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The harsh climatic conditions during the Last Glacial Maximum (LGM) period have been considered the
cause of local extinctions and major faunal reorganizations that took place at the end of the Pleistocene.
Recent studies have shown, however, that in addition many of these ecological events were associated
with abrupt climate changes during the so-called Late Glacial and the Pleistocene/Holocene transition.
Here we used ancient DNA to investigate the impact of those changes on European populations of
temperate vole species (Microtus arvalis). The genetic diversity of modern populations and the fossil
record suggests that the species may have survived cold episodes, like LGM, not only in the traditional
Mediterranean glacial refugia but also at higher latitudes in cryptic northern refugia located in Central
France, the northern Alps as well as the Carpathians. However, the details of the post-glacial recoloni-
zation and the impact of the Late Glacial and Early Holocene climate changes on the evolutionary history
of the common vole remains unclear. To address this issue, we analysed mtDNA cytochrome b sequences
from more than one hundred common vole specimens from 36 paleontological and archaeological sites
scattered across Europe. Our data suggest that populations from the European mid- and high latitudes
suffered a local population extinction and contraction as a result of Late Glacial and Early Holocene
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climate and environmental changes. The recolonization of earlier abandoned areas took place in the Mid-
to Late Holocene. In contrast, at low latitudes, in Northern Spain there was a continuity of common vole
populations. This indicates different responses of common vole populations to climate and environ-
mental changes across Europe and corroborates the hypothesis that abrupt changes, like those associated
with Younger Dryas and the Pleistocene/Holocene transition, had a significant impact on populations at
the mid- and high latitudes of Europe.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The period following the Last Glacial Maximum was charac-
terised by a number of climate changes that deeply transformed
terrestrial ecosystems (Cooper et al., 2015; Feurdean et al., 2014;
Stuart, 2015). From ca. 19.0 ka there was a slow and gradual
warming of the climate followed by a more rapid temperature in-
crease at around 14.7 ka which led to the expansion of boreal for-
ests in many regions of Europe and marked the beginning of
Bølling/Allerød Interstadial (corresponding to Greenland Intersta-
dial 1; GI-1). This warm period was followed by the abrupt world-
wide cooling called Younger Dryas (YD) that took place between ca.
12.7e11.7 ka (corresponding to Greenland Stadial 1; GS-1) and led
to short-term re-expansion of steppe-tundra environments. Finally,
at around 11.7 ka the onset of Holocene was marked with a
contraction of cold-adapted species and the emergence of forests.
In Europe as a result of these oscillations many species adapted to
cold and dry steppe, both large and medium sized like reindeer
(Rangifer tarandus) (Sommer et al., 2013), saiga antelope (Saiga
tatarica) (Nadachowski et al., 2016), arctic fox (Alopex lagopus)
(Dal�en et al., 2007) and small like collared lemmings (Dicrostonyx
torquatus) (Palkopoulou et al., 2016) became locally extinct.
Temperate and woodland species, on the other hand, generally re-
expanded over the region.

The common vole (Microtus arvalis) is at present one of the most
common rodents in continental Europe (apart from areas such as
Scandinavia and southernmost parts of the Iberian, Italian and
Balkan peninsulas where it is absent). It lives in well-drained open
habitats, from lowland to mountain pastures at elevations up to ca.
3000m, being often abundant in cultivated fields and is regarded as
an agricultural pest (Pardi~nas et al., 2017). The earliest fossil record
of this species is from Western Europe at Hundsheim (Maul and
Markova, 2007), Miesenheim 1 in Germany (van Kolfschoten,
1990), Dobrkovice II (Fejfar, 1965) and Str�ansk�a sk�ala cave in the
Czech Republic (Ku�cera et al., 2009), all dated to ca. 0.6e0.5 Ma.
During the Last Glacial (ca. 119 kae 11.7 ka) (Rasmussen et al., 2014)
the species was common and widespread in both milder in-
terstadials and cooler stadials (including the LGM), being a constant
component of small mammal assemblages across almost the whole
ofWestern Europe (Chaline, 1972; L�opez-García et al., 2017; Rhodes
et al., 2018; Royer et al., 2016), Mediterranean Europe (Ba~nuls-
Cardona et al., 2017; Berto et al., 2017; Cuenca-Besc�os et al.,
2009; L�opez-García et al., 2014, 2013; 2011, 2010; Luzi et al.,
2017; Luzi and L�opez-García, 2019; Nadachowski, 1984; Popov,
2018) and Central Europe (Hor�a�cek and Lo�zek, 1988; Hor�a�cek and
S�anchez-Marco, 1984; J�anossy, 1986; Luzi et al., 2019;
Nadachowski, 1982,1989; Pazonyi, 2004; Socha, 2014). Surprisingly
in the Eastern European Plain (Ukraine and European parts of
Russia) M. arvalis was extremely rare or absent (Markova, 1982;
Rekovets and Nadachowski, 1995; Rekovets and Nesin, 1993).

