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Abstract

Consider finite state space irreducible and absorbing Markov processes. A general spectral criterion
is provided for the absorbing time to be close to an exponential random variable, whatever the starting
point. When exiting points are added to the state space, our criterion also insures that the exit
time and position are almost independent. Since this is valid for any exiting extension of the state
space, it corresponds to an instance of the metastability phenomenon. Simple examples at small
temperature suggest that this new spectral criterion is quite sharp. But the main interest of the
underlying quantitative approach, based on Poisson equations, is that it does not rely on a small
parameter such as temperature, nor on reversibility.
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1 Introduction

The metastability phenomenon occurs when a system relatively quickly reaches an apparent equi-
librium, independent from the initial state, before this stochastic balance vanishes in a somewhat
unpredictable way. This behavior can be found in various domains, such as physics, chemistry, bio-
chemistry, neuroscience, population dynamics, economics, politics or even (personal?) history. The
simplest mathematical model is based on absorbing finite Markov processes, when a quasi-stationary
distribution is (almost) attained before the final absorption. The goal of this paper is to give a
surprising simple spectral characterization of metastability in this Markovian context.

More precisely, consider a sub-Markovian generator L := (L(z,y)),4ev on a finite state space
V which contains at least two points (otherwise Theorem 1, Theorem 3 and Corollary 4 are trivially
true with 7 = 0). It is a matrix whose off-diagonal entries are non-negative and whose row sums are
non-positive. We assume that L is irreducible, in the sense that for any x # y € V, there exists a
path (2x)kegoy (Where [0,1] := {0,1,...,1}) going from z to y: ¥ = z, 1y = y and L(wg, 2p41) > 0
for all k € [0,1 —1]. For any z € V, X, == (X4(t))se[o,r,) Will stand for an associated Markov process
starting from x, up to its vanishing time 7.

Consider A the multiset of the eigenvalues of —L counted with their algebraic multiplicities. By
Perron-Frobenius’ theorem, A contains an eigenvalue A\g > 0 which is strictly smaller than the real
parts of all the other elements of A. It is sometimes called the first Dirichlet eigenvalue or the
exponential survival rate of L, see for instance the book [3| of Collet, Martinez and San Martin.
In particular, the algebraic multiplicity of Ag is 1. To avoid a trivial statement below, we assume that
L is strictly sub-Markovian, in the sense that Ao > 0.

Perron-Frobenius’ theorem also insures the existence and uniqueness of a probability v on V', called
the quasi-stationary distribution, such that

vL = —)\v (1)
For more details about the eigenmeasure v, which gives positive weights to all the elements of V', we

refer again to the book of Collet, Martinez and San Martin [3].

To state our main result, we need to introduce another spectral quantity. Consider 6V the set of
interior exit points:

oV = {weV: ZL(w,y)<0}

yeV

When a Markov process X,, x € V, associated to L visits a point of §V, there is a positive
probability that it vanishes at its next attempt to jump. Let us transform this Markov process into
an ergodic one, by requiring that instead of vanishing, a new position is chosen according to v. It
amounts to replace the sub-Markov generator L by the Markov generator L defined by

Z L(x, 2)

zeV

~

Ve#yeV, L(zy) = L(z,y) + v(y) (2)

(the entries of L on the diagonal are deduced from the fact that the row sums vanish).
For x # y € V, L(x,y) is different from L(z,y) if and only if x € §V, in which case the vanishing
rate | X5, ¢y L(z, y)| is dispatched into the jump rates |}, o\, L(z,y)[v(y). For w € 6V, denote

viio= v\{wl

w

which is non-empty, due to the hypothesis card(V) = 2. Endow V. with the sub-Markovian generator
LL = (LL(2,), eyt = (L(@,9), et



Consider A{, the multiset of the eigenvalues of — L}, counted with their algebraic multiplicities.
Since there is no reason for L], to be reversible (even when L is assumed to be reversible), a priori
the elements of Al, are complex numbers whose real part is positive, by strict sub-Markovianity of LL,
namely

Al ¢ {zeC: R(z) >0}

w

Since the entries of the matrix LL are real-valued, the set AL is stable by complex conjugation, so
that the following quantity is positive

1
ET = -
L= 3)
)\GAL

Consider the probability ¢ defined on §V by

‘Zye\/ L(wa y)‘ V(w)
Diwesv | 20zev L(w, 2) [ v(w)

YwedV, C(w) (4)

Finally introduce

2= ) i) (5)

wedsV

The interest of this quantity comes from the following surprisingly simple bound about metasta-
bility:

Theorem 1 We have

supsup [P[r, > t] —exp(=Aot)| < 4oX'
zeV t=0

The interpretation of this result is as follows. For any w € dV, the quantity >, measures how
difficult it is to reach the interior exit boundary point w for the underlying process. Then X' stands
an average over all the w € 0V: it measures the difficulty of “internal mixing”. The quantity 1/Ag
quantifies the difficulty of getting out of the state space. Thus the above result states that when it is
easier to mix than to exit, a metastability phenomenon occurs for the exit time (and the exit position
according to the following bounds) and this principle can be quantified in a very clear and spectral
manner.

With respect to the informal definition of metastability given at the beginning of this introduction,
this theorem does not deal with the fact that an apparent equilibrium has been relatively quickly
reached, but only with its vanishing in an unpredictable way (due to the memoryless property of
the exponential distribution). In the present setting, the apparent equilibrium corresponds to the
quasi-stationary distribution. To quantify the fact it has almost been attained well before the process
vanishes, we can introduce conditioned strong quasi-stationary times: starting from z € V, they
are stopping times ¢, < 7, (with respect to the filtration generated by X, and independent noise) such
that conditioned by ¢, on {¢, < 7.}, the law of X_ is the quasi-distribution v. Taking into account
that on {¢, < 7,}, X, is independent from ¢, and distributed according to v implies that 7, — ¢, is
conditionally distributed according to an exponential random variable of parameter A\g. In particular,
if \oXT is very small, due to Theorem 1, ¢, will have to be negligible with respect to 7, on {¢, < 7,}.
Thus we would have a spectral characterization through the quantity A\oX! of the full metastability
phenomenon if the following result was true:

Conjecture 2 For any x € V, there exists a conditioned strong quasi-stationary time ¢, such that

supPl¢, = 7] < ChoXt
zeV



where C > 0 is a universal constant.

When P[g, = 7] = 0, g, is called a strong quasi-stationary times. Such times where con-
structed in [7] for birth and death processes starting from the non-absorbing boundary of their finite
segment state spaces. For more general approaches that can be used for conditioned strong quasi-
stationary times, see Fill [8] and [16]. Conditioned strong quasi-stationary times were formally intro-
duced in Manzo and Scoppola [13] in the context of metastability. We will not investigate further the
notion of conditioned strong quasi-stationary times in this paper. Instead we will study the behavior
of the exit position distribution. The fact that the latter can be almost independent from the starting
point, for any absorbing extension of L, as explained below, should be equivalent to the metastability
of L as mentioned above Conjecture 2. Proposition 23 and Remark 29, valid in the small temperature
framework of Section 5, are strong hints in this direction.

The bound of Theorem 1 extends into a similar result for the exit time and position couple. Denote
V =V w0V, where 0V is a non-empty set not intersecting V. Be careful about the distinction: 6V
consists of internal boundary points, while the elements of 0V will be external boundary points (even
if it would be sufficient to choose a set dV in bijection with 4V, each internal boundary point leading
to exactly one external boundary point). Consider a Markov generator L := (L(z, Y) g yev ON V which
is an absorbing extension of L:

_ _ L(z, , when z,y e V
Vz,yeV, L(z,y) = {0( & whenxgﬁv

The weights (L(2',y'))wev,yeov enable, for any x € V, to extend X, into a Markov process
Xz = (Xz(t))t=0 taking values in V' in the following way: the value X, (7,) = y is chosen with the
probability measure proportional to (L(X;(72—),y))yeov, and afterward we take X, (t) = X, (7,) for
all t = 7.

Consider the probability measure p defined on 0V by

VeV, uly) = 5 X)Ly (6)
zeV

where Z is the normalizing constant:

Z = Z v(z)L(z,y)

zeV,yedV

which is positive, due to the sub-Markov assumption. Up to removing from 0V the points y € oV
such that pu(y) = 0, we can assume that p gives a positive weight to all points of 0V
Recalling the definitions (3) and (5) we introduce another probability x on oV:

VwedV, x(w) =g Yesy Zov(@)L(z,w)

(one would have noted that for any x € 6V, |3 oy L(z,y)| = Yeor Lz, w), so that ZXT is indeed

the normalizing constant in the above formula). Since the quantities »! are positive on §V and that
the support of u is 0V, we get that the support of x is also V.

