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Abstract: Chloride-induced corrosion and load induced concrete cracking affect the serviceability
and safety of reinforced concrete (RC) structures. Once these phenomena occur simultaneously,
the prediction of RC structures’ lifetimes becomes a major challenge. The objective of this paper
is to propose a methodology to evaluate the effect of loading and cracking on the mechanism of
chloride ion penetration in concrete. The proposed methodology will be based on Bayesian networks.
Bayesian networks are useful to update the lifetime assessment based on experimental data as well as
to characterize the uncertainties of the input parameters of a chlorination model including a chloride
diffusion acceleration factor. The proposed methodology is illustrated with experimental data coming
from tests on RC beams subjected to static and cyclic loading before being in contact with a solution
containing chloride ions. The characterized parameters are then used to evaluate the effect of these
two loading conditions (static and cyclic) on the corrosion initiation time and the corrosion initiation
probability. The results obtained indicate that the proposed methodology is capable of integrating
loading and chlorination test data for the determination of the probabilistic parameters of a model in
a comprehensive way.

Keywords: bayesian networks; chlorination; reinforced concrete; cyclic loading; corrosion; cracking

1. Introduction

Reinforced concrete (RC) is a resistant and durable material that is widely used in the construction
of different types of structure. It is one of the most used materials in the world because of the availability
of its components and its ease of construction. However, structures placed in coastal and offshore
areas are exposed to chloride-induced corrosion. The penetration of chloride ions is one of the major
causes of deterioration of RC structures [1,2]. It causes a local reduction in the reinforcement and an
accumulation of corrosion products at the interface between concrete and steel, which lead to tensile
stresses that initiate cracks. The different effects of chloride-induced corrosion produce a significant
reduction in the service life and structural safety, as well as an increase of maintenance costs [3–5].
Reinforced concrete structures, generally designed for a lifetime of 50 to 100 years, could begin to
deteriorate after 20 to 30 years when are in contact with chloride ions [6–8]. In addition, structures in
service are subject to mechanical stresses such as cyclic loads, which cause cracks in the reinforced
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concrete. This cracking modifies the porous structure of the concrete and, therefore, modify the chloride
ion-diffusion process [4,9,10].

Cracks and defects in concrete elements are detected and characterized using destructive or
non-destructive testing (NDT) methods. Destructive inspection techniques are restrictive to be used
in situ and they are expensive, unlike NDT, which are inexpensive, efficient and more suitable for
reinforced-concrete structures [11]. Acoustic emission (AE) and digital image correlation (DIC) are
among the most frequently used NDT methods. For example, Golewski [12] applied the DIC method
to measure the displacement, deformation and development of cracks continuously on concrete slabs
containing fly ash. This study shows the usefulness of DIC for the precise determination of the
parameters of the fracture mechanics in concrete composites. Niewiadomski et al. [13] used the AE
method to characterize the failure parameters of a self-compacting concrete modified with the addition
of nanoparticles of SiO2 and TiO2. Non-destructive methods have also been applied individually, or in
a combined way, in many studies to determine unknown material properties and defects [11,14,15].

This paper focuses on the chloride ingress into concrete considering the effects of static and
cyclic loading. Corrosion and cracking are two of the main causes of degradation of reinforced or
prestressed concrete structures. For structures placed in corrosive environments and subjected to
complex loads (for example bridges, offshore wind turbines, etc.), there is an interaction between
chloride-induced corrosion and concrete cracking due to loadings. Indeed, the products of corrosion
increase the number of cracks [16–18], and cracks induced by loading increase the amount of chloride
in concrete [4,9,18]. Therefore, the coupling of these two phenomena accelerates the deterioration of
structures, thus reducing their resistance and lifetime [4,17].

