon in the simplest situation, namely a two-point state
space at small temperature. This benchmark will enable us to see that Corollary 4 is quite sharp,
contrary to Theorem 1. Resorting to a 3-point state space, we also underline the difference between
the estimates of Theorem 5 and Proposition 6.

On the state space V B t0, 1u, let be given a family pLβqβě0 B ppLβpx, yqqx,yPV qβě0 of irreducible
strictly sub-Markovian generators. The parameter β ě 0 is to be seen as an inverse temperature and
we are interested in the asymptotic regime when β goes to infinity (namely the temperature goes to
0`). As in the introduction, denote V̆ B t0, 1,8u and to avoid reference to L̆β , for β ě 0, we adopt
the simplified notation Lβpx,8q B ´Lβpx, xq ´ Lβpx, 1´ xq, for any x P t0, 1u. Thus we have

@ β ě 0, Lβ B

ˆ

´Lβp0, 1q ´ Lβp0,8q Lβp0, 1q
Lβp1, 0q ´Lβp1, 0q ´ Lβp1,8q

˙

Furthermore, to get a more convenient landscape in the setting of Theorem 3 and Corollary 4,
let us split 8 into the two points ´1 and 2, and consider on the state space V̄ B t´1, 0, 1, 2u, the
following absorbing extension L̄β of Lβ , for any given β ě 0:

L̄β B

¨

˚

˚

˝

0 0 0 0
Lβp0,8q ´Lβp0, 1q ´ Lβp0,8q Lβp0, 1q 0

0 Lβp1, 0q ´Lβp1, 0q ´ Lβp1,8q Lβp1,8q
0 0 0 0

˛

‹

‹

‚
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We assume the existence of the following limits

@ px, yq P V ˆ V̆ , x ‰ y, W px, yq B ´ lim
βÑ`8

1

β
lnpLβpx, yqq P r0,`8q (49)

Let us simplify the notations and define

a B Lβp0,8q, b B Lβp0, 1q, c B Lβp1, 0q, d B Lβp1,8q

ra B W p0,8q, rb B W p0, 1q, rc B W p1, 0q, rd B W p1,8q

Except when explicitly said otherwise, in this section we suppose:

The numbers ra,rb,rc and rd are all distinct and ra` rc ‰ rb` rd (50)

Furthermore, up to exchanging 0 and 1, we assume that rb ą rc.
Before applying Theorem 1 and Corollary 4, let us check directly if metastability holds or not, by

considering the different possible situations.

• Case (1) where rc ă ra ă rb and rc ă rd.
Taking into account the probabilistic description of a Markov process X0 B pX0ptqqtě0 associated
to the generator L̄β and starting from 0, X0 stays in X0p0q “ 0 for a exponential time τ1 of
parameter a ` b „ a, because rb ą ra. The position X0pτ1q is equal to ´1 with probability
a{pa ` bq and to 1 with probability b{pa ` bq. Thus, up to an exponentially small error (in β),
starting from 0, the exit time is an exponential variable of parameter a and the exit position is
´1.
Similarly since rc ă rd, starting from 1 and up to an exponentially small error, the process X1

waits an exponential time of parameter c before jumping in 0. From 0, the process behaves like
X0. Since ra ą rc, the time to jump from 1 to 0 is negligible with respect to the time to jump from
0 to ´1. It follows that up to an exponentially small error, again the exit time is an exponential
variable of parameter a and the exit position is ´1. Thus the exit behavior is independent of the
initial state: the metastability phenomenon occurs.

• Case (2) where ra ă rb and rc ą rd.
Starting from 0 the situation is similar to Case (1). Starting from 1, the process X1 waits an
exponential variable of parameter d before jumping to 2, up to an exponentially small error. The
metastability phenomenon does not occur, since the distribution of the exit position strongly
depends on the initial point.

• Case (3) where ra ą rb and rc ą rd.
As in case (2), starting from 1, the process X1 waits an exponential variable of parameter
d before jumping to 2, up to an exponentially small error. Starting from 0, the process X0

waits an exponential variable of parameter b before jumping to 1, before jumping to 2 after an
exponential variable of parameter d, all that up to an exponentially small error. The metastability
phenomenon does not occur, because the exit time from 0 is much longer than the exit time from
1.