The distribution of the exit couple satisfies:

Theorem 3 We have

sup
zeV,yedV, t=0 x(v)



In practice, V will be a subset of a larger state space and 0V will be the set of nearest (outward)
neighbors of V' in this bigger space. Theorem 3 and the assumption that A\oXT is small will then enable
to replace V' by a single point in order to reduce the state space, leading to a controlled clustering
procedure for Markov processes.

Despite numerous investigations of metastability, see e.g. the book of Bovier and den Hollander [1]
or the recent paper of Di Gesi, Leliévre, Le Peutrec and Nectoux [4], as well as the references therein
(even if these two works are mainly dealing with continuous frameworks), both bounds of Theorem 1
and 3 seem to be new. They are in fact generalizations of some estimates of [15], which was restricted
to the reversible and small temperature setting, and without spectral interpretation of the bounds.

For x € V, let u, be the distribution of the exit position, namely the law of X, (7). It becomes
closer and closer to p, as AoX' goes to zero, as an immediate consequence of Theorem 3, by letting ¢
go to infinity and summing over y € V the bound

Ptz < t, Xo(1a) = y] — (1 —exp(=Xot))u(y)| < 1200%Tx(y)

Recall that the total variation norm between two probability measures 7',y on the same finite
space V is given by

= = D @ =+ )

yeV

Corollary 4 We have

sup e — plyy < 1220%T
zeV

Typically, the above results are to be applied to families of absorbed Markov processes (L(”))neN
on respective state spaces (V(")7 Jnen and metastability will occur if

lim ASMT = 0
n—ao

Then for large n, the exit time is close to an exponential random variable and the exit time and
position are almost independent.

This behavior is radically opposite to the cut-off phenomenon, see for instance the review by
Diaconis [5]. Or at least to its sub-Markovian version, where the absorbing times are investigated
instead of the more classical mixing or strong stationary times (of course there are relations between
these absorbed and ergodic versions, see for instance Diaconis and Fill [6]). A strong stationary time
is a finite stopping time ¢ such that ¢ is independent from the stopped position which is furthermore
distributed according to the stationary distribution. In the cut-off phenomenon for strong stationary
times, they become asymptotically deterministic, while in metastability, the absorbing times become
asymptotically totally impredictable exponential times.

The metastability phenomenon is illustrated in Section 5 by very simple examples on two-point or
three-point state spaces at small temperature. It provides a hint of the sharpness of Corollary 4 and of
the results of next section, while discussing that of Theorem 1. The situation of generalized Metropolis
algorithms will be treated in a future manuscript, including an investigation of quasi-invariant proba-
bility measures at small temperature (which requires some care, see Lemma 30 at the end of the present
paper). The traditional Metropolis algorithms (where an additional reversibility assumption is made)
could be treated with the help of the computations of [15], which served as a distant model for the
present paper. Nevertheless, our motivation here is to go beyond such small temperature settings and
to propose a general spectral criterion for metastability for irreducible finite sub-Markovian processes,
in particular the reversibility is now completely removed, due to the introduction of the important
quantity X, as shown by Theorems 1 and 3.



The plan of the paper is as follows. The next section present some estimates on the solutions of
Poisson equations, which are at the heart of our approach. Sections 3 and 4 respectively deal with the
proofs of Theorems 1 and 3. Section 5 is devoted to the explicit treatment of the generic two-point
state space case at small temperature, as well as of some three-point state space examples, which
despite their apparent simplicity, already displays important features of more general cases.

2 Poisson equation

The main ingredient in the proofs of Theorems 1 and 3 is an estimate on the solutions of some Poisson
equations. Let us present them in a general finite framework.

Let L = (fz(fc,y))z7yev be an irreducible Markov generator on a non-empty finite state space V.
Denote by 7 its unique invariant measure and let us fix a point w € V. Let ¢ be the unique function
on V solution to the Poisson equation

{E[W] = Ty —7(w) )
Tlp] = 0

Our purpose in this section is to give some bounds on |¢|.,. To do so, we need to introduce the
following objects, similarly to the introduction, except we will not put w in index of VT and LT, because
w is fixed in Theorem 5 below. Consider VT := V\{w} and L' the absorbing sub-Markov generator
(L (x, Y))zyevt = (L(z, Y))zyevt- Let AT be the multi-set consisting of the spectrum of —LT with its

algebraic multiplicities. Note that by irreducibility of INL, 0 ¢ AT, which enables us to introduce

ni = Z—

AeAf

The main result of this section is:

Theorem 5 We have
lele < 2F(w)E
The proof of this result will require two steps presented in the next subsections, first a rough bound

that will next be refined.

2.1 A rough estimate

Consider A the multiset consisting of the spectrum of —L with its algebraic multiplicities. By Marko-
vianity and irreducibility of L, 0 € A with multiplicity 1. Denote A, := A\{0} and

- 25
)\GA*
More generally than (7), we consider for any x € V', the solution ¢* of the Poisson equation
{ Ie] = 1 -#@)
Tle™] = 0

The interest of these objects is:



Proposition 6 We have

lele < maxlerl, < .

in particular the last r.h.s. is real (this can also be seen from the complex conjugation stability of /N\*)
and positive (as soon as V is not reduced to a singleton).

Proof

For y € V', consider )N(y = ()?y(t»t)o be a Markov process starting from y and whose generator is L.
For z,y € V, define the absorption time

Fro= inf{t >0 X,(t) =z}

=T

Applying the martingale problem to the function ¢ up to the time 7 A ¢, with given ¢ > 0, we
get
- ATy -
AT = )+ | DNRals)) ds+ Mg
0
= "(0) — v(@)(t AT + Misg

where (M;)i>0 is a martingale. Taking expectations, we deduce

~

Elp*(Xa(t ATy))] = ¢*(y) —v(2)E[t A 7]

Since V is finite and L is irreducible, ¢* is bounded and 7’; is a.s. finite, so we can let ¢t go to
infinity in the above formula and obtain

p’(x) = ¢"(y) —v(z)E[7]

In particular for any x,y € V, we have ¢*(x) < ¢*(y). Since v[¢”] = 0, it follows that

VyeV, ¢"(y) = —az+v(z)E[7)] (9)
with respect to v(y), we get
0 = v[e"]
= —ap + ) EB[FEv()v(y)
yeVv

namely

The eigentime identity (for a simple proof see e.g. [17]) asserts that
VyeV, D EF() = .
zeV
thus summing with respect to x € V', we obtain

Sa, = %

zeV



and in particular

[\l
*

VzeV, ay < (11)

Coming back to (9), we deduce

VaeV el < orvmaxv(@E[]

According to the eigentime identity, we have

r;g;{ v()E[7y] < max v(z)E[7)]

- %,

and it remains to take into account (11) to deduce the desired bound.

2.2 A refined estimate

To prove Theorem 5, we consider an extension V=Vyu {w}, where w ¢ V', endowed with the irreducible
generator L = (L(z,y))qyev defined by

E(ﬂ?,y) ,ifLE,yEV
~ ~ a ifr=wandy=w
v v, 1 = ’ N
r#yeV, (z,y) T(w) Sifz=0andy=w "
0 otherwise

)

The invariant measure 7 associated to L is given by
Lemma 7 We have

~ %+a5@
1+4+a

Proof
Denote p =7 + adgy, we have to check that uf) = (. We consider three cases.

e For z € V\{w}, we have

pL(z) = ) u)Liy.z)

yeV

N

yeV

= Y ®yL(y,x)
yeV
= 0

i

(y, )

e For w, we have

pLw) = p@)L@w) +pw)lww)+ > uy)Lly,w)
yeV\{w}
= aF(w) + F(w)(L(w,w) — Lw,®) + Y| Fy)Ly,w)
yeV\{w}
= aF(w) —F(wa+ Y, py)Ly,w)
yeV
=0



e For (w, we have

[ |
Consider ¢ the unique function solution of the Poisson equation
{ L[(ﬁ] = ]l{ofz} - 7?(@) (13)
T[e] = 0

Since @ is only in relation with w, it is possible to make a direct link between ¢ and @.

Lemma 8 On V, we have

where 1 is the restriction of ¢ to V.