Several authors have worked on the coupled effects of corrosion and cyclic load in RC structures.
Giordano et al. [19] conducted an experimental campaign to evaluate the combined effects of accelerated
corrosion and mechanical actions (cyclic loading, and cyclic and static loading) on concrete beams.
The results showed that the evolution of longitudinal cracks in concrete due to corrosion depends on
the level and type of the load. Other authors [20,21] evaluated the durability of RC structures subjected
to the combined effects of corrosion and loading-induced cracking. These studies have shown that
mechanical loadings significantly reduce the time and probability of initiation of corrosion depending
on the exposure conditions.

The diffusion of chlorides into concrete is a complex phenomenon where chemical and physical
mechanisms interact depending on material properties and environmental exposure. Therefore,
there are several sources of uncertainty related to chloride ingress modeling. According to Saassouh
and Lounis [22], these uncertainties may come from not only the key parameters of the model (concrete
cover depth, chloride concentration at the surface, diffusion coefficient, chloride threshold concentration)
but also from the models (physical and surrogate), and measurement methods chosen. Consequently,
probabilistic models that take into account the uncertainty and variability of the main parameters are
more suitable for lifetime assessment [23–25]. These models also allow prediction of the probability
of corrosion of the rebars and its sensitivity to the different parameters. Bastidas-Arteaga et al. [16]
proposed a probabilistic model of fatigue corrosion for RC structures. This model combined a simple
solution of Fick’s law [26], electrochemical principles, a rate competition Criterion and linear elastic
fracture mechanics. It was updated recently [17] to account for a more realistic model of chloride
ingress; but it still neglects the effects of loading on the chloride ingress process. Characterizing the
effects of loading on the chloride ingress mechanism is a major challenge that should be addressed to
improve the lifetime assessment for in-service RC structures.

In this context, the main objective of this work is to propose a methodology for the probabilistic
characterization of the input parameters of a chlorination model taking into account the effects of
loading. The proposed methodology is based on the Bayesian network (BN) approach, which is
a probabilistic tool that could be used to identify parameters by integrating experimental data.
The Bayesian approach has already been used to update/identify the parameters of chlorination models,
and to assess/update the reliability of concrete [27,28] or timber [29,30] structures. However, it has not



Appl. Sci. 2020, 10, 2040 3 of 19

been used to estimate the effects of mechanical loading on the chloride ingress mechanism by using
experimental data. The experimental data presented in the paper comes from a previous research
study on the combined effects of chlorination and cracking detailed in [4].

The paper is organized as follows. The first part of the document summarizes the chloride
diffusion models in sound and cracked concrete (Section 2). Section 3 gives a general description of
the experimental tests by presenting the equipment, method and inspection data that will be used
for identification purposes. In Section 4, we detail the proposed Bayesian network that will be used
to characterize the model parameters. Finally, Section 5 deals with the results of the identification of
input variables for different loading cases and their effects the probability of corrosion initiation.

2. Chloride Ingress Modeling

2.1. Chloride Ingress for Uncracked Concrete

The diffusion of chloride ions in saturated concretes is described by the second Fick’s law [26]
with the assumption that concrete is a homogeneous and isotropic material [31]:

∂C
∂t

= D
∂2C
∂x2 (1)

where C is the free chloride concentration, t is time, D is the diffusion coefficient of the chloride ions,
and x is the depth of the concrete in the diffusion direction. With the following initial conditions: (1)
the concentration is zero at the beginning of the exposure t0, and (2) the chloride surface concentration
is constant; the concentration of free chloride ions C(x, t) at depth x and at time t for a semi-infinite
medium can be expressed by an analytical solution of Fick law using the error function:

C(x, t) = Cs

[
1− erf

(
x

2
√

D·t

)]
(2)

where Cs is the chloride concentration at the surface, and erf(·) is the error function. This solution
makes possible to calculate chloride profiles at given times and depths as well as the corrosion initiation
time tini. tini is the time at which the chloride concentration at the surface of the reinforcements reaches
a threshold value Cth. This threshold value represents the concentration of chlorides for which the
passive layer of the steel is destroyed and the corrosion reaction starts. The corrosion initiation time is,
therefore, estimated for the chloride concentration equal to the threshold value Cth and x equal to the
cover depth of the concrete c, according to the following equation:

tini =
c2

4D

[
erf−1

(
1−

Cth

Cs

)]−2
(3)

