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Abstract

In the context of vehicle transportation in congested roads, we propose an optimization framework to integrate
the operator decisions on network pricing, regulation, and expansion, while accounting for the shipments of
hazardous materials. Current research trends only provide partial modeling integrations of the well-known toll
optimization, hazmat transportation, and network design problems. However, the growing complexity of traffic
management requires a stronger coordination in the operator decisions. In this paper, a mixed-integer non-
linear bi-level problem is introduced to model this integration. The model considers a road network operator
(acting as a leader), who maximizes its profit –the toll income minus the costs from roads construction and
risk exposure to hazmat transportation–, and vehicles (acting as a follower), who minimize their travel costs
–due to traffic congestion and toll charges. We introduce a reformulation approach that approximates this
complex integrated problem with arbitrary precision and apply a specialized local search to exploit the structure
of such reformulation. This combined resolution strategy relies upon a binary-search-based procedure, which
sequentially updates the road prices intervals in such a way that the operator profit is monotonically improved.
The effectiveness of the proposed approach is shown on a variety of structural configurations and economic
settings, involving 1620 instances tested on the well-known Sioux Falls road network.

Keywords: Toll setting, Network design, Hazmat traffic regulation, Bi-level optimization, Specialized local
search.

1. Introduction

The complexity of the current traffic management is progressively intensifying along with the rapid popu-
lation growth on congested roads. As a consequence, the decision-making processes of road network operators
are being encumbered by an increasing number of simultaneous difficulties, such as traffic congestion and the
exposure of the population to risk of hazardous materials.

Contextually, investments on new roads and toll charging have been widely adopted strategies to alleviate
these problems. In the operations research literature, these strategies have been modeled as the Network
Design Problem (NDP, from now on) and the Toll Optimization Problem (TOP, from now on). While the
NDP refers to ordinary vehicles, when hazmat vehicles are studied, instead, the name Hazmat Transportation
Problem (HTP, from now on) is adopted. The HTP is often regarded as a separate class of problems, whose
mathematical programming formulations generally mirror different forms of regulatory policies on shipments
with hazardous materials, aiming at the minimization the total network risk.

The need for the integration of traffic management policies has been reflected in recent research trends
that consider unified modeling approaches of either NDP and HTP [10] or TOP and HTP [33, 40, 18] or the
NDP and TOP [45, 44]. However, these trends only provide partial integrations, while a unified formulation
to serve as a modeling framework for a comprehensive range of operator decisions is still missing.

This work presents a Mixed-Integer Non-linear Bi-level Problem (MINLBP, from now on) to simultaneously
determine the Road Network Pricing, Regulation, and Expansion (RNPRE, from now on) for ordinary and
hazmat vehicles under traffic congestion. On the one hand, the network operator (acting as a leader) manages:
1) the investment on new road links, 2) the tolling of certain road links, and 3) the regulation of the access of
hazmat vehicles to specific road links. These three interventions are done in such a way that the vehicle flows
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are profitable and reduce the population risk to hazmat exposure. On the other hand, vehicles (acting as a
follower) want to minimize their total travel costs from toll charges and travel time.

As noted by Dempe & Dutta [12], this class of models can be seen as non-convex programs with implicitly
defined feasible regions. Candler & Townsley [9] has shown that the inducible region (i.e. the joint-solution
space of the leader and follower agents) of a MINLBP is non-convex and Single-Level Reformulations (SLRs,
from now on) are required to construct their algebraical characterization. In our context, these reformulations
replace the vehicles best response with a set of constraints characterizing their optimality conditions [32, 46,
19, 29, 4].

Building on the SLR of this novel integration of NDP, TOP and HTP, we propose an approximation
procedure that allows for the tractability of the two sources of non-linearity. The first source is the convex
cost function at the follower level, driven by the usage of the well-known Bureau of Public Road function [34]
(BPR, from now on) to model traffic congestion. The second source of non-linearity results from the bi-linear
terms associated to the follower’s optimality conditions at the SLR.

Therefore, a Mixed-Integer Linear-Programming (MILP, from now on) is built in four steps:

- The follower’s problem is formulated using the Lin & Leong theory [31] to model the user equilibrium
under congestion for multiple vehicle categories. This allows the leader to interdict the access of certain
paths to certain categories of vehicles (see Appendix A).

- A piecewise linear approximation of the congestion function [15] is applied to the follower’s problem,
where the approximation lines are obtained using the Imamoto & Tang method [26] (see Appendix B).

- A SLR is then constructed building on the strong duality theorem to characterize the optimality of the
linearized follower’s problem. This contains a collection of bi-linear terms resulting from the products
between toll and flow variables.

- Finally, toll variables are replaced with binary indicators denoting a discrete collection of toll levels
[29, 33, 44], while the new bi-linear terms involving the product between discretized tolls and vehicle
flows are linearized using the method suggested by Fourer [22].

The application of this four-step procedure results in a computationally challenging MILP that approx-
imates the proposed RNPRE problem with arbitrary precision, by enlarging the number of terms in the
linearization. A trade-off between problem size and solution quality is addressed by the usage of a specialized
local search algorithm, which exploits the proposed linearization approach. This relies upon a binary-search-
based procedure, which sequentially updates the road prices intervals in such a way that the operator profit is
monotonically improved.

On the experimental side, a computational test involving 1620 instances on three extended variants of the
Sioux Falls road network (each having different amount of new toll links) have been built for assessing the
solution quality and computational performance under different scenarios. The results reveal the appropriate-
ness of the proposed reformulation and linearization approach, under different structural configurations and
economic settings (i.e the investment budget, the monetary value of time, the monetary value of risk, the
number of lines approximating the congestion function, and the number of toll levels). We observe that the
usage of the specialized local search algorithm improves the obtained MILP solution for any fixed number of
linearized terms and attain better toll values in the vast majority of analyzed instances.

The rest of the paper is organized as follows. Section 2 surveys the relevant studies on TOP, NDP, and
HTP problems, highlighting the contributions of the proposed approach. Section 3 presents the mathematical
formulation of the bi-level optimization model. Section 4 develops a mixed-integer linear problem to approxi-
mate the bi-level model. Section 5 shows the solution approach to improve the initial tolls found by the MILP
in a wise manner. Section 6 describes the networks used in the computational tests. Section 7 describes the
computational experiments and shows their results. The paper finishes with some conclusions and directions
for further research. In Appendix A and B, supplementary materials are provided to integrate the exposition
and support the theoretical and empirical results. All mathematical proofs of propositions have been reported
in Appendix C.

2. Related Works

This section revises the main streams of contributions corresponding to the TOP, NDP and HTP classes of
models and the different partial integrations of these models that have been so far proposed in the operations
research literature.
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Toll Optimization Problem. In a seminal paper, Labbé et al.[29] describe a bi-level program where the leader’s
objective maximizes the toll income in a road network, while the follower’s best response is a traffic flow
minimizing the costs from toll charging and travel time.1 The authors propose a SLR by replacing the lower
level problem with its dual and then linearize the resulting primal-dual relationship constraint, giving rise to
a MILP. With a view to extending the TOP to more realistic scenarios, Elström et al.[15] include operational
costs on toll links as a function of vehicle flows, and transform the bi-level problem into a single-level problem by
a set of VI-constraints.2 Recently, Kamgaing-Kuiteing et al.[27] compare arc-flow and path-flow formulations
of the TOP with fixed and elastic demand cases and perform a sensitivity analysis on their computational
times with respect to demand elasticity and percentage of toll links.

Network Design Problem. The NDP is first modeled as a bi-level program by Gao et al.[23], who define
the leader’s choices as the determination of new road links to minimize the system traveling costs; whereas
the follower (representing the vehicles) is design to characterize the user equilibrium. Fontaine & Minner
[19] reformulate the NDP as a mixed-integer linear problem using the same approach as Labbé et al. [29],
and propose an improved Benders decomposition in which an acceleration technique is devised for solving
Benders subproblems efficiently. In a recent paper, Fontaine & Minner [20] apply this decomposition method
to an extended version of the NDP, where different vehicle flow patterns are considered in a time-varying
fashion. Analogously, Bagloee et al.[2] study the interaction of two types of vehicles in the follower’s problem,
and propose a hybrid algorithm that combines a generalized Benders decomposition with a Branch & Bound
procedure. Finally, Wang & Zhang [39] extend the NDP framework by studying the interaction among multiple
leaders operating in distinct regions of the road network. This interaction is analyzed using three bi-level
programming models, each one representing different behaviors of the leaders.

Hazmat Transportation Problem. The HTP is first formulated as a bi-level problem by Kara & Verter [28],
who define the leader’s objective as the minimization of the risk exposure to hazmat, subject to the follower’s
best response, representing trucks attempting to minimize the transportation costs. Trucks are grouped into
categories, and one route is determined for each category. Few years later, Erkut & Alp [16] introduce a path-
addition heuristic to solve the HTP, while Erkut & Gzara [17] analyze the stability of the problem solution
using this methodology. The authors show that more stable solutions are obtained when the leader’s goal
considers both risk exposure and transportation costs. Bianco et al. [5] use Erkut & Gzara’s methodology to
solve a bi-level problem in which the leader (representing a regional authority) minimizes the risk induced over
the entire network; whereas, the followers (representing a local authority) minimize the risk over their local
jurisdictions. The authors also prove the stability of the solution. Fontaine & Minner [21] apply a tailored
Benders Decomposition to solve this problem to optimality for moderate-sized networks. Finally, Sun et al.
[37] introduce uncertainty into the risk in order to design a robust HTP. Erkut & Gzara’s methodology has
been used in combination with a Lagrangian relaxation heuristic in order to solve large-scale instances from
real road networks.

Partial integrations. The literature about the modeling integration of TOP, NDP and HTP can be grouped
into three categories: i) works dealing with the NDP and HTP, ii) works facing to the TOP and HTP, and iii)
works studying the NDP and TOP.

In the first category, Chiou [10] presents a min-max bi-level model to effectively regulate risk associated
with hazmat transportation while minimizing travel cost for all vehicles under demand uncertainty. In this
model, a risk-averse signal setting policy is proposed against the worst-case realization of uncertainty in travel
demand. A min-max single-level model and a bundle-like solution method are devised to solve the model.

Regarding the second category, Marcotte at al. [33] prove that toll setting is a good policy to regulate the
use of roads for dangerous good shipments. The authors extend the model of Kara & Verter [28], incorporating
tolls as decision variables of the leader. Wang et al. [40] incorporate the regulation of ordinary vehicles to
evaluate the hazmat exposure through a duration-population-frequency risk function. Finally, Esfandeh et
al.[18] extend the latter model by incorporating toll-free links into the leader problem, where a combination of
risk and toll charging is minimized. An equilibrium-decomposed optimization heuristic is introduced to solve
the resulting bi-level problem.

Finally, in the third category, Yang et al. [45] study the competition among private operators when tolling
links in the same road network. In that problem, operators are designed as to maximize their own profits

1In that original model there are already upper and/or lower bounds for tolls, and some links are toll-free.
2Elström et al. [15] also provide a lower bound of this reformulated problem by solving an approximated MILP.
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Studied Problems Construction Traffic
TOP NDP HTP Costs Congestion

Chiou [10] X X
Marcotte at al. [33] X X
Wang et al. [40] X X
Esfandeh et al. [18] X X X
Yang et al. [45] X X X X
Xu et al. [44] X X
This work X X X X X

Table 1: Summary of the main features incorporated in the works integrating some of the studied problems

evaluating their toll incomes and costs of constructing new road links for attracting vehicles. Two heuristics
are proposed for solving the problem, and their convergence is demonstrated. A single operator version of that
problem is studied by Xu et al. [44], by proposing a mixed-integer quadratic program in which complementary
slackness conditions are relaxed.