Proof

Let us compute L[¢]. We consider two cases.

e For z € V\{w}, we have

Lyl(z) = L[@l)

e For w, we have

Llw) = LEIw) - L,
= —7@)— L(w,®)(@@) — pw))

To evaluate the last quantity, note that

1-#@) = LE®)
- Le.0)(Gw) - 8@)
so that
IW)w) = —A@) -+ ﬁm (1-7@)
B a a7 1
T 1+4a F(wl+a

Thus we have




It means that 7(w)t2(y) — #[¢]) is solution to the Poisson equation (7), which amounts to the

a
announced result.
[ |

Consider A the multi-set consisting of the spectrum ofA—Z} with its algebraic multiplicities. By
irreducibility of L, 0 € A with multiplicity 1. Denote A, = A\{0} and

S Z§
)\EX*

Applying Proposition 6 to ¢ the solution of the Poisson equation (13), we get that

el < s (14)
From Lemma 8, we deduce that
1N\ . .~
oo < 2(1+ 1) FwE (15)

Theorem 5 will be a consequence of

Proposition 9 Assume that all the eigenvalues of LT are of (algebraic) multiplicity 1. Then we have

lim &, = Xf

In fact we think this convergence holds without the assumption that the eigenvalues of LT are of
(algebraic) multiplicity 1. The proof of Theorem 5 would then be immediate. Nevertheless the proof
of Proposition 9 without its multiplicity assumption requires more care than is really necessary for our
purpose. Before proving Proposition 9, let us deduce Theorem 5 in general:

Proof of Theorem 5

Let Z be the (convex) set of all irreducible generators on V and Zy be the subset of K € Z such that
all the eigenvalues of KT := (K (u, Y))z eyt are distinct. Let us check that Zg is dense in Z. Fix some

~ ~

K €T and € > 0. Consider B the set of matrices K := (K(z,y))syev such that

VatyeV, Ky < K,y < K(z,y)+e
VaxeV, K(z,z) = — Z K(z,y)
yeV\{z}

Clearly, B — T and to obtain the desired density, it is sufficient to show that (B n Zo)T # &,
where (B n Zp)' is the image of B n Zy by the mapping Z 3 K — K. Note, on one hand, that
(Bn Iy)t = Bf n 7, where J is the set of VT x VT-matrices whose eigenvalues are distinct, and on
the other hand, that BT is an open subset in the set of VT x Vi-matrices. It is then well-known that
J is dense in the set of all VT x VT-matrices, this ends the proof of the density of Zy in Z.

Let L € T be fixed as in Theorem 5 and consider (INL(”))HGN be a sequence of elements of Zg
converging toward L. We denote by (%("))neN and (w(”))neN the corresponding sequences of invariant
probability measures and solutions to the Poisson equation (7). Resorting, for all n € N, to the explicit
tree description of #™ in terms of L™ (see e.g. Lemma 3.1 of Chapter 6 of Freidlin and Wentzell [9]),
we get

lim #™ = %
n—0o0

Taking into account the uniqueness of the solution of (7), it easily follows that

lim o™ = o

n—0

10



and in particular

lim o™ = el

n—0o0

From (15) and Proposition 9, we have for any n € N,

Hw(m < 20 ()x™t (16)

0

where (™1 is the trace of the inverse of the matrix —LM™7, Taking the inverse of a matrix is a
continuous operation (among invertible matrices), so we deduce that

lim ™7 = »f

n—0o0

Finally passing to the limit in (16), we get the desired bound.
|

The phenomenon behind the convergence of Proposition 9 is that for a > 0 large, |V|—1 eigenvalues
from /A\* converge toward the eigenvalues of AT and the remaining eigenvalue from //i* diverges toward
+00.

First, let us give a non-linear characterization of the spectrum of K*

Lemma 10 A complex number z € C\{7(w)} is an eigenvalue of .y if and only if there exists a
function f # 0 on V' such that
az

Lif) = —f-x

w) —z

f(w) L, (17)
The number 7(w) is an eigenvalue of L if and only if it is also an eigenvalue of —LT.

Proof

Consider an eigenvalue \ e C\{T(w)} of —’2\: and anAcorresponding eigenfunction. Denote f the
restriction of f to V. Applying the relation L[f] = —Af at @, we get

~ A~ A~

T(W)(f(w) = fl@) = —Af(®) (18)

namely

fl@) = (1—%(2 )) (@) (19)

flw)—f@) = —73\10((0) (20)

From

we deduce

11



i.e., taking into account (20),

~

For z € VI, we have L[f](z) = /@[f] z) = —Af(), so that (17) is satisfied on V. Note that if
f =0, then from (19) we would get f(w) = 0 (recall that A # 7(w)) and by consequence f =0, which
is not allowed.

Conversely, consider z € C\{7(w)} and a function f % 0 on V such that (17) is satisfied. Defining
f via

R f(z) yifxeV
: #(w)f(w)

)=z yJifx=o

and reversing the above computations, we get that f is an eigenvector of L associated to the eigenvalue
—z.

Next assume that T(w) is an eigenvalue of —Z, let ]? be an associated eigenvalue and denote f
the restriction of f to V. From (18), we deduce that f(w) = 0. Furthermore, we have for z € v,
LI f)(x) = L[f](z) = L[f] (z) = —F(w) f(z). It follows that f is an eigenfunction of LT associated to
the eigenvalue —7(w). Conversely, if 7(w) is an eigenvalue of —LT with associated eigenvector f, it is
sufficient to consider the function f defined by

i t
Vwe"}, J?(x) = {f(:v) tzeV

0 , if z € {w,w}

to get that f/[f] = —%(w)f.
|

There is probably an extension of Lemma 10 concerning the Jordan blocs of f/, but such a result
will not be useful for us, due to the multiplicity assumption in Proposition 9. Under this hypothesis,
we will see below that for a > 0 large enough, all the eigenvalues of L are distinct. The following
result is the crucial step in this direction.

Lemma 11 Considern > 0 and X\ # 0 an eigenvalue of — LY. Under the assumption of Proposition 9,
there exists A > 0 large enough such that for all a > A, there exists an eigenvalue of —L in the complex
disk of center A and radius n.

Proof

If A\ = 7(w), according to Lemma 10, A is also an eigenvalue of —L for all a > 0. From now on, assume
that A # T(w). There is another situation where the result is obvious. Denote p the (non-negative)
measure on V1 given by (L(w, ))zevt- Let § be an eigenvector of — LT associated to A. If u[¢] =0,
then A is also an eigenvalue of —L for all @ > 0. Indeed, note that (17) applied at w amounts to

ulf] + D) fw) = —(+~() Fw) (21)

T(w) — 2z

(recall that L(w,w) = — D eyt L(w,z)).
Thus considering f defined by

VeeV, flx) = {g(w) 71£ie:1c/j

12



we get that (21) is satisfied.

Since f(w) = 0, (17) is just asking for LT[f](x) = —zf(x) for € VT, and this is true with z = \.

Let us now consider the situation where u[¢] # 0. Up to normalizing &, we furthermore assume
that p[¢] = 1. We are looking for a solution (z, f) of (17) equally normalized by u[f] = 1.

Let us change the notations, defining € = 1/a, 7 == af(w) and g = (9(x))evt = (f())zeyt. The
condition [ f] = 1 translates into u[g] = 1 and (17) with u[f] = 1 is equivalent to the system

L[ a:) + eL(x w)r+zg(z) = 0, VaeeVl
( W= T e(z + L(w, w))) r = 0 (22)
plgl = 1

Consider

D = {<e,z,g>e[o,+oo>x(@\{%(w)})xRV* : %(L;_Z+e<z+i<w7w>>¢0}

and define the mapping F := (Fy(¢,2,9))zev : D — RV via

VaxeV,V (ezyg9)eD,

L'g](z) — eL(z,w) )=z + zg(z) , when z e VT
Fy(e,z,9) =

z4e€(z+L(w,w)) (Tt(w)—2)
wlg] , when z = w

With this notation, the system (22) can written

——

where the 1 corresponds to the w coordinate (and 0 is the null vector in ]RVT).

Note that
0
Fone = (V)

thus the implicit function theorem enables us to deduce the desired theorem as soon as we will have
shown that the Jacobian matrix VF = (0.F, (V) F)eyt) is non degenerate at the point (0, A, ).

We compute that
_ 3
0. F(0,\¢) = 0

LT(-,z) + X0y
Vae VT, Vg(m)F(O,)\,f) = ( ( Z()x) >

To check that VF(0, A, §) is invertible, consider (s, h) € R x R"" such that
VF(O’ )‘aé) ’ (87 h) =0
According to the above computations, this equation can be written under the following system:

{ L[])(z) + Ah(2) + s€(z) = 0,  VaeV! (23)

plh] =0
Under the assumption of Proposition 9, the equation

LI[h] + A\h = —s¢

13



implies that h belongs to the vector space generated by £. To see it, just decompose h into a basis of
RY' consisting of eigenvectors of LT and take into account that the multiplicity of —\ is one. It follows
that LT[h] + Ah = 0 and thus s = 0. Let b € R be such that h = b¢. We deduce that u[h] = bu[¢] = b,
so the second equation of (23) implies that b = 0 and finally ~ = 0. Thus we have (s, h) = (0,0) and
VF(0,)\¢) is non degenerate, as desired.

[ |

Remark 12 It is the nonlinearity of (17) that leads to the above technical arguments. Had a
traditional linear eigenproblem been considered, we could have directly resorted to the results of Kato
[12]. Note nevertheless that for € = 0, VF has the same form as if we had been treating a usual linear
eigenproblem.