Collepardi’s model (Equation (2)) is only valid for saturated concrete exposed to a constant
concentration of chloride on the surface. In reality, for a heterogeneous material, such as concrete,
these conditions are rarely observed and the concentration of chlorides on the surface varies over time.
Although this model does not take into account several important parameters such as the aging state
of concrete and environmental factors (temperature, humidity) [32,33], it will be used to identify the
variables required because the beams of the tests are subjected to a constant concentration of chloride
on the surface of the concrete. In addition, this solution (Equation (2)) remains complex enough to
illustrate the proposed methodology. More elaborated models could be considered but they require
additional experimental data to determine supplementary model parameters.

2.2. Chloride Ingress for Cracked Concrete

In recent years, much research has been devoted to the development of models for predicting
the cracking effects on chloride ingress and corrosion phenomenon (corrosion initiation, propagation,
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corrosion rate, etc.). Otieno et al. [34] have developed empirical models for predicting the rate
of corrosion induced by chloride ions in cracked RC structures. These models incorporated the
influence of several geometries of concrete cracks and cover depth (with the crack width/concrete
cover ratio [35,36]), as well as the quality of concrete on the corrosion speed. This study was useful to
provide recommendations about the best combination of the aforementioned parameters to meet the
desired durability performance of the structure. Kurumatani et al. [37] have proposed a numerical
method that allowed simulating the chloride ingress into concrete by an unstable diffusion analysis,
taking into account damage associated with 3D internal cracks. The crack propagation analysis with a
damage model based on fracture mechanics was also taken into account to reproduce the 3D geometry
of the internal cracks. Several authors have also developed models of corrosion or chloride transport
into cracked concrete (saturated or unsaturated) at the mesoscale, to consider the heterogeneity of
concrete in more than two phases [38–40].

Several experiments as well as field studies have shown that cracking leads to rapid penetration
of chloride ions and early degradation of structures [41–43]. For example, Gowripalan et al. [35]
conducted chloride diffusing tests on cracked RC beams, and concluded that the crack width/concrete
cover ratio may be a deterministic parameter for assessing the durability of cracked reinforced concrete.
His research has shown that there is a hyperbolic relationship between this ratio and the chloride
threshold value in cracked concrete. The introduction of cracking parameters in chlorination models is
therefore useful for estimating the time of corrosion initiation taking into account the combined effects
of chloride ingress and concrete cracking. To model the diffusion of chlorides in cracked concrete,
we propose to use the simplified model described by Equation (4) in which we add an acceleration
factor α which multiplies the diffusion coefficient D:

C(x, t) = Cs

[
1− erf

(
x

2
√
α·D·t

)]
(4)

The acceleration factor is higher than 1 for cracked conditions to consider that major chloride
diffusion is expected in a cracked concrete. Since there are significant uncertainties related to this
parameter depending on the concrete properties, fabrication of the structural component, loading history,
etc. this parameter should be modeled as a random variable to be identified from experimental data.

3. Tests’ Description

3.1. General Description

The tests were carried out on 12 RC beams (300 × 120 × 1500 mm, Figure 1), designed according
to Chinese standards GB/T 50081-2016 [44]. The different stages of the experimental tests are presented
in the form of a flowchart in Figure 2 (for more details see [4]). Stage I includes the fabrication and
curing (28 days) of the reinforced concrete specimens. RC specimens have made from commercial
concrete with a target strength of 40 MPa at 28 days and a water/cement ratio 0.44 chosen according
requirements of [45] for the concrete elements in a chloride-containing environment. The composition
and additional details of concrete are provided in Table 1.
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Table 1. Characteristics of the concrete mixture [4].