• Case (4) where ra ą rb, rc ă rd.
As above, all the following statements are up to an exponentially small error. Starting from 1,
the process X1 first reaches 0. Thus the exit position distribution will not depend on the initial
state. Furthermore the time to reach 0 from 1 is much smaller than the time to get out of 0
(and first to reach 1). This is sufficient to insure metastability (consider the quasi-stationary
distribution as initial distribution, the exit time will be the same as the exit time starting from
0, according to the above arguments). The exit position distribution will be concentrated on 2
(respectively ´1), if ra ą rb´ rc` rd (resp. ra ă rb´ rc` rd).
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Let us denote by M the set of pra,rb,rc, rdq P R4
` satisfying (50) and for which metastability holds,

namely corresponding to Cases (1) and (4) above. It is not difficult to check that M is the set of
pra,rb,rc, rdq P R4

` satisfying (50) and rc ă ra^rb.
For any β ě 0, consider λ0pβq and Σ:pβq the quantities associated to Lβ as in the introduction.

The following result shows that the metastability of Cases (1) and (4) is recovered from Theorem 3
and Corollary 4.

Proposition 23 When pra,rb,rc, rdq PM, we have

lim
βÑ`8

β´1 ln
`

λ0pβqΣ
:pβq

˘

ă 0 (51)

(in particular the l.h.s. limit exists).

Note that for pra,rb,rc, rdq P R4
` satisfying (50) and corresponding to Cases (2) and (3), (51) cannot

hold, otherwise we could conclude to metastability. Thus Theorem 3 and Corollary 4 are quite sharp,
since they enable to recover the domain of coefficients pra,rb,rc, rdq P R4

` leading to metastability, at least
under (50).

Let us start the proof of Proposition 23 by obtaining the behavior of λ0pβq at small temperature:

Lemma 24 As soon as the limits in (49) exist, we have

´ lim
βÑ`8

β´1 lnpλ0pβqq “ minpra` rc,ra` rd,rb` rdq ´minpra,rc, rdq

In particular, when pra,rb,rc, rdq PM, we deduce that

´ lim
βÑ`8

β´1 lnpλ0pβqq “ ra^ prb´ rc` rdq

and in Case (1), the l.h.s. is ra.

Proof
For fixed β ě 0, the two eigenvalues of Lβ are the roots of the characteristic polynomial

pX ´ a´ bqpX ´ c´ dq ´ bc “ X2 ´ pa` b` c` dqX ` ac` ad` bd

Since λ0pβq is the smallest of them, we get

λ0pβq “
1

2
pa` b` c` d´

a

4q

“
1

2

pa` b` c` dq2 ´4
a` b` c` d`

?
4

“ 2
ac` ad` bd

a` b` c` d`
?
4

(52)

where the discriminant is given by

4 B pa` b` c` dq2 ´ 4pac` ad` bdq

“ pa` b´ c´ dq2 ` 4bc

It is clear that

´ lim
βÑ`8

β´1 lnpac` ad` bdq “ minpra` rc,ra` rd,rb` rdq
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Note that

´ lim
βÑ`8

β´1 lnpa` b` c` dq “ minpra,rb,rc, rdq

“ minpra,rc, rdq

and, since pa` b´ c´ dq2 ` 4bc ď 4a2 ` 6b2 ` 6c2 ` 4d2, that

´ lim
βÑ`8

β´1 lnp
a

pa` b´ c´ dq2 ` 4bcq ě minpra,rb,rc, rdq

so we deduce that

´ lim
βÑ`8

β´1 lnpa` b` c` d`
a

4q “ minpra,rc, rdq

The announced results are an immediate consequence of (52).
When pra,rb,rc, rdq PM, we have rc “ minpra,rc, rdq and rd ą rc, so that

´ lim
βÑ`8

β´1 lnpλ0pβqq “ minpra,ra´ rc` rd,rb´ rc` rdq (53)

“ minpra,rb´ rc` rdq (54)

In Case (1), we have rb ě ra and rd ě rc, so that minpra,rb´ rc` rdq “ ra.
In Case (4), both alternatives ra ą rb´ rc` rd and ra ă rb´ rc` rd are possible.