We can now come to the

Proof of Proposition 9
Define

e = min{|]A\ A [A=XN|:Xx#XNeAl}

which is a positive quantity according to the assumption on the multiplicity of the elements of AT and
to the fact that 0 ¢ AT. Considering 7 := ¢/2 in Lemma 11, we deduce that there exists A > 0 such that
for any a > A and any X\ € AT, there exists an eigenvalue of —L in the disk centered at A of radius n.
By definition of 7, this elgenvalue is not null and all these eigenvalues are distinct for different A € AT.
This gives us card(VT) = card(V) — 1 distinct elements from A.. To see that the missing element is
going to infinity as a goes to infinity, it sufficient to consider the trace of —Z, which is equal to

tr(—L) = a+7%(w)+tr(~=L) = a+F(w)— Z L(z,z)
zeV
These observations imply the convergence stated in Proposition 9, as well as the fact that for a > 0

large enough, all the eigenvalues of L are distinct.
[ |

3 Exit time

Our main goal here is to prove Theorem 1 via manipulations of Poisson equations and taking into
account the estimate of Theorem 5.

Instead of working with the vanishing X,, for x € V, it is often more convenient to resort to
conservative Markov processes, obtained by adding a cemetery point to the state space. So let be
given o0 ¢ V' and associate to it an ergodic Markov generator L := (L(z,y)), yevonVi=Vu {o0} via

L(z,y) Jifx,yeV
Ve#yeV, L(z,y) = - (L(ZE, T) + 2yev\ (o} L(w,y)) ,ifzeV and y =
av(y) ,if x =00

where a > 0 is fixed for the moment being. This “extension” of the absorbed Markov generator L
into an ergodic Markov generator L is completely different to the passage from L to L in the previous
section. In some sense, the former is global while the latter was local.

For x € V, let Xx = (Xx(t))t>() be a Markov process starting from x and whose generator is f),
and consider the absorption time

Fp o= inf{t =0 : X, (t) = o0}

14



9

Note that the stopped processes (X(t A 77))i=0 and (Xz(t A 77))i=0 have the same law and in
particular 7, and 7, have the same distribution.
The interest of L over L is that we can consider ¢ the function on V solution of the Poisson

equation
[
al

where 7 is the invariant probability of L and Lsy is the indicator function of oo.

¢
@(E(

Ly — 7(0)
] = 0

Let us apply to QZ the martingale problem associated with L. We have for any x € V and ¢ > 0,

o t

D(X,(0)) + f L[] (X,(s)) ds + M,

0

)

D(X, (1))

d(z) + fo 1y (Xo(s)) — #(c0) ds + T,

where (Mt),?o is a martingale. Replace t by t A 7., to get

o . o t AT . N
Falt A %) = )+ L 1oy (K (5)) — #(o0) ds + My oz,
— (x) — 7(0)(t A Fy) + Mz,

Taking expectations, we obtain

VY]

E[((Xo(t A %))] = W() = F(0)E[t A 7] (24)

Before going further, let us explain heuristically how (24) can be exploited. The underlying principle
is that under appropriate conditions, % is close to —(1 — ﬁ(oo))a_lll{oo}. So if carelessly we replace ¥
by —(1 — #t(0))a "y in (24), we get for any z € V,

o a7 (o0)

Vit=0, E[]l{oo}(Xx(t A 7313))] % ]l{oo}(:c) + 1= ﬁ(OO)E[t A 7v'x]
namely
. a7 (o0) .

A true identity in (25) would imply that 7, is a exponential random variable of parameter a7 (00)/(1—
7(00)) (see e.g. [15]). These approximative considerations also suggest an identification of a7 (00)/(1—
#(0)) with Ag. Indeed, consider X = (X (t));>0 a Markov process whose initial law is v and whose
generator is L. One property of the quasi-stationary distribution v is that the first hitting time 7 of
o by X is distributed as an exponential random variable of parameter \g and thus

Vi=0, PF<t] = M\E[tAF]

Comparing with (25), which is also “valid” when X, is replaced by X, we get ai(0)/(1—#(c0)) ~ .
It would follow that 7, is almost an exponential random variable of parameter Ag for all x € V.

We now come to more rigorous computations. We begin by computing 7 in terms of Ay and v:
Lemma 13 We have
o 14 + ()\O/a)(soo
5 = T \AU/R)To0
1+ Ao / a
Ao

Z v(z)L(x,0)

zeV

15



Proof
It is sufficient to show that #L = 0, where 7 := v 4+ (\o/a)d. We begin by showing that

Vz/ = —XoV + Apdoo (26)

where v is extended as a probability on 1% giving the mass 0 to co. Indeed, note that for x € V, we
have

vi(z) = ZV(?J)E(?JJ?)

yeV

= > v(y)L(y,x)

yeV
= vL(x)
= —Aov(x)
It follows that there exists a number o € R such that v[ = —XoV + ady. To compute «, note that

L[1 ] =0, so that v[L[1 1] = 0 and a = Ao, proving (26).
As a consequence, we get that

e for y # o,
Y@ L(z,y) = (Mofa)L(oo,y) + Y] v(x)L(z,y)
zeV zeV
= Aov(y) + (vL)(y)
Aov(y) — Aov(y)
-0
e for oo,

Y #(@)L(z,0) = (Aofa)L(o0,0) + > v(z)L(z,®)
eV eV

= —Xo+ (vL)(®)

= —>\0+)\0

=0

The previous computation also shows the last equality of the above lemma.

As suggested by the heuristic presented before Lemma 13, the function

9

b= Pt ( ikl P
should play an important role. Note that according to Lemma 13, we have

ﬁ'(OO) )\0
— = a= = A
1 — () “a 0

in concordance with the “arguments” preceding Lemma 13.

Lemma 14 We have

Lig] = Z 2, 0)Lzy — 7(0)1y
zeV

16



Proof
Note that

i[]l{oo}] = Z IUJ(J:‘, OO)]l{a:} — a]l{oo}

zeV
Indeed, we compute that
L{1{y](0) = L(o0,0)
yeV

I
|
IS
[
<
b
s

= —a

we deduce that

9 = LR+ )
= (1 _ Z—(OO)) Z [v/(x, OO)]l{x} — TF(OO)]IV
zeV
|
It follows that L[$](o0) = 0, namely
¢(0) = v[d] (27)

This observation leads us to introduce a new generator L on V. Denote F (V') the set of real functions
defined on V. Any f e F(V) is extended into a function f on V' by imposing

flo) = v[f]
We consider the generator L given by
VieF(V)VaeV, Lifl@) = Llfl)

The generator L is the Steklov operator associated to L and to the “boundary” V of f/, since f
can be seen as the “harmonic extension” of f (for more details about this point of view, see [10]). It
follows that the invariant probability measure of L is the normalization of the restriction of # to vV,
namely v. More explicitly, L is described by (2).

Denote ¢ the restriction of quﬁ on V. Due to (27), (5 coincides with gZ;, so by definition of E, we get
on V:

i) = T2 S b oy, - #(eo)ty

zeV
or equivalently
~ 1 v
L¢l = 5 ZVL@,oo)(n{x} —v(@)) (28)
xre

17



As in (8), for any z € V, consider the solution ¢® of the Poisson equation

Ll¢*] = 1y —v(2)
{ vlg*] = 0 29)
so that (28) implies that
1 2 T
6 = vigl+ — AOIEZVL(a:,ooxo (30)

Indeed, we get

~ 1 o
e ML =0
[(b @ /\0 zeV (m7 OO)QO

thus by irreducibility of L, ¢ and ﬁ Direv E(a:, 00)p”® coincide up to an additive constant, which is
necessarily v[¢].
The next result shows that ¢ can be completely expressed in terms of (¢*)zev .

Lemma 15 We have
Ao 1 v

= + L(z,0)¢"
¢ (a+/\0)2 a-i—)\oa;/ (x,%0)¢

Proof
It follows from Lemma 13 and (27) that

By definition of ¢, we also have

so we get

and finally the announced result.

Lemma 15 shows that to estimate ¢ (and by consequence the crucial giu)), we just need to investigate
the solutions ¢* of the Poisson equation (29), for x € V such that L(x,0) > 0, namely for x € §V.
With the notation of the introduction and from Theorem 5, we have
YwedV, ¥, < 2v(w)x] (31)

w

Putting together the above computations, we get:

18



Corollary 16 We have

v Ao 2o
< il
¢oo (a~|—)\0)2+a+/\0
Proof
By definition of ¢, we have
8 = 1l v |3()
= [l v Iv[e]l
[l
It follows from Lemma 15 and (31) that
Ao 1 9
l¢le < + L(w, ) ]
© (CL + /\0)2 a+ Ao w;]V ©
- 2 3 v(w)L(w, 0)x]
(a+ /\0)2 a+ Ao =gt ’ “
Ao 2o
+ =1 ¢(w)
(a + /\0)2 a+ Ao w§V
Ao 2o
= + il
(a + /\0)2 a+ Ao

where the last identity of Lemma 13, as well as (4) and (5), were taken into account.