Target Concrete Strength C40 MPa

Materials and Mix Proportion

Water (tape water) 180 kg/m3

Cement (PII 52.5) 320 kg/m3

Furnace micro-slag (S95) 90 kg/m3

Aggregates
Fine aggregates (middle size) 770 kg/m3

Coarse aggregates (5–25 mm, crushed) 1020 kg/m3

Super plasticizer (LN800) 4.51 kg/m3

Properties
Slump (mm) 140 ± 20 mm

28-day compressive strength 150 × 150 × 150 mm concrete cube (MPa) 50.0 MPa
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In stage II (Figure 2), the specimens were subjected to no loading (4 beams), static loads (single
load of 18 kN, 4 beams) and cyclic loads (500,000 loading cycles 5.4k N to 18 kN, 4 beams) using a
three-point loading test. The control and record of static and cyclic load magnitudes were carried out
by a load cell [46].

After the mechanical tests, the beams were exposed to chloride ions by wetting and immerging
the beams in a 3.5%~5% NaCl solution (Stage III in Figure 2). The beams were first covered with a
sponge wetted with 3.5%~5% NaCl solution and dried. Afterwards, they were completely immersed
in a pool filled with this same solution and dried. A total of four wetting/drying cycles and three
immersion/drying cycles were performed during 388 days [47].

Once the chloride exposures were completed, four cylinders (100 mm diameter × 120 mm height)
were drilled in the center zone of each beam (Stage IV in Figure 2). In Stage V, the cylinders were cut
in 10 mm slices. These slices were oven dried and ground to powder to make a complete blend [4].
The resulting powders were used to measure the total content of concrete chlorides at four depths
(5 mm, 15 mm, 25 mm and 35 mm). Three categories of tests were studied according to the loading
conditions: uncharged tests, static and cyclic loading. In total, 12 chloride profiles were measured for
each category.

3.2. Test Results

The results of the tests presented in this section will be used to illustrate the developed methodology
for the identification purposes. After the loading tests, the maximum width of the crack varied between
0.15 and 0.25 mm for the cyclic load case, and between 0.04 and 0.06 mm for static load case. The results
of the chloride measurements in the concrete as a function of the depth for each load case are detailed
in Appendix A (Tables A1–A3).

Based on these experimental data, Wang et al. [4] estimated the input parameters of a simple
chloride diffusion model (Collepardi’s model [26,31]). These parameters are the concentration of
chloride ions at the surface Cs and the chloride diffusion coefficient D. The results of the study given
in the following section presents the models of chloride ion diffusion in the sound (uncracked) and
cracked concrete considered in this work.

Table 2 showed that the loadings increase the values identified for the mean and the standard
deviation of these parameters compared to the unloaded state. Therefore, we propose in the following
section a procedure based on Bayesian networks that could be used towards this aim.

Table 2. Mean and standard deviation of chloride ingress model parameters for different
loading conditions.

Case Mean Cs
(% Cl−)

Standard Deviation Cs (% Cl−) Mean D
(mm2/day)

Standard Deviation D
(mm2/day)

Unloaded 0.28 0.05 0.94 0.52
Static load 0.27 0.06 1.31 0.60
Cyclic load 0.30 0.05 1.65 0.77

4. Modeling and Implementation

4.1. Basics of Bayesian Networks

A Bayesian network is the graphical representation of the influence of one event, one fact, or one
variable on another. It is a directed acyclic graph (DAG) composed of parent and child nodes (existing
real events) modeled as random variables, and oriented arrows that represent the causal relationship
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between the nodes. To each child node is associated a conditional probability with respect to its parent
node and the set of nodes is defined on the probabilized space (Ω, X) such that:

P(X) = P(X1, . . . , XN) =
N∏

i=1

P
(
Xi

∣∣∣pa (Xi)
)