�

Remark 25 For β ě 0, let Σ˚pβq be defined as in (35): we have Σ˚pβq “ 1{λ1pβq, where λ1pβq “
1
2pa` b` c` d`

?
4q is the other eigenvalue of Lβ . It is clear that

lim
βÑ`8

β´1 lnpλ1pβqq “ ´pra^rb^ rc^ rdq

Note that in the present context, the r.h.s. of (37) is just

2Σ˚pβqpLβp0,8q ` Lβp1,8qq “
2

λ1pβq
pra` rdq

so that

lim
βÑ`8

β´1 ln
´

2Σ˚pβqpLβp0,8q ` Lβp1,8qq
¯

“ ra^rb^ rc^ rd´ ra^ rd

and the r.h.s. is negative if and only rb^ rc ă ra^ rd, i.e. rc ă ra^ rd.
Thus it appears that on the two-point state space, (37) is as good as Theorem 1 (as long as

the exponential rate is concerned at small temperature). But this is no longer true on state spaces
containing at least three points, see Remark 29 below.

˝

For β ě 0, let νβ be the quasi-stationary distribution associated to Lβ .

Lemma 26 When pra,rb,rc, rdq PM, we have for large β ě 0,

@ x P t0, 1u, νβpxq „

"

1 , if x “ 0
b{c , if x “ 1

(55)

and in particular,

@ x P t0, 1u, lim
βÑ`8

β´1 lnpνβpxqq “

"

0 , if x “ 0

rc´rb , if x “ 1
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Proof
For β ě 0, let rLβ be associated to Lβ and νβ as in the introduction. More precisely, we have

rLβ “

ˆ

´pb` aνβp1qq b` aνβp1q
c` dνβp0q ´pc` dνβp0qq

˙

Since νβ is invariant for rLβ , we deduce that

νβp0q “
c` dνβp0q

b` aνβp1q ` c` dνβp0q
(56)

νβp1q “
b` aνβp1q

b` aνβp1q ` c` dνβp0q
(57)

In both Cases (1) and (4), we have for large β ě 0,

c " a_ b_ d

and we deduce from (56) that

νβp1q „ 1

From (57), we get

νβp1q „
b` aνβp1q

c

so from a ! c, we deduce

νβp1q „
b

c

�

We can now come to the

Proof of Proposition 23
For β ě 0, consider the probability ζβ defined as in (4). We have

@ x P t0, 1u, ζβpxq “

$

’

’

’

&

’

’

’

%

aνβp0q

aνβp0q ` bνβp1q
, if x “ 0

bνβp1q

aνβp0q ` bνβp1q
, if x “ 1

and we deduce from (55)

@ x P t0, 1u, ζβpxq „

$

’

’

&

’

’

%

ac

ac` b2
, if x “ 0

b2

ac` b2
, if x “ 1

For any β ě 0, we also have, with the notation of the introduction,

L:β,0 “ p´c´ dνβp0qq

L:β,1 “ p´b´ aνβp1qq
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(where the r.h.s. are seen as 1ˆ 1-matrices), so that, for large β ě 0,

Σ:0pβq “
1

c` dνβp0q
„

1

c

Σ:1pβq “
1

b` aνβp1q
„

c

bpc` aq
„

1

b

and thus

Σ:pβq “ Σ:0pβqζβp0q ` Σ:1pβqζβp1q

„
1

c

ac

ac` b2
`

1

b

b2

ac` b2

“
a` b

ac` b2

leading to

lim
βÑ`8

β´1 ln
`

Σ:pβq
˘

“ pra` rcq ^ p2rbq ´ ra^rb

Taking into account (53), we get

lim
βÑ`8

β´1 ln
`

λ0pβqΣ
:pβq

˘

“ δ

with

δ B pra` rcq ^ p2rbq ´ ra^rb´ ra^ prb´ rc` rdq

In Case (1), we have already seen that the last term in the r.h.s. is ra, furthermore we have ra`rc ď 2rb
and ra ď rb so that