Based on the distribution of modern genetic diversity and sup-
ported by the continuous fossil record, it has been suggested that
the common vole, together with other species, survived the Last
Glacial Maximum not only in traditional Mediterranean refugia but
also in so called cryptic northern refugia located at higher latitudes
(Fink et al., 2004; Pedreschi et al., 2019; Stewart et al., 2010; Stewart
and Lister, 2001; Stojak et al., 2015; Tougard et al., 2008). Central
France, the Alpine region and the Carpathians have been indicated
as possible locations of such refugia (Fink et al., 2004; Heckel et al.,
2005; Stojak et al., 2016; Tougard et al., 2008). However, the
detailed trajectories of post glacial recolonization of the common
vole remain unknown. The impact of the YD cooling and environ-
mental changes associated with the Pleistocene to Holocene tran-
sition are unclear. Sympatric rodent species such as the field vole
(Microtus agrestis) suffered a drastic population reduction during
the YD which may have led to turnover in all of its European
populations (Herman and Searle, 2011). More recently a detailed
study of Central European populations of the common vole
revealed a signal of genetic continuity since the LGM, although the
start of population growth was estimated as ca. 9e8 ka suggesting
that they may also have suffered a bottleneck near the Pleistocene/
Holocene transition (Stojak et al., 2015).

Here we used the genetic data obtained from common vole
remains originating from post-LGM and Holocene palaeontological
sites across Europe to gain a more detailed insight into the post-
glacial history of the species and to elucidate the impact of
climate changes on its populations.

2. Material and methods

2.1. Material

A total of 321 samples (molars and mandibles) from 36 palae-
ontological sites across Europe were selected for genetic analysis
(Supplementary Table B1). The time range of the collected samples
covered the post-LGM and Holocene periods, roughly between 20.0
and 0.5 ka. All samples were morphologically described asMicrotus
arvalis, M. arvalis/agrestis or Microtus sp.

2.2. DNA extraction

Genomic DNA was extracted at the Laboratory of Paleogenetics
and Conservation Genetics, Centre of New Technologies, University
of Warsaw dedicated to ancient DNA analyses and following pro-
tocols that reduce the probability of contamination with modern
DNA. Single teeth were rinsed with sterile demineralized water in
2 ml Eppendorf tubes and crushed with sterile tips into smaller
pieces. DNA was extracted using the protocol optimised to retrieve
short DNA fragments (Dabney et al., 2013). A negative control was
included in every batch of DNA extraction and processed further.

2.3. Multiplex amplification and sequencing

In the case of 18 samples a fragment of mtDNA cytochrome b
gene coding sequence was amplified using ten primer pairs in two
multiplex PCR reactions (Supplementary Table B2) as described in
Palkopoulou et al. (2016). Purified PCR products were converted
into double-indexed sequencing libraries (Kircher et al., 2012) and
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sequenced using Illumina MiSeq Platform (300 cycles, paired-end).
2.4. Library preparation, target enrichment and sequencing

Most of the samples were processed using the target enrich-
ment approach (Supplementary Table B3). DNA extracts were
converted into double-indexed sequencing libraries following the
protocol of Meyer and Kircher (2010) with minor modifications
(Baca et al., 2019). We applied a double-barcoding approach to
minimise sequencing errors. Illumina adapters contained addi-
tional unique 7-bp sequences (barcodes) as described in Rohland
et al. (2014). The barcodes were introduced with indexing
primers P5 and P7 (Kircher et al., 2012). Indexing PCR was per-
formed using AmpliTaq Gold 360 Master Mix (Applied Biosystems)
with the 19 amplification cycles. PCR products from three inde-
pendent amplifications were pooled, purified usingmagnetic beads
and concentrated to 40 ml. Target enrichment of mtDNA was per-
formed as described in Horn (2012). Bait was prepared using
modern DNA of the common and field vole. Complete mitochon-
drial genomes were amplified as several overlapping fragments
(see Supplementary Table B4 for primer details). After purification,
PCR products were sonicated using Covaris S220 to an average
fragment length of 200 bp and enzymatically modified (Horn,
2012). Two rounds of hybridization were performed, each
20e22 h long. Four samples were pooled in one reaction, differing
from each other with index and barcode sequences. Post-capture
PCR were performed after each of hybridizations using Herculase
II Fusion Polymerase (Agilent) with 10e15 cycles. Amplified prod-
ucts were purified, quantified, pooled in equimolar ratios and
sequenced using Illumina NextSeq platform (150 cycles, paired-
end, MidOutput kits).
2.5. Sequence data processing

Raw Illumina reads were first demultiplexed based on index
sequences using bcl2fastq Conversion Software v2.20 (Illumina)
and barcoded reads were split into separate files using the script
Sabre (https://github.com/najoshi/sabre). AdapterRemoval v2
(Schubert et al., 2016) was used to trim adapter sequences and to
collapse paired-end reads. Merged reads were mapped to a refer-
ence mitochondrial genome of M. arvalis (NC_038176.1) using the
BWA-MEM algorithm in bwa 0.7.17 (Li and Durbin, 2010). Only
reads longer than 30 bp and with mapping quality over 30 were
retained and duplicates were removed using the SAMtools package.
Consensus sequences were called using the BCFtools package. In
the case of samples processed using amultiplex PCR approach, after
collapsing of paired-end reads, primer sequences were trimmed
from amplicon sequences using the trim.seqs command from the
mothur package (Schloss et al., 2009) and later the consensuses
from two replicates were compared and a final consensus called as
per Stiller et al. (2009).
2.6. Data validation