Table 1 summarizes the main aspects related to the works integrating some of the studied problems. One
can observe that none of these works integrate the TOP, NDP and HTP problems. Additionally, the features
related to the evaluation of the construction costs of the leader and the traffic congestion have only been
considered by Yang et al.[45], and Esfandeh et al.[18] and Yang et al.[45], respectively. Finally, the traffic
regulation feature has been never studied before in the context of TOP, NDP or HTP problems. However,
there exists an extended user equilibrium model in [31] demonstrating that users can reach an equilibrium
even when an authority prevents them from using some links.

In this work, when dealing with bi-linear terms involving tolls and vehicle flows, a specialized local search
algorithm is introduced to exploits the proposed linearization approach, based on a binary-search-based proce-
dure. As shown in Section 7, this procedure allows improving the toll levels found by the approximated MILP
with a limited computational effort.

3. Problem formulation

3.1. Assumptions

Consider a road network in which some vehicles carry hazardous materials, inducing risk exposure to people
living near the road. To alleviate the entailed social cost, while maximizing profit, the network operator may
take three types of decisions. One is to charge tolls on the different available paths, while not exceeding a
maximum affordable charge. Another is to build new toll roads (subject to an investment budget). Finally,
the network operator can restrain the access to certain types of vehicles (i.e., ordinary or hazmat vehicles) in
certain roads.

As a response to the operator’s decisions, vehicles decide their routes by minimizing the total travel costs,
including time cost and toll charges. Thus, two decision makers interact: the network operator, who aims
at maximizing its profit; and the moving vehicles, who want to minimize their travel costs throughout the
network.

A list of modeling assumptions is made explicitly hereafter.

- The risk exposure to hazmat for traveling vehicles is ignored as it is considered that the number of affected
vehicles is much less compared to the number of people living near the hazmat roads [28, 16, 17, 45, 5].

- Traveling vehicles cooperate with the network operator when costly-equivalent alternative travel routes
are available for different operator decisions, so that the operator can choose the one that provides the
highest benefit. This is in line with optimistic formulations for the TOP problem [30, 44].

- The vehicles’ travel costs are separable and strictly non-decreasing function of link flows, based on the
BPR function [34], as widely applied to the transportation literature [23, 15, 19].

- For each origin-destination pair, the number of traveling vehicles is known, and there exists a set of
road links that are neither regulated by the network operator nor under construction through which all
vehicles can reach their destinations.
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- The network operator is a profit maximizer, who internalizes the externality costs induced by the hazmat
risk. This is an important departure from the business setting proposed by [19], where the operators
goal was to minimize the total travel time in the network (i.e. system-optimum), acting as a benevolent
social planner.

- The traffic flows are specified in regular vehicle units. This does not prevent from taking into consider-
ation different vehicle sizes as there are procedures to measure them in PCUs (Passenger Car Units) as
described in [1].

3.2. Notation

Before the mathematical model is presented, we introduce some notation. Throughout this paper, unless
otherwise explained, vectors will be denoted in boldface letters; whereas, sets will be denoted in calligraphic
letters. Latin letters will be used for the primal variables and parameters (as listed below), whereas Greek
letters will be used for the dual variables associated with constraints of the primal follower problem.

Sets:

N set of nodes (with |N | = n);
A set of links between nodes (with A ⊆ N ×N );
AT set of toll links (with AT ⊂ A);
AF set of toll-free links (with AF = A\AT );
AN set of future possible links (with AN ⊂ AT );
V ordered set of vehicle types (with |V| = V ), classifying the levels of risk;
Kv set of origin-destination pairs for vehicles of type v ∈ V (with K ⊆ N ×N );

Exogenous parameters:

ca cost of constructing a new link a ∈ AN ;
gv,k number of vehicles of origin-destination pair k ∈ Kv traveling from origin o(k) ∈ N to

destination d(k) ∈ N associated with level of risk v ∈ V;
na number of people exposed to hazmat risk on link a ∈ A;
mv monetary cost for each individual exposed to level of risk v ∈ V.

Operator’s decision variables:

ta unitary toll at each link a ∈ AT ;
wva if a link a ∈ AT has been opened for vehicles of level of risk v ∈ V;
ya if a new road has been constructed in the potential link location a ∈ AN .

Vehicles’s decision variables:

xv,ka flow of vehicles of level of risk v ∈ V related to origin-destination k ∈ Kv going through
a ∈ A.

To further clarify the definition of sets and parameters, it is worth mentioning that the set of future possible
links AN constitutes both a subset of the total set of links A (i.e., AN ⊂ A) and a subset of the set of toll
links (i.e., AN ⊂ AT ). Therefore, AT represents the set of both existing and future possible links to which
we can charge a positive price. Beside, it should be noted that the ordered set of vehicle types V encodes the
information about the different risk levels, being the risk-free type (ordinary vehicles) associated with the first
element in V. As a consequent, the monetary costs verify m0 ≤ m1 ≤ . . . ≤ mV .

Finally, to conclude the list of used notation we define K = ∪v∈VKv and introduce the vector forms

t = [ta : a ∈ AT ] ∈ R|AT |, y = [ya : a ∈ AN ] ∈ {0, 1}|AN |, w = [wva : a ∈ AT , v ∈ V] ∈ {0, 1}|AT ||V| and
x = [xv,ka : a ∈ A, v ∈ V, k ∈ Kv] ∈ R|A||V||K|; as well as the expressions xva =

∑
k∈Kv xv,ka , for all v ∈ V, and

xa =
∑
v∈V x

v,k
a , for all a ∈ A.
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3.3. Modelling Approach

In this section, we introduce the general modeling framework for the integrated RNPRE problem. We first
define the operator’s and vehicles’ payoffs to capture their respective revenue and cost structures.

Network operator’s profit: PO
(
t,y,w,x

)
=
∑
a∈AT

taxa −
∑
a∈AN

caya −
∑
a∈A

na
∑
v∈V

mvx
v
a

Vehicles transportation cost at link a: PVa
(
ta, xa

)
= χ{a∈AT }ta + u0

a

(
1 + ra(xa/qa)

4
)

where χ{a∈AT } is an indicator function, and u0
a, ra and qa are exogenous tuning parameters for the traveling

time to be specified for each application.
The network operator’s payoff is the total profit consisting of the revenue from toll value (ta, for a ∈ AT )

multiplied by vehicles flows (xa, for a ∈ AT ), minus the two sources of cost: (i) the cost associated with the
construction of new links (caya, for a ∈ AN ) and (ii) the cost related to risk exposure to hazmat transportation.
This second cost is a social cost that a benevolent operator must internalize. This is computed as na (the size
of the population in the neighborhood of link a), while mv renders the market value of such risk.

The vehicles transportation cost is divided into toll charges established by the operator (first term) and
the time cost defined as a convex function of the amount of flow (second term). The latter is approached by
the well-known BPR function [34], where parameter u0

a represents the market value of the travel time under
free-flow conditions (i.e. in absence of other vehicles), ra attaches the relative importance of congestion to the
travel time, and qa defines the link capacity in terms of the number of vehicles going through.

The RNPRE problem can be defined as a leader-follower game on a multi-vehicle network G = (V,K,N ,A).
Mathematically, this problem can be formulated as the following bi-level model:

max
t,y,w,x

PO
(
t,y,w,x

)
, subject to: (t,y,w) ∈ Φ and x ∈ Ψ(t,w) (1)

where Φ is the set of feasible network operator choices for pricing, regulation and expansion, which are
characterized by the following system of linear constraints:

∑
a∈AN

caya ≤ B (2a)

ta ≤ Ta, ∀ a ∈ AT (2b)

wv−1
a ≥ wva ∀ a ∈ AT v = 2 . . . |V| (2c)

ya ≥ wva, ∀ a ∈ AN , v ∈ V (2d)

ya ∈ {0, 1}, ∀ a ∈ AN (2e)

wva ∈ {0, 1}, ∀ a ∈ AT , v ∈ V (2f)

ta ≥ 0, ∀ a ∈ AT (2g)

Here, the constraint (2a) fixes a budgetary limit (B) to the operator investment in new road construction;3

(2b) set a maximum toll level in each road link (Ta) reflecting public regulation in urban tarries; (2c) implement
a regulatory policy imposing only access restriction to vehicles with higher level of hazmat;4 (2d) prevent
vehicles from accessing the roads that have not been built; (2e)–(2g) set the variable domains.

The vehicle best response Ψ(t,w) results from the route choice model [41], which assumes that users are in
a simultaneous equilibrium (i.e. no driver can unilaterally reduce the travel cost by shifting to another route).
As described by Sheffi [35], the equilibrium solution relies on an homogeneous population of users. However,
a recent study by Lin & Leong [31] derives the equilibrium solution for the case when specified paths are not
available for a certain type of road user. Building on [31], the mathematical programming formulation for the

3The budget constraint is frequently adopted in network design problems [2, 19, 20, 23, 39] to contain the range of investment
possibilities within the liquidity accessability (i.e. the network operator ability to access funding), as well as to mirror public
regulations on investment plans.

4This is in line with the empirical setting of congested urban areas, where the network operators act conditionally on local and
governmental policies.
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user equilibrium in the presence of differentiated route channels for vehicles of different types (as induced by

the operators’s choices on w ∈ {0, 1}|AT ||V|) can be defined as follows:

Ψ(t,w) = argmin
x

∑
a∈A

∫ ∑
v∈V

∑
k∈Kv x

v,k
a

0

PVa
(
ta, ω

)
dω (3a)

subject to:
∑
a∈A

Ni,ax
v,k
a = sv,ki , ∀ i ∈ N , v ∈ V, k ∈ Kv (3b)

xva ≤M (w)
a,v w

v
a, ∀ a ∈ AT , v ∈ V (3c)

xv,ka ≥ 0, ∀ a ∈ A, v ∈ V, k ∈ Kv (3d)

The objective function (3a) is a purely mathematical construct ensuring that road users choose their
routes selfishly. Constraints (3b) define the balance conditions using the link-node incidence matrix N ∈
{−1, 0, 1}|N |×|A|, where a -1/1 is set in the entries where a link goes out/comes in a node, and 0 if a link is
not connected with a node. The right-hand-side of (3b) is defined as

sv,ki =

 gv,k if i is the destination of k
−gv,k if i is the origin of k
0 otherwise

,

where gv,k denotes the number of vehicles associated with an origin-destination pair k ∈ Kv. Next constraints
(3c) are a linear equivalent version of the interdiction type of constraints introduced by [31]. These constraints
prevent the circulation of vehicle flow for a given type, so that if for a certain road the operator does not
give access to a certain type of user (wva = 0), the flow resulting from that type of user is zero (xva = 0),
whereas if the regulatory policy of the network operator keeps that arc within choice set of that type of user

(wva = 1), this constraint is not bounding as long as M
(w)
a,v is sufficiently large.5 Finally, constraints (3d) specify

non-negativity on flow variables. A detailed derivation of the user equilibrium for problem (3a) is provided in
Appendix A.