Coming back to (24), we deduce that for any x € V' and any ¢ > 0,

{1 (Xalt £ 7))~ Lole) — {2 E Bl AT < 2

namely

o o 2a )\0 2)\0
P[%. < t] — ME[t A 7] < i
Bl <= NBl A 7l < s (e )

- 2(a+)\0)<(a+)\0)2+a+)\02>
2o
= o +4Xt
(a+ M) 0

Remark that the Lh.s., \g and X do not depend on the choice of a, so we can let a go to infinity
to get

IP[% < t] — ME[t A ]| < 4XoXT (32)

which is the desired bound of Theorem 1.

Instead of Theorem 5, we could have used Proposition 6 in the proof of Corollary 16. Then we end
up with

~

Ao Yy
<
0 (a+X0)?  a+ N

(33)

> L(w, )

wedV
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where, as in Subsection 2.1,

B.o= 31

AEA 4
A\{o}

and A is the multiset consisting of the spectrum of — L with its algebraic multiplicities (which contains
0 with multiplicity 1, by Markovianity and irreducibility).
From (33), we deduce as above, that for any x € V|

-
*
1]

20

Pl7e <t| = XE[t ATz]] € ———
Pl < 1] = ME A %] <

+25, ) L(w, )
weV

Letting a go to infinity, we get an alternative bound to Theorem 1:

IPlre <t] = ME[t A 7]| < 28, ) (yL ww)| = ] L(w,y)) (34)

wedV yeVv

Let us give an alternative description of 3,. Consider A the multiset consisting of the spectrum of
—L with its algebraic multiplicities. By irreducibility of L, Ag € A with multiplicity 1, but 0 does not
belong to A, because L is a strictly sub-Markovian generator. Denote A, = A\{\o} and

Z - (35)

AEA*

We have
Y. = X,
This result is an immediate consequence the following result, which is interesting in itself.

Proposition 17 We have /N\* = A,.

Proof

Consider A € A, and let f be an eigenvector associated to A for —L: we have L[f] = —\f. Extend
f into f the function on V coinciding with f on V and such that f (0) = 0. Then on V, we have
L[f] = L[f]. It follows from (1) that

v[fl = —svILU/ (36)

~

Since A # Ao, we deduce that v[f] = 0, namely f = f and L[f] = L[f]. Thus X € A and since
A#0, Weget)\ef\*.

A similar reasoning is also valid if we consider a multiplicity of A coming from a Jordan block of
—L. Indeed, it is sufficient to see that if L[f] = —Af + g, with v[g] = 0, then v[f] = 0. This is true,
since (36) still holds.

It follows that apart from their respective eigenvalues 0 and Ag, L and L have the same spectral
structure, namely 7\* = A,.

[ |

20



Thus (34) can be rewritten under the form

|P[7x < t] — ME[t A 72| < 2%, Z (!L(w,w) - Z L(w,y)) (37)

wedV yeV

This bound is more explicit in terms of L, since it only uses its spectrum (and not the spectra
of the L], for w € 0V') and is generically as good as Theorem 1 on two-point state spaces at small
temperature, see Remark 25 of Section 5. But in Remark 29, we will check on an example that this is
no longer true for larger state spaces.

Remark 18 The partial equality of spectra presented in Proposition 17 suggests that there could
exist an intertwining between L and L, namely we could find a Markov kernel K from V to V such
that either

~

LK = KL (38)
or
LK = KL (39)

Nevertheless this is wrong: for (38), multiply on the left by v, the invariant probability of INL, to
get YKL = 0, meaning that the probability vK is invariant for L. But there is no such invariant
probability, since L is strictly sub-Markovian. Concerning (39), multiply on the left by the quasi-
stationary measure v to obtain —A\gvK = vK L. Since vK is a probability distribution, it is not 0,
so that it is an eigenvector of L associated to the eigenvalue —\g. It follows that Ay € f}*, namely
Ao € X, a contradiction.

Yet there exists an intertwining relation from L to L, i.c. a Markov kernel K (also called a link)
from V to V such that LK = KL. Furthermore there is such a relation with K of rank |V| — 1.
Indeed, note that the spectrum Aof —L is equal to A L {0} as multisets: 0 € A by Markovianity and
the eigenvectors of L are extended into eigenvectors of L by imposing they vanish at co (the same is
true for the vectors associated to Jordan blocks). Following the arguments of [18|, a link K of rank
|V| —1 can be constructed by perturbing the Markov kernel from V to V whose lines are all equal to v.
As shown in general by Diaconis and Fill [6], an intertwining relation from an absorbed process to an
ergodic process can be used to construct strong statlonary times from absorption times. Here this is
quite simple: from a Markov process X associated to L, construct a Markov process X associated to L
by redlstrlbutlng the position according to v instead of hitting co. It appears then that the absorption
time for X (i.e. the hitting time of c0) is a strong stationary time for X.

4 Exit position

Here we prove Theorem 3. The arguments follow those of the previous section, with similar notations,
that coincide should we have 0V = {o0}. We preferred to separate the treatment of the exit time and
of the exit position for the sack of clarity for the former.

As in Section 3, we begin by transforming L into an ergodic Markov generator L := (f)(:c, Y)) et
Let be given a positive number a > 0. We define L by only modifying the rows indexed by o0V

L(z,y) ,ifreVandyeV

Vx;ﬁyEV, L(%ZJ) = {a}/(y) ,iffﬁeavandyev

where we recall that v is the quasi-stationary measure of the sub-Markovian generator L.
By irreducibility, L admits a unique invariant probability 7. Let us compute it in terms of v and

IR
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Lemma 19 We have

¢
I

Proof
Define

Y wedV,

av + Ao X eov M(w)dw
a4+ Ao

oy = 1 Z v(z)L(x,w)

a
zeV

We begin by showing that #L = 0, where 7T :=v + Y 5y (0.

e For any wy € 0V, we have

v

ﬁ'L(wo) =

e For any zg € V, we have

#L(zo) =

Z v(z)L(z,wy) + Z o L(w,wp)

zeV wedV

Z V(x>f’(wi0) + awoL(w07WO)
zeV

Ay, — Q@

0

Z v(z) Lz, z0) + 2 awL(w, xg)

zeV wedV
Z v(z)L(x,x0) + Z agav(xg)
zeV wedV
—Xov(xo) + v(xo) 2 Qwa
wedV
( Z a,a — /\0> v(zop)
wedV

To conclude that #L(zg) = 0, it remains to see that

By definition, we have

Z Z v(z)L(x,w)

wedV xeV

= 2 v(x) Z L(z,w)

eV weoV

= — > vl2) ) Liz,y)

zeV yeV

= Y ua) Y Liz,y)

zeV yeV

=~ Y v@)L(ey)

z,yeV

= o), v(y)

yeV
= N
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Recalling the definition of x in (6), note that

Zp(w)

Y wedV, Qp =

From (40), we deduce that Z = \g, so that 7 = v+ % D weov M(w)dy, and the desired result follows
by normalization.
|

For any w € 0V, consider the solution 1])0) of the Poisson equation:

E[Q%w] = ]l{w}_']vr(w)
TVF[%] = 0

As in the previous section, the idea is that ), is close to —%(]lw — 7 (w)1sy), when A\oXT is small.
Let us first heuristically deduce Theorem 3 from this belief.

For 2 € V, let X, = (X,());>0 be a Markov process associated to the generator L and starting
from x. Let 7, be its hitting time of 0V. From the martingale problem satisfied by X, there exists a
martingale (Mt)t>0 such that for any ¢ > 0,

)

N o AT . .
@ZJW(Xx(t ATz)) = Yo(Xz(0) + JO L{Yo)(Xs(s)) ds + Myins,

t ATz

Yo (2) +L Loy (Xa(s)) — #(w) ds + Mz,

Yoo(x) — F(W)(t A7) + Mynz,

Taking expectation, we get
E[u(Xa(t A 2))] = (@) — #@)E[t A %] (41)
According to the expected behavior of v,,, we should have
VE20, B[y (Xa(t A 5) — 7@l (Xalt A 2))] ~ Tiy(@) — #(@)lav(2) + af (@)E[E A 7]
namely
Vi=0, P[X,(f) =w, 7o <t] — #(w)P[F <t] ~ aft(W)E[t A 7]

According to Section 3, we also have

P, <t
Eftn7] ~ o<t
Ao
so that
VwedV,Vt=0, PXu(f)=w % <t]-#wP[*<t] ~ ai(“)pm <1]
0
le.
; A
VwedV,Vi>0, PlXo(h)=w fs<t] ~ 2P <]
a

It would mean that Xx(%m) and 7, are almost independent and the distribution of the former is
given by

Ao+ a

VwedV, P[X. () =w] =~ #(w)

= p(w)
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where Lemma 19 was taken into account.