MapDamage v.2 (Ginolhac et al., 2011) was used to check for
damage pattern characteristic of ancient DNA and to estimate
sequencing read lengths. To evaluate whether age assigned to se-
quences is congruent with its divergence from the root (RTT; Root-
to-tip divergence) we used TempEst 1.5.1 (Rambaut et al., 2016). As
the input to TempEst 1.5.1 we used a best phylogeny chosen from
20 ML runs in RAxML (Stamatakis, 2014), using the GTRGAMMA
substitution model.
2.7. Phylogenetic analyses

In the phylogenetic reconstructions we used a 1053 bp fragment
of mtDNA cytochrome b. First, because all the extant samples were
sequenced only for this fragment and second, because in the ma-
jority of the samples, sequenced for thewholemtDNA, we observed
regions where two different sequences were present. This was
probably due to the sequencing of nuclear sequences of mito-
chondrial origin (pseudogenes/numts) along with real mitochon-
drial ones (Triant and DeWoody, 2008). We did not find this
problem within fragment encompassing cytochrome b. In order to
determine phylogenetic position of post-LGM and Holocene com-
mon voles we reconstructed a Bayesian phylogeny using Beast 1.8.4
(Drummond et al., 2012). For the reconstructionwe used sequences
of 829 extant common voles gathered from previous studies
(Braaker and Heckel, 2009; Haynes et al., 2003; Heckel et al., 2005;
Martínkov�a et al., 2013; Stojak et al., 2016, 2015; Tougard et al.,
2008), 23 sequences from radiocarbon dated specimens from
Orkney (Martínkov�a et al., 2013), 41 sequences obtained earlier
from two Polish sites - Obłazowa cave (western entrance) and the
rock-overhang in the Cisowa Rock sites (Lemanik et al., 2020) and
newly generated sequences from palaeontological specimens. The
phylogeny was reconstructed as in earlier studies (Stojak et al.,
2015, 2016). We used a SDR06 model (Shapiro et al., 2006) in
which data is separated into two partitions (first and second codon
positions are linked and the third one is separated). A HKY þ G
substitution model was used for both partitions. We set the tip
dates option on and each sequence that came from an ancient in-
dividual had the age assigned based on its stratigraphic position or
radiocarbon date (Supplementary Table B3). We used an uncorre-
lated relaxed lognormal clock and a flexible Bayesian SkyGrid tree
prior. We set substitution rates to the fixed value of 3.27E-7 sub-
stitutions/site year�1 as determined earlier by Martínkov�a et al.
(2013). Four MCMC chains were run for 200 million generations
each with parameters sampled every 20,000 generations. Conver-
gence of the chains and Effective Samples Size was checked in
Tracer 1.7.1 (Rambaut et al., 2018). Tree files were combined using
logcombiner and a Maximum Clade Credibility tree was summa-
rized using treeannotator (Drummond et al., 2012).

2.8. Demographic analyses

More detailed analyses aimed at the reconstruction of regional
population dynamics were undertaken for two regions, the West-
ern Carpathians and Northern Spain. While constructing both
datasets, we choose only ancient sequences obtained from radio-
carbon dated layers or from layers constrained with two dated
layers. Sequences of present-day individuals were chosen from
broadly the same area as the ancient ones. Based on palae-
ontological and genetic data obtained here we proposed a number
of scenarios that could lead to the observed temporal pattern of
genetic diversity of the common vole in both locations. We tested
the support for these scenarios using an Approximate Bayesian
Computation approach (Beaumont et al., 2002). The analyses
including coalescent simulations, model choice and pseudo-
observed dataset (PODs) analyses were performed in BaySICS v.
1.9.7.9.5 software (Sandoval-Castellanos et al., 2014). First, we
performed pilot coalescent simulations to optimise parameters and
choose a proper set of summary statistics (SuSt). The priors of
effective population size (Ne) had an exponential distribution in
pilot simulations to better screen a sample range. In the final
simulations we replaced these priors with uniform distributions
based on 95% credible intervals of Ne posterior distributions. The
age of samples, as well as times of demographic changes, were also
set as uniform priors. We set the generation time of species to 1 per
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year andmutation rate to 32.7% per million years (Myr�1) following
Martínkov�a et al. (2013). Other parameters such as transition/
transversion bias, gamma shape parameter and nucleotide fre-
quency were set based on calculations in MEGA X (Kumar et al.,
2018). One and two million simulations were run in the pilot and
the final analysis respectively. For the final analyses we chose the
SuSt where the distribution was useful in distinguishing between
scenarios (Lagerholm et al., 2014). In the analyses of the Central
European dataset we used number of haplotypes, segregating sites,
pairwise differences, nucleotide diversity, gene diversity for two
statistical groups and Fst and pairwise differences between those
groups. In the analyses of the Spanish dataset, we used segregating
sites, pairwise differences, nucleotide diversity and Tajima’s D for
three statistical groups and pairwise differences between those
groups. The scenario comparisonwas performed using Bayes factor
(BF) for every pair of scenarios. The consistency of the model
likelihoods and BFs were assessed by applying the procedure with
20 different acceptance proportions, from 0.0025% to 0.5% as in
Smith et al. (2017). We also performed the PODs analyses to esti-
mate the probability of corrected model selections. We compared
1000 PODs with two million final simulations.