Let xa =
∑
v∈V

∑
k∈Kv xv,ka . So, when integrating the vehicle’s payoff from a link a ∈ A over each arc flow,

the follower’s objective function becomes:

∑
a∈A

∫ xa

0

PVa
(
ta, ω

)
dω =

∑
a∈A

∫ xa

0

ta dω + u0
a

∫ xa

0

(
1 + ra

(
ω

qa

)4
)
dω

=
∑
a∈AT

taxa +
∑
a∈A

u0
a

(
xa +

ra
5(qa)4

(xa)5

) (4)

Therefore, the resulting model for road network pricing, regulation and expansion embeds in an unified
framework the complexity of current traffic management in congested urban area, allowing the leader to select
over t, y and w variables; and the follower, to respond to the leader choices based on its equilibrium conditions.
While a comprehensive computational analysis of this problem is carried out in Section 7, to gain a conceptual
understanding of the network operator profit, the following small example provides an illustrative case of a
follower’s problem that can be analytically solved.

Example 1. Consider a two-node network consisting of a single origin-destination pair and two travel links, a toll-free
link (already constructed) and a toll link to be built with toll levels t. Two types of vehicles are circulating across the
network: ordinary (risk-free) vehicles and hazmat vehicles. Again the binary indicator wv is required to be equal to one
if the link to be built is opened to vehicles of type (risk level) v and zero otherwise. Recall that xva is used to refer to the
flow of vehicles of type v circulating through link a. Assuming a unitary demand, the flow balance for vehicles of type v
is xv1 + xv2 = 1, so that we can eliminate two variables by defining a new flow variable xv, in such a way that xv1 = xv

and xv2 = 1− xv. Using (4), we construct the follower problem for this toy example as:

5An adjusted value of this big-M is
∑
k∈Kv

a
gv,k, where Kva ⊂ Kv is the subset of origin-destination pairs related to vehicle

type v, whose origin and destination are not the respective head and tail nodes of the link a.
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Ψ(t,w) =



argmin
x1, x2

t
(
2− x1 − x2

)
+
r1
5

(
x1 + x2

)5
+
r2
5

(
2− x1 − x2

)5
if w2 = 1

argmin
x1, x2

t
(
1− x1

)
+
r1
5

(
x1 + 1

)5
+
r2
5

(
1− x1

)5
if w1 = 1 and w2 = 0

r1
5(q1)4

25 if y = 0

To keep notation short, we have assumed that u0
a = qa = 1, for each route. By letting [x̂1(t,w), x̂2(t,w)] ∈ Ψ(t,w)

and assuming m1 = 0 (as ordinary vehicles bring no risk), the operator’s payoff can be expressed as a function of the
toll level t under the three alternative accessability decisions (w1, w2) ∈ {(1, 1), (1, 0), (0, 0)}:

PO
(
t,y,w,x

)
=


t
(
2− x̂1(t, [1, 1])− x̂2(t, [1, 1])

)
− c− n1x̂

1(t, [1, 1])− n2

(
1− x̂1(t, [1, 1])

)
if w1 = w2 = 1

t
(
1− x̂1(t, [1, 0])

)
− c− n1x̂

1(t, [1, 0])− n2

(
1− x̂1(t, [1, 0])

)
if w1 = 1 and w2 = 0

− na1 if y = 0

Fig. 1 illustrates operator’s payoff for every value of t and for each construction decision, fixing r1 = 1 and r2 = 100
(i.e. the impact of congestion to the travel time is 100 times higher in the toll-free path compared to the paid path).

(a) Population size in the neighborhood of the toll-free
road n1 = 100.

(b) Population size in the neighborhood of the toll-free
road n1 = 10.

Figure 1: Network operator’s payoff as a function of the toll level t, for different combinatorial decisions about the construc-
tion and accessability of the new road. Two different parameterizations are considered, concerning the Population size in the
neighborhood of the toll-free road: n1 = 10 (left panel), n1 = 100 (right panel).

In this stylized example, one can see that when the population size in the neighborhood of the toll-free road is equal
to 100, the best operator choice is to build the new road, so that both categories of vehicles have access with 0 charge.
By contrast, when the population size in the neighborhood of the toll-free road is equal to 10, the operator charges 16.8
monetary units for traveling through that new road.

Single level reformulations (SLRs) are one of the most used techniques for solving these class of problems
(see, for instance, [42, 11, 12, 13, 24, 47] for a theoretical and practical background of this type of reformu-
lations). The SLRs require to determine the optimality conditions of the lower level problem, and to append
them to the upper level problem. As claimed by Dempe & Dutta [12] (see Theorem 2.1), an equivalent relation-
ship exists between the (global) solution of the original MINLBP and the one of its single level reformulation,
as long as (3) is convex and satisfies the Slater’s constraint qualification.6

Building on this result, the next section studies the characterization of the optimal network operator choices
with the usage of a single level reformulation for problem (1)-(3). Additionally, some linearization techniques
are applied to bi-linear terms, appearing as a consequence of this reformulation, to obtain a mixed-integer
linear programming problem.

6This is a sufficient condition for strong duality in convex problems (see Proposition 8.7 in [8]).
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4. The RNPRE problem approximated by a mixed-integer linear problem

The RNPRE problem (1)-(3) is a MINLBP containing two sources of non-linearities: (i) the time cost
defined as a convex function of the amount of flow, (ii) the bi-linear terms involving tolls and vehicle flows
representing the leader’s income. In the following subsections, a three-step procedure is proposed to build
a MILP approximating the original MINLBP. This MILP is built replacing both non-linear terms, and the
follower’s objective function with systems of linear constraints in higher dimensions.

- In Subsection 4.1, the follower’s problem is linearized by approaching the congestion term using a piece-
wise linear approximation.

- In Subsection 4.2, a SLR is applied to this linearized follower’s problem by replacing the follower’s
objective function with a new set of constraints and variables representing the strong duality relationship
between primal and dual forms in the optimum.

- In Subsection 4.3, toll variables are replaced with binary indicators denoting a discrete collection of
possible toll levels to be charged to vehicles.

The goodness of the approximated MILP hinges on its size, so a trade-off between accuracy and efficiency
will be computationally studied in Section 7.

4.1. Linear approximation of the follower’s problem

The follower’s objective (4) is an increasing, convex and non-linear function with respect to the total arc
flow. Hereafter, we consider a collection L = {1 . . . L} of piecewise linear approximations to give an estimate
from below of the time cost. Let ua(xa) = u0

a
ra

5(qa)4 (xa)5 and define a collection of L pivots δ1 . . . δL. A first-

order Taylor expansion of ua(xa) at point d` is uniquely characterized by the corresponding slop d`a = u0
ara(d`)

4

and intercept e`a = − 4
5(qa)4u

0
ara(d`)

5, so that, for any link a ∈ A, we have:

ua(xa) = u0
a

ra
5(qa)4

(xa)5 ≥ ũa(xa) = max
`∈L

{
d`axa + e`a

}
(5)

For a given road link a ∈ A, an illustrative example is given in Fig. 2 for L = 3. The three approximation
lines are specified by the pivots δ` and knots (α`−1, ũa(α`−1)) and (α`, ũa(α`)).

xa

ua

ua(δ2)

ua(α2)

ua(δ1)

ua(α1)
ua(δ0)
ua(α0)

ua

ua
~

ua(α3)
~

~

~

~
α0 α1 α2 α3δ0 δ1 δ2

Figure 2: Example of a linear piecewise approximation with 3 lines

Note that, the piecewise linear function coincides with the time cost function in the pivots δ1 . . . δL, whereas
the maximum deviation values are in the knots. These are determined using the method of Imamoto & Tang
[26], described in detail in Appendix B. Since the time cost function is convex, the piecewise linear function
(5) can be transformed into the following set of linear inequalities:

ũa ≥ d`axa + e`a, ∀ a ∈ A, ` ∈ L. (6)
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These constraints are appended to the follower’s problem (3), and the non-linear term of the objective
function is replaced with the new variables ũa, resulting in the following linearized follower’s problem:

Ψ̃P (t,w) = argmin
x,ũ

∑
a∈AT

taxa +
∑
a∈A

(u0
axa + ũa) (7a)

subject to:
∑
a∈A

Ni,ax
v,k
a = sv,ki ,

[
αv,ki

]
∀ i ∈ N , v ∈ V, k ∈ Kv (7b)

xva ≤M (w)
a,v w

v
a,

[
βva
]

∀ a ∈ AT , v ∈ V (7c)

ũa ≥ d`axa + e`a,
[
γ`a
]

∀ a ∈ A, ` ∈ L (7d)

xv,ka ≥ 0, ∀ a ∈ A, v ∈ V, k ∈ Kv (7e)

ũa ≥ 0, ∀ a ∈ A (7f)

Problem (7) consists of a multicommodity network flow model with the inclusion of |L|min-max constraints.

The values of αv,ki , βva and γ`a are the dual variables associated with constraints (7b)-(7d), respectively.
In its general form, the problem of the network operator (1) is a non-convex optimization problem with an

implicitly defined feasible region. When it comes to its linearized version, we know that Ψ̃P (t,y) approaches
Ψ(t,w), as |L| grows large. This results in a trade-off between problem size and accuracy of the approximation.

The existence of a solution to this bi-level problem with linearized follower can be deduced based on the
work in [3, 25, 11], as established in the next proposition.

Proposition 1. Consider the linearized network operator problem, where x ∈ Ψ(t,w) is replaced with x ∈
Ψ̃P (t,w). Then, for any L, as long as the network of toll-free links AF is connected, the network operator can
always find at least one optimal combination of toll levels t, accessability pattern w and constructed links y.

A proof of this proposition can be found on Appendix C. In the rest of the paper, the focus will be on the
approximated bi-level problem, where x ∈ Ψ(t,w) is replaced with x ∈ Ψ̃P (t,w) in (1).

4.2. Single Level Reformulation

As already discussed in Subsection 3.3, generally adopted techniques for solving MINLBPs rely on a single
level reformulation [32, 46, 19, 29]. This reformulation is based on the optimality conditions of the lower
level problem (i.e., the vehicle’s best response from the linearized version, Ψ̃P (t,w), in our case), which are
represented by a set of constraints and variables establishing the relationship between primal and dual forms
in the follower’s optimum.

First, we consider the dual form of the linearized follower’s problem (7):

Ψ̃D(t,w) = argmax
α,β,γ

∑
v∈V

∑
k∈Kv

∑
i∈N

sv,ki αv,ki −
∑
a∈AT

∑
v∈V

M (w)
a,v w

v
aβ

v
a +

∑
a∈A

∑
`∈L

e`aγ
`
a (8a)

subj. to αv,kj(a) − α
v,k
i(a) + βva +

∑
l∈L

dlaγ
l
a ≥ −ta − u0

a, ∀ a ∈ AT , v ∈ V, k ∈ Kv (8b)

αv,kj(a) − α
v,k
i(a) +

∑
l∈L

dlaγ
l
a ≥ −u0

a, ∀ a ∈ AF , v ∈ V, k ∈ Kv (8c)

−
∑
l∈L

γla ≥ −1, ∀ a ∈ A (8d)

βva ≥ 0, ∀ a ∈ AT , v ∈ V (8e)

γ`a ≥ 0, ∀ a ∈ A, ` ∈ L (8f)

where the notation i(a) and j(a) has been introduced to denote the first and second endpoint of either a ∈ AT
or a ∈ AF .