δ “ ra` rc´ ra´ ra

“ rc´ ra

ă 0

In Case (4), the only clear inequality is rb ď ra, so that

δ B pra` rcq ^ p2rbq ´rb´ ra^ prb´ rc` rdq

“ pra` rc´rbq ^rb´ ra^ prb´ rc` rdq

Let us consider two subcases:

• When ra ă rb´ rc` rd, then ra` rc´rb ă rb, so

δ “ ra` rc´rb´ ra

“ rc´rb ă 0

• When ra ą rb´ rc` rd, then ra` rc´rb ą rb, so

δ “ rb´ prb´ rc` rdq

“ rc´ rd ă 0
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It both subcases, we get δ ă 0, as desired.
�

It is time to discuss about Assumption (50). Consider for example the case where ra “ rd, and more
demandingly, let us assume that a “ d. Then whatever the initial distribution on t0, 1u, the exit time
is an exponential distribution of parameter a, in particular λ0pβq “ a. It follows that the l.h.s. in the
bound of Theorem 1 is zero, while the r.h.s. is positive. This r.h.s. may even be non-vanishing for
large β ě 0. Indeed, note that as soon as rb ^ rc ą ra “ rc, then the exit position will strongly depend
on the initial state: up to an exponential small error, starting from 0 (respectively 1), the process will
exit by ´1 (resp. 2). Thus from Corollary 4, we have

lim inf
βÑ8

λ0pβqΣ
:pβq ą 0

These observations show that Theorem 1 is not optimal, in the logarithmic scale at small temper-
ature, while we believe that Theorem 3 and Corollary 4 are. As it was mentioned in the introduction,
the latter two results do stand for metastability, but not Theorem 1, which is only concerned with the
exit time.

Let us now illustrate the difference between the estimates of Theorem 5 and Proposition 6 in the
3-point state space V B t0, 1, 2u. Assume that for all β ě 0, we are given a birth-and-death Markovian
generator

rLβ B

¨

˚

˝

´rLβp0, 1q rLβp0, 1q 0
rLβp1, 0q ´rLβp1, 0q ´ rLβp1, 2q rLβp1, 2q

0 rLβp2, 1q ´rLβp2, 1q

˛

‹

‚

(58)

As in the above subMarkovian situation, we assume the existence of the following limits

@ px, yq P V ˆ V, x ‰ y, ĂW px, yq B ´ lim
βÑ`8

1

β
lnprLβpx, yqq P r0,`8s (59)

and simplify the notations by defining

a B rLβp0, 1q, b B rLβp1, 0q, c B rLβp1, 2q, d B rLβp2, 1q

ra B ĂW p0, 1q, rb B ĂW p1, 0q, rc B ĂW p1, 2q, rd B ĂW p2, 1q

For β ě 0, denote rπβ the associated reversible probability measure. It is well-known (see for
instance Chapter 6 of Freidlin and Wentzell [9]) that the following limits exist:

@ x P V, Upxq B ´ lim
βÑ`8

β´1 lnprπβpxqq (60)

and the function U : V Ñ R` is called the quasi-potential, it only depends on ĂW (through finite
minimization problems over covering trees).

Let us assume the following inequalities:

ra ą rb, rc ą rb, rb ą rd (61)

It follows that

Up0q “ 0, Up1q “ ra´rb, Up2q “ ra` rc´ prb` rdq

Let us come back to the setting of Section 7, where all notions now depend on β ě 0. We consider
the case where ω “ 2, namely we are interested in ϕβ , the solution to the Poisson equation:

#

rLβrϕβs “ 1t2u ´ rπβp2q

rπβrϕβs “ 0
(62)
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Let Σ:pβq and rΣ:˚pβq be the quantities appearing respectively in Theorem 5 and Proposition 6.
Since these quantities come from 2ˆ 2 and 3ˆ 3 matrices, it is clear that for large β ě 0, Σ:pβq has
the same logarithmic behavior as the inverse of the first Dirichlet eigenvalue of prLβpx, yqqx,yPt0,1u and
rΣ:˚pβq has the same logarithmic behavior as the inverse of the spectral gap of rLβ . Direct computations
then lead to

lim
βÑ`8

β´1 ln
`

Σ:pβq
˘

“ ra` rc´rb

lim
βÑ`8

β´1 ln
`

Σ:˚pβq
˘

“ rb

Remark 27 Such results can also be obtained without computations by extending the path method of
Holley and Stroock [11] to the situation “without potential”, as in [14], and to the absorbing situation,
as in [2].