To reconstruct changes in effective female population size of
common vole we used the Bayesian SkyGrid method (Gill et al.,
2013). Bayesian phylogeny was inferred using Beast 1.8.4 with
similar parameters as for the initial tree but applying a strict clock.
Two MCMC chains were run for 50 million generations each with
parameters sampled every 5000 generations. Convergence and
Effective Samples Size was checked, and Bayesian SkyGrid was
reconstructed in Tracer 1.7.1 from two combined logfiles.

2.9. Radiocarbon dating

Most of the samples obtained for genetic analyses were teeth,
too small for radiocarbon dating (<10 mg) thus in most cases we
had to rely on stratigraphic dating. To improve stratigraphic infor-
mation available for the sites from which the analysed specimens
originated we obtained radiocarbon dates for six sites that lacked
absolute dating. Dating was performed in Poznan Radiocarbon
Laboratory (Pozna�n, Poland) and in Beta Analytics (Miami, USA). In
addition, we attempted to date the 10 largest vole mandibles
(40e100 mg) which yielded DNA sequences. Dating was performed
in the Centre of Applied Isotope Studies at the University of Georgia
(Athens, USA). Radiocarbon ages were calibrated with Oxcal 4.2
(Ramsey and Lee, 2013) using IntCal13 (Reimer et al., 2013) cali-
bration curve.

3. Results

3.1. Sequencing results, age assignment and data validation

We recovered mtDNA cytochrome b sequence from 142 speci-
mens from 31 sites dated to the post-LGM and Holocene. Ninety-
seven specimens were identified as common vole (M. arvalis), 41
as field vole (M. agrestis), and two each as narrow-headed vole
(Lasiopodomys gregalis) and European pine vole (M. (Terricola)
subterraneus). In the first instance ages were assigned to genetic
sequences based on stratigraphic information available for a
particular site (Table 1, Appendix A, Supplementary Tables B3 and
B5).

We used two approaches to validate the assigned ages of the
obtained sequences. First, we checked for damage patterns char-
acteristic for ancient DNA sequences. We found that 16 samples,
generated using the targeted enrichment approach, either have no
damage, or very low levels of damage, at the ends of DNAmolecules
(below 10%). In the case of eight of those specimens this maybe the
result of their relatively recent age (Late Holocene) although the
remaining eight come from older layers and the lack of DNA
damage suggests that they have been introduced from younger
levels. Second, we checked whether the ages assigned to genetic
sequences were congruent with their divergence from the root of
the tree. We found that five samples had a particularly high
divergence from the root of the tree, more than expected according
to their associated dates suggesting that they were substantially
younger. As a result of both validation procedures, we removed ten
genetic sequences from our dataset (Supplementary Table B3).
These two approaches only detect extreme cases of material being
analysed that was much younger than suggested by their strati-
graphic provenance and smaller scale mixing would not be detec-
ted. To avoid drawing conclusions based solely on the stratigraphic
dating we obtained direct radiocarbon dates for ten available
common vole mandibles which represent different mtDNA lineages
(Table 1).

Due to the very small sample size of the material to be dated
(mostly less than 100 mg) the radiocarbon dating laboratory was
not able to provide C:N ratios of the extracted collagen. However,
the collagen yields were relatively high (�2%), and the obtained
dates, with one exception, fit well with the stratigraphy of the sites
from which they originated (Appendix A).
3.2. Distribution of common vole mtDNA diversity during the post-
LGM and Holocene

The Bayesian phylogeny reconstructedwith ancient andmodern
common vole specimens revealed six mtDNA lineages with mod-
erate to high posterior probability values (Fig. 1). They correspond
to Eastern, Balkan, Central, Italian, Western-North (WN) and
Western-South (WS) mtDNA lineages which were described pre-
viously and make up the present-day mtDNA diversity of the spe-
cies (Stojak et al., 2016, 2015; Tougard et al., 2008) (Figs. 1 and 2A).

The geographic distribution of mtDNA lineages during the post-
LGM period was similar to that of the present-day with the
exception of Central Europe. Most of the specimens from sites in
Central Europe, and specifically from the Western Carpathians,
yielded the Central mtDNA lineage (47 specimens). This lineage
today is found in more western areas such as modern Switzerland,
Germany, the Netherlands and Denmark. Only five individuals were
assigned to the Eastern mtDNA lineage which is the only one found
in present-day Central and Eastern Europe (Fig. 2). Two sites dated
to post-LGM, including Rejtek I rock-shelter from the Pannonian
Basin and Muierilor cave in Romania, only included individuals
belonging to the Eastern lineage (two and one specimens, respec-
tively). At others sites the Eastern lineage co-occurred with the
Central lineage and was always in a minority. One individual from
Bivak cave in Hungary belonged to the Balkan lineage. Our Central
European Holocene record is more limited although we found both
Eastern and Central lineages in the Early Holocene. However, the
Mid-Holocene only included individuals from the Eastern lineage
(Fig. 2B, Supplementary Table B3).