(5)

where Ω is the samples space, X is the set of random variables {X1, . . . , XN}, and pa(Xi) is the set
of parents of the Xi nodes (for more information see [48]). Figure 3 illustrates a simple three-node
Bayesian network corresponding to three random variables Y, X1, and X2 where X1 and X2 are the
child nodes of the parent node Y. The joint probability of the events (Y, X1, X2) of this network is given
as the product of conditional probabilities:

P(Y, X1, X2) = P(X1 |Y )P(X2 |Y )P(Y) (6)

where P(Xi |Y ) is the conditional probability of Xi knowing Y.
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Figure 3. A simple Bayesian network.

Bayesian networks are useful to update probabilities in the network by integrating new information
of observed variables called evidences. In our study, the methodology will allow us to integrate
information from experimental trials to characterize random variables.

4.2. Numerical Implementation

4.2.1. Proposed Bayesian Network Configuration for Random Variable Characterization

The proposed configuration of the Bayesian network will depend on the loading conditions of the
tests. In this case, we have two configurations depending on whether the beam is loaded or unloaded
(Figure 4). The input parameters to be determined Cs, D and α are modeled as parent nodes of the
Bayesian networks according to the loading case. The child nodes represent the chloride profiles at the
four measurement depths of C(xi, t)) and are the same for all loading conditions: xi = 5 mm, 15 mm,
25 mm and 35 mm) in both cases. All inspections are undertaken at the same time after exposure t = 388
days. For tests without load, we observe in Figure 4 that we have six nodes including two parent nodes
(Cs and D) and four child nodes (C(x1, t), C(x2, t), C(x3, t) and C(x4, t)). For tests with load (static or
cyclic), the parameter α is added as a parent node giving seven nodes for this network (Figure 4).
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We consider that all the nodes are discrete and independent. All nodes are divided into a number
of states in a range whose boundaries were chosen large enough to cover most possible values of
the different nodes. As the observed data are limited, the number of states has been adjusted to get
more accurate results. The details of the discretization and the prior information of the different nodes
are summarized in Table 3; Table 4 for unloaded and loaded conditions, respectively. The a priori
distributions of parent nodes were modeled as uniform distributions for the Bayesian network under
unloaded conditions and the acceleration factor α for the Bayesian network under loaded conditions.
With the uniform distribution, there is any assumption on the a priori shape of these parameters in order
to obtain not skewed results after the characterization process. The a posteriori outputs (histograms)
of Cs and D for the Bayesian network under unloaded conditions are used as a priori distributions
for these parameters in the Bayesian network under loaded conditions (Table 4). This procedure is
justified in Section 4.2.2.

Table 3. Discretization of nodes and a priori information for the Bayesian network under
unloaded conditions.

Parameters Number of States A Priori Distribution Boundaries

Cs (% Cl−) 50 Uniform [0; 2]
D (mm2/day) 50 Uniform [10−12; 4]

C(xi, t) (% Cl−) 60 - [0; 2]

Table 4. Discretization of nodes and a priori information for the Bayesian network under
loaded conditions.

Parameters Number of States A Priori Distribution Boundaries

Cs (% Cl−) 50 Obtained from a
posteriori histograms [0; 2]

D (mm2/day) 50 Unloading test
histogram [10−12; 4]

α 50 Uniform [1; 6]
C(xi, t) (% Cl−) 60 - [0; 2]

4.2.2. Proposed Characterization Methodology

The proposed methodology for characterizing the different parameters (Cs, D and α) is illustrated
in Figure 5. The Bayesian networks shown in Figure 4 allow us to integrate the observed information
on the child nodes (chloride measurements at different depths) in order to update the a posteriori
probabilities of their parent nodes. The proposed methodology is composed by two steps, the first one
aims at determining Cs and D from unloading test data. It is supposed that the parameters identified
during this step are representative of the exposure conditions (i.e., Cs) and chloride diffusivity (i.e., D)
for uncracked concrete. The factor α is identified in Step 2 using the evidence of tests with loading
(static or cyclic). The a posteriori histograms of Cs and D in Step 1 are used as prior information of Step
2. This procedure allows us to focus the characterization process on the acceleration factor α. At the
end of each step, a posteriori histograms of the variables are used to characterize the distribution, mean
and standard deviation of each parent node.
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5. Results and Discussion