Since (7) is a linear program; building on strong duality, the vehicle’s best response x ∈ Ψ̃(t,w) can be
established by requiring the equality between primal payoff and its dual. The resulting single level problem is
then as follows:
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max
t,y,w,x,ũ,α,β,γ

∑
a∈AT

taxa −
∑
a∈AN

caya −
∑
a∈A

na
∑
v∈V

mvx
v
a (9a)

subj. to

(C1)



∑
a∈AN

caya ≤ B

ta ≤ Ta, ∀ a ∈ AT

ya ≥ wva, ∀ a ∈ AN , v ∈ V

(9b)

(9c)

(9d)

(C2)



αv,kj(a) − α
v,k
i(a) + βva +

∑
l∈L

dlaγ
l
a ≥ −ta − u0

a, ∀ a ∈ AT , v ∈ V, k ∈ Kv

αv,kj(a) − α
v,k
i(a) +

∑
l∈L

dlaγ
l
a ≥ −u0

a, ∀ a ∈ AF , v ∈ V, k ∈ Kv

∑
l∈L

γla ≤ 1, ∀ a ∈ A

(9e)

(9f)

(9g)

(C3)



∑
a∈A

Ni,ax
v,k
a = sv,ki , ∀ i ∈ N , v ∈ V, k ∈ Kv

xva ≤M (w)
a,v w

v
a, ∀ a ∈ AT , v ∈ V

ũa ≥ d`a
∑
v∈V

∑
k∈Kv

xv,ka + e`a, ∀ a ∈ A, ` ∈ L

(9h)

(9i)

(9j)

(C4)

{ ∑
v∈V

∑
k∈Kv

∑
i∈N

sv,ki αv,ki −
∑
a∈AT

∑
v∈V

M (w)
a,v w

v
aβ

v
a +

∑
a∈A

∑
`∈L

e`aγ
`
a =

∑
a∈AT

taxa +
∑
a∈A

(u0
axa + ũa) (9k)

(C5)



ta ≥ 0, ∀ a ∈ AT

ya ∈ {0, 1}, ∀ a ∈ AN

wva ∈ {0, 1}, ∀ a ∈ AT , v ∈ V

xv,ka ≥ 0, ∀ a ∈ A, v ∈ V, k ∈ Kv

βva ≥ 0, ∀ a ∈ AT , v ∈ V

γ`a ≥ 0, ∀ a ∈ A, ` ∈ L

ũa ≥ 0, ∀ a ∈ A

(9l)

(9m)

(9n)

(9o)

(9p)

(9q)

(9r)

where (C1) characterize the feasible operator choices, (C2) contain the follower’s primal feasibility, (C3) ensure
the follower’s dual feasibility, (C4) is the strong duality condition to characterize the follower’s optimality, (C5)
define variable domains.

4.3. Building a feasible solution by linearizing the bi-linear terms

The single level reformulation problem (9a)–(9r) is non-linear and non-convex because of the presence of
two types of bi-linear terms: the ones involving wvaβ

v
a in the strong duality condition (12a), and the ones

involving taxa in the objective function (9a) and strong duality condition (12a).7

7Some literature works propose convex envelopes to linearize bi-linear terms (see, for instance, Esfandeh et al.[15]). However,
these approaches require the inclusion of a large number of variables and constraints, preventing the convexified model to be
solved for real-sized networks.
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In this subsection, we present a linearization procedure which allows building a feasible solution of problem
(9a)–(9r). This solution can be made arbitrarily close to the optimal solution at the expense of the problem
size and, consequently, its computational efficiency.

The linearization of wvaβ
v
a is done by noticing that the big-M type constraint (9i) is equivalent to wvaβ

v
a = 0,

as βva = 0, when wva = 1 for sufficiently large values of M (inactive bound). Thus, for a large positive scalar

M
(β)
a,s , we can introduce the constraint:

βva ≤M (β)
a,s (1− wva) ∀ a ∈ AT , v ∈ V. (10)

As for the second bi-linear terms, we propose a discrete approximation approach including new variables
and constraints (this is exploited by the specialized local search procedure presented in the next section). Let
us define a set of toll levels S = {1 . . . S}, and approximate the toll variables ta with the aid of binary variables
zsa (denoting if toll level s ∈ S is charged at road link a ∈ AT ), as follows:

ta =
∑
s∈S

psaz
s
a, ∀ a ∈ AT and

∑
s∈S

zsa = 1, ∀ a ∈ AT (11)

where the value associated with each toll level is set by parameter psa, so toll variables ta are replaced with
toll levels zsa, for a finite number of levels s ∈ S = {1 . . . S}.

Replacing ta with
∑
s∈S p

s
az
s
a in all occurrences of (9a)–(9r), results in new bi-linear terms involving prod-

ucts between binary and continuous variables. As suggested by Fourer [22], these terms can be straightfor-
wardly linearized for each a ∈ AT by the inclusion of a continuous non-negative variable ϕa bounded by∑
s∈S p

s
az
s
axa. It turns out that the strong duality condition is expressed as follows:

(C4′)



∑
v∈V

∑
k∈Kv

∑
i∈N

sv,ki αv,ki +
∑
a∈A

∑
`∈L

e`aγ
`
a =

∑
a∈AT

ϕa +
∑
a∈A

(u0
axa + ũa)

ϕa ≥ 0, ∀ a ∈ AT

ϕa ≤ psaxa +M (ϕ,c)
a,s (1− zsa), ∀ a ∈ AT , s ∈ S

ϕa ≥ psaxa −M (ϕ,d)
a,s (1− zsa), ∀ a ∈ AT , s ∈ S

βva ≤M (β)(1− wva) ∀ a ∈ AT , v ∈ V

(12a)

(12b)

(12c)

(12d)

(12e)

where M
(ϕ,c)
a,s and M

(ϕ,d)
a,s are large positive scalars disabling constraints (12c) and (12d) respectively, when not

active. In the next section, a dynamic update of these parameters is defined to reduce the number of explored
branch-and-bound nodes.

Based on the described linearization, problem (9a)–(9r) is approximated by the following MILP:

max
z,y,ϕ,x,ũ,α,β,γ

Υ =
∑
a∈AT

ϕa −
∑
a∈AN

caya −
∑
a∈A

na
∑
v∈V

mvx
v
a, s.t. (C1)-(C3),(C4’),(C5) (13)

Observe that, even for small-sized networks, linearized single-level reformulations of the form (13) result in
large MILP instances. Therefore, an efficient solution approach is studied in the next section, and numerically
tested in Section 7.

5. Local search procedure based on binary-searching on toll levels

The MILP (13) provides a feasible solution of (9a)–(9r), which we can try to improve by increasing the
number of toll levels |S|. However, this increase should be carefully done as the problem size grows substantially
with |S|. In fact, passing from |S| to |S|+1 entails an increase of |AT | in the number of variables, thus making
computationally challenging the definition of a large number of discrete tolls. Conversely, using small |S| may
lead to poor solutions, if compared to their continuous counterpart.

Therefore, the interest is in providing reasonably good feasible solutions of (9a)–(9r), while solving (13)
with a small number of toll levels. To do so, a specialized local search exploiting the linearization strategy
in (11) is proposed. This strategy builds on the workings of the well known binary search [43], a search that
iteratively shrinks by half the toll interval ([0,T]), in which the toll charges are determined.
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Our application of the binary search works as follows. For a given link a ∈ AT , and a number of toll levels

|S|, an initial partition of [0, Ta] =
[
p1
a, p

2
a

)
∪
[
p2
a, p

3
a

)
∪ . . . ∪

[
p
|S|−1
a , p

|S|
a

)
is set. In each iteration, an instance

of (13) is solved with the given toll levels p1
a, . . . , p

|S|
a . The opposite half of the current interval in which the

toll level is selected is discarded for the next iteration, and the partition is updated, distributing the toll levels
uniformly on the shrunk toll interval. This procedure is repeated until the relative gap of the network profit
between successive iterations is as small as desired.

Algorithm 1 formalizes the pseudo-code of the proposed procedure for a given value of |S| and T. Parameter
ε is used to set the tolerable gap between consecutive values of the network profit (Υ).

Algorithm 1 Binary-search-based approach to solve large instances of (13).

1: Input: j = 0, S, G, ε ; Output: p, z, y, x, ũ;

2: Initialize incumbent objective: Υ(0 = −∞;
3: Initialize toll levels: psa = (s−1)

|S|−1
Ta, for a ∈ AT , s ∈ S;

4: repeat
5: j + +;
6: Solve (13) and let Υ(j be the optimal objective;

7: for all a ∈ AT do
8: if

∑d|S|/2e
s=1 zsa = 0 then

9: p1a = 1
2

(
p1a + p

|S|
a

)
;

10: else
11: p

|S|
a = 1

2

(
p1a + p

|S|
a

)
;

12: end if

13: for all s ∈ 2 . . . |S| − 1 do

14: psa = p1a + s−1
|S|−1

(
p
|S|
a − p1a

)
;

15: end for
16: end for

17: until
Υ(j −Υ(j−1

Υ(j
≤ ε

The way in which toll levels are updated allows the objective function in (13) to increase monotonically.

Lemma 2. At the jth iteration of Algorithm 1, let P (j = {p1,(j, p2,(j , . . . ,pd|S|e,(j} be the ordered sets of
available toll levels, and let p̂(j ∈ P (j be the optimal toll level from the solution of (13) at the jth iteration
of Algorithm 1. We claim that p̂(j ∈ P (j+1, i.e. the optimal toll level at the jth iteration of Algorithm 1 is
contained in the sets of available toll levels of iteration (j + 1)th.

Theorem 3. For each iteration j of Algorithm 1, we have Υ(j+1 ≥ Υ(j.

A proof of lemma 2 and Theorem 3 can be found on Appendix C.

Example 2. We consider four hypothetical iterations of the proposed procedure for a given link a ∈ AT in the case
|S| = 5 (i.e., 5 toll levels are established). The changes in the toll interval can be described as follows:

- Initially, the toll interval is set to [0, Ta], so the toll levels are set to p1a = 0, p2a = Ta/4, p3a = 2Ta/4, p4a = 3Ta/4,
p5a = Ta. The solution of (13) at the first iteration selects the toll level p1a, located in the left half-interval [0, Ta/2],
as denoted by the black circle.

- As a result, the toll interval is shrunk to [0, Ta/2], and the toll levels are now updated to p1a = 0, p2a = Ta/8,
p3a = 2Ta/8, p4a = 3Ta/8, p5a = Ta/2. The solution of (13) at the second iteration selects the toll level p4a, located
in the right half-interval of [Ta/4, Ta/2].

- Thus, the current interval [0, Ta/2] is shrunk to [Ta/4, 2Ta/4], and the toll levels are now updated to p1a = Ta/4,
p2a = 5Ta/16, p3a = 3Ta/8, p4a = 7Ta/16, p5a = Ta/2. The solution of (13) at the third iteration selects the toll
level pv,1a , located in the left half-interval of [Ta/4, 3Ta/8].