InWestern Europewe found theWN lineage from sites in France
(Coulet des Roches), Belgium (Trou Al’Wesse) and the UK (Bridged
Pot). An Italian lineage was present in the northern Italian site of
Riparo Tagliente (Verona province). A divergent haplotype of this
lineage was also found in Ljubi�ceva pe�cina (Istria, Croatia), where
the Eastern lineage is present today. In Spain, both in post-LGM and
Holocene periods, all individuals belonged to theWS lineage. At the
two Spanish sites, El Portal�on and El Mirador, we found a highly
divergent branch of the WS lineage that separated between 35 and
40 ka ago. This lineage was found in both, the Late Pleistocene and
Holocene layers, but is not present in the modern population.



Table 1
Radiocarbon dates obtained from Late Pleistocene common vole mandibles.

No UGAMS#a Sample ID Country Site Layer mtDNA lineageb Starting material (mg) Collagen yield (%) 14C age Calibrated (BP)
(95.4% range)

lower upper median

1 43,306 MI376 Czechia Bý�cí skala 8c CEN 42 7.9 9860 ± 30 11,316 11,211 11,249
2 43,307 MI378 Czechia Bý�cí skala 8c CEN 56 4.4 8820 ± 25 10,120 9704 9853
3 43,311 MI1337 Slovakia Mur�a�n cave 3/4 CEN 40 7.8 12,110 ± 30 14,112 13,827 13,988
4 43,312 MI1359 Belgium Trou Al’Wesse 4b WN 91 2.9 24,750 ± 60 28,968 28,565 28,770
5 43,313 MI1368 Belgium Trou Al’Wesse 12 WN 57 3.3 25,850 ± 60 30,428 29,706 30,078
6 43,314 MI1371 UK Bridget Pot cave WN 70 4.8 9670 ± 30 11,199 10,870 11,125
7 43,315 MI2136 Spain El Miron 306 WS 63 2.5 13,220 ± 30 16,051 15,737 15,890
8 43,308 MI659 Spain El Mirador MIR49 WS 110 5.9 8040 ± 25 9020 8779 8983
9 43,309 MI1285 Spain El Portal�on P1 WS 88 4.1 17,420 ± 40 21,235 20,835 21,019
10 43,310 MI1286 Spain El Portal�on P1 WS 48 2 16,560 ± 40 20,158 19,793 19,984

a AMS Laboratory code.
b CEN e Central; WN e Western-North; WS e Western-South.

Fig. 1. Bayesian phylogeny of the post-LGM, Holocene and extant common voles from Europe. Maximum Clade Credibility tree, based on 1053 bp mtDNA
cytochrome b fragment, summarized from 9000 trees sampled from 720 million MCMC generations. Numbers at nodes indicates posterior clade probabilities of the major lineages:
B - Balkan, ITA e Italian, CEN e Central, E � Eastern, WN e Western-North, WS e Western-South.
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3.3. Reconstruction of regional evolutionary histories

The number of sequences obtained for two regions, theWestern
Carpathian area and Northern Spain, enabled more detailed de-
mographic inferences to be made.

The Western Carpathian dataset comprises 152 sequences, 73
from extant and 79 from ancient specimens (Supplementary
Table B6). We used approximate Bayesian computations (ABC) to
investigate the genetic support for four demographic scenarios that
might have led to the temporal pattern of genetic diversity
observed in the Western Carpathian area (Fig. 3). To test whether
the observed pattern was not caused only by genetic drift the first
scenario assumed a constant population size since the LGM until
present (model A). The second scenario was that the post-LGM
common vole population went through a bottleneck around the
YD or the Pleistocene/Holocene transition (model B) as proposed by
Stojak et al. (2015). A third possibility was that the post-LGM
population was composed of individuals that diverged some time
ago, then came into contact during the post-LGM and then went
through a bottleneck (model C). Finally, a fourth scenario was that
Central Europe was inhabited by two populations, the one present
during the post-LGM went extinct and was replaced by the second
around the Pleistocene/Holocene transition (model D).

The ABCmodel choice analysis supported the scenario assuming
complete population replacement (model D) with a likelihood
ranging from 0.709 to 0.851 (with an average 0.775, Supplementary
Table B7) depending on the acceptance proportion that was used in
the analysis. The Bayes Factors indicate substantial support for
model D as opposed to A and strong and very strong support for
model D compared to that given to B and C, respectively
(Supplementary Table B7). Additionally, the PODs analysis indi-
cated that the probability of choosing the right scenario were 0.974,
0.943, 0.809, 0.929 for models A, B, C, and D respectively which
means that the analysis has high statistical power.

To investigate the history of the population fromNorthern Spain
we used a subset of our dataset comprising 58 cytochrome b se-
quences, 30 from extant and 28 from ancient specimens
(Supplementary Table B8). All sequences belonged to the WS
mtDNA lineage suggesting no major change in the population of
common voles during that time. To check for more subtle changes



Fig. 2. Distribution of mtDNA diversity of common vole in Europe. A e modern, B e Holocene, C e post-LGM. Colour correspond to mtDNA lineages (pink e Eastern;
yellow e Central; orange e Italian; green e Western-North; violet e Western-South; navy blue e Balkan). Numbers on panel C indicates site of origin of radiocarbon dated
specimens and correspond to these in Table 1.
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that did not involve lineage replacement we used Bayesian SkyGrid
analysis which revealed modest changes of effective population
size of the Spanish population through the last 30,000 years.