˝

Taking into account that Up2q “ ra` rc´ prb` rdq, we deduce the following behaviors for the bounds
of Theorem 5 and Proposition 6:

Proposition 28 Under the above assumptions, in particular (61), we have

lim
βÑ`8

β´1 ln
`

rπβp2qΣ
:pβq

˘

“ rd

lim
βÑ`8

β´1 ln
`

Σ:˚pβq
˘

“ rb

Since rd ă rb, for large β ě 0, the bound of Theorem 5 is much better than that of Proposition 6.

Remark 29 Despite Remark 25, the fact that (37) is based on Proposition 6 rather than on Theorem 5
is a first suggestion that the bound of Theorem 1 should be better than (37). Let us give here an
instance at small temperature, by modifying the above three-point example.

For β ě 0, consider the subMarkov generator Lβ defined on V B t0, 1, 2u as in (58), except that
the underlying process is killed at 2 with rate Lβp2,8q:

Lβ B

¨

˝

´Lβp0, 1q Lβp0, 1q 0
Lβp1, 0q ´Lβp1, 0q ´ Lβp1, 2q Lβp1, 2q

0 Lβp2, 1q ´Lβp2, 1q ´ Lβp2,8q

˛

‚ (63)

We assume the existence of the following limits (recall that V̆ “ t0, 1, 2,8u),

@ px, yq P V ˆ V̆ , x ‰ y, W px, yq B ´ lim
βÑ`8

1

β
lnpLβpx, yqq P r0,`8s

simplify the notations by defining

ra B ĂW p0, 1q, rb B ĂW p1, 0q, rc B ĂW p1, 2q, rd B ĂW p2, 1q, re B ĂW p2,8q

and assume

ra ą rb ą 0, rc ą rb, rd “ 0, re ą 0 (64)

Taking into account the results of [15], metastability at small temperature holds and we have

lim
βÑ`8

1

β
lnpλ0pβqq “ ´pra´rb` rc` req (65)
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(it is due to the fact that t0, 1, 2u can be seen as a well of height ra ´ rb ` rc ` re ą 0 in a larger
state space (for instance V̆ by adding an exponential transition from 8 to 2) for a reversible Markov
generator at small temperature). Furthermore, Lβ admits another exponentially small eigenvalue at
small temperature, say λ1pβq, which satisfies

lim
βÑ`8

1

β
lnpλ1pβqq “ ´rb

An easy way to get the upper bound, which is the only thing needed in the following arguments, is
to apply the variational principle to the vector space generated by 1t0u and 1t0u in L2pπβq, where
πβ is the reversible probability measure associated to the Markovian generator obtained by removing
Lβp2,8q from (63).

Now let us come back to (37). With the corresponding notations, we have

lim
βÑ`8

1

β
lnpΣ˚pβqq “ ´ lim

βÑ`8

1

β
lnpλ1pβqq

“ rb

and

lim
βÑ`8

1

β
ln

˜

ÿ

ωPδV

˜

|Lβpω, ωq| ´
ÿ

yPV

Lβpω, yq

¸¸

“ lim
βÑ`8

1

β
lnpLβp2,8qq

“ ´re

Thus metastability is not recovered as soon as re ă rb, at least under (64).
To be able to apply Theorem 1, we must first understand the behavior at small temperature of the

quasi-stationary measure νβ . In the present particular example (be careful, this is not always true,
see the counter-example closing this section), it can be checked the logarithmic behavior of νβ is the
same as for the invariant measure πβ , and thus we get

lim
βÑ`8

β´1 lnpνβp0qq “ 0, lim
βÑ`8

β´1 lnpνβp1qq “ ´pra´rbq, lim
βÑ`8

β´1 lnpνβp2qq “ ´pra` rc´rbq

We deduce, with the notations of the introduction,

lim
βÑ`8

β´1 lnpΣ:pβqq “ lim
βÑ`8

β´1 lnpΣ:2pβqq

“ ra` rc´rb

Comparing this convergence with (65), we get that Theorem 1 enables to recover the metastability
phenomenon under (64), without the restriction re ă rb.