- Now, the interval is shrunk to [Ta/4, 3Ta/8], and the toll levels updated to p1a = Ta/4, p2a = 9Ta/32, p3a = 10Ta/32,
p4a = 11Ta/32, p5a = 3Ta/8. The solution of (13) at the fourth iteration, selects p4a.

Fig. 3 illustrates provides a graphical illustration for these four iterations.
To sum up, in this illustrative example, bounding the toll value from [0, Ta] to [Ta/4, 3Ta/8] requires solving four

times problem (13) with |S| = 5 toll levels.
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Figure 3: Illustration of four iterations of the binary-search-based procedure for a given link a ∈ AT , and the case |S| = 5. The
selected toll level is denoted by a black circle.

The main computational effort in Algorithm 1 relies on the solution of problem (13) at line 7. For this
purpose, the optimality bound provided in Theorem 3 establishes a valid inequality to be appended to problem
(13) from the second to the last iteration of Algorithm 1. As shown in Section 7, the inclusion of this valid
inequality produces a substantial reduction of the explored branch-and-bound nodes when large-scale instances
of problem (13) are solved. As a consequence, the first iteration of Algorithm 1 (the constructive heuristics)
results computationally more challenging than the subsequent ones.8

Although the specialized local search presented in this section constitutes a heuristic method, whose solution
has no guarantee of global optimality, it results to be extremely effective in practice, as shown in Section 7.
In fact, the linearization of the bi-linear term in constraint (C4) requires a large collection of binary variables
that make problem (13) computationally challenging. To counterbalance the trade-off between accuracy and
efficiency in the construction of the set S of toll levels, the proposed binary-search based procedure sequentially
solves small instances of problem (13), based on a parsimonious inclusion of toll levels.

6. Data selection and processing

To show the effectiveness of the proposed methodology, three extensions of the Sioux Falls road network
(each having different amounts of available candidate toll links to be built) have been generated. These
extensions are devised for assessing both the solution properties and the computational performance under a
variety of structural configurations. The original Sioux Falls road network has 24 nodes and 76 arcs, together
with 552 origin-destination pairs that are included in our analysis.9

The three extensions of the Sioux Falls road network are depicted in figures 4-6 for the respective cases of
8, 16 and 24 candidate toll links to be built.10

8Note that adjusted values of M
(β)
a,s ,M

(ϕ,c)
a,s and M

(ϕ,d)
a,s in the big-M type of constraints might also serve to reduce the number

of explored branch-and-bound nodes, while preventing the potential infeasibility induced by the rounding procedure of many

numerical solvers. Building on constraints (12c) and (12d), the values of M
(β)
a,s , M

(ϕ,c)
a,s , and M

(ϕ,d)
a,s can be dynamically updated

at each iteration of Algorithm 1. Bounding the left-hand side of each big-M constraint to their maximum values, M
(β)
a,s ,M

(ϕ,c)
a,s

and M
(ϕ,d)
a,s are set at the jth iteration of Algorithm 1 as follows:

M
(β)
a,s =

∑
a′∈AT

u0a′ +
∑
l∈L

dla′ + P
|S|
a′

 , M
(ϕ,c)
a,s = (max{pqa(j) : q ∈ S} − psa(j))Ga and M

(ϕ,d)
a,s = psa(j)Ga, (14)

where Ga =
∑
v∈V,k∈Kv

a
gv,k is the maximum flow through link a and psa(j) the sth toll level for arc a at the jth iteration of

Algorithm 1.

9The basic data of this road network has been taken from the repository of the Transportation Networks for Research Core
Team [36], as this network has been already used in previous operations research studies, since the work of Suwansirikul et al.[38].

10The selection of the candidate toll links from the pairs of locations in the Sioux Falls road network (corresponding to the green
dotted lines in figures 4-6) has not been done randomly. To build a realistic scenario of urban transportation, each candidate
location for a new road link has been set evaluating the total free flow time (i.e. the total travel times for all origin-destination pairs
without congestion on a saturated network) using 552 possible links (76 existing and 476 potential new arcs). This information is
used in a simplified network design problem (consisting on a standard multi-commodity formulation with binary link construction)
in which we pick the K link locations among the N × N which minimize the total construction cost, while meeting minimum
achievable travel time for the network. These K locations correspond to the green dotted lines in figures 4-6 for the respective
cases of 8, 16 and 24.
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To fit the modeling approach for RNPRE problems, the Sioux Falls road network data set has been
enriched by the additional information concerning the construction costs, the hazmat transportation risk (for
the population living near arcs) and the toll bounds for each route link (resulting from legal requirements that
the network operator must fulfill).

The construction costs are estimated assuming an average toll per km of link length and using a 5-year
amortization horizon. The travel demand assigned to one new link in the simplified network design problem
should be able to cope with the total construction costs of the link within the 5 years of continuous use. As
the RNPRE problem is solved assuming a typical working day, these costs are normalized accordingly.
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Figure 4: Sioux Falls road network with 8 potential new links, 14 existing toll-free links and 13 existing payment links.
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Figure 5: Sioux Falls road network with 16 potential new links, 14 existing toll-free links and 13 existing payment links.
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Figure 6: Sioux Falls road network with 32 potential new links, 14 existing toll-free links and 13 existing payment links.

As for the number of people exposed to hazmat (na, for a ∈ A), considering that Sioux falls is a metropolitan
network (i.e., the longer the length the higher the population living nearby), this amount is randomly generated
using a uniform distribution between 0.03 and 0.08 and multiplied by the link length. When using this
estimation for every link in the Sioux falls network, the sum

∑
a∈A na is almost linearly proportional to the

population estimated for this network. Using the total amounts per origin-destination pairs reported in the
same repository [36], the 70% was assigned to ordinary vehicles and the 30% to hazmat vehicles.

These extended data are summarized in Table 2.

Parameter Average Max Min SD
Ta 1 2 0.4 0.31
ra 0.15 0.15 0.15 0
qa 12343 25900 4948 5962
g0,k 478 3080 70 487
g1,k 205 1320 30 209
na 85 200 40 31
ca 462 850 180 199

Table 2: Summary statistics of the additional parameters for the Sioux Falls road network, including the average, maximum
and minimum values and the standard deviation across the set of arcs.

7. Numerical Experiments

Building on the solution mechanism described in Section 5, this section analyzes traffic management policies
for the Sioux Falls networks depicted in Fig. 4-6, with a view to supporting the effectiveness of the proposed
methodology to solve large-scale instances of road network pricing, regulation, and expansion problems. To do
so, two computational experiments have been conducted, covering a variety of structural configurations and
economic settings.

The first experiment (analyzed in Subsection 7.1) focuses on the impact of the reformulation and lineariza-
tion approach on the specialized local search algorithm. It involves a battery of 1620 instances of RNPRE
problems, generated by the following parameters configurations:

|L| : number of approximation lines for the BPR function, with values {2, 4, 6, 8};
|S| : number of toll levels in the discretization (11), with values {2, 4, 8, 16, 32};
|AT | : number of candidate toll links in the Sioux Falls road networks, with values {8, 16, 24};
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For each parameter configuration 33 = 27 replicates have been generated by setting m, u0, and B at three
levels (within a predefined range).

As the core reformulation and linearization strategy for the RNPRE problem relies on the selection of
|S| and |L|, this experiment pivots on testing the benefit of applying Algorithm 1 (where each iteration is
performed based on the ILOG CPLEX 12.8 implementation of the Branch-and-cut method).

The second experiment (analyzed in Subsection 7.2) has been design to assess the effect of exogenous
business settings on the road links creation and travel time. It involves a battery of 81 instances of RNPRE
problems with |L| = 8 and |S| = 32 , generated by the following parameters configurations:

m : monetary cost of the exposure to risk, with three values {0.001, 0.005, 0.01};
u0 : monetary cost of congestion for each individual, with three values {0.001, 0.005, 0.01};
B : construction budget, with three values {0.1, 0.5, 0.9};
ρ : homogeneous discount for all the construction costs, with three values {0.25, 0.5, 0.75};

All optimization procedures are coded in AMPL platform and solved using IBM CPLEX 12.8.0 on a HP
ProDesk 600 G3 SFF with Intel(R) Core(TM) i5-7500 CPU and 32 GB of RAM. The integrality tolerance of
the CPLEX rounding procedure has been set at 1.0e-6.

7.1. Network operator profit versus computational performance

The motivating idea behind the numerical assessment presented in this subsection is to show that, although
the linearization approach proposed in Subsection (4.3) gives rise to a |S|-levels discrete approximation of the
original RNPRE problem, for each value of |S| the initial solution can be improved with limited computational
effort.

Tables 3-5 show the solutions and performances of the 1620 problem instances corresponding to extensions
of the Sioux Falls road network with 8 (Fig. 4), 16 (Fig. 5) and 24 (Fig. 6) available candidate toll links,
respectively. The values of each row are averaged over the 33 = 27 instances corresponding to the combinations
of m, u0 and B. As a stopping condition for Algorithm 1, we use a 1.0e−6 gap between consecutive iterations
(i.e. (Υ(j −Υ(j−1)/Υ(j ≤ 1.0e− 6). Beside, a 1.0e− 6 MIP-GAP has been set for each internal iteration, with
3648720 (twelve hours) of time limit. CPU times are reported in seconds.

Scenario Initial solution Local search Local search performance
|L| |S| OFNO TCPU OFNO Iter TCPU ∆AV

OF ∆Max
OF #∆OF > 0 ∆TCPU

2 32717823 154 33201871 3.93 241 1.82 % 3.2 % 92.59 % 87
4 32718294 70 32743218 3.30 138 0.14 % 0.58 % 48.15 % 68

2 8 32717778 283 33016762 4.22 355 0.98 % 1.26 % 44.44 % 82
16 32717984 320 34531234 3.56 612 4.59 % 36 % 62.96 % 293
32 35321842 1128 37729245 3.00 1512 12.35 % 36.05 % 48.15 % 484
2 43510171 393 43873118 3.78 444 0.89 % 3 % 85.19 % 51
4 43546865 386 43653973 2.93 470 0.23 % 1.11 % 40.74 % 84

4 8 43546864 256 43721514 3.30 324 0.40 % 0.46 % 55.56 % 67
16 42337094 542 42424696 3.48 760 0.22 % 0.56 % 48.15 % 219
32 42307599 392 42383794 3.11 562 0.19 % 1.21 % 48.15 % 170
2 47649462 700 47657193 3.33 945 0.08 % 0.86 % 85.19 % 245
4 47654792 131 47702408 2.52 492 0.09 % 0.13 % 25.92 % 361

6 8 47655281 223 47702887 2.70 549 0.10 % 0.25 % 37.04 % 326
16 46332173 704 46424158 2.93 930 0.19 % 0.2 % 48.15 % 226
32 47642970 422 47893731 3.00 543 0.50 % 0.7 % 59.26 % 121
2 48871285 1849 49114435 3.33 1983 0.48 % 0.77 % 81.48 % 135
4 50261528 696 50511711 2.70 831 0.49 % 0.66 % 55.55 % 135

8 8 50263561 1075 50352970 3.26 1100 0.43 % 0.86 % 48.15 % 25
16 46332173 704 46424158 2.67 1279 0.18 % 1.73 % 29.63 % 576
32 47118003 2133 48363471 2.67 2355 2.65 % 58.34 % 48.15 % 222