The highest effective population size was found to be at the end
of LGM around 20e19 ka and decreased towards the Holocene with
a minimum in the Early-to Mid-Holocene followed by a slight re-
covery up to the present day (Fig. 4). Additionally, we tested sup-
port for the four demographic scenarios using the ABC approach
(Fig. 5). The first scenario assumed a constant vole population size
through time (Model A). The second one (Model B) assumed the



Fig. 3. Schematic representation of demographic scenarios (AeD) for the Western Carpathian common vole population tested using ABC approach. The priors that describes
each scenario are given. tx e timing of the event; Nex e effective population size at the time tx; r e growth rate.
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bottleneck event during the post-LGM period followed by re-
expansion at the onset of the Holocene. This model was used to
test whether there was an impact of the YD on population from
Spain. Model Cwas based on the SkyGrid reconstruction of effective
population size and the fossil record and assumed that the highest
population size at the end of the LGM was followed by population
decline between 20 and 10 ka and since the Early Holocene the
population size remained constant. Finally, model D assumed
population decrease between 20 and 12 ka and was used to test
whether we were able to detect any change in effective population
size.

The analysis failed to reject constant population size as a best
supported model (Supplementary Table B9). However, it has been
shown that in cases of large, rodent-like populations ABC usually
fails to detect population declines or bottlenecks of magnitude
smaller than 95% (Mourier et al., 2012).

4. Discussion

Late Pleistocene evolutionary histories of species are usually
Fig. 4. Bayesian reconstruction of female effective population size changes
through time for common voles from Northern Spain. Median estimate of Nef (solid
line) and associated 95% HPD interval (grey area).
reconstructed based on the fossil record or on the distribution of
genetic diversity in modern populations. Both these approaches,
although powerful, have limitations. On their own they may lead to
incomplete or even incorrect conclusions. The use of ancient DNA
enables the direct estimation of genetic diversity in past pop-
ulations and may reveal demographic processes which are other-
wise unavailable.

4.1. Evolutionary history of common voles in the Western
Carpathians

The temporal distribution of genetic diversity in the Western
Carpathian area is consistent with a population replacement
around the Pleistocene/Holocene transition. The evidence for this
comes from 55 specimens from layers dated to the post-LGM and
Early Holocene periods that yielded a Central mtDNA lineagewhich
was replaced by a population belonging to the Eastern lineage. The
age of the three Central lineage specimens was further confirmed
by direct radiocarbon dating the specimens themselves yielding
Late Glacial and Early Holocene dates (Table 1). We used an ABC
approach to test whether the more probable is the scenario of
complete replacement of the Central population by the Eastern (in
this case the few Eastern individuals found in the same layers as
Central ones were in fact of different ages, or were the result of
material mixing at the site) or whether the scenario existed in
whichWestern Carpathians was inhabited by individuals belonging
to both the Central and Eastern mtDNA lineages during the post-
LGM and was followed (between 12 and 8 ka) by the Central one
becoming extinct while the Eastern one survived spreading
throughout the region (Fig. 3). The ABC analysis supported the
population replacement scenario. The alternative scenario where
selective extinction of the Central lineage occurred would require
that the individuals belonging to different mtDNA lineages differ in
ecological plasticity or that Eastern lineage had some advantageous
adaptations that allowed it to gradually outcompete individuals
from Central lineage. Several recent studies suggested that the
spatial distribution of the present-day mtDNA diversity of a range
of mammals, including common voles, is correlated with specific
environmental and climatic features (McDevitt et al., 2012;
Tarnowska et al., 2016; Stojak et al., 2019). This suggests that
distinct populations of one species may differ in their adaptations
to certain climatic and environmental conditions. Therefore, we
cannot completely rule out the possibility that individuals from the



Fig. 5. Schematic representation of demographic scenarios for Spanish common vole tested using the ABC approach. The priors that describes each scenario are given. tx e

timing of the event; Nex e effective population size at the time tx; r e growth rate.
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Eastern lineage gradually replaced the Central ones as a result of
their better adaptations to Late Glacial and Early Holocene
environments.

Regardless of the details of this process it seems that the final
replacement took place in the Early Holocene. This is confirmed by
the Central lineage specimens present in the Early Holocene layers
in Pesk€o cave (SE Slovakia) and Bý�cí skala (in the Moravian karst)
(Hor�a�cek and Lo�zek, 1988; Hor�a�cek and S�azelov�a, 2017; see also
Appendix A) and especially by the two directly dated Central
lineage specimens from the latter site which yielded ages of 9.8 and
11.2 ka BP, respectively (Table 1). The Early Holocene replacement is
consistent with the previous estimations that an increase in the
population size of the Eastern lineage started at ca. 10e8 ka (Stojak
et al., 2015).

In line with these findings are the results from the reconstruc-
tion of the faunal succession for the northern parts of the Carpa-
thian Basin which showed a slight decrease of common vole
abundance around the YDwith another drastic decrease around the
Boreal period (Pazonyi, 2004). This suggests that the extinction of
Central lineage in theWestern Carpathians may have taken place as
a result of environmental rearrangements during the Preboreal
period.