˝

To finish, let us briefly consider the extension of the above small temperature considerations to
arbitrary finite state space V . We assume that we are given a family pLβqβě0 of irreducible strictly
subMarkovian generators on V and that (49) holds in r0,`8s (with V̆ B V \ t8u and Lβpx,8q B
´
ř

yPV Lβpx, yq, for all x P V ).
There is no difficulty with the behavior of λ0pβq, as we know the validity of

lim
βÑ`8

β´1 ln pλ0pβqq “ ´l

where l is the highest depth of a well included in V , for the appropriate definitions of the energy
landscape in this context.
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More problematic and surprising at first view, is the behavior of the quasi-stationary measure νβ
for large β ě 0, since the existence of the limits

@ x P V, W pxq B lim
βÑ`8

β´1 lnpνβpxqq (66)

is not always true, and when they exist, they may not depend only on pW px, yqq
px,yqPVˆV̆ . Thus the

situation is quite different from the existence of the quasi-potential as in (60), which always exists
for irreducible Markovian generators at small temperature (and only depend on the exponential rates
of the transitions). Nevertheless, we think that the limits in (66), that could be called “quasi-quasi-
potentials”, generically exist and only depend on the rates pW px, yqq

px,yqPVˆV̆ , i.e. up to removing
exceptional identities between these rates, as in (50). Maybe the non-validity of (66) is a watered-
down instance in the finite setting of the non-uniqueness of quasi-stationary measures in general (see
e.g. Example 6.3.1 from Collet, Martínez and San Martín [3]), due to the non-linearity of the equation
they solve. We hope to be able to investigate more thoroughly this situation in a future work.

For the moment being, let us conclude by giving a counter-example to (66), in the two-point state
space t0, 1u. We begin by a simple computation:

Lemma 30 Assume that (49) holds, with d ą a for all β ě 0, and

lim
βÑ`8

β´1 lnpd´ aq “ ´rr

with rr ă rb^ rc. Then we get

lim
βÑ`8

β´1 lnpνβp1qq “ rr ´rb

Proof
Let us come back to (56), taking into account that νβp1q “ 1´νβp0q, we get that x B νβp0q is solution
of the second order equation

pd´ aqx2 ` pa` b` c´ dqx´ c “ 0

Its solutions are

x˘ “
1

2pd´ aq
pd´ pa` b` cq ˘

a

4q

with

4 B pa` b` c´ dq2 ` 4cpd´ aq

Note that the product of these solutions is ´c{pd ´ aq ă 0, so νβp0q is the positive solution:
νβp0q “ x`. We deduce

νβp0q “
1

2pd´ aq
pd´ pa` b` cq `

a

4q

and

νβp1q “ 1´ νβp0q

“
1

2pd´ aq
pd´ a` b` c´

a

4q

“
1

2pd´ aq

pd´ a` b` cq2 ´ pa` b` c´ dq2 ´ 4cpd´ aq

d´ a` b` c`
?
4

“
1

2pd´ aq

4pd´ aqpb` cq ´ 4cpd´ aq

d´ a` b` c`
?
4

“
2b

d´ a` b` c`
?
4
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Due to rr ă rb ^ rc, we have that for large β ě 0, b ` c ! d ´ a, so that νβp1q „ b{pd ´ aq and the
announced result follows at once.

�

Choose 0 ď ra ă rr ă rb and define for all β ě 0,

a B expp´raβq, b B expp´rbβq, c B b, d B a` expp´rrβq

The conditions of Lemma 30 are satisfied and we get

lim
βÑ`8

β´1 lnpνβp1qq “ rr ´rb (67)

where the r.h.s. is not a function of the exponential rates ra “ rd and rb “ rc.
To get the desired counter-example, choose ra ă pa ă pb ă rb and consider a function rr : R` Q β ÞÑ

rrpβq P rpa,pbs with

lim inf
βÑ`8

rrpβq “ pa, lim sup
βÑ`8s

rrpβq “ pb

From the proof of Lemma 30, we deduce

lim inf
βÑ`8

νβp1q “ pa´rb, lim sup
βÑ`8

νβp1q “ pb´rb
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