Table 3: Performance results of the local-search procedure defined in Algorithm 1 on the Sioux Falls road
network with 8 available candidate toll links, as depicted on Fig. 4.
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Scenario Initial solution Local search Local search performance
|L| |S| OFNO TCPU OFNO Iter TCPU ∆AV

OF ∆Max
OF #∆OF > 0 ∆TCPU

2 36960097 199 36997059 2.52 278 0.1 % 0.2 % 33.33 % 79
4 36959469 617 36997068 3.00 755 0.11 % 0.25 % 48.15 % 138

2 8 36960027 351 37144689 2.52 426 0.50 % 0.52 % 37.04 % 75
16 35089191 1111 36995992 3.00 1289 10.04 % 268 % 40.74 % 177
32 35321842 1128 36996537 2.74 1362 17.25 % 191 % 44.44 % 234
2 47321735 151 47474340 2.52 214 0.32 % 0.43 % 40.74 % 63
4 49204202 1036 49351523 2.70 1237 0.30 % 0.31 % 29.63 % 200

4 8 49204869 1446 49249900 2.26 1637 0.10 % 0.11 % 25.93 % 191
16 47455880 1351 49233683 2.67 1621 3.85 % 100 % 44.44 % 270
32 45787315 1444 49253199 2.59 1714 7.51 % 100 % 44.44 % 270
2 53849248 97 53904637 2.56 182 0.12 % 0.51 % 33.33 % 85
4 53856049 1079 53908808 2.33 1256 0.11 % 0.12 % 29.63 % 178

6 8 53854030 1179 53906169 2.37 1311 0.10 % 0.12 % 29.63 % 132
16 53782893 5318 53903467 2.37 6030 0.17 % 1 % 37.04 % 712
32 48387209 3122 52278917 2.59 5688 18.50 % 417 % 51.85 % 2566
2 56799077 95 57065263 2.44 176 0.77 % 1.51 % 37.04 % 80
4 56800029 2420 56912343 2.52 2855 0.22 % 0.42 % 40.74 % 434

8 8 54709852 5896 54934609 2.63 6211 0.50 % 0.61 % 48.15 % 225
16 53782893 5318 53903467 2.33 7444 0.42 % 0.51 % 25.93 % 2126
32 54572380 7391 55710934 2.22 7641 1.55 % 28 % 22.22 % 250

Table 4: Performance results of the local-search procedure defined in Algorithm 1 on the Sioux Falls road
network with 16 available candidate toll links, as depicted on Fig. 5.

Scenario Initial solution Local search Local search performance
|L| |S| OFNO TCPU OFNO Iter TCPU ∆AV

OF ∆Max
OF #∆OF > 0 ∆TCPU

2 36618508 207 36628151 2.81 298 0.03 % 31 % 55.56 % 91
4 37851698 807 37889824 2.56 934 0.10 % 0.24 % 37.04 % 127

2 8 37851684 989 37889889 2.56 1058 0.10 % 0.19 % 48.15 % 69
16 35236347 1123 37852013 2.67 1495 7.34 % 100 % 51.85 % 372
32 34317704 2878 37889337 2.67 3195 11.06 % 191 % 44.44 % 317
2 50393582 140 50443988 2.56 224 0.1 % 0.2 % 40.74 % 83
4 50395635 1118 50444449 2.44 1208 0.11 % 0.27 % 33.33 % 90

4 8 50394961 713 50444376 2.41 834 0.10 % 0.4 % 22.22 % 121
16 41539305 1385 47821928 2.63 1895 23.53 % 368 % 48.15 % 511
32 50390947 1555 50444854 3.33 2359 0.11 % 0.22 % 66.67 % 804
2 55022575 103 55208552 2.52 180 0.37 % 7.44 % 48.15 % 77
4 55156669 1864 55209391 2.52 1976 0.10 % 0.12 % 44.44 % 112

6 8 55155279 1476 55218894 2.85 2014 0.13 % 0.49 % 48.15 % 539
16 53237921 3374 55209938 2.74 4263 3.82 % 100 % 59.26 % 889
32 53134432 2831 54822191 2.52 5085 4.98 % 112 % 51.85 % 2254
2 58169769 125 58231711 2.56 171 0.10 % 0.15 % 44.44 % 46
4 58173787 1597 58239800 2.44 2094 0.11 % 0.17 % 44.44 % 497

8 8 52303049 3217 55753579 2.41 4148 0.10 % 0.12 % 40.74 % 935
16 53237921 3374 55209938 2.33 4247 20.52 % 542 % 29.63 % 873
32 45404869 4157 58173208 2.26 4537 69.16 % 911 % 25.93 % 380

Table 5: Performance results of the local-search procedure defined in Algorithm 1 on the Sioux Falls road
network with 24 available candidate toll links, as depicted on Fig. 6.

From left to right of each table, the first two columns report the number of approximation lines (|L|) and
intervals of discretization for tolls (|S|). The third and fourth columns contain the information concerning
the average network operator profit (OFNO) and average CPU time (TCPU ) required to solve problem (13) at
the first iteration (initial solution) of the local-search procedure defined in Algorithm 1. The fifth to seventh
columns show the results having performed all the iterations of the search (including the computation of the
initial solution) in terms of the improved network operator profit (OFNO), the number of performed iterations
(Iter) and the total CPU time (TCPU ). The final group of columns (the eighth, ninth and tenth columns)
provide a summary assessment of the impact of using the binary-search based approach as a local search to
improve the obtained solution, by considering the average (∆AV

OF ) and the maximum (∆Max
OF ) percentage of

increase in the network operator profit and the percentage of instances (over the all 27 generated configurations
at each combination of |L| and |S|) for which the local search has been able to improve the initial solution
(#∆OF > 0).

A first remark on tables 3-5 is the particularly small increase in the CPU time consumption required to
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perform the local search on the initial solution. This is due to the availability of valid inequalities based on
the optimality bounds provided in Theorem 3.

The importance of applying the proposed local-search procedure to the solution obtained by solving (13)
emerges from the analysis of the evolution of the network operator profit, when passing from small to large val-
ues of |S|. In fact, while the optimal objective function of (13) does not necessarily increase when incrementing
the number of toll levels11, the CPU times increase substantially. Therefore, since the analyst is unaware of
the approximate location of optimal toll levels, a wrong selection of S (even if big) might have substantially
negative consequence for the quality of the resulting solution, as well as for the computational performance.
This is due to the fact that the collection of S toll levels p1,(1, p2,(1, . . . ,pS,(1 is not entirely contained in
the collection of S′ toll levels p1,(1, p2,(1, . . . ,pS

′,(1, even when S < S′. As noticeable from Tables 3-5, the
proposed local search method improves significantly the feasible solution of (9a)–(9r) for the vast majority
of analyzed instances using |S| from 16 to 32, and as the number of candidate new toll links increases. The
search also allows restoring (in the vast majority of cases) higher OF values when an unlucky |S| is selected
by the analyst. This improvement of the initial solution is obtained with a computational cost moving from
25 to 2566 seconds. Frequently, this improvement is obtained between two and three local search iterations.

Beside, a prominent role on the problem size and on the accuracy of the obtained solution is played by
the value of |L|. Fig. 7 provides a graphical illustration to support the goodness of the piece-wise linear
approximation when |L| grows large, using the same collection of 1620 problem instances introduced in the
beginning of this section.

We observe that the optimal network operator profit gets progressively stable when |L| increases, for the
three configurations of the Sioux Falls road network with 8, 16 and 24 available candidate toll links. This
suggests that the piecewise linear approximation estimated using the method of Imamoto & Tang properly
mimics the actual travel time function when |L| is at least equal to 8.

(a) 8 candidate toll links (Fig. 4). (b) 16 candidate toll links (Fig. 5). (c) 24 candidate toll links (Fig. 6).

Figure 7: The effect of |L| on the optimal network operator profit, for each fixed value of |S|.

As discussed in Section 5, the main computational effort in Algorithm 1 relies on the solution of problem
(13) at line 7. For this purpose, the optimality bound provided in Theorem 3 establishes a valid inequality to
be appended to problem (13) at each iteration of Algorithm 1.

Table 6 shows the effect of the inclusion of this valid inequality on the three study networks. From left to
right, it is indicated the pair of number of approximation lines (|L|) and intervals of discretization for tolls (|S|)
used, the total CPU times spent by the binary search with and without the inclusion of the valid inequality
(TV ICPU and TCPU , respectively), and the corresponding increase of the CPU time spent by the binary search
(∆TCPU ) in percentage.

On average, the inclusion of the valid inequality within the local search gives rise to a gap of 24%, 59%
and 56%, for the road networks with 8 (Fig. 4), 16 (Fig. 5) and 24 (Fig. 6) available candidate toll links,
respectively. In only two cases, the increase in CPU time has been negative, meaning that the total resolution
without the usage of the valid inequality has spent less time. It is also worth-noticing that the goodness of
the valid inequalities does not depends on the particular selection of |L| and |S|. However, it seems more

11A monotonic growth would be guaranteed only under the condition that all toll levels are incremented keeping fixed the
already defined ones (which was the underlying intuition of Algorithm 1).
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profitable as the number of candidate new toll links increases.

Scenario 8 candidate toll links 16 candidate toll links 24 candidate toll links
|L| |S| TCPU TV ICPU ∆TCPU TCPU TV ICPU ∆TCPU TCPU TV ICPU ∆TCPU

2 175 241 -38 % 1068 278 74 % 2398 298 88 %
4 151 138 9 % 1997 755 62 % 2463 934 62 %

2 8 723 355 51% 2035 426 79 % 2197 1058 52 %
16 750 612 18 % 2627 1289 51 % 2037 1495 27 %
32 2151 1512 30 % 3264 1362 58 % 3621 3195 12 %
2 561 444 21 % 1465 214 85 % 2116 224 89 %
4 508 470 7 % 2966 1237 58 % 3949 1208 69 %

4 8 773 324 58 % 3252 1637 50 % 2937 834 72 %
16 951 760 20 % 3432 1621 53 % 5231 1895 64 %
32 1513 562 63 % 4058 1714 58 % 3110 2359 24 %
2 963 945 2 % 3884 182 95 % 2254 180 92 %
4 514 492 4 % 8303 1256 85 % 5119 1976 61 %

6 8 1441 549 62 % 3720 1311 65 % 4527 2014 56 %
16 1192 930 22 % 9231 6030 35 % 5487 4263 22 %
32 963 543 44 % 10420 5688 45 % 3772 5085 -35 %
2 2017 1983 2 % 2525 176 93 % 8948 171 98 %
4 1558 831 47 % 5348 2855 47 % 4646 2094 55 %

8 8 1603 1100 31 % 7321 6211 15 % 8284 4148 100 %
16 2849 1279 55 % 7600 7444 2 % 8824 4247 52 %
32 2355 2355 0 % 10758 7641 29 % 13875 4537 67 %

Table 6: The effect of the valid inequality on the CPU time for each pair of values of |L| and |S|.

Finally, to better explore the effect of the number of discretized toll levels and number of pivots of the
PWL approximation on the performance of the proposed solution mechanism, a statistical analysis on the
computational experiment is carried out. Tables 7 and 8 report the results of two regression analysis for the
increase in the network operator profit and the number of improved solutions having applied the local search
procedure.