The primary habitat of the common vole is grassland. Central
Europe during the Early and Middle Holocene was covered with a
dense forest over vast areas as revealed by many pollen diagrams
(see e.g. Mitchell, 2005). Although the recent palaeovegetation
reconstructions showed continuous presence of patches of open
land in the Western Carpathians and adjacent areas throughout
Late Glacial and Holocene (Abraham et al., 2016; Kune�s et al., 2015;
Trondman et al., 2015) the proportion of open landscapes had fallen
significantly around 9e8 ka in many regions (Abraham et al., 2016;
Jamrichov�a et al., 2017; Kune�s et al., 2015). At this time the climate
became wetter (Feurdean et al., 2014; Jamrichov�a et al., 2017) and
the semi-open pine forests dominating the Early Holocene were
replaced bymore diversified plant communities with spruce forests
and mixed oak woodlands amongst others (Abraham et al., 2016;
Kune�s et al., 2015; Pokorný et al., 2015). Thus, the extirpation of the
Central lineage may have been caused by a drastic loss of suitable
habitats.
4.2. Evolutionary history of common voles in Western Europe and
the British Isles

Two radiocarbon dated specimens from Trou Al’Wesse
(Belgium) yielded a pre-LGM ages. They belonged to the WN line-
age although they diverged earlier than the coalescence of the
extant populations (Fig. 1). This suggests that population continuity
existed in the region throughout the last 30 ka rather than there
being a turnover, even if the population decreased in numbers as a
result of the LGM. Although the genetic evidence is still very limited
this is concordant with the cryptic northern refugium hypothesis
(Stewart and Lister, 2001). The other interesting case is the single
specimen from Bridged Pot cave dated to the Early Holocene. At
present there are no common voles in the British Isles with the
exception of the Orkney Isles, where they have been introduced by
humans ca. 5000 years ago (Martínkov�a et al., 2013). Microtus
arvalis has not been considered to be part of the British fauna of the
Last Glacial and only the field vole has been identified in the fossil
record (Coard and Chamberlain, 1999; Currant and Jacobi, 2001)
although there are problems distinguishing these two species
based on dental characters (Navarro et al., 2018).

Recently, a number of common vole remains were identified
using collagen fingerprinting from Pin Hole cave (Creswell Crags,
UK) (Buckley et al., 2018). Although the deposits Pin Hole have been
shown to bemixed (Stewart and Jacobi, 2015), this suggests that the
common vole was present in the British Isles during the Late
Pleistocene and/or early Holocene. The phylogenetic position of the
individual from Bridged Pot cave suggests that it was a part of the
continuous population of mainland Europe (Fig. 2). Given the age of
the specimen (Table 1) the possible scenario explaining its presence
in the British Isles may be that the common vole may have
expanded to Britain during the Late Glacial warming and their local
extinction was then caused by either YD cooling or the Holocene
reforestation. The disappearance of the connection between the
British Isles and continental Europe during the Early Holocene may
have prevented the species’ subsequent recolonization. In other
small mammals inhabiting Britain today such as the field vole, bank
vole (Clethrionomys glareolus), water vole (Arvicola amphibius) and
pygmy shrew (Sorex minutus) the populations of these taxa, which
colonized Britain during Late Glacial, retreated to fringes of the
island possibly as a result of YD cooling (Brace et al., 2016; Searle
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et al., 2009). Subsequent populations of all these species were able
to recolonize Britain at the onset of the Holocene. This was not the
case for the common vole. Recently Martínkov�a et al. (2013)
showed that recolonization of the northern areas of France and
Belgium by the common vole was relatively late and started not
earlier than 2000 years ago, long after the disappearance of land
connecting the British Isles and mainland Europe.

4.3. Evolutionary history of common voles in Spain

In Spain, the distribution of genetic diversity through time and
the reconstructed trajectory of population size changes suggest
population continuity with a possible decrease around the Late
Glacial and Early Holocene. The demographic reconstruction was
mostly done using the stratigraphically dated sequences with only
four being directly dated using radiocarbon dating, thus there is a
level of uncertainty associated with this conclusion. However, the
reconstructed trajectory fits well with the changes in the abun-
dance of common vole remains observed on palaeontological sites
across Northern Spain and Southern France. At the El Miron site
(Cantabrian Cordillera) the maximum abundance of common vole
falls between 27 and 15 ka, with the onset of Bølling-Allerød the
decline is observed leading to a complete disappearance in the
Early Holocene. Vole remains reappear in the Chalcolithic period at
around 4 ka (Cuenca-Besc�os et al., 2009). The same is seen at other
sites like Antoli~nako Koba (Biscay) (Rofes et al., 2015), Santimami~ne
(Biscay) (Rofes et al., 2013) and on the Galician site Valdavara-1
(L�opez-García et al., 2011). A similar pattern was found in South-
Western France (Royer et al., 2016), suggesting similar population
history throughout the whole range of the WS lineage. The trajec-
tory of common vole populations seems to follow the general
pattern of paleoenvironmental changes in Spain over the last 30 ka.
During the LGM and post-LGM grasslands and steppe vegetation
prevailed in Northern Spain providing the preferred habitat type of
the common voles (Carri�on et al., 2010; Fletcher et al., 2010). From
ca. 15 ka oak (Quercus sp.) and pine (Pinus sp.) forests began to
appear reaching a peak during the Early Holocene (Carri�on et al.,
2010). Thus, the loss of primary habitat due to an expansion of
forests may be the cause of the observed population decrease.
There is no clear change in paleoenvironmental records from the
Middle Holocene onwards, however during that time a growing
pressure of humans on the landscape has been recognized. The
human activities, involving deforestation by burning, pastoralism
and ploughing, were highly uneven, both spatially and temporarily,
but clearly visible in palynological records of the Chalcolithic and
Bronze Age (Carri�on et al., 2010). It has been argued that human
activities affected small mammal communities even earlier, from
the Neolithic onwards (L�opez-García et al., 2013). Thus, the slight
recovery of population size observed on SkyGrid plot and in the
fossil record may have been caused by an increase in human-
maintained grasslands, the main present-day habitat of the com-
mon vole.