The objective of this section is to apply the proposed methodology to evaluate and quantify the
effect of loading on the chloride ingress mechanism. In Section 5.1, we present and discuss the results
of the characterization of the input parameters of the chloride ingress model. The identified values are
then used to calculate the time and probability of corrosion initiation in Section 5.2.

5.1. Parameter Characterization

The output histograms of Cs, D, andα are also updated after each step of the procedure (Figures 6–8,
respectively). The changes in Figures 6 and 7 after updating are due to the fact that in Step 2 we
have added additional information on these two parameters for the loaded tests. These a posteriori
histograms will be used to characterize the mean and standard deviation of the model parameters by
considering loading conditions.
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The mean and standard deviation of Cs, D, and α obtained from the Bayesian networks are
summarized in Table 5 for each case (without loading, static, and cyclic loading). For parameters
Cs and D, the results of step 1 (without load) are very close to the values given in Table 2. It is
also noted that the mean and standard deviation of Cs vary little from one loading case to another,
which makes sense because all beams have been exposed to the same constant concentration of Cl−.
The parameters of D (µ and σ), are close for all cases meaning that the proposed Bayesian methodology
has well separated the effects of cracking from the diffusion phenomenon which depends on the
formulation and fabrication (pouring, curing, etc.) of the concrete beams. The Bayesian model allows
characterization of a factor that increases the chloride diffusivity into concrete due to the presence of
load-induced cracks and has a higher value for the cyclic loading. Indeed, the mean values of this
factor (α) obtained from the Bayesian network are 1.73 and 1.77, respectively, for static and cyclic
loading (Table 5). In both loading cases, the application of the two-step methodology makes it possible
to further optimize the characterization of the parameters Cs and D by integrating the results of the
tests with and without loading.

Table 5. Mean and standard deviation of a posteriori values.

Step One Step 2: Static Loading Step 2: Cyclic Loading

Parameters Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

Cs (% Cl−) 0.27 0.06 0.27 0.06 0.28 0.06
D (mm2/day) 0.94 0.66 0.94 0.57 0.95 0.58

α - - 1.73 0.15 1.77 0.12
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5.2. Comparison with Experimental Data

50,000 Monte Carlo simulations were carried out to compute 10% and 90% percentiles and means
of chloride concentrations at time t = 388 days at different measurement depths (5 mm, 15 mm, 35 mm,
35 mm). A comparison was made between the Collepardi’s model (Equation (2)) with the values of
Table 2, the proposed Bayesian approach with Equation (4) and the identified values (Table 5), and the
experimental measurement values (Figure 9) for all loading cases. We note in Figure 9 that the 10% and
90% percentiles of the two models remain very close for all loading cases, and all points of the data fall
within the 10% and 90% percentile ranges of both approaches. This indicates that the model used is
complex enough to represent this experiment. Moreover, both percentiles are closer to the data for the
larger depths (x = 25 or 35 mm). This is due to the fact that the model does not take into account the
effects of the convection zone for depths near the surface of the concrete. This result indicates that
the addition of a new random variable (α) did not significantly modify the percentiles in comparison
to the Collepardi’s model. This means that the proposed approach was able to distinguish between
material and concrete cracking related effects and uncertainties in a comprehensive way.