Let us now come to more rigorous computations. As suggested by the above heuristic, for any
fixed w € 0V, we should investigate the function

y .1 5
bw = Yot a(ﬂ{w} - 71'(0))]1,3\/)
Lemma 20 We have
. 1 _ L 5
Llgu] = - D (L2, w) = #(w)L(x, V) Lig) — 7 (w) Ly
zeV

where L(z,0V) = 3, cov L(z,w).

Proof
Note that

Ll —#wlav] = > (L(z,w) — #(w)L(z, V)l — a(ly,y — #(w)lay) (42)
zeV

Indeed, we compute that for any w € dV,

LLgylw) = L(w, )

= —alyy(w) Y] vy

yeV
= —al {w} (w)

and similarly, for any w € oV,

Lllav](w) = > L(w,w)
w'edV

- L(w,w)

= —a

Furthermore, we clearly have for any z € V, f)[]l{w} — #(w)lav](z) = L(z,w) — 7(w)L(x,0V) and
(42) follows.
Taking into account that by definition

L[] = 1y —#w)lay — #(w)ly

we deduce that

= S (E ) — B V) — ()
zeV
|
It follows that L[#,](w) = 0 for any w € 0V, namely
Vwedv, éw(w) = V[ng] (43)
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This observation leads us to introduce a new generator LonV. Any f e F(V) is extended into a
function f on V by imposing

VwedV,  flw) = v[f]
We consider the generator L given by
VieF(V).YaeV, Llfl@) = L[f]()

Again, the generator L is the Steklov operator associated to L and to the “boundary” V of V. It
follows that the invariant probability measure of L is the normalization of the restriction of # to V,
namely v. As in Section 3, L is described by (2).

Denote ¢, the restriction of qu on V. Due to (43), qzw coincides with qu, so by definition of INL, we
get on V:

~ 1 - . = o
Llgw] = - D (L2, w) = #(w)L(x, V) gy — #(w) 1y
zeV
or equivalently, using that u[i[qﬁw]] =0,

ol = - (L)~ #(@) L, V) (1) — v()) (14)
zeV

Recalling that for any = € V, ¢” is the solution of the Poisson equation (29), (44) implies that
1

o = v[o]+ o 3 (L(ww) = #(w)L(z, V)"
zeV
Indeed, we get
AP i;(L(w,w) R (o)t = 0

thus by irreducibility of L, ¢, and L% ev(L(z,w) — #(w)L(z,0V))¢p" coincide up to an additive
constant, which is necessarily v[¢,].
The next result shows that ¢, can be completely expressed in terms of (¢%),ey .

Lemma 21 We have

1 5 1 = o = T
b = ot @)+ X (Eew) — @)L V)
zeV

Proof
It follows from Lemma 19 and (43) that

oo av[du] + Ao Beay (W) du(w)

W[qbw] - a+ Ao

= v[du]

= W)
)
a + Ao
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so we get

and finally the announced result.

With the notation of the introduction and from Theorem 5, we have

Vad¢dV, L(z,w) — 7t(w)L(z,0V) = 0
YV ze sV, lo®l, < 2v(z)sh
so putting together the above computations, we get:

Corollary 22 We have

)

Pu|

< < Ao 2a + 4

(@t 202 alat ) ETAO) Hw)

Proof
By definition of ¢,,, we have

)

Pu

= [l v max {[uw) : we v}

[6ulles v V]|
= [dulle

It follows from Lemma 21 and (45) that

0

1 1w - L .
ke < 5,7+ ¢ B IEww) = KL V) 167,

IR 2 _ o
< — )\Ow(w) +- gv v(z)(L(z,w) + #(w)L(z, dV))S]

- :AO%(w) + gzzT(x(w) + (W)

Ao

— () + 2 (X(w) +- iOAou(w)>

where in the fourth line, we used that A\g = Z, as seen at the end of the proof of Lemma 19.

Coming back to (41), we deduce that for any we 0V, x € V and t > 0,

‘E[nw(f(x(t A F)) — (W) Loy (Xa(t A 7)) — aft(W)E[t A ]

< 2ed]
0

‘]P’[X'x(%x) = w, % < 1] — F(W)P[F < 1] — aF (W)E[t A 7]

< 2 (GTEOFM(MHMOET (X(w)—i- Ao (w))) (46)
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In this bound, the term 7(w) depends on a > 0, as we have

Fw) = Aop(w)

a+ Ao

Thus, letting a go to infinity in (46), we get

‘P[Xx(%x) —w, % <] — Mp@E[t A ]| < 4DTA0x(w) (47)
Taking (32) into account, we obtain
PLX,(%) = w, #o <] — p(@)P[F < 8] < 85 Aox(w) (48)

which shows that the exit time and position are almost independent when X7\ is small. To end up
with the desired bound of Theorem 3, it remains to use Theorem 1.

As in Corollary 16, instead of Theorem 5, we could have used Proposition 6 in the proof of
Corollary 22. It leads to

’P[Xx(%x) — w, %y < 1] — Aop(W)E[t A 7]

< 2%, Z L(y,w)
yedV

and taking (34) into account,
‘P[Xx(%x) —w, % < 1] — p(w)P[F < t]‘ < 25,.(L(6V,w) + p(w)L(8V, V)

where for any disjoint A, B <V, L(A, B) = Yyed B L(y, 2).
For the reason presented in Section 3, these bounds seem less interesting than (47) and (48)
respectively.

5 Simple examples at small temperature

Here we illustrate the metastability phenomenon in the simplest situation, namely a two-point state
space at small temperature. This benchmark will enable us to see that Corollary 4 is quite sharp,
contrary to Theorem 1. Resorting to a 3-point state space, we also underline the difference between
the estimates of Theorem 5 and Proposition 6.

On the state space V' := {0,1}, let be given a family (Lg)g=0 = ((Lg(x,¥))z,yev)s=0 of irreducible
strictly sub-Markovian generators. The parameter 8 > 0 is to be seen as an inverse temperature and
we are interested in the asymptotic regime when /8 goes to infinity (namely the temperature goes to
04+). As in the introduction, denote Vo= {0,1, 00} and to avoid reference to f/g, for 8 = 0, we adopt
the simplified notation Lg(z,©) = —Lg(z,z) — Lg(x,1 — z), for any x € {0,1}. Thus we have

[ —Ls(0,1) — Ls(0,0) Lg(0,1)
VB3>0, Lg = < ’ L5(1,0)ﬂ —Lﬁ(lvoﬂ)_Lﬁ(l’oo) )

Furthermore, to get a more convenient landscape in the setting of Theorem 3 and Corollary 4,
let us split oo into the two points —1 and 2, and consider on the state space V = {—1,0, 1,2}, the
following absorbing extension Lg of Lg, for any given 8 > 0:

0 0 0 0

I_/ ‘_ Lﬁ(o, OO) —Lﬂ((), 1) - L,B(07 OO) LIB(O, 1) 0
sz 0 Ls(1,0) —L3(1,0) — Lg(1,00) Ly(1,0)

0 0 0 0
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We assume the existence of the following limits

V() eV xV, o4y, Wy = — lim ;ln(Lg(x,y)) e [0,4o0) (49)

B—+0

Let us simplify the notations and define

a = Lg(0,0), b = Lg(0,1), ¢ = Lg(1,0), d = Lg(l,0
a = W(0,0), b = W(0,1), ¢ = W(,0), d = W(l,o©
Except when explicitly said otherwise, in this section we suppose:
The numbers @, b, & and d are all distinct and @+ ¢ # b+ d (50)

Furthermore, up to exchanging 0 and 1, we assume that b>7C
Before applying Theorem 1 and Corollary 4, let us check directly if metastability holds or not, by
considering the different possible situations.

e Case (1) where &< d < b and ¢ < d.

Taking into account the probabilistic description of a Markov process X := (Xo(t))¢=0 associated
to the generator Lg and starting from 0, X stays in X((0) = 0 for a exponential time 7, of
parameter a + b ~ a, because b > & The position Xg(71) is equal to —1 with probability
a/(a + b) and to 1 with probability b/(a + b). Thus, up to an exponentially small error (in /),
starting from 0, the exit time is an exponential variable of parameter a and the exit position is
—1.

Similarly since ¢ < 67, starting from 1 and up to an exponentially small error, the process X3
waits an exponential time of parameter ¢ before jumping in 0. From 0, the process behaves like
Xp. Since @ > ¢, the time to jump from 1 to 0 is negligible with respect to the time to jump from
0 to —1. It follows that up to an exponentially small error, again the exit time is an exponential
variable of parameter a and the exit position is —1. Thus the exit behavior is independent of the
initial state: the metastability phenomenon occurs.

e Casc (2) where @ < b and &> d.

Starting from 0 the situation is similar to Case (1). Starting from 1, the process X waits an
exponential variable of parameter d before jumping to 2, up to an exponentially small error. The
metastability phenomenon does not occur, since the distribution of the exit position strongly
depends on the initial point.

e Case (3) where & > b and & > d.