4.4. The post-glacial history of common vole populations

The use of ancient DNA to investigate evolutionary histories of
animals revealed that the Late Pleistocene was a highly dynamic
period marked with numerous faunal turnovers (extinctions,
regional extirpations and population replacements) most of which
had not been recognized earlier from the fossil record (Baca et al.,
2017). Most of these events were grouped in two distinct clusters.
The first one was around ca. 37e28 ka (Greenland Interstadials
7e4) (Cooper et al., 2015). During that time the native European
population of mammoths (M. primigenius) (lineage III) was replaced
by a population coming from Asia (lineage I) (Palkopoulou et al.,
2013; Fellows Yates et al., 2017). Also local populations of Ursus
spelaeus were replaced by U. ingressus in the Ach valley (Germany)
(Münzel et al., 2011). Population replacement was also recorded in
the collared lemmings (Dicrostonyx torquatus) which was probably
extirpated from Europe for some time between ca. 40 and 32 ka
(Brace et al., 2012; Palkopoulou et al., 2016).

It was suggested that the Late Pleistocene faunal turnovers were
mainly driven by the abrupt climate warmings of the Greenland
Interstadials while the gradual changes like the LGM had milder
effects on populations (Cooper et al., 2015). Although this was not
always the case as exemplified by the two Europe-wide population
replacements of cold-adapted collared lemming that took place
between 23 and 20 ka BP which were not associated with any
clearly recognisable climate changes. However, this LGM turnovers
in the collared lemming (Brace et al., 2012; Palkopoulou et al., 2016)
were correlated with the temporary disappearance of the
mammoth (Brace et al., 2012; Nadachowski et al., 2018).

In this study we investigated the evolutionary history of the
common vole during the post-LGM period which included the
second cluster of extinctions and faunal turnovers (Cooper et al.,
2015). During this period several cold-adapted species became
extirpated from Europe (Puzachenko and Markova, 2019). Mean-
while temperate taxa expanded from their LGM refugia. Their
expansion was disturbed by the short glacial re-advance of the YD.
The impact of this cooling on temperate species has not yet been
fully characterised although the YD has been shown to cause sig-
nificant range reduction of large ungulates such as roe deer (Cap-
reolus capreolus) (Sommer et al., 2009) and red deer (Cervus
elaphus) (Sommer et al., 2008). It was also hypothesized as causing
a severe population reduction of several rodents and a small
carnivore in the British Isles (Brace et al., 2016; Searle et al., 2009).
Among those species, the field vole (M. agrestis) experienced a
Europe-wide bottleneck which apparently led to population
replacement across the whole species’ range. The demographic
histories of field and common voles are frequently compared. These
species, sympatric within most of their ranges, differ slightly in
their habitat preferences. The common vole generally prefers drier
locations to the field vole that prefers damper conditions (Jacob
et al., 2014; Mathias et al., 2017). It was hypothesized that this
difference in habitat preferences allowed common vole populations
to endure cold and dry episodes, like the YD, relatively intact while
of the field vole experienced drastic population reductions
(Paup�erio et al., 2012).

However, our data suggests that the Late Glacial and the Early
Holocene climate and environmental changes also affected com-
mon vole populations. At mid- and high latitudes in Central and
Western Europe it led to local extinctions and population
replacements.

In contrast to species that have been shown to suffer from YD
cooling but were able to recover their populations across Europe at
the advent of more favourable climatic conditions at the onset of
the Holocene (Searle et al., 2009; Brace et al., 2016), the range of the
common vole populations remained restricted, or their population
densities were low, until the beginning of Middle Holocene, or even
later, in the Western Europe.

The history of common vole populations at lower latitudes in
Southern Europe was different. In Northern Spain we observed a
population continuity throughout last 20 thousand years although
the highest effective population size around the end of the LGM
declined towards the Early Holocene and was followed by a slight
recovery.

Altogether this suggest that, despite clear regional differences,
the Early Holocene was a pivotal period for common voles across
Europe during the last ca. 20 ka and that the main factor affecting
populations of the species was habitat availability.
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This study indicates that evolutionary histories of common vole
populations were different across Europe and corroborate the hy-
pothesis that abrupt changes, like those associated with the YD and
the Pleistocene/Holocene transition had significant impact on
populations at mid- and high latitudes of Europe.
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