Figures 10–12, compare the a posteriori histograms of the child nodes C(x, t) obtained from
the proposed Bayesian approach with Equation (4) and the identified values (Table 5), and those
obtained from Monte Carlo simulations with Equation (2). We can see that for all the loading cases,
the probability densities follow the same distributions. There is a slight difference between the densities
of the BN and those of the Monte Carlo simulations, which changes with the depth and depending on
the loading case. For all cases, this difference is small for the depths of x = 5 mm and 15 mm; as the
depth increases, the difference between the densities more visible. In the case of static loading and
for all depths, we notice that the difference decreases compared to the unloaded case; which shows
that the values of the parameters Cs and D are optimized after the integration of the loaded test data.
However, for cyclic loading, it increases slightly compared to the other two cases; which may be due to
the relative uncertainties to the complex process of opening and closing of cracks during loading cycles.
Therefore, we can conclude that the methodology allows these parameters to be updated taking into
account uncertainties associated with the model and measurement methods.
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5.3. Reliability Analysis

The phenomenon of initiation to corrosion corresponds to the depassivation of steels by chloride
ions. The limit state function defining corrosion initiation is written as follows:

g(X, t) = Cth(X) −Ctc(X, t) (7)

where Ctc(X, t) represents the total chloride concentration at the concrete cover depth c, at time t.
This limit state function is used to estimate the probability of corrosion initiation.

5.3.1. Time of Corrosion Initiation

The corrosion initiation time tini is estimated once the chloride concentration at the cover
concrete depth is equal to the threshold value Cth (see Equation (3)). In the case of cracked concrete,
the acceleration factor α is considered in the assessment of tini as follows:

tini =
c2

4αD

[
erf−1

(
1−

Cth

Cs

)]−2
(8)
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Monte Carlo simulations are used to evaluate the corrosion initiation time by considering the
parameters Cs, D, α and Cth as random variables. Cs, α and D follow log-normal distributions [32,49,50]
with the mean and standard deviation given in Table 5; and Cth follows a uniform distribution with
mean 0.4% and a coefficient of variation (COV) = 0.19% [51]. The value of the concrete cover considered
is c = 40 mm and corresponds to the value considered for the design of the beams [4]. Probability
density values of tini, obtained from Monte Carlo simulations for the different loading cases are given
in Figure 13. It is noted that the static and cyclic loadings decrease the mean of the corrosion initiation
time respectively by 1.1 and 1.31 years compared to unloaded tests. Standard deviations of corrosion
initiation time are also decreased as a function of loading. These values are close to the experimental
results which indicate that the mean corrosion initiation time for static and cyclic loading decreases by
1 and 1.5 years, respectively, compared to the unloaded case. Table 6 shows the mean and standard
deviation values obtained with the parameters characterized for the three loading cases.
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Table 6. Mean and standard deviation of corrosion initiation time.

Case Mean (Years) Standard Deviation (Years)

Unloaded 2.99 2.39
Static load 1.89 1.52
Cyclic load 1.68 1.32

5.3.2. Probability of Corrosion Initiation

Figure 14 shows the corrosion initiation probability curves for the different loading cases.
As expected, the probability of initiation to corrosion (PIC) increases with time and loading. This is
due to the accumulation of chloride ions in the area near the reinforcements during the exposure time.
Cracks in the concrete facilitate the access of oxygen and water, necessary for the oxidation reactions
and the formation of rust [52]. For example, for the experimental exposure conditions, the times to
reach PIC = 0.6, are 996, 575 and 505 days for, respectively, the tests without loading, with static loading
and with cyclic loading. Indeed, the exposure conditions of tests are extreme because the values of the
surface chloride concentration are very high [16]. The lifetime is significantly reduced for the loaded
tests. These results are in agreement with experimental observations which indicate that, for certain
rebars, corrosion signs have been observed at the end of the tests (t = 388 days).
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6. Conclusions and Perspectives

This study proposed a methodology for the probabilistic characterization of the input parameters
of a simple chlorination model including an acceleration factor for the diffusion coefficient of chloride
in concrete. On the basis of the results obtained, the following conclusions are drawn:

1. The chloride content at different depths increases when the beams are loaded and for larger
loading intensity.

2. The methodology, based on the Bayesian network approach, allows integrating data from
experimental trials to determine the parameters of a model. It was also useful to separate the
cracking effects from the diffusion of chloride ions mechanism through an acceleration factor.