As in case (2), starting from 1, the process X7 waits an exponential variable of parameter
d before jumping to 2, up to an exponentially small error. Starting from 0, the process Xg
waits an exponential variable of parameter b before jumping to 1, before jumping to 2 after an
exponential variable of parameter d, all that up to an exponentially small error. The metastability
phenomenon does not occur, because the exit time from 0 is much longer than the exit time from
1.

e Case (4) where @ > b, ¢ < d.

As above, all the following statements are up to an exponentially small error. Starting from 1,
the process X first reaches 0. Thus the exit position distribution will not depend on the initial
state. Furthermore the time to reach 0 from 1 is much smaller than the time to get out of 0
(and first to reach 1). This is sufficient to insure metastability (consider the quasi-stationary
distribution as initial distribution, the exit time will be the same as the exit time starting from
0, according to the above arguments). The exit position distribution will be concentrated on 2
(respectively —1),if & > b— &+ d (resp. & < b— &+ d).
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~

¢,d) e R‘i satisfying (50) and for which metastability holds,
4) above. It is not difficult to check that M is the set of

Let us denote by M the set of (ﬁ,g,
namely corresponding to Cases (1) and (
(@,b,%,d) RY satisfying (50) and & <@ A b.

For any 8 > 0, consider \o() and ET(B) the quantities associated to Lg as in the introduction.
The following result shows that the metastability of Cases (1) and (4) is recovered from Theorem 3
and Corollary 4.

Proposition 23 When (ﬁ,g, c, cT) e M, we have

lim 87 'In (A(B)ZT(B) < 0 (51)

p—+w0
(in particular the Lh.s. limil exists).

Note that for (@,b,¢,d) € R% satisfying (50) and corresponding to Cases (2) and (3), (51) cannot
hold, otherwise we could conclude to metastability. Thus Theorem 3 and Corollary 4 are quite sharp,
since they enable to recover the domain of coefficients (a, b, ¢, d) € Ri leading to metastability, at least

under (50).
Let us start the proof of Proposition 23 by obtaining the behavior of A\o(/3) at small temperature:

Lemma 24 As soon as the limits in (49) exist, we have

~

— Jim B In(\(B8)) = min(@+ & ad+d,b+ d) — min(d, &, d)
— 400

In particular, when (CNL,E, c, J) e M, we deduce that

— lim B 'In(\(B)) = an(b-2c+d)

B—+00
and in Case (1), the Lh.s. is a.

Proof

For fixed 8 > 0, the two eigenvalues of Lg are the roots of the characteristic polynomial
(X—a—-b(X—c—d)—bc = X?>—(a+b+c+d)X +ac+ad+bd

Since Ag(B) is the smallest of them, we get

M(B) = %m+b+c+d—VZ)

la+btc+d?’-—A
2a+b+c+d+/A
ac + ad + bd

a+b+c+d+J/A

where the discriminant is given by

A = (a+b+c+d)? —4(ac+ ad + bd)
= (a+b—c—d)?*+4bc

It is clear that

~
~

- Blim B 'n(ac+ ad +bd) = min(d@+a+d,b+d)
—+00
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Note that

— lim A 'ln(a+b+c+d) = min(@,b,2 d)
B—+0

and, since (a + b — ¢ — d)? + 4bc < 4a® + 6b + 6¢* + 4d?, that

- ma B In(+/(a +b—c—d)?+4bc) > min(a, b, ¢, d)
— 400

so we deduce that

—,Blim Blln(a+b+c+d++/A) = min(d,7d)
—+00

The announced results are an immediate consequence of (52).
When (5,5, c, (7) € M, we have ¢ = min(a, ¢, CZ) and d > ¢, so that

— lim B 'In(Xo(B)) = min(@a—c+d,b—c+d) (53)
B—+w©
= min(d@,b— &+ d) (54)
In Case (1), we have b>ad and CT%E, so that min(&,g— ¢+ CZ) = a.
In Case (4), both alternatives @ > b — ¢+ d and @ < b — ¢ + d are possible.

Remark 25 For § > 0, let ¥,(3) be defined as in (35): we have X.(8) = 1/A1(8), where A\ (5) =
%(a + b+ c+d++/A) is the other eigenvalue of Lg. It is clear that

~

lim B In(A(8) = —(@AbATAd)

B—+00

Note that in the present context, the r.h.s. of (37) is just

22*(6)(1/5(0700) +Lﬂ(17oo)) = \ (ﬁ'i_d)

so that

. 1 o~ T~ 5~ ¥
ﬁl_l)l}_looﬂ In (22*(5)(L5(0, o) + Lg(l,%))) = anbacard—and

and the r.h.s. is negative if and only bAT<TA J, fe.T<dnd.

Thus it appears that on the two-point state space, (37) is as good as Theorem 1 (as long as
the exponential rate is concerned at small temperature). But this is no longer true on state spaces
containing at least three points, see Remark 29 below.

For 8 = 0, let vg be the quasi-stationary distribution associated to Lg.

~

Lemma 26 When (6,3, ¢, d) € M, we have for large B = 0,

vV ze{0,1}, vg(z) ~ {lﬁ/c iz;iz(l) (55)

and in particular,

. _ 0 ,ife =0
Vme{O,l}, 5LH£OO'B 1]H(Vﬁ($)) = {E_g ifz=1
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Proof

For 5 =0, let EB be associated to Lg and vg as in the introduction. More precisely, we have

I —(b+avs(1)) b+ avg(1)
Ls = < ¢ + dug(0) —(c—i—dl/g(O)))

Since vg is invariant for I}g, we deduce that

- ¢+ dvg(0)
vp(0) = 37 avg(1) + ¢ + dvg(0)
b+ avs(1)
vg(l) =

b+ avg(1l) + ¢ + dvg(0)
In both Cases (1) and (4), we have for large 5 > 0,
c » avbvd

and we deduce from (56) that

1/5(1) ~ 1
From (57), we get
b+ avs(l)
vg(1) ~ CB
so from a « ¢, we deduce

b

1) ~ -

va(1) .

We can now come to the

Proof of Proposition 23
For B = 0, consider the probability (g defined as in (4). We have

avs(0) £ 0
if v =
avg(0) + brg(l)
voe{o1}, Gl o
bup(1) if o =1
(lVﬁ(O) + bl/ﬁ(l) ’
and we deduce from (55)
ac _
ser =0
vV x e {0,1}, Cplx) ~ B2
=R

For any 8 > 0, we also have, with the notation of the introduction,

Liy = (~c—dvs(0))
Lh, = (=b—avs(1))
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(where the r.h.s. are seen as 1 x 1-matrices), so that, for large 8 = 0,

fgy - L 1
Zol8) = ¢+ dvg(0) c
1 . 1 - C - 1
=i8) = b+ avg(1) b(c+a) b
and thus
218 = =(8)¢s(0) + £1(8)¢s(1)
1 ac 1 b
T Cac+ b2 + bac+ b2
~a+b
 ac+ b2
leading to
lim S n (1) = @+ A(2b)—anb

p—+w0

Taking into account (53), we get

lim 7' (M (8)S'(8) = ¢

B—+0

with

~

§ = @+ A@b)—anb—an(b—C+d)

~

In Case (1), we have already seen that the last term in the r.h.s. is @, furthermore we have a+¢ < 2b

and @ < b so that

5 =

ST Y]

S o R
[

<

In Case (4), the only clear inequality is b < @, so that

§ = @+ A@b)—b—an(b—c+d)

= @+¢-b)ab—an(b-—C+d)

Let us consider two subcases:

° When&<5—5+cﬁthen5+5—g<5, SO

6 = a-+
¢

° When6>g—5+czthen6+5—g>5, SO

§ = b—(b—2+d)
&
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It both subcases, we get § < 0, as desired.
|

It is time to discuss about Assumption (50). Consider for example the case where a = 67, and more
demandingly, let us assume that a = d. Then whatever the initial distribution on {0, 1}, the exit time
is an exponential distribution of parameter a, in particular A\o(5) = a. It follows that the L.h.s. in the
bound of Theorem 1 is zero, while the r.h.s. is positive. This r.h.s. may even be non-vanishing for
large 8 = 0. Indeed, note that as soon as bAC>d = ¢, then the exit position will strongly depend
on the initial state: up to an exponential small error, starting from 0 (respectively 1), the process will
exit by —1 (resp. 2). Thus from Corollary 4, we have

liminf A\o(8)27(8) > 0
B—00

These observations show that Theorem 1 is not optimal, in the logarithmic scale at small temper-
ature, while we believe that Theorem 3 and Corollary 4 are. As it was mentioned in the introduction,
the latter two results do stand for metastability, but not Theorem 1, which is only concerned with the
exit time.