Covariate Estimate Std. Error Pr(> |t|)
Intercept -5.772 10.147 0.569
|L| 1.373 1.852 0.458
|S| 1.200 0.614 0.049 *
|AT | 0.420 0.587 0.474
|L| : |S| -0.288 0.112 0.010 **
|L| : |AT | -0.115 0.107 0.281
|S| : |AT | -0.067 0.035 0.056 .
|S| : |L| : |AT | 0.021 0.006 0.001 ***

Table 7: Regression model for the increase in the network operator profit, having applied the local search procedure. The
notation ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

From Table 7, it is important to notice that individually, only |S| has an impact on the increase of the
network operator profit when applying the local search on the initial solution of (13). Conceptually, a better
representation of toll levels allows a better profit for the network operator. The interactions also play a role on
the improvement of this profit, particularly, |L| : |S| (the interaction between |L| and |S|) and |S| : |L| : |AT |
(the interaction among |L|, |S| and |AT |) are both significant factors.

Covariate Estimate Std. Error Pr(> |t|)
Intercept 1.002 0.493 0.042 *
|L| -0.085 0.089 0.341
|S| -0.043 0.029 0.149
|AT | -0.071 0.028 0.013 *
|L| : |S| 0.003 0.005 0.609
|L| : |AT | 0.005 0.005 0.338
|S| : |AT | 0.003 0.001 0.041 *
|S| : |L| : |AT | -0.000 0.000 0.235

Table 8: Regression model for the number of improved solutions having applied the local search procedure. The notation ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Concerning the number of improved solutions, the effect of |L|, |S| and |AT | is not statistically evident. In
fact, as reported in Table 8, |L| and |S| seem to play a negative role, though the p-values suggest no significant
impact. However, the number of toll-links (|AT |) has a significant negative effect on the probability that the
local search improves the initial solution when |S| is small, whereas the effect of |AT | becomes positive when
|S| is large.

7.2. Traffic management sensitivity

To gain a conceptual understanding of the combinatorial nature of the RNPRE problem, Example 1 has
considered a stylized case, showing how the optimal operator choices vary under different exogenous business
settings. To better assess the effect of these conditions on the road links creation and travel time, a parameter
sensitivity analysis is carried out in this subsection.

Building on the solution procedure applied in the previous subsection, the contour plots in Fig. 8 show
the total construction expenditure (top panels) and the travel time (bottom panels) for nine combinations of
m (monetary cost of the exposure to risk) and u0 (monetary cost of congestion for each individual), averaged
over three levels of B (investment budget). Each panel corresponds to a different level of ρ (homogeneous
discount for the construction costs with respect to the initial costs presented in Section 6). Panel (a) and (d)
are associated with ρ = 0.25, panel (b) and (e) are associated with ρ = 0.5, and panel (c) and (f) are associated
with ρ = 0.75.

(a) 25% reduction (construct. cost). (b) 50% reduction (construct. cost). (c) 75% reduction (construct. cost).

(d) 25% reduction (travel time). (e) 50% reduction (travel time). (f) 75% reduction (travel time).

Figure 8: The effect of m, u0 and ρ on the optimal construction expenditure and travel time for ordinary vehicles, for each
fixed value of |S|.

Fig. 8 reveals a complex interaction between m, u0, B and ρ. When the construction prices are sufficiently
high (i.e. ρ = 0.25 and ρ = 0.5), the travel time increases with m. This is possibly due to the fact that the
network operator pay a bigger effort in designing roads to minimize the exposure to risk when its monetary
value is high, with a negative impact on the travel time for ordinary vehicles. Regarding the investment in
new roads, the optimal expenditure has a complex dependency patterns with respect to m, u0 and ρ. This
argument is supported by the statistical analysis reported in tables 9 and 10.
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Covariate Estimate Std. Error Pr(> |t|)
Intercept -3.490e+04 2.508e+04 0.168
m 3.075e+08 2.815e+08 0.278
u0 -1.970e+07 2.815e+08 0.944
B -7.734e-02 2.418e-01 0.750
ρ 1.169e+03 2.418e-01 0.006 **
m : u0 -3.378e+11 2.260e+12 0.882
m : B 3.072e+02 1.963e+03 0.876
m : ρ -7.533e+06 3.177e+06 0.049 *
u0 : B 5.839e+02 1.963e+03 0.767
u0 : ρ -4.055e+05 4.077e+06 0.921
B : ρ 9.643e-04 3.540e-03 0.786

Table 9: Regression model for the construction expenditure. The notation ***, **, and * indicate statistical significance at the
1%, 5%, and 10% level, respectively.

Covariate Estimate Std. Error Pr(> |t|)
Intercept 1.887e+04 7.888e+04 0.811
m -1.157e+09 8.853e+08 0.195
u0 2.127e+08 8.853e+08 0.810
B 5.387e-03 7.605e-01 0.994
m : u0 -1.656e+12 7.108e+12 0.816
ρ -7.198e+02 1.296e+03 0.580
m : B -2.382e+01 6.173e+03 0.996
m : ρ 3.740e+07 1.282e+07 0.004 **
u0 : B -4.453e+01 6.173e+03 0.994
u0 : ρ -3.210e+06 1.282e+07 0.803
B : ρ -5.989e-05 1.113e-02 0.995

Table 10: Regression model for the travel time. The notation ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% level, respectively.

The fixed construction costs seem to be the most evident driving factor to bust the construction expenditure
(estimate: 1.169e + 03, p-value: 0.006), in particular when the monetary value of the risk exposure is low.
However, when the network operator strongly internalizes the externality costs from risk exposure (i.e. large
values of m), the total expenditure in construction might decrease with construction costs (estimate: −7.533e+
06, p-value: 0.049). Again, the positive interaction m : ρ suggests that the travel time increases with m, when
the construction costs are sufficiently high (estimate: 3.740e+ 07, p-value: 0.004).

The overall picture from the analysis in Fig. 8 and tables 9 and 10 is the one of a complex interaction
patterns between the exogenous economic conditions and the global outcomes, emerging from the multiple
operator choices over road network pricing, regulation and expansion.

8. Conclusions and Further Research

This work presents a mixed-integer non-linear bi-level problem to simultaneously determine the road net-
work pricing, regulation and expansion for ordinary and hazmat vehicles under traffic congestion. This enables
the network operator (corresponding to the leader) to consider the most significant trade-offs in the investment
on new roads, such as the flow of ordinary and hazmat vehicles (which result from the follower best response
to the operator choices), charging different tolls for each road according to the overall impact on the entailed
risk level, while restricting the use of network links to the dangerous goods shipments. Therefore, building
on this comprehensive traffic management policy, the proposed modeling framework allows reaching a balance
between the profit of the leader, the travel costs of the follower, and the externality costs induced by the
exposure to hazmat risk.

As described in Section 4, we follow a reformulation and linearization strategy in which the designed
MINBLP is approximated by a MILP with arbitrary precision. This is done in three steps. First, the travel
time function of the vehicles is approached using a piecewise linear function based on the method of Imamoto
& Tang [26]. Second, the linearized followers’ problem is replaced with a set of constraints and additional
variables based on the strong duality theorem. Finally, tolls are discretized using binary variables denoting
the toll levels.
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Exploiting the proposed linearization strategy, the approximated MILP is solved within a specialized local
search, which sequentially improves the toll levels found by the initial resolution of the MILP. This is built on
the idea of a binary-search-based procedure, that sequentially shrinks the toll interval in which the toll levels
are contained.

The reported results on three network variants of the Sioux Falls road network show that the local search
can improve the leader’s profit up to a 502 % while not spending more than 30 minutes. On the contrary,
when those improvements are not significant, the CPU times are negligible. The level of improvement seems to
depend on the number of toll levels. In fact, the network profits grows significantly for values of |S| between 16
and 32, and as the number of candidate new toll links increases. The inclusion of the valid inequality reduces
significantly the CPU times of the binary search, being able to obtain the same toll values up to 98% less of
CPU time.

To the best of our knowledge, the integration of road network pricing, regulation and expansion for multiple
vehicles categories has not been addressed in previous research. In proposing this novel modeling framework,
this work has pay attention in reformulation and linearization strategy, with a view to providing an efficient
resolution mechanism to help road network operators to take informs decision.

Regarding further research, the following lines are proposed: 1) study of the demand by time periods [20],
2) demand uncertainty [10], 3) robust network design [7], 4) multiple leaders [45], incorporating congestion
and vehicles into hazmat risk [40, 18], and 5) development of tailored bounding methods for big-M’s [33]. In
all lines, further steps into the modeling integrations can still be made, placing this work at the beginning of a
research line aiming at providing road network operators with the ability to take simultaneously decision over
the complex patterns of the traffic management.
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considering recovery robustness and risk aversion measure. Transportation Research Procedia, 22:255–264,
2017.

[8] Giuseppe C Calafiore and Laurent El Ghaoui. Optimization models. Cambridge university press, 2014.

[9] Wilfred Candler and Robert Townsley. A linear two-level programming problem. Computers & Operations
Research, 9:59–76, 1982.

23



[10] Suh-Wen Chiou. A risk-averse signal setting policy for regulating hazardous material transportation under
uncertain travel demand. Transportation Research Part D, 50:446–472, 2017.

[11] Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

[12] Stephan Dempe and Joydeep Dutta. Is bilevel programming a special case of a mathematical program
with complementarity constraints? Mathematical programming, 131(1-2):37–48, 2012.

[13] Stephan Dempe, Vyacheslav Kalashnikov, Gerardo A Pérez-Valdés, and Nataliya Kalashnykova. Bilevel
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Appendix A: On the application of the N-path user equilibrium

This appendix reviews the N-path user equilibrium model developed in [31] and applies it to the follower
problem (3). Using a similar notation as in [35], we can explicitly define from the incidence structure of matrix
N a collection of paths Pk connecting each origin-destination pair k ∈ K. Beside, we define two indicators
∆k
a,p (for a ∈ A, k ∈ K, p ∈ Pk) and ∆̂k

i,p (for i ∈ N , k ∈ K, p ∈ Pk). The first indicator verifies ∆k
a,p = 1

if the arc a ∈ A belongs to the path p ∈ Pk connecting the origin-destination pair k ∈ K, and ∆k
a,p = 0

otherwise. The second indicator verifies ∆̂i, pk = 1 if the node i ∈ N belongs to the path p ∈ Pk connecting
the origin-destination pair k ∈ K, and ∆̂k

i,p = 0 otherwise.

Let fkv,p be the flow of path p ∈ Pk for user type v ∈ V, between the origin-destination pair k ∈ Kv and note

that xv,ka =
∑
p∈Pk fkv,p∆

k
a,p. Then, the path-based balance conditions and the arc-based balance conditions

can be equivalently formulated as12:

∑
p∈Pk

fkv,p =
∑
i∈N

∑
p∈Pk

sv,ki ∆̂k
i,p, (∀ v ∈ V, k ∈ Kv) and

∑
a∈A

Ni,ax
v,k
a = sv,ki (∀ i ∈ N , v ∈ V, k ∈ Kv).

Similarly, the arc interdiction constraints can be equivalently formulated as

(1− wva)
∑
p∈Pk

fkv,p∆
k
a,p = 0, (∀ v ∈ V, k ∈ Kv, a ∈ AT ) and xva ≤Mwva (∀ a ∈ AT , v ∈ V).

Then, the follower problem (3) can be equivalently written as

min
x

∑
a∈A

∫ ∑
v∈V

∑
k∈Kv

∑
p∈Pk f

k
v,p∆k

a,p

0

PVa
(
ta, ω

)
dω (.1a)

subject to:
∑
p∈Pk

fkv,p =
∑
i∈N

∑
p∈Pk

sv,ki ∆̂k
i,p,

[
α̂kv
]

∀ v ∈ V, k ∈ Kv (.1b)

(1− wva)
∑
p∈Pk

fkv,p∆
k
a,p = 0

[
β̂kav
]

∀ v ∈ V, k ∈ Kv, a ∈ AT (.1c)

fkv,p ≥ 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk (.1d)

Constraints (.1c) extend the traditional user equilibrium model by regulating the access of each class of users to
certain arcs. Note that they differ from the path-availability constraints introduced in [31], since problem (3)
requires arc interdiction instead of path interdiction. However, as stated by the next proposition, (.1a)–(.1d)
still verifies the conventional perspective of user equilibrium in which no road user can unilaterally make route
changes to improve her/his travel time.

Proposition 4. Consider the travel time along each path, which is computed as

ckp =
∑
a∈A

PVa
(
ta, xa

)
∆k
a,p, ∀ p ∈ Pk, k ∈ K

We claim that the optimality conditions of problem (.1a)–(.1d) verify the N-path user equilibrium conditions:

12See [6, 14, 27] for a more detailed comparison between the alternative use of path-based formulations and arc-based formula-
tion.
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(a) fkv,p

[
ckp −

(
α̂kv + (1− wva)β̂kbv

)]
= 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk

(b) ckp −
(
α̂kv + (1− wva)β̂kbv

)
≥ 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk

(c)
∑
p∈Pk

fkv,p =
∑
i∈N

∑
p∈Pk

sv,ki ∆̂k
i,p ∀ v ∈ V, k ∈ Kv

(d) (1− wva)
∑
p∈Pk

fkv,p∆
k
a,p = 0 ∀ v ∈ V, k ∈ Kv, a ∈ AT

(e) fkv,p ≥ 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk

A proof of this proposition can be found on Appendix C. Note that for each vehicle of type v ∈ V, conditions
(a) and (b) are valid for every path p ∈ Pk connecting the origin-destination pair k ∈ Kv. They imply that
either the flow on that specific path is zero (in which case the travel time on that path ckp shouldn’t be smaller

than the total shadow price α̂kv + (1 − wva)β̂kbv), or the flow on that path is positive (in which case the travel

time on that path ckp is equal to the total shadow price α̂kv + (1− wva)β̂kbv).
In both cases, the total shadow price corresponds to the minimum path travel time between the analyzed

origin-destination pairs. This is consistent with the user equilibrium principle; in fact, there are two types of
paths connecting origin-destination pairs: those on which the travel time is equal to the total shadow price,
and those on which the travel time is not smaller to the total shadow price. Thus, a vehicle cannot improve
its travel time by unilaterally changing routes.

Appendix B: Imamoto & Tang’s method

The approximation lines are determined using the method of Imamoto & Tang’s [26] because it provides
the less approximation average error. Next Algorithm 2 shows the pseudo-code of this method, with input
parameters α0 and α|L| specifying the minimum and maximum values for the total link flow xa associated
with a road link a ∈ A, and ε denoting its maximum approximation average error.
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Algorithm 2 Pseudo-code of Imamoto & Tang’s [26] method for computing the approximation lines.

1: Input: ua, L, α0, α|L|, ε; Output: da, ea;

2: Initialize counter: j = 1;

3: Initialize correction step: ∆(j = 1;

4: Initialize pivots: δ
(j
l = α0 + l−1.5

|L| (α|L| − α0), ∀ l ∈ L;

5: repeat
6: α

(j
0 = α0;

7: α
(j

|L| = α|L|;

8: for all l ∈ L do

9: α
(j
l =

(
ua(δ

(j
l−1)− ua(δ

(j
l ) + δ

(j
l u

′
a(δ

(j
l )− δ(jl−1u

′
a(δ

(j
l−1)

)(
u

′
a(δ

(j
l )− u

′
a(δ

(j
l−1)

)−1

;

10: ũ
(j
l = u

′
a(δ

(j
l−1)(α

(j
l − δ

(j
l−1) + ua(δ

(j
l−1);

11: φ
(j
l = ũ

(j
l − ua(α

(j
l );

12: end for
13: φ(j

max = max
l∈L

|φ(j
l |;

14: φ
(j
min = min

l∈L
|φ(j
l |;

15:

16: if φ
(j
max > φ

(j−1
max then

17: j −−;

18: ∆(j =
∆(j+1

2
;

19:

20: end if
21: for all l ∈ L do

22: δ
(j+1
l = δ

(j
l + ∆(j

(
φ
(j
l+1 − φ

(j
l

)( φ
(j
l+1

α
(j
l+1 − δ

(j
l

+
φ
(j
l

δ
(j
l − α

(j
l

)−1

;

23: end for
24: j + +;

25: until

∣∣∣∣φ(j
max

φ
(j
min

− 1

∣∣∣∣ < ε

26: for all l ∈ L do
27: dla = u

′
a(δ

(j
l );

28: ela = ua(δ
(j
l )− δ(jl u

′
a(δ

(j
l );

29: end for
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Appendix C: Mathematical proofs

Proposition 1.

Proof. The proof consists in showing first the existence of a feasible solution and then the existence of an
optimal one.

First, for any mapping Φ : R→ R, we define its graph as gphΦ := {(x, y) ∈ Rn×Rm | y ∈ Φ(x)}. Then, as
long as the network of toll-free links AF is connected, we note that for any (t,y,w) ∈ Φ, the follower’s feasible
region (defined by (3b)-(3d)) is a non-empty compact polytope. Thus, as the Ψ(t,w) is also non-empty, the
MINLBP (1) possesses at least one feasible solution (i.e., the inducible region is non-empty).

Second, for a fixed w we introduce the set-valued mapping Ψ̃w
P (t) := Ψ̃P (t,w) for any t ∈ [0,T]. It is

well-known from the theory of linear parametric optimization that gphΨz
Θ := {(t,x) | t ∈ [0,T], x ∈ Ψ̃w

P (t)}
is the union of finitely many polyhedral sets and, thus, closed. Consequently, based on Theorem 3.1 in [11],
the set

gphΨ = {(x, t,w) ∈ Φ |x ∈ Ψ̃P (t,w)} =
⋃

w∈{0,1}q
{(x, t,w) ∈ Φ | (x,w) ∈ gphΨ̃w

P }

is closed (as it is the union of finitely many polyhedral sets). Then, the inducible region IR = {(t,y,w) ∈
Φ | (x,w) ∈ gphΨ̃w

P } is closed and bounded. Therefore, if we combine the above arguments, we have that
IR is non-empty and compact. Next to it, by means of the Weierstrass theorem, as the leader’s objective is
continuous with respect to the the continuous variables t and x, the linearized network operator problem (1)
(in which x ∈ Ψ(t,w) is replaced with x ∈ Ψ̃P (t,w)) admits a global optimal solution for any L.

Lemma 2.

Proof. At the jth iteration of Algorithm 1, we define the ordered sets of points P
(j
0 = {p1,(j , p2,(j , . . . ,pd|S|/2e,(j}

and P
(j
1 = {pd|S|/2e+1,(j ,pd|S|/2e+2,(j , . . . ,p|S|,(j} as the collection of toll levels contained in the first and sec-

ond half of the toll interval, respectively, so that P (j = P
(j
0 ∪ P

(j
1 . Once p̂(j is known, points in P (j+1 are

generated as follows:

ps,(j+1 = L(j) + T
s− 1

2j(|S| − 1)
, where L(j) =

p1,(j + T if p̂(j ∈ P (j
0

1
2

(
p1,(j + p|S|,(j

)
if p̂(j ∈ P (j

1

Note that the toll levels P (j are homogeneously distributed, by construction, within the interval [p1,(j ,p|S|,(j ],

and independently of whether p̂(j ∈ P (j
0 or p̂(j ∈ P (j

1 . So, the pointwise distances between successive toll levels

are D(j) = T 1
2j(|S|−1) . Moreover, since either p̂(j ∈ P (j

0 or p̂(j ∈ P (j
1 , we have that p̂(j can be expressed as

L(j + 1) + 2kD(j) for some k = 1 . . . (|S| − 1). Consequently, p̂(j ∈ P (j+1.

Theorem 3.

Proof. Let χ(j be the feasible region of problem (13) at the jth iteration of Algorithm 1, defined in terms

of variables t, w, y, ϕ, x, ũ, α, β, and γ (by projecting z into t), and define v̂(j , p̂(j and Υ(j as its
corresponding vector of optimal variables, vector of optimal toll levels and optimal objective value, respec-
tively. We also consider the collection of points {p1,(j ,p2,(j , . . . ,p|S|,(j} associated with the search inter-
val [p1,(j ,p|S|,(j ] of Algorithm 1 at the jth iteration. Based on Lemma 2, the half-interval contraction
for the toll interval [p1,(j+1,p|S|,(j+1] retains the optimal toll levels from the previous iteration, i.e p̂(j ∈
{p1,(j+1,p2,(j+1, . . . ,p|S|,(j+1} ⊂

[
p1,(j+1,p|S|,(j+1

]
. This implies that v̂(j ∈ χ(j+1, so that Υ(j+1 ≥ Υ(j .

Proposition 4.

Proof. Consider the Lagrangian function associated with (.1a)–(.1d):

L(f , α̂, β̂) = z[x(f)]+
∑
v∈V

∑
k∈Kv

α̂kv

∑
i∈N

∑
p∈Pk

sv,ki ∆̂k
i,p −

∑
p∈Pk

fkv,p

−∑
v∈V

∑
k∈Kv

∑
a∈AT

β̂kav

(1− wva)
∑
p∈Pk

fkv,p∆
k
a,p
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where

z[x(f)] =
∑
a∈A

∫ ∑
v∈V

∑
k∈Kv

∑
p∈Pk f

k
v,p∆k

a,p

0

PVa
(
ta, ω

)
dω

For the problem of minimizing L(f , α̂, β̂) subject to non-negativity constraints (.1d), the optimality conditions
are

fkv,p
∂L(f , α̂, β̂)

∂fkv,p
= 0 and

∂L(f , α̂, β̂)

∂fkv,p
≥ 0 ∀ p ∈ P, v ∈ V, k ∈ Kv.

with few algebraical manipulation we get

∂L(f , α̂, β̂)

∂fkv,p
= ckp − (α̂kv + (1− wva)β̂kav) ∀ p ∈ P, v ∈ V, k ∈ Kv.

Therefore, we conclude that the optimal solutions of (.1a)–(.1d) must verify

(a) fkv,p

[
ckp −

(
α̂kv + (1− wva)β̂kbv

)]
= 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk

(b) ckp −
(
α̂kv + (1− wva)β̂kbv

)
≥ 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk

(c)
∑
p∈Pk

fkv,p =
∑
i∈N

∑
p∈Pk

sv,ki ∆̂k
i,p ∀ v ∈ V, k ∈ Kv

(d) (1− wva)
∑
p∈Pk

fkv,p∆
k
a,p = 0 ∀ v ∈ V, k ∈ Kv, a ∈ AT

(e) fkv,p ≥ 0 ∀ v ∈ V, k ∈ Kv, p ∈ Pk
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