3. The characterized means of the parameters Cs and D, close to the experimental values, show the
usefulness of the Bayesian approach for this type of study.

4. The acceleration factor increases with the intensity of the load and is higher for the cyclic load,
which resulted in larger width cracks on the beams.

5. Static and cyclic loads reduced the corrosion initiation time by 1.1 and 1.31 years, respectively,
compared to the unloaded case.

In addition, one limitation of this study is the use of a simple chlorination model (Collepardi
model) that does not take into account several parameters such as concrete aging and environmental
conditions. Further work should consider chlorination models more representative of the chloride
diffusion process. Another aspect to improve the methodology is to consider mechanics-based cracking
models and to combine it with chlorination models. With these improvements, the acceleration
factor could take into account crack characteristics (width, length, density, etc.), crack initiation and
propagation mechanisms, and loading in a comprehensive way.
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Appendix A

Table A1. Chloride measurements for unloaded beams (×10−2 concrete weight %).

Depth (mm)

Observations 5 15 25 35

no crack 17.0 17.9 12.4 9.30
no crack 16.3 12.9 5.40 2.70
no crack 14.7 13.0 9.00 6.40
no crack 21.1 14.4 7.10 5.50
no crack 23.0 14.6 4.90 1.60
no crack 23.4 19.3 7.80 2.80
no crack 22.3 21.3 9.40 2.70
no crack 20.6 21.4 6.80 2.10
no crack 27.1 21.9 8.20 2.50
no crack 24.1 17.8 5.20 2.90
no crack 26.8 22.1 13.9 3.50
no crack 24.4 15.2 4.70 2.00

Min 14.7 12.9 4.70 1.60
Max 27.1 22.1 13.9 9.30
µ 21.7 17.7 7.90 3.67
σ 3.99 3.54 2.93 2.27

Table A2. Chloride measurements for static loaded beams (×10−2 concrete weight %).

Depth (mm)

Observations 5 15 25 35

one crack 12.7 11.6 7.60 3.70
one crack 13.2 11.1 6.60 4.00
one crack 10.7 12.7 5.20 2.90
one crack 11.6 11.2 5.90 4.10
one crack 23.6 21.8 12.3 4.10
one crack 23.2 20.1 9.90 4.10
one crack 35.8 21.2 13.8 5.30

two cracks 22.2 21.2 14.9 9.80
one crack 24.7 24.6 16.7 9.30
one crack 23.8 21.7 14.6 9.10
one crack 22.8 18.7 11.4 8.70
one crack 24.5 18.9 12.7 8.60

Min 10.7 11.1 5.20 2.90
Max 35.8 24.6 16.7 9.80
µ 20.7 17.9 11.0 6.14
σ 7.34 4.87 3.87 2.68
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Table A3. Chloride measurements for cyclic loaded beams (×10−2 concrete weight %).

Depth (mm)

Observations 5 15 25 35

one crack 22.6 24.1 13.0 6.90
one crack 23.8 21.1 12.5 7.40
one crack 21.0 27.9 12.7 8.30
no crack 22.1 19.0 12.2 6.30
one crack 30.4 30.3 22.3 11.10
no crack 36.4 26.2 14.2 13.2
one crack 27.7 24.6 18.8 15.5
no crack 27.1 32.0 10.7 9.60
no crack 22.8 17.2 4.70 5.10
no crack 22.9 17.4 6.80 5.40
one crack 21.2 20.3 12.8 9.40
no crack 20.2 16.9 8.10 4.40

Min 20.2 16.9 4.70 4.40
Max 36.4 32.0 22.3 15.5
µ 24.9 23.1 12.4 8.55
σ 4.76 5.23 4.81 3.39
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