Let us now illustrate the difference between the estimates of Theorem 5 and Proposition 6 in the
3-point state space V = {0, 1,2}. Assume that for all 8 > 0, we are given a birth-and-death Markovian
generator

~ ~

—Lg(0,1) Lg(0,1) 0
Lg = Lp(1,0)  —Lp(1,0) = Lp(1,2)  Lg(1,2) (58)
Lg(2,1) —Lg(2,1)
As in the above subMarkovian situation, we assume the existence of the following limits
~ 1 ~
V(x,y) eV xV,z+#uy, W(x,y) = _ma Bln(Lﬂ(:ﬁ,y)) € [0, +x] (59)
—+00

and simplify the notations by defining

~

= L3(0,1), b = Ls(1,0), ¢ = Lg(1,2), d = Lg(2,1)

w(,1), b = W(1,0), ¢ = W(L,2), d = W(2,1)

ISH

For 8 > 0, denote 73 the associated reversible probability measure. It is well-known (see for
instance Chapter 6 of Freidlin and Wentzell [9]) that the following limits exist:

VaeV, Ux) = — lim B 'In(Fs(x)) (60)

B—+0

and the function U : V — R, is called the quasi-potential, it only depends on % (through finite
minimization problems over covering trees).
Let us assume the following inequalities:

a>b ¢>b b>d (61)
It follows that
U©) =0, UQ1) =a-b UQR =a+e—(b+d

Let us come back to the setting of Section 7, where all notions now depend on 5 = 0. We consider
the case where w = 2, namely we are interested in ¢g, the solution to the Poisson equation:

{zﬁ[%] = 1y —75(2)

Tsles] = 0 (02
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Let ©7(3) and st (8) be the quantities appearing respectively in Theorem 5 and Proposition 6.
Since these quantities come from 2 x 2 and 3 x 3 matrices, it is clear that for large B =0, () has
the same logarithmic behavior as the inverse of the first Dirichlet eigenvalue of (Lg(,¥))s yefo,1} and

il (B) has the same logarithmic behavior as the inverse of the spectral gap of Eg. Direct computations
then lead to

i B (B1(B) = @+&-b
Sim BT (2L(8) =

Remark 27 Such results can also be obtained without computations by extending the path method of
Holley and Stroock [11] to the situation “without potential”, as in [14], and to the absorbing situation,
as in [2].

~

Taking into account that U(2) = @+ &— (b + d), we deduce the following behaviors for the bounds
of Theorem 5 and Proposition 6:

Proposition 28 Under the above assumptions, in particular (61), we have
lim A7V In (F5(2)% = d
Jm 57 n (7F5(2)21(8))

lim 'In(ZL(B)) =

B—+0

S

Since d < 5, for large 5 = 0, the bound of Theorem 5 is much better than that of Proposition 6.

Remark 29 Despite Remark 25, the fact that (37) is based on Proposition 6 rather than on Theorem 5
is a first suggestion that the bound of Theorem 1 should be better than (37). Let us give here an
instance at small temperature, by modifying the above three-point example.

For 8 > 0, consider the subMarkov generator Lg defined on V' := {0,1,2} as in (58), except that
the underlying process is killed at 2 with rate Lg(2, c0):

—Lg(0,1) Ls(0,1) 0
Lﬁ = L/g(l,(]) —L/g(l,()) —L5(1,2) L5(1,2) (63)
0 Lg(2,1) —Lg(2,1) — L(2,0)

We assume the existence of the following limits (recall that V= {0,1,2,0}),

o 1
V(z,y) eV xV, x#y, W(z,y) = — lim —In(Lg(z,y)) € [0,+x0]
B+ 3

simplify the notations by defining
a = W(,1), b = W0, ¢ = W12, d = W(E21), ¢ = W(2m0)
and assume

a>b>0 ¢>5b d=20 ¢>0 (64)

Taking into account the results of [15], metastability at small temperature holds and we have

im Sm(A(8) — —(@—b+E+?) (65)
B—+w B
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(it is due to the fact that {0,1,2} can be seen as a well of height @ — b+ & + ¢ > 0 in a larger
state space (for instance V by adding an exponential transition from oo to 2) for a reversible Markov
generator at small temperature). Furthermore, Lz admits another exponentially small eigenvalue at
small temperature, say A1(f3), which satisfies

~

Jim S hOu(s) = -3
An easy way to get the upper bound, which is the only thing needed in the following arguments, is
to apply the variational principle to the vector space generated by 15 and 1yg in Lz(ﬂ'ﬁ), where
7 is the reversible probability measure associated to the Markovian generator obtained by removing
Lg(2,0) from (63).
Now let us come back to (37). With the corresponding notations, we have

nglw;m(z*(m) _ —ﬁglgw;mwm)

- b

and

Jim o (ZW <|L/a<w,w>| - §L5<w,y>>> = lim S In(Es(2,0))

= —¢

Thus metastability is not recovered as soon as € < b, at least under (64).

To be able to apply Theorem 1, we must first understand the behavior at small temperature of the
quasi-stationary measure vg. In the present particular example (be careful, this is not always true,
see the counter-example closing this section), it can be checked the logarithmic behavior of vg is the
same as for the invariant measure mg, and thus we get

Jim 57 n(s(0) = 0. lm g7 n(s(1) = —@=b), lim 57 ws() = ~@+2-0)

We deduce, with the notations of the introduction,

Jim 57 n((8) = lim 57 n((6))

- a+e-b

Comparing this convergence with (65), we get that Theorem 1 enables to recover the metastability
phenomenon under (64), without the restriction € < b.

(]

To finish, let us briefly consider the extension of the above small temperature considerations to
arbitrary finite state space V. We assume that we are given a family (Lg)g=o of irreducible strictly
subMarkovian generators on V' and that (49) holds in [0, +o0] (with V =V w1 {0} and Lg(z,©) =

—2yev La(z,y), for all z e V).
There is no difficulty with the behavior of A\y(/3), as we know the validity of

lim 7' n(A(8) = I

B—+0

where [ is the highest depth of a well included in V', for the appropriate definitions of the energy
landscape in this context.

35



More problematic and surprising at first view, is the behavior of the quasi-stationary measure vg
for large 5 = 0, since the existence of the limits

VzeV, W(z) = Blirfoo B n(vs(z)) (66)

is not always true, and when they exist, they may not depend only on (W (z, y))(%y)evﬂu/. Thus the
situation is quite different from the existence of the quasi-potential as in (60), which always exists
for irreducible Markovian generators at small temperature (and only depend on the exponential rates
of the transitions). Nevertheless, we think that the limits in (66), that could be called “quasi-quasi-
potentials”, generically exist and only depend on the rates (W (x,y)) (wa)eV <V i.e. up to removing
exceptional identities between these rates, as in (50). Maybe the non-validity of (66) is a watered-
down instance in the finite setting of the non-uniqueness of quasi-stationary measures in general (see
e.g. Example 6.3.1 from Collet, Martinez and San Martin [3|), due to the non-linearity of the equation
they solve. We hope to be able to investigate more thoroughly this situation in a future work.

For the moment being, let us conclude by giving a counter-example to (66), in the two-point state
space {0,1}. We begin by a simple computation:

Lemma 30 Assume that (49) holds, with d > a for all 5 = 0, and
lim g~ 'In(d—a) = —7F

B——+00
with ¥ < b A &. Then we get

lim B 'ln(vs(1)) = F—0
Sim S In(vs(1)) = 7

Proof

Let us come back to (56), taking into account that vg(1) = 1 —1vg(0), we get that = := vg(0) is solution
of the second order equation

(d—a)x* +(a+btc—dx—c = 0
Its solutions are
1
= —(d— b + /A
T = G etbra VA
with
A = (a+b+c—d)?+4e(d—a)

Note that the product of these solutions is —c/(d — a) < 0, so vg(0) is the positive solution:

vg(0) = 4. We deduce
vg(0) = 2(d1_a)(d—(a—|—b—|—c)—|—\/Z)

and

vp(l) = 1-vp(0)

1
= 72(d_a)(d—a+b+c—\/Z)
_ 1 (d—a+b+c)?—(a+b+c—d)?—4dc(d—a)
 2(d—a) d—a+b+c+ /A

1 4(d—a)(b+c) —4e(d —a)
2d—a) d—a+b+c+/A
2b
d—a+b+c+ /A
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Due to ¥ < b A & we have that for large 8 > 0, b+ ¢ « d — a, so that vg(1) ~ b/(d — a) and the
announced result follows at once.

]
Choose 0 < @ < 7 < b and define for all 8 =0,
a = exp(—ap), b = exp(—gﬁ), c =0 d = a+exp(—7H)
The conditions of Lemma 30 are satisfied and we get
lim ' In(vg(1) = F—b (67)

B—+0

where the r.h.s. is not a function of the exponential rates @ = dand b =2
To get the desired counter-example, choose @ < @ < b < b and consider a function 7 : Ry 3 8 —

A~

¥(B) € [a,b] with

liminf7(5) = a, limsup7(5) = b
foto B+

From the proof of Lemma 30, we deduce

liminfrg(l) = 6—5, limsuprg(l) = b—b
lim inf 1 (1) m sup (